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In Part 1  of this article (Communications, Sept. 2010,
p. 55), I covered some of the fundamentals of perfor-
mance. Performance is a relation between a task and 
the time it consumes. That relation is measurable 
either as throughput or response time. Because users 
feel variance in performance more than they feel 

the mean, it’s good to express perfor-
mance goals in a percentile format, such 
as “Task T must have response time 
of R seconds or less in P proportion or 
more of executions.” To diagnose a per-
formance problem, you need to state 
your goals objectively, in terms of either 
throughput or response time, or both.

A sequence diagram is a helpful 
graphical tool for understanding how a 
task’s execution consumes your time. A 
profile is a table that shows details about 
response time for a single task execu-
tion. With a profile,  you can learn ex-
actly how much improvement to expect 
for a proposed investment, but only if 
you understand the pitfalls of making 
incorrect assumptions about skew.

Minimizing Risk. As mentioned in 
Part 1, the risk that repairing the per-

formance of one task can damage the 
performance of another reminds me of 
something that happened to me once in 
Denmark. It’s a quick story:

Scene: The kitchen table in Måløv, 
Denmark; the oak table, in fact, of Oak 
Table Network fame, a network of Or-
acle practitioners who believe in using 
scientific methods to improve the de-
velopment and administration of Ora-
cle-based systems.8 Roughly 10 people 
sit around the table, working on their 
laptops and conducting various conver-
sations.

Cary: Guys, I’m burning up. Would 
you mind if I opened the window for a 
little bit to let some cold air in?

Carel-Jan: Why don’t you just take off 
your heavy sweater?

The End.
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There is a general principle at 
work here that humans who optimize 
know: when everyone is happy except 
for you, make sure your local stuff is in 
order before you go messing around 
with the global stuff that affects every-
one else, too.

This principle is why I flinch when-
ever someone proposes to change a 
system’s Oracle SQL*Net packet size 
when the problem is really a couple 
of poorly written Java programs that 
make unnecessarily many database 
calls (and, hence, unnecessarily many 
network I/O calls as well). If everybody 
is getting along fine except for the user 
of one or two programs, then the saf-
est solution to the problem is a change 
whose scope is localized to just those 
one or two programs.

Efficiency. Even if everyone on the 
entire system is suffering, you should 
still focus first on the program that the 
business needs fixed. The way to begin 
is to ensure the program is working as 
efficiently as it can. Efficiency is the in-
verse of how much of a task execution’s 
total service time can be eliminated 
without adding capacity and without 
sacrificing required business function.

In other words, efficiency is an in-
verse measure of waste. Here are some 
examples of waste that commonly oc-
cur in the database application world:

˲˲ A middle-tier program creates a 
distinct SQL statement for every row it 
inserts into the database. It executes 
10,000 database prepare calls (and 
thus 10,000 network I/O calls) when it 
could have accomplished the job with 
one prepare call (and thus 9,999 fewer 
network I/O calls).

˲˲ A middle-tier program makes 100 
database fetch calls (and thus 100 net-
work I/O calls) to fetch 994 rows. It could 
have fetched 994 rows in 10 fetch calls 
(and thus 90 fewer network I/O calls).

˲˲ A SQL statement (my choice of ar-
ticle adjective here is a dead giveaway 
that I was introduced to SQL within the 
Oracle community) touches the data-
base buffer cache 7,428,322 times to re-
turn a 698-row result set. An extra filter 
predicate could have returned the seven 
rows that the end user really wanted to 
see, with only 52 touches upon the data-
base buffer cache.

Certainly, if a system has some glob-
al problem that creates inefficiency for 
broad groups of tasks across the sys-

tem (for example, ill-conceived index, 
badly set parameter, poorly configured 
hardware), then you should fix it. Do 
not tune a system to accommodate pro-
grams that are inefficient, however. (Ad-
mittedly, sometimes you need a tour-
niquet to keep from bleeding to death, 
but do not use a stopgap measure as a 
permanent solution. Address the ineffi-
ciency.) There is a great deal more lever-
age in curing the program inefficiencies 
themselves. Even if the programs are 
commercial off-the-shelf applications, 
it will benefit you more in the long run 
to work with your software vendor to 
make your programs efficient than it 
will to try to optimize your system to run 
with an inherently inefficient workload.

Improvements that make your pro-
gram more efficient can produce tre-
mendous benefits for everyone on the 
system. It is easy to see how top-line 
reduction of waste helps the response 
time of the task being repaired. What 
many people do not understand as 
well is that making one program more 
efficient creates a side effect of per-
formance improvement for other pro-
grams on the system that have no ap-
parent relation to the program being 
repaired. It happens because of the in-
fluence of load upon the system.

Load is competition for a resource 
induced by concurrent task executions. 
It is the reason the performance test-
ing done by software developers does 
not catch all the performance problems 
that show up later in production. 

One measure of load is utilization, 
which is resource usage divided by re-
source capacity for a specified time 
interval. As utilization for a resource 
goes up, so does the response time a 

user will experience when requesting 
service from that resource. Anyone who 
has ridden in an automobile in a big city 
during rush hour has experienced this 
phenomenon. When the traffic is heav-
ily congested, you have to wait longer at 
the tollbooth.

The software you use does not actual-
ly “go slower” as your car does when you 
are going 30mph in heavy traffic instead 
of 60mph on the open road. Computer 
software always goes the same speed no 
matter what (a constant number of in-
structions per clock cycle), but certainly 
response time degrades as resources on 
your system get busier.

There are two reasons that systems 
get slower as load increases: queuing de-
lay and coherency delay. 

Queuing delay. The mathematical re-
lationship between load and response 
time is well known. One mathematical 
model, called M/M/m, relates response 
time to load in systems that meet one 
particularly useful set of specific re-
quirements.7 One of the assumptions of 
M/M/m is the system you are modeling 
has “theoretically perfect scalability.” 
This is akin to having a physical system 
with “no friction,” an assumption that 
so many problems in introductory phys-
ics courses invoke.

Regardless of some overreaching as-
sumptions such as the one about per-
fect scalability, M/M/m has a lot to teach 
us about performance. Figure 1 shows 
the relationship between response time 
and load using M/M/m.

In the figure, you can see mathemati-
cally what you feel when you use a sys-
tem under different load conditions. At 
low load, your response time is essen-
tially the same as your response time at 

Figure 1. This curve relates response time as a function of utilization for an M/M/m system 
with m = 8 service channels.
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throughput is maximized with mini-
mal negative impact to response times. 
(I am engaged in an ongoing debate 
about whether it is appropriate to use 
the term knee in this context. For the 
time being, I shall continue to use it; 
see the sidebar for details.) Mathemat-
ically, the knee is the utilization value 
at which response time divided by uti-
lization is at its minimum. One nice 
property of the knee is it occurs at the 
utilization value where a line through 
the origin is tangent to the response-
time curve. On a carefully produced 
M/M/m graph, you can locate the knee 
quite nicely with just a straight-edge, 
as shown in Figure 2.

Another nice property of the M/M/m 
knee is that you need to know the val-
ue of only one parameter to compute 
it. That parameter is the number of 
parallel, homogeneous, independent 
service channels. A service channel is 
a resource that shares a single queue 
with other identical resources, such 
as a booth in a toll plaza or a CPU in 

no load. As load ramps up, you sense a 
slight, gradual degradation in response 
time. That gradual degradation does 
not really do much harm, but as load 
continues to ramp up, response time 
begins to degrade in a manner that’s 
neither slight nor gradual. Rather, the 
degradation becomes quite unpleasant 
and, in fact, hyperbolic.

Response time (R), in the perfect scal-
ability M/M/m model, consists of two 
components: service time (S) and queu-
ing delay (Q), or R = S + Q. Service time 
is the duration that a task spends con-
suming a given resource, measured in 
time per task execution, as in seconds 
per click. Queuing delay is the time 
that a task spends enqueued at a given 
resource, awaiting its opportunity to 
consume that resource. Queuing delay 
is also measured in time per task execu-
tion (for example, seconds per click).

In other words, when you order 
lunch at Taco Tico, your response time 
(R) for getting your order is the queuing 
delay time (Q) that you spend in front 
of the counter waiting for someone to 
take your order, plus the service time 
(S) you spend waiting for your order to 
hit your hands once you begin talking 
to the order clerk. Queuing delay is the 
difference between your response time 
for a given task and the response time 
for that same task on an otherwise un-
loaded system (don’t forget our perfect 
scalability assumption).

The Knee
When it comes to performance, you 
want two things from a system:

˲˲ The best response time you can get: 
you do not want to have to wait too long 
for tasks to get done.

˲˲ The best throughput you can get: 
you want to be able to cram as much 
load as you possibly can onto the sys-
tem so that as many people as possible 
can run their tasks at the same time.

Unfortunately, these two goals are 
contradictory. Optimizing to the first 
goal requires you to minimize the load 
on your system; optimizing to the sec-
ond goal requires you to maximize it. 
You can not do both simultaneously. 
Somewhere in between—at some load 
level (that is, at some utilization val-
ue)—is the optimal load for the system.

The utilization value at which 
this optimal balance occurs is called 
the knee. This is the point at which 

an SMP (symmetric multiprocessing) 
computer.

The italicized lowercase m in the term 
M/M/m is the number of service chan-
nels in the system being modeled. The 
M/M/m knee value for an arbitrary sys-
tem is difficult to calculate, but I have 
done it in Table 1, which shows the knee 
values for some common service chan-
nel counts. (By this point, you may be 
wondering what the other two Ms stand 
for in the M/M/m queuing model name. 
They relate to assumptions about the 
randomness of the timing of your incom-
ing requests and the randomness of your 
service times. See http://en.wikipedia.
org/wiki/Kendall%27s_notation for 
more information, or Optimizing Oracle 
Performance7 for even more.)

Why is the knee value so important? 
For systems with randomly timed ser-
vice requests, allowing sustained re-
source loads in excess of the knee value 
results in response times and through-
puts that will fluctuate severely with mi-
croscopic changes in load. Hence, on 
systems with random request arrivals, 
it is vital to manage load so that it will 
not exceed the knee value.

Relevance of the Knee
How important can this knee concept 
be, really? After all, as I’ve told you, the 
M/M/m model assumes this ridiculous-
ly utopian idea that the system you are 
thinking about scales perfectly. I know 
what you are thinking: it doesn’t.

What M/M/m does give us is the 
knowledge that even if your system did 
scale perfectly, you would still be strick-
en with massive performance problems 
once your average load exceeded the 
knee values in Table 1. Your system 

Table 1. M/M/m knee values for common 
values of m.

Service  
channel count

Knee 
utilization

1 50%

2 57%

4 66%

8 74%

16 81%

32 86%

64 89%

128 92%

Figure 2. The knee occurs at the utilization at which a line through the origin is tangent to 
the response time curve.
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In this article, I write about knees in 
performance curves, their relevance, 
and their application. Whether it is even 
worthwhile to try to define the concept 
of knee, however, has been the subject of 
debate going back at least 20 years.

There is significant historical basis to 
the idea that the thing I have described 
as a knee in fact is not really meaningful. 
In 1988, Stephen Samson argued that, 
at least for M/M/1 queuing systems, 
no “knee” appears in the performance 
curve. “The choice of a guideline number 
is not easy, but the rule-of-thumb makers 
go right on. In most cases there is not a 
knee, no matter how much we wish to 
find one,” wrote Samson.3

The whole problem reminds me, as I 
wrote in 1999,2 of the parable of the frog 
and the boiling water. The story says that 
if you drop a frog into a pan of boiling 
water, he will escape. But if you put a frog 
into a pan of cool water and slowly heat 
it, then the frog will sit patiently in place 
until he is boiled to death.

With utilization, just as with boiling 
water, there is clearly a “death zone,” a 
range of values in which you can’t afford 
to run a system with random arrivals. But 
where is the border of the death zone? If 
you are trying to implement a procedural 
approach to managing utilization, you 
need to know.

My friend Neil Gunther (see http://
en.wikipedia.org/wiki/Neil_J._Gunther 
for more information about Neil) has 
debated with me privately that, first, 
the term knee is completely the wrong 
word to use here, in the absence of a 
functional discontinuity. Second, he 
asserts that the boundary value of .5 for 
an M/M/1 system is wastefully low, that 
you ought to be able to run such a system 
successfully at a much higher utilization 
value than that. Finally, he argues that 
any such special utilization value should 
be defined expressly as the utilization 
value beyond which your average 
response time exceeds your tolerance for 
average response time (Figure A). Thus, 
Gunther argues that any useful not-to-
exceed utilization value is derivable 
only from inquiries about human 
preferences, not from mathematics. 
(See http://www.cmg.org/measureit/
issues/mit62/m_62_15.html for more 
information about his argument.)

The problem I see with this argument 
is illustrated in Figure B. Imagine that 
your tolerance for average response 
time is T, which creates a maximum 
tolerated utilization value of ρT. Notice 
that even a tiny fluctuation in average 
utilization near ρT will result in a huge 
fluctuation in average response time. 
I believe that your customers feel the 
variance, not the mean. Perhaps they say 
they will accept average response times 
up to T, but humans will not be tolerant 

of performance on a system when a 1% 
change in average utilization over a one-
minute period results in, say, a tenfold 
increase in average response time over 
that period.

I do understand the perspective 
that the knee values I’ve listed in 
this article are below the utilization 
values that many people feel safe in 
exceeding, especially for lower-order 
systems such as M/M/1. It is important, 
however, to avoid running resources at 
average utilization values where small 
fluctuations in utilization yield too-large 
fluctuations in response time. 

Having said that, I do not yet 
have a good definition for a too-large 
fluctuation. Perhaps, like response-
time tolerances, different people have 
different tolerances for fluctuation. But 
perhaps there is a fluctuation tolerance 
factor that applies with reasonable 
universality across all users. The Apdex 

Application Performance Index standard, 
for example, assumes the response time 
F at which users become “frustrated” 
is universally four times the response 
time T at which their attitude shifts from 
being “satisfied” to merely “tolerating.”1

The knee, regardless of how you 
define it or what we end up calling it, is 
an important parameter to the capacity-
planning procedure that I described 
earlier in the main text of this article, and 
I believe it is an important parameter 
to the daily process of computer system 
workload management.

I will keep studying.
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Open Debate About Knees

Figure B. Near ρT value, small fluctuations in average utilization result in large 
response-time fluctuations.
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Figure A. Gunther’s maximum allowable utilization value ρT is defined as the utilization 
producing the average response time T.
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The reason  
the knee value 
is so important 
on a system with 
random arrivals 
is that these tend  
to cluster and  
cause temporary 
spikes in utilization. 

isn’t as good as the theoretical systems 
that M/M/m models. Therefore, the uti-
lization values at which your system’s 
knees occur will be more constraining 
than the values in Table 1. (I use the plu-
ral of values and knees, because you can 
model your CPUs with one model, your 
disks with another, your I/O controllers 
with another, and so on.)

To recap:
˲˲ Each of the resources in your sys-

tem has a knee.
˲˲ That knee for each of your resourc-

es is less than or equal to the knee value 
you can look up in Table 1. The more 
imperfectly your system scales, the 
smaller (worse) your knee value will be.

˲˲ On a system with random request 
arrivals, if you allow your sustained uti-
lization for any resource on your system 
to exceed your knee value for that re-
source, then you will have performance 
problems.

˲˲ Therefore, it is vital that you man-
age your load so that your resource utili-
zations will not exceed your knee values.

Capacity Planning
Understanding the knee can collapse 
a lot of complexity out of your capacity 
planning. It works like this:

˲˲ Your goal capacity for a given re-
source is the amount at which you can 
comfortably run your tasks at peak 
times without driving utilizations be-
yond your knees.

˲˲ If you keep your utilizations less 
than your knees, your system behaves 
roughly linearly—no big hyperbolic 
surprises.

˲˲ If you are letting your system run 
any of its resources beyond their knee 
utilizations, however, then you have 
performance problems (whether you 
are aware of them or not).

˲˲ If you have performance prob-
lems, then you don’t need to be spend-
ing your time with mathematical mod-
els; you need to be spending your time 
fixing those problems by rescheduling 
load, eliminating load, or increasing 
capacity.

That’s how capacity planning fits 
into the performance management 
process.

Random Arrivals
You might have noticed that I used the 
term random arrivals several times. 
Why is that important?

Some systems have something that 
you probably do not have right now: 
completely deterministic job schedul-
ing. Some systems—though rare these 
days—are configured to allow service 
requests to enter the system in absolute 
robotic fashion, say, at a pace of one task 
per second. And by this, I don’t mean at 
an average rate of one task per second 
(for example, two tasks in one second 
and zero tasks in the next); I mean one 
task per second, as a robot might feed 
car parts into a bin on an assembly line.

If arrivals into your system behave 
completely deterministically—mean-
ing that you know exactly when the next 
service request is coming—then you 
can run resource utilizations beyond 
their knee utilizations without neces-
sarily creating a performance problem. 
On a system with deterministic arrivals, 
your goal is to run resource utilizations 
up to 100% without cramming so much 
workload into the system that requests 
begin to queue. 

The reason the knee value is so im-
portant on a system with random ar-
rivals is that these tend to cluster and 
cause temporary spikes in utilization. 
These spikes need enough spare ca-
pacity to consume so that users don’t 
have to endure noticeable queuing de-
lays (which cause noticeable fluctua-
tions in response times) every time a 
spike occurs.

Temporary spikes in utilization 
beyond your knee value for a given 
resource are OK as long as they don’t 
exceed a few seconds in duration. But 
how many seconds are too many? I be-
lieve (but have not yet tried to prove) 
that you should at least ensure that your 
spike durations do not exceed eight 
seconds. (You will recognize this num-
ber if you’ve heard of the “eight-second 
rule.”2) The answer is certainly that if 
you’re unable to meet your percentile-
based response time promises or your 
throughput promises to your users, 
then your spikes are too long. 

Coherency Delay
Your system does not have theoretical-
ly perfect scalability. Even if I have nev-
er studied your system specifically, it is 
a pretty good bet that no matter what 
computer application system you are 
thinking of right now, it does not meet 
the M/M/m “theoretically perfect scal-
ability” assumption. Coherency delay is 
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the factor that you can use to model the 
imperfection.4 It is the duration that a 
task spends communicating and coor-
dinating access to a shared resource. 
Like response time, service time, and 
queuing delay, coherency delay is mea-
sured in time per task execution, as in 
seconds per click.

I will not describe a mathematical 
model for predicting coherency delay, 
but the good news is that if you profile 
your software task executions, you’ll 
see it when it occurs. In Oracle, timed 
events such as the following are exam-
ples of coherency delay:

˲˲ enqueue
˲˲ buffer busy waits
˲˲ latch free

You can not model such coherency 
delays with M/M/m. That is because 
M/M/m assumes all m of your service 
channels are parallel, homogeneous, 
and independent. That means the 
model assumes that after you wait po-
litely in a FIFO queue for long enough 
that all the requests that enqueued 
ahead of you have exited the queue for 
service, it will be your turn to be ser-
viced. Coherency delays don’t work like 
that, however.

Imagine an HTML data-entry form 
in which one button labeled “Update” 
executes a SQL update statement, and 
another button labeled “Save” executes 
a SQL commit statement. An applica-
tion built like this would almost guar-
antee abysmal performance. That is 
because the design makes it possible—
quite likely, actually—for a user to click 
Update, look at his calendar, realize 
“uh-oh, I’m late for lunch,” and then go 
to lunch for two hours before clicking 
Save later that afternoon.

The impact to other tasks on this 
system that wanted to update the same 
row would be devastating. Each task 
would necessarily wait for a lock on 
the row (or, on some systems, worse: a 
lock on the row’s page) until the lock-
ing user decided to go ahead and click 
Save—or until a database administra-
tor killed the user’s session, which of 
course would have unsavory side ef-
fects to the person who thought he had 
updated a row. 

In this case, the amount of time a 
task would wait on the lock to be re-
leased has nothing to do with how busy 
the system is. It would be dependent 
upon random factors that exist outside 

of the system’s various resource utili-
zations. That is why you can not model 
this kind of thing in M/M/m, and it is 
why you can never assume that a per-
formance test executed in a unit-test-
ing type of environment is sufficient 
for a making a go/no-go decision about 
insertion of new code into a produc-
tion system.

Performance Testing
All this talk of queuing delays and co-
herency delays leads to a very difficult 
question: How can you possibly test a 
new application enough to be confident 
that you are not going to wreck your 
production implementation with per-
formance problems?

You can model. And you can test.1 

Nothing you do will be perfect, however. 
It is extremely difficult to create models 
and tests in which you’ll foresee all your 
production problems in advance of ac-
tually encountering those problems in 
production.

Some people allow the apparent fu-
tility of this observation to justify not 
testing at all. Do not get trapped in that 
mentality. The following points are 
certain:

˲˲ You will catch a lot more problems 
if you try to catch them prior to produc-
tion than if you do not even try.

˲˲ You will never catch all your prob-
lems in preproduction testing. That is 
why you need a reliable and efficient 
method for solving the problems that 
leak through your preproduction test-
ing processes.

Somewhere in the middle between 
“no testing” and “complete produc-
tion emulation” is the right amount 
of testing. The right amount of testing 
for aircraft manufacturers is probably 
more than the right amount of testing 
for companies that sell baseball caps. 
But don’t skip performance testing al-
together. At the very least, your perfor-
mance-test plan will make you a more 
competent diagnostician (and clearer 
thinker) when the time comes to fix the 
performance problems that will inevita-
bly occur during production operation.

Measuring. People feel throughput 
and response time. Throughput is usual-
ly easy to measure, response time is much 
more difficult. (Remember, throughput 
and response time are not reciprocals.) 
It may not be difficult to time an end-us-
er action with a stopwatch, but it might 

All this talk  
of queuing delays 
and coherency 
delays leads  
to a very difficult 
question:  
How can you 
possibly test  
a new application 
enough to be 
confident that 
you are not 
going to wreck 
your production 
implementation 
with performance 
problems?
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be very difficult to get what you really 
need, which is the ability to drill down 
into the details of why a given response 
time is as large as it is.

Unfortunately, people tend to mea-
sure what is easy to measure, which 
is not necessarily what they should be 
measuring. It’s a bug. Measures that 
aren’t what you need, but that are easy 
enough to obtain and seem related to 
what you need are called surrogate mea-
sures. Examples include subroutine call 
counts and samples of subroutine call 
execution durations.

I’m ashamed that I do not have 
greater command over my native lan-
guage than to say it this way, but here is 
a catchy, modern way to express what I 
think about surrogate measures: surro-
gate measures suck.

Here, unfortunately, suck doesn’t 
mean never work. It would actually 
be better if surrogate measures never 
worked. Then nobody would use them. 
The problem is that surrogate measures 
work sometimes. This inspires people’s 
confidence that the measures they are 
using should work all the time, and 
then they don’t. Surrogate measures 
have two big problems. 

˲˲ They can tell you your system’s OK 
when it is not. That’s what statisticians 
call type I error, the false positive. 

˲˲ They can tell you that something is 
a problem when it is not. That’s a type 
II error, the false negative. I have seen 
each type of error waste years of peo-
ple’s time.

When the time comes to assess the 
specifics of a real system, your success 
is at the mercy of how good the mea-
surements are that your system allows 
you to obtain. I have been fortunate to 
work in the Oracle market segment, 
where the software vendor at the center 
of our universe participates actively in 
making it possible to measure systems 
the right way. Getting application soft-
ware developers to use the tools that Or-
acle offers is another story, but at least 
the capabilities are there in the product.

Performance is a Feature
Performance is a software application 
feature, just like recognizing that it’s 
convenient for a string of the form “Case 
1234” to automatically hyperlink over to 
case 1234 in your bug-tracking system. 
(FogBugz, which is software that I enjoy 
using, does this.) Performance, like any 

other feature, does not just happen; it 
has to be designed and built. To do per-
formance well, you have to think about 
it, study it, write extra code for it, test it, 
and support it.

Like many other features, however, 
you can not know exactly how perfor-
mance is going to work out while you’re 
still writing, studying, designing, and 
creating the application. For many ap-
plications (arguably, for the vast ma-
jority), performance is completely un-
known until the production phase of the 
software development life cycle. What 
this leaves you with is this: since you 
can’t know how your application is go-
ing to perform in production, you need 
to write your application so that it’s 
easy to fix performance in production.

As David Garvin has taught us, it’s 
much easier to manage something 
that’s easy to measure.3 Writing an ap-
plication that is easy to fix in production 
begins with an application that’s easy to 
measure in production.

Usually, when I mention the concept 
of production performance measure-
ment, people drift into a state of worry 
about the measurement-intrusion ef-
fect of performance instrumentation. 
They immediately enter a mode of data-
collection compromise, leaving only 
surrogate measures on the table. Won’t 
software with an extra code path to mea-
sure timings be slower than the same 
software without that extra code path?

I like an answer that I once heard 
Tom Kyte give in response to this ques-
tion.6 He estimated that the measure-
ment-intrusion effect of Oracle’s ex-
tensive performance instrumentation 
is –10% or less (where or less means or 
better, as in –20%, –30%, and so on). He 
went on to explain to a now-vexed ques-
tioner that the product is at least 10% 
faster now because of the knowledge 
that Oracle Corporation has gained 
from its performance instrumentation 
code, more than making up for any 
“overhead” the instrumentation might 
have caused.

I think that vendors tend to spend 
too much time worrying about how to 
make their measurement code path ef-
ficient without figuring out first how to 
make it effective. It lands squarely upon 
the idea that Knuth wrote about in 1974 
when he said that “premature optimiza-
tion is the root of all evil.”5 The software 
designer who integrates performance 

measurement into a product is much 
more likely to create a fast application 
and—more importantly—one that will 
become faster over time. 
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