
october 2010 | vol. 53 | no. 10 | communications of the acm 39

In Part 1 of this article (Communications, Sept. 2010,
p. 55), I covered some of the fundamentals of perfor-
mance. Performance is a relation between a task and
the time it consumes. That relation is measurable
either as throughput or response time. Because users
feel variance in performance more than they feel

the mean, it’s good to express perfor-
mance goals in a percentile format, such
as “Task T must have response time
of R seconds or less in P proportion or
more of executions.” To diagnose a per-
formance problem, you need to state
your goals objectively, in terms of either
throughput or response time, or both.

A sequence diagram is a helpful
graphical tool for understanding how a
task’s execution consumes your time. A
profile is a table that shows details about
response time for a single task execu-
tion. With a profile, you can learn ex-
actly how much improvement to expect
for a proposed investment, but only if
you understand the pitfalls of making
incorrect assumptions about skew.

Minimizing Risk. As mentioned in
Part 1, the risk that repairing the per-

formance of one task can damage the
performance of another reminds me of
something that happened to me once in
Denmark. It’s a quick story:

Scene: The kitchen table in Måløv,
Denmark; the oak table, in fact, of Oak
Table Network fame, a network of Or-
acle practitioners who believe in using
scientific methods to improve the de-
velopment and administration of Ora-
cle-based systems.8 Roughly 10 people
sit around the table, working on their
laptops and conducting various conver-
sations.

Cary: Guys, I’m burning up. Would
you mind if I opened the window for a
little bit to let some cold air in?

Carel-Jan: Why don’t you just take off
your heavy sweater?

The End.

Thinking
Clearly About
Performance,
Part 2

doi:10.1145/1831407.1831422

 Article development led by
 queue.acm.org

More important principles to keep in mind
when designing high-performance software.

by Cary Millsap

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1831407.1831422&domain=pdf&date_stamp=2010-10-01

40 communications of the acm | october 2010 | vol. 53 | no. 10

practice

There is a general principle at
work here that humans who optimize
know: when everyone is happy except
for you, make sure your local stuff is in
order before you go messing around
with the global stuff that affects every-
one else, too.

This principle is why I flinch when-
ever someone proposes to change a
system’s Oracle SQL*Net packet size
when the problem is really a couple
of poorly written Java programs that
make unnecessarily many database
calls (and, hence, unnecessarily many
network I/O calls as well). If everybody
is getting along fine except for the user
of one or two programs, then the saf-
est solution to the problem is a change
whose scope is localized to just those
one or two programs.

Efficiency. Even if everyone on the
entire system is suffering, you should
still focus first on the program that the
business needs fixed. The way to begin
is to ensure the program is working as
efficiently as it can. Efficiency is the in-
verse of how much of a task execution’s
total service time can be eliminated
without adding capacity and without
sacrificing required business function.

In other words, efficiency is an in-
verse measure of waste. Here are some
examples of waste that commonly oc-
cur in the database application world:

˲˲ A middle-tier program creates a
distinct SQL statement for every row it
inserts into the database. It executes
10,000 database prepare calls (and
thus 10,000 network I/O calls) when it
could have accomplished the job with
one prepare call (and thus 9,999 fewer
network I/O calls).

˲˲ A middle-tier program makes 100
database fetch calls (and thus 100 net-
work I/O calls) to fetch 994 rows. It could
have fetched 994 rows in 10 fetch calls
(and thus 90 fewer network I/O calls).

˲˲ A SQL statement (my choice of ar-
ticle adjective here is a dead giveaway
that I was introduced to SQL within the
Oracle community) touches the data-
base buffer cache 7,428,322 times to re-
turn a 698-row result set. An extra filter
predicate could have returned the seven
rows that the end user really wanted to
see, with only 52 touches upon the data-
base buffer cache.

Certainly, if a system has some glob-
al problem that creates inefficiency for
broad groups of tasks across the sys-

tem (for example, ill-conceived index,
badly set parameter, poorly configured
hardware), then you should fix it. Do
not tune a system to accommodate pro-
grams that are inefficient, however. (Ad-
mittedly, sometimes you need a tour-
niquet to keep from bleeding to death,
but do not use a stopgap measure as a
permanent solution. Address the ineffi-
ciency.) There is a great deal more lever-
age in curing the program inefficiencies
themselves. Even if the programs are
commercial off-the-shelf applications,
it will benefit you more in the long run
to work with your software vendor to
make your programs efficient than it
will to try to optimize your system to run
with an inherently inefficient workload.

Improvements that make your pro-
gram more efficient can produce tre-
mendous benefits for everyone on the
system. It is easy to see how top-line
reduction of waste helps the response
time of the task being repaired. What
many people do not understand as
well is that making one program more
efficient creates a side effect of per-
formance improvement for other pro-
grams on the system that have no ap-
parent relation to the program being
repaired. It happens because of the in-
fluence of load upon the system.

Load is competition for a resource
induced by concurrent task executions.
It is the reason the performance test-
ing done by software developers does
not catch all the performance problems
that show up later in production.

One measure of load is utilization,
which is resource usage divided by re-
source capacity for a specified time
interval. As utilization for a resource
goes up, so does the response time a

user will experience when requesting
service from that resource. Anyone who
has ridden in an automobile in a big city
during rush hour has experienced this
phenomenon. When the traffic is heav-
ily congested, you have to wait longer at
the tollbooth.

The software you use does not actual-
ly “go slower” as your car does when you
are going 30mph in heavy traffic instead
of 60mph on the open road. Computer
software always goes the same speed no
matter what (a constant number of in-
structions per clock cycle), but certainly
response time degrades as resources on
your system get busier.

There are two reasons that systems
get slower as load increases: queuing de-
lay and coherency delay.

Queuing delay. The mathematical re-
lationship between load and response
time is well known. One mathematical
model, called M/M/m, relates response
time to load in systems that meet one
particularly useful set of specific re-
quirements.7 One of the assumptions of
M/M/m is the system you are modeling
has “theoretically perfect scalability.”
This is akin to having a physical system
with “no friction,” an assumption that
so many problems in introductory phys-
ics courses invoke.

Regardless of some overreaching as-
sumptions such as the one about per-
fect scalability, M/M/m has a lot to teach
us about performance. Figure 1 shows
the relationship between response time
and load using M/M/m.

In the figure, you can see mathemati-
cally what you feel when you use a sys-
tem under different load conditions. At
low load, your response time is essen-
tially the same as your response time at

Figure 1. This curve relates response time as a function of utilization for an M/M/m system
with m = 8 service channels.

5

4

3

2

1

0

0.0 0.2 0.6 0.8 1.00.4

R
es

p
on

se
 T

im
e

(R
)

Utilization (ρ)

M/M/8 System

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 41

throughput is maximized with mini-
mal negative impact to response times.
(I am engaged in an ongoing debate
about whether it is appropriate to use
the term knee in this context. For the
time being, I shall continue to use it;
see the sidebar for details.) Mathemat-
ically, the knee is the utilization value
at which response time divided by uti-
lization is at its minimum. One nice
property of the knee is it occurs at the
utilization value where a line through
the origin is tangent to the response-
time curve. On a carefully produced
M/M/m graph, you can locate the knee
quite nicely with just a straight-edge,
as shown in Figure 2.

Another nice property of the M/M/m
knee is that you need to know the val-
ue of only one parameter to compute
it. That parameter is the number of
parallel, homogeneous, independent
service channels. A service channel is
a resource that shares a single queue
with other identical resources, such
as a booth in a toll plaza or a CPU in

no load. As load ramps up, you sense a
slight, gradual degradation in response
time. That gradual degradation does
not really do much harm, but as load
continues to ramp up, response time
begins to degrade in a manner that’s
neither slight nor gradual. Rather, the
degradation becomes quite unpleasant
and, in fact, hyperbolic.

Response time (R), in the perfect scal-
ability M/M/m model, consists of two
components: service time (S) and queu-
ing delay (Q), or R = S + Q. Service time
is the duration that a task spends con-
suming a given resource, measured in
time per task execution, as in seconds
per click. Queuing delay is the time
that a task spends enqueued at a given
resource, awaiting its opportunity to
consume that resource. Queuing delay
is also measured in time per task execu-
tion (for example, seconds per click).

In other words, when you order
lunch at Taco Tico, your response time
(R) for getting your order is the queuing
delay time (Q) that you spend in front
of the counter waiting for someone to
take your order, plus the service time
(S) you spend waiting for your order to
hit your hands once you begin talking
to the order clerk. Queuing delay is the
difference between your response time
for a given task and the response time
for that same task on an otherwise un-
loaded system (don’t forget our perfect
scalability assumption).

The Knee
When it comes to performance, you
want two things from a system:

˲˲ The best response time you can get:
you do not want to have to wait too long
for tasks to get done.

˲˲ The best throughput you can get:
you want to be able to cram as much
load as you possibly can onto the sys-
tem so that as many people as possible
can run their tasks at the same time.

Unfortunately, these two goals are
contradictory. Optimizing to the first
goal requires you to minimize the load
on your system; optimizing to the sec-
ond goal requires you to maximize it.
You can not do both simultaneously.
Somewhere in between—at some load
level (that is, at some utilization val-
ue)—is the optimal load for the system.

The utilization value at which
this optimal balance occurs is called
the knee. This is the point at which

an SMP (symmetric multiprocessing)
computer.

The italicized lowercase m in the term
M/M/m is the number of service chan-
nels in the system being modeled. The
M/M/m knee value for an arbitrary sys-
tem is difficult to calculate, but I have
done it in Table 1, which shows the knee
values for some common service chan-
nel counts. (By this point, you may be
wondering what the other two Ms stand
for in the M/M/m queuing model name.
They relate to assumptions about the
randomness of the timing of your incom-
ing requests and the randomness of your
service times. See http://en.wikipedia.
org/wiki/Kendall%27s_notation for
more information, or Optimizing Oracle
Performance7 for even more.)

Why is the knee value so important?
For systems with randomly timed ser-
vice requests, allowing sustained re-
source loads in excess of the knee value
results in response times and through-
puts that will fluctuate severely with mi-
croscopic changes in load. Hence, on
systems with random request arrivals,
it is vital to manage load so that it will
not exceed the knee value.

Relevance of the Knee
How important can this knee concept
be, really? After all, as I’ve told you, the
M/M/m model assumes this ridiculous-
ly utopian idea that the system you are
thinking about scales perfectly. I know
what you are thinking: it doesn’t.

What M/M/m does give us is the
knowledge that even if your system did
scale perfectly, you would still be strick-
en with massive performance problems
once your average load exceeded the
knee values in Table 1. Your system

Table 1. M/M/m knee values for common
values of m.

Service
channel count

Knee
utilization

1 50%

2 57%

4 66%

8 74%

16 81%

32 86%

64 89%

128 92%

Figure 2. The knee occurs at the utilization at which a line through the origin is tangent to
the response time curve.

10

8

6

4

2

0

0.0 0.2 0.6 0.8 1.00.4

R
es

p
on

se
 T

im
e

(R
)

Utilization (ρ)

M/M/4, ρ8 = 0.665006
M/M/16, ρ8 = 0.810695

42 communications of the acm | october 2010 | vol. 53 | no. 10

practice

In this article, I write about knees in
performance curves, their relevance,
and their application. Whether it is even
worthwhile to try to define the concept
of knee, however, has been the subject of
debate going back at least 20 years.

There is significant historical basis to
the idea that the thing I have described
as a knee in fact is not really meaningful.
In 1988, Stephen Samson argued that,
at least for M/M/1 queuing systems,
no “knee” appears in the performance
curve. “The choice of a guideline number
is not easy, but the rule-of-thumb makers
go right on. In most cases there is not a
knee, no matter how much we wish to
find one,” wrote Samson.3

The whole problem reminds me, as I
wrote in 1999,2 of the parable of the frog
and the boiling water. The story says that
if you drop a frog into a pan of boiling
water, he will escape. But if you put a frog
into a pan of cool water and slowly heat
it, then the frog will sit patiently in place
until he is boiled to death.

With utilization, just as with boiling
water, there is clearly a “death zone,” a
range of values in which you can’t afford
to run a system with random arrivals. But
where is the border of the death zone? If
you are trying to implement a procedural
approach to managing utilization, you
need to know.

My friend Neil Gunther (see http://
en.wikipedia.org/wiki/Neil_J._Gunther
for more information about Neil) has
debated with me privately that, first,
the term knee is completely the wrong
word to use here, in the absence of a
functional discontinuity. Second, he
asserts that the boundary value of .5 for
an M/M/1 system is wastefully low, that
you ought to be able to run such a system
successfully at a much higher utilization
value than that. Finally, he argues that
any such special utilization value should
be defined expressly as the utilization
value beyond which your average
response time exceeds your tolerance for
average response time (Figure A). Thus,
Gunther argues that any useful not-to-
exceed utilization value is derivable
only from inquiries about human
preferences, not from mathematics.
(See http://www.cmg.org/measureit/
issues/mit62/m_62_15.html for more
information about his argument.)

The problem I see with this argument
is illustrated in Figure B. Imagine that
your tolerance for average response
time is T, which creates a maximum
tolerated utilization value of ρT. Notice
that even a tiny fluctuation in average
utilization near ρT will result in a huge
fluctuation in average response time.
I believe that your customers feel the
variance, not the mean. Perhaps they say
they will accept average response times
up to T, but humans will not be tolerant

of performance on a system when a 1%
change in average utilization over a one-
minute period results in, say, a tenfold
increase in average response time over
that period.

I do understand the perspective
that the knee values I’ve listed in
this article are below the utilization
values that many people feel safe in
exceeding, especially for lower-order
systems such as M/M/1. It is important,
however, to avoid running resources at
average utilization values where small
fluctuations in utilization yield too-large
fluctuations in response time.

Having said that, I do not yet
have a good definition for a too-large
fluctuation. Perhaps, like response-
time tolerances, different people have
different tolerances for fluctuation. But
perhaps there is a fluctuation tolerance
factor that applies with reasonable
universality across all users. The Apdex

Application Performance Index standard,
for example, assumes the response time
F at which users become “frustrated”
is universally four times the response
time T at which their attitude shifts from
being “satisfied” to merely “tolerating.”1

The knee, regardless of how you
define it or what we end up calling it, is
an important parameter to the capacity-
planning procedure that I described
earlier in the main text of this article, and
I believe it is an important parameter
to the daily process of computer system
workload management.

I will keep studying.

References
1.	A pdex; http://www.apdex.org.
2.	 Millsap, C. Performance management: myths and

facts (1999); http://method-r.com.
3.	S amson, S. MVS performance legends. In

Proceedings of Computer Measurement Group
Conference (1988), 148–159.

Open Debate About Knees

Figure B. Near ρT value, small fluctuations in average utilization result in large
response-time fluctuations.

20

15

10

5

0

0.0 ρT = 0.987ρT = 0.744997

R
es

p
on

se
 T

im
e

(R
)

Utilization (ρ)

M/M/8 System, T = 10

Figure A. Gunther’s maximum allowable utilization value ρT is defined as the utilization
producing the average response time T.

20

15

10

5

0

0.0 0.5 ρT = 0.900

R
es

p
on

se
 T

im
e

(R
)

Utilization (ρ)

M/M/1 System, T = 10

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 43

The reason
the knee value
is so important
on a system with
random arrivals
is that these tend
to cluster and
cause temporary
spikes in utilization.

isn’t as good as the theoretical systems
that M/M/m models. Therefore, the uti-
lization values at which your system’s
knees occur will be more constraining
than the values in Table 1. (I use the plu-
ral of values and knees, because you can
model your CPUs with one model, your
disks with another, your I/O controllers
with another, and so on.)

To recap:
˲˲ Each of the resources in your sys-

tem has a knee.
˲˲ That knee for each of your resourc-

es is less than or equal to the knee value
you can look up in Table 1. The more
imperfectly your system scales, the
smaller (worse) your knee value will be.

˲˲ On a system with random request
arrivals, if you allow your sustained uti-
lization for any resource on your system
to exceed your knee value for that re-
source, then you will have performance
problems.

˲˲ Therefore, it is vital that you man-
age your load so that your resource utili-
zations will not exceed your knee values.

Capacity Planning
Understanding the knee can collapse
a lot of complexity out of your capacity
planning. It works like this:

˲˲ Your goal capacity for a given re-
source is the amount at which you can
comfortably run your tasks at peak
times without driving utilizations be-
yond your knees.

˲˲ If you keep your utilizations less
than your knees, your system behaves
roughly linearly—no big hyperbolic
surprises.

˲˲ If you are letting your system run
any of its resources beyond their knee
utilizations, however, then you have
performance problems (whether you
are aware of them or not).

˲˲ If you have performance prob-
lems, then you don’t need to be spend-
ing your time with mathematical mod-
els; you need to be spending your time
fixing those problems by rescheduling
load, eliminating load, or increasing
capacity.

That’s how capacity planning fits
into the performance management
process.

Random Arrivals
You might have noticed that I used the
term random arrivals several times.
Why is that important?

Some systems have something that
you probably do not have right now:
completely deterministic job schedul-
ing. Some systems—though rare these
days—are configured to allow service
requests to enter the system in absolute
robotic fashion, say, at a pace of one task
per second. And by this, I don’t mean at
an average rate of one task per second
(for example, two tasks in one second
and zero tasks in the next); I mean one
task per second, as a robot might feed
car parts into a bin on an assembly line.

If arrivals into your system behave
completely deterministically—mean-
ing that you know exactly when the next
service request is coming—then you
can run resource utilizations beyond
their knee utilizations without neces-
sarily creating a performance problem.
On a system with deterministic arrivals,
your goal is to run resource utilizations
up to 100% without cramming so much
workload into the system that requests
begin to queue.

The reason the knee value is so im-
portant on a system with random ar-
rivals is that these tend to cluster and
cause temporary spikes in utilization.
These spikes need enough spare ca-
pacity to consume so that users don’t
have to endure noticeable queuing de-
lays (which cause noticeable fluctua-
tions in response times) every time a
spike occurs.

Temporary spikes in utilization
beyond your knee value for a given
resource are OK as long as they don’t
exceed a few seconds in duration. But
how many seconds are too many? I be-
lieve (but have not yet tried to prove)
that you should at least ensure that your
spike durations do not exceed eight
seconds. (You will recognize this num-
ber if you’ve heard of the “eight-second
rule.”2) The answer is certainly that if
you’re unable to meet your percentile-
based response time promises or your
throughput promises to your users,
then your spikes are too long.

Coherency Delay
Your system does not have theoretical-
ly perfect scalability. Even if I have nev-
er studied your system specifically, it is
a pretty good bet that no matter what
computer application system you are
thinking of right now, it does not meet
the M/M/m “theoretically perfect scal-
ability” assumption. Coherency delay is

44 communications of the acm | october 2010 | vol. 53 | no. 10

practice

the factor that you can use to model the
imperfection.4 It is the duration that a
task spends communicating and coor-
dinating access to a shared resource.
Like response time, service time, and
queuing delay, coherency delay is mea-
sured in time per task execution, as in
seconds per click.

I will not describe a mathematical
model for predicting coherency delay,
but the good news is that if you profile
your software task executions, you’ll
see it when it occurs. In Oracle, timed
events such as the following are exam-
ples of coherency delay:

˲˲ enqueue
˲˲ buffer busy waits
˲˲ latch free

You can not model such coherency
delays with M/M/m. That is because
M/M/m assumes all m of your service
channels are parallel, homogeneous,
and independent. That means the
model assumes that after you wait po-
litely in a FIFO queue for long enough
that all the requests that enqueued
ahead of you have exited the queue for
service, it will be your turn to be ser-
viced. Coherency delays don’t work like
that, however.

Imagine an HTML data-entry form
in which one button labeled “Update”
executes a SQL update statement, and
another button labeled “Save” executes
a SQL commit statement. An applica-
tion built like this would almost guar-
antee abysmal performance. That is
because the design makes it possible—
quite likely, actually—for a user to click
Update, look at his calendar, realize
“uh-oh, I’m late for lunch,” and then go
to lunch for two hours before clicking
Save later that afternoon.

The impact to other tasks on this
system that wanted to update the same
row would be devastating. Each task
would necessarily wait for a lock on
the row (or, on some systems, worse: a
lock on the row’s page) until the lock-
ing user decided to go ahead and click
Save—or until a database administra-
tor killed the user’s session, which of
course would have unsavory side ef-
fects to the person who thought he had
updated a row.

In this case, the amount of time a
task would wait on the lock to be re-
leased has nothing to do with how busy
the system is. It would be dependent
upon random factors that exist outside

of the system’s various resource utili-
zations. That is why you can not model
this kind of thing in M/M/m, and it is
why you can never assume that a per-
formance test executed in a unit-test-
ing type of environment is sufficient
for a making a go/no-go decision about
insertion of new code into a produc-
tion system.

Performance Testing
All this talk of queuing delays and co-
herency delays leads to a very difficult
question: How can you possibly test a
new application enough to be confident
that you are not going to wreck your
production implementation with per-
formance problems?

You can model. And you can test.1

Nothing you do will be perfect, however.
It is extremely difficult to create models
and tests in which you’ll foresee all your
production problems in advance of ac-
tually encountering those problems in
production.

Some people allow the apparent fu-
tility of this observation to justify not
testing at all. Do not get trapped in that
mentality. The following points are
certain:

˲˲ You will catch a lot more problems
if you try to catch them prior to produc-
tion than if you do not even try.

˲˲ You will never catch all your prob-
lems in preproduction testing. That is
why you need a reliable and efficient
method for solving the problems that
leak through your preproduction test-
ing processes.

Somewhere in the middle between
“no testing” and “complete produc-
tion emulation” is the right amount
of testing. The right amount of testing
for aircraft manufacturers is probably
more than the right amount of testing
for companies that sell baseball caps.
But don’t skip performance testing al-
together. At the very least, your perfor-
mance-test plan will make you a more
competent diagnostician (and clearer
thinker) when the time comes to fix the
performance problems that will inevita-
bly occur during production operation.

Measuring. People feel throughput
and response time. Throughput is usual-
ly easy to measure, response time is much
more difficult. (Remember, throughput
and response time are not reciprocals.)
It may not be difficult to time an end-us-
er action with a stopwatch, but it might

All this talk
of queuing delays
and coherency
delays leads
to a very difficult
question:
How can you
possibly test
a new application
enough to be
confident that
you are not
going to wreck
your production
implementation
with performance
problems?

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 45

be very difficult to get what you really
need, which is the ability to drill down
into the details of why a given response
time is as large as it is.

Unfortunately, people tend to mea-
sure what is easy to measure, which
is not necessarily what they should be
measuring. It’s a bug. Measures that
aren’t what you need, but that are easy
enough to obtain and seem related to
what you need are called surrogate mea-
sures. Examples include subroutine call
counts and samples of subroutine call
execution durations.

I’m ashamed that I do not have
greater command over my native lan-
guage than to say it this way, but here is
a catchy, modern way to express what I
think about surrogate measures: surro-
gate measures suck.

Here, unfortunately, suck doesn’t
mean never work. It would actually
be better if surrogate measures never
worked. Then nobody would use them.
The problem is that surrogate measures
work sometimes. This inspires people’s
confidence that the measures they are
using should work all the time, and
then they don’t. Surrogate measures
have two big problems.

˲˲ They can tell you your system’s OK
when it is not. That’s what statisticians
call type I error, the false positive.

˲˲ They can tell you that something is
a problem when it is not. That’s a type
II error, the false negative. I have seen
each type of error waste years of peo-
ple’s time.

When the time comes to assess the
specifics of a real system, your success
is at the mercy of how good the mea-
surements are that your system allows
you to obtain. I have been fortunate to
work in the Oracle market segment,
where the software vendor at the center
of our universe participates actively in
making it possible to measure systems
the right way. Getting application soft-
ware developers to use the tools that Or-
acle offers is another story, but at least
the capabilities are there in the product.

Performance is a Feature
Performance is a software application
feature, just like recognizing that it’s
convenient for a string of the form “Case
1234” to automatically hyperlink over to
case 1234 in your bug-tracking system.
(FogBugz, which is software that I enjoy
using, does this.) Performance, like any

other feature, does not just happen; it
has to be designed and built. To do per-
formance well, you have to think about
it, study it, write extra code for it, test it,
and support it.

Like many other features, however,
you can not know exactly how perfor-
mance is going to work out while you’re
still writing, studying, designing, and
creating the application. For many ap-
plications (arguably, for the vast ma-
jority), performance is completely un-
known until the production phase of the
software development life cycle. What
this leaves you with is this: since you
can’t know how your application is go-
ing to perform in production, you need
to write your application so that it’s
easy to fix performance in production.

As David Garvin has taught us, it’s
much easier to manage something
that’s easy to measure.3 Writing an ap-
plication that is easy to fix in production
begins with an application that’s easy to
measure in production.

Usually, when I mention the concept
of production performance measure-
ment, people drift into a state of worry
about the measurement-intrusion ef-
fect of performance instrumentation.
They immediately enter a mode of data-
collection compromise, leaving only
surrogate measures on the table. Won’t
software with an extra code path to mea-
sure timings be slower than the same
software without that extra code path?

I like an answer that I once heard
Tom Kyte give in response to this ques-
tion.6 He estimated that the measure-
ment-intrusion effect of Oracle’s ex-
tensive performance instrumentation
is –10% or less (where or less means or
better, as in –20%, –30%, and so on). He
went on to explain to a now-vexed ques-
tioner that the product is at least 10%
faster now because of the knowledge
that Oracle Corporation has gained
from its performance instrumentation
code, more than making up for any
“overhead” the instrumentation might
have caused.

I think that vendors tend to spend
too much time worrying about how to
make their measurement code path ef-
ficient without figuring out first how to
make it effective. It lands squarely upon
the idea that Knuth wrote about in 1974
when he said that “premature optimiza-
tion is the root of all evil.”5 The software
designer who integrates performance

measurement into a product is much
more likely to create a fast application
and—more importantly—one that will
become faster over time.

Acknowledgments
Thank you, Baron Schwartz for the
email conversation in which you
thought I was helping you, but in actual
fact, you were helping me come to grips
with the need for introducing coher-
ency delay more prominently into my
thinking. Thank you, Jeff Holt, Ron Cris-
co, Ken Ferlita, and Harold Palacio for
the daily work that keeps the company
going and for the lunchtime conversa-
tions that keep my imagination going.
Thank you, Tom Kyte for your continued
inspiration and support. Thank you,
Mark Farnham for your helpful sugges-
tions. And thank you, Neil Gunther for
your patience and generosity in our on-
going discussions about knees.	

 Related articles
 on queue.acm.org

You’re Doing It Wrong
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=1814327

Performance Anti-Patterns
Bart Smaalders
http://queue.acm.org/detail.cfm?id=1117403

Hidden in Plain Sight
Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1117401

References
1.	C MG (Computer Measurement Group, a network of

professionals who study these problems very, very
seriously); http://www.cmg.org.

2.	E ight-second rule; http://en.wikipedia.org/wiki/
Network_performance#8-second_rule.

3.	G arvin, D. Building a learning organization. Harvard
Business Review (July 1993).

4.	G unther, N. Universal Law of Computational
Scalability (1993); http://en.wikipedia.org/wiki/
Neil_J._Gunther#Universal_Law_of_Computational_
Scalability.

5.	 Knuth, D. Structured programming with Go To
statements. ACM Computing Surveys 6, 4 (1974), 268.

6.	 Kyte, T. A couple of links and an advert…; http://tkyte.
blogspot.com/2009/02/couple-of-links-and-advert.html.

7.	 Millsap, C. and Holt, J. Optimizing Oracle Performance.
O’Reilly, Sebastopol, CA, 2003.

8.	O ak Table Network; http://www.oaktable.net.

Cary Millsap is the founder and president of Method R
Corporation (http://method-r.com), a company devoted to
software performance. He is the author (with Jeff Holt) of
Optimizing Oracle Performance (O’Reilly) and a co-author
of Oracle Insights: Tales of the Oak Table (Apress). He is
the former vice president of Oracle Corporation’s System
Performance Group and a co-founder of his former
company Hotsos. He is also an Oracle ACE Director and
a founding partner of the Oak Table Network, an informal
association of well-known “Oracle scientists.” Millsap
blogs at http://carymillsap.blogspot.com, and tweets at
http://twitter.com/CaryMillsap.

© 2010 ACM 0001-0782/10/1000 $10.00

