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ABSTRACT
Symbolic execution is a popular technique for automatically gen-
erating test cases achieving high structural coverage. Symbolic ex-
ecution suffers from scalability issues since the number ofsym-
bolic paths that need to be explored is very large (or even infinite)
for most realistic programs. To address this problem, we propose
a technique,Simple Static Partitioning, for parallelizing symbolic
execution. The technique uses a set of pre-conditions to partition
the symbolic execution tree, allowing us to effectively distribute
symbolic execution and decrease the time needed to explore the
symbolic execution tree. The proposed technique requires little
communication between parallel instances and is designed to work
with a variety of architectures, ranging from fast multi-core ma-
chines to cloud or grid computing environments. We implement our
technique in the Java PathFinder verification tool-set and evaluate
it on six case studies with respect to the performance improvement
when exploring a finite symbolic execution tree and performing au-
tomatic test generation.

We demonstrate speedup in both the analysis time over finite
symbolic execution trees and in the time required to generate tests
relative to sequential execution, with a maximum analysis time
speedup of 90x observed using 128 workers and a maximum test
generation speedup of 70x observed using 64 workers.

Categories and Subject Descriptors
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1. INTRODUCTION
Software testing is a commonly used technique for validating

the quality of software. It is typically a manual process that ac-
counts for half of the total cost of software development andmain-
tenance [4]. The automation of testing not only reduces the cost
of producing software but also increases software reliability by en-
abling more thorough testing.

Symbolic execution [16] is a fully automated technique for gen-
erating test cases to achieve high testing coverage, and (together
with variations such as concolic execution) has become a popular
approach in recent years [14, 21]. Symbolic execution is performed
by executing programs with symbolic, rather than concrete,inputs.
Execution branches when a condition (e.g., anif statement) is en-
countered, with the condition constraining the inputs on one branch
and the negation of the condition constraining the inputs onthe
other branch. Test generation is performed by solving the resulting
constraints using a constraint solver.

The paths followed during symbolic execution form asymbolic
execution tree, representing all the possible executions through the
program. However exploringall the possible program executions is
generally infeasible (the symbolic execution tree may be very large
or even infinite) thus limiting the application of symbolic execu-
tion in practice. One way to address this scalability problem is to
use a compositional approach [11] that analyzes functions in iso-
lation, encodes the analysis results as summaries and reuses these
summaries to analyze high-level functions.

We explore here a different, complementary approach that im-
proves the scalability of symbolic execution via parallelization. Our
approach is motivated by the increased availability of multi-core
computers and the inherently parallelizable nature of symbolic ex-
ecution. Just as exploring a binary tree can be parallelizedwith
little to no inter-process communication, so can exploringa sym-
bolic execution tree. This is an important advantage, as previous
work in parallel model checking has indicated that synchronization
overhead can be significant, potentially negating any benefits [12,
24]. Consequently, we investigate approaches to parallel symbolic
execution requiring little or no inter-process communication.

More specifically, we use a set of pre-conditions topartition the
symbolic execution tree, allowing us to effectively distribute sym-
bolic execution and decrease the time needed to explore the sym-
bolic execution tree. The pre-conditions are computed by first per-
forming a “shallow” symbolic execution of the user code to auto-
matically collect a large list of path conditions. These path condi-
tions are then processed to produce a list of constraints to be used
as pre-conditions. We refer to this technique as Simple Static Par-
titioning (SSP).

We also propose a generic client-server framework to perform
test generation using multiple machines and/or cores. The frame-
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work is designed primarily for flexibility and extensibility, and thus
can operate on a variety of architectures, ranging from multi-core
machines with shared memory, to networked desktop machines,
to cloud or grid computing environments. Our framework is built
on top of the Java PathFinder (JPF) [26] tool-set, using Symbolic
PathFinder (SPF) [17], a JPF extension that performs symbolic ex-
ecution for Java bytecode. Using this framework, we have devel-
oped listeners for coordinating parallel automatic test generation,
including coverage measurement and test suite reduction.

We have implemented Simple Static Partitioning within thisframe-
work. We have evaluated its effectiveness in terms of (1) thespeedup
in the time required to completely explore a finite symbolic ex-
ecution tree relative to sequential symbolic execution, and (2) the
speedup in the time required to generate a test suite achieving a pre-
determined level of Modified Condition/Decision Coverage
(MC/DC) [6] relative to one or more parallel instances of random
depth first search. We used six case examples in our evaluation: an
Altitude Switch from the avionics domain, a Wheel Brake System
from the automotive domain and four data structures commonly
used in conjunction with Java Pathfinder [27].

Our results demonstrate analysis time speedups up to 30x for3
of 6 systems using 64 workers, with a maximum speedup of 90x
observed using 128 workers. For small numbers of workers (2-
8) we demonstrate speedups consistently larger than 90% of the
maximum (linear) speedup for 3 of 6 systems, with the other three
systems demonstrating speedups of 30% to 90% of the maximum
speedup depending on the number of workers. Finally, we demon-
strate consistent and significant speedup in automatic testgenera-
tion over parallel random depth first search for systems requiring on
average at least 10 minutes when using random depth first search,
with speedups ranging between 5.3x and 70x using 64 workers.

Our approach is related to previous work on parallelizing soft-
ware model checking [9, 12, 13, 24]. However, all of these are
done in the context of explicit state space exploration. There is
little work on parallelizing symbolic execution. We are aware of
two such approaches [7, 15], both of them very recent. Unlikeour
approach, they both operate primarily bydynamicallypartitioning
the symbolic execution tree for load balancing. The work closest
to ours is King’s master thesis [15], which uses a queue of subtrees
for exploration. However this queue is populated dynamically, dur-
ing execution, and not statically as in our case. King demonstrates
consistent speedup in analysis time for a small number of workers
(2-4), but with decreases in speedup as the number of workersin-
creases to 6 or 8. In contrast, our approach does not exhibit drops
in overall speedup as the number of cores increases. We provide a
more extensive comparison in Section 7.

Our contributions are thus: (1) the description and implemen-
tation of an effective technique for statically partitioning a sym-
bolic execution tree and distributing the partitions across parallel
instances, (2) the development of a flexible, extensible framework
for parallelizing Java Pathfinder, and (3) an evaluation of our work
in terms of the speedup when exploring a finite symbolic execution
tree and the performance of automatic test generation.

The paper is organized as follows: Section 2 gives background
on Java Pathfinder and Symbolic Pathfinder, Sections 3 and 4 out-
line our partitioning technique and the parallel framework, Sec-
tions 5 and 6 evaluate our technique and discuss the implications,
and finally Sections 7 and 8 discuss related work and conclude.

2. JAVA PATHFINDER
Java Pathfinder (JPF) is an open-source tool-set for verifying

Java bytecodes. It includes an explicit-state model-checker (core-
JPF) and several extensions, e.g. Symbolic PathFinder and Com-

plexCoverage, that we use in our work. The model checker con-
sists of an extensible custom Java Virtual Machine (JVM), listener
support for monitoring and influencing JPF’s search, and a set of
Java methods for instrumenting Java programs. JPF’s default mode
of execution, termedconcrete execution, performs explicit-state
model checking over Java bytecode.

JPF has been designed to be extensible, and consequently much
of JPF’s execution can be monitored or replaced. Our work ex-
tends JPF via two mechanisms:ChoiceGeneratorsandJPF listen-
ers. ChoiceGeneratorsare the mechanism by which JPF explores
the state space.ChoiceGeneratorscorrespond to non-deterministic
choices made during execution, and often are generated by instru-
mentation in the source code being explored.JPF listenersmonitor
JPF’s exploration of the search space, the operation of JPF’s custom
JVM, and the creation and execution ofChoiceGenerators. Often,
JPF listeners are used to selectively influence execution – alistener
can monitor for a specific event and modify decisions made by JPF,
including modifying the operation ofChoiceGenerators.

Improvements or enhancements that build upon JPF are referred
to asJPF extensionsor simplyextensions. There exist several ex-
tensions to JPF relevant to automatic test generation. In this work,
however, only two extensions are used: Symbolic Pathfinder (SPF),
an extension to JPF for performing symbolic execution, and Com-
plexCoverage, an extension which improves upon JPF and SPF’s
test generation functionality by adding functionality formeasuring
complex structural coverage criteria such as MC/DC. We briefly
describe the relevant aspects of these extensions below; see [17]
and [23] for details.

2.1 Symbolic Pathfinder (SPF)
Symbolic execution is a form of program analysis in which sym-

bolic values are used instead of concrete input values. The program
state is represented by the symbolic values of the program vari-
ables, the program counter (i.e., next bytecode to be executed) and
the path condition (PC). The path condition is a boolean formula
representing the constraints that must be satisfied by the symbolic
values for execution to progress on the current path, i.e. itencodes
thepre-conditionto follow that path.

SPF implements symbolic execution on top of JPF using a non-
standard bytecode interpretation. JPF’s search mechanismis used
to generate and explore the symbolic execution tree. The keyim-
plementation details are (1) replacing JPF’s standard bytecode in-
terpretation, (2) using variable attributes to store symbolic infor-
mation, and (3) generatingPCChoiceGeneratorswhen executing
conditional bytecodes.

JPF is implemented with an abstract bytecode factory, allowing
developers to change how bytecodes are interpreted. The standard
bytecode interpretation performs concrete execution, using real val-
ues (e.g., integers, floats, etc.) to explore the state spaceof the
bytecodes. SPF extends these bytecodes to allow variables to be
represented by symbolic values and expressions, and propagates
symbolic values and expressions when executing said bytecodes.
Storage of symbolic values and expressions is accomplishedby as-
signing symbolic attributes to variables, fields, and stackoperands.
Note that SPF’s bytecodes are a true extension of the standard con-
crete bytecodes, and thus both concrete values and symbolicvalues
can be used during the same execution. We term this featuremixed-
mode execution.

When a conditional bytecode (e.g., those compiled fromif state-
ments,switchstatements, etc.) is executed in SPF, execution branches
to explore the result of the bytecode evaluating totrue or false. A
choice generator,PCChoiceGenerator, is used to nondeterministi-
cally choose which branch to explore. By default, two choices, true
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[1] int r;
[2] while (true) {
[3] boolean b = Debug.getSymbolicBoolean("b");
[4] int x = Debug.getSymbolicInteger("x");
[5] int y = Debug.getSymbolicInteger("y");
[6]
[7] if (b) {
[8] Debug.storeTraceIf(x>y, "ob1");
[9] if (x > y)
[10] r = x;
[11] else
[12] r = y;
[13] }
[14] }

b: Sym b, x: Symx, y: Symy
PC: true

PC: Sym b PC: ¬Sym b

r: Symx 
PC: Sym b ∧ 
Symx > Symy
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PC: Sym b ∧ 
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Figure 1: Symbolic Execution Example (Depth of 3)

and false, are generated by aPCChoiceGenerator. Each choice
generated is associated with a path condition – the bytecode’s con-
dition if true and the negation of the bytecode’s condition iffalse.
When a choice is explored, the bytecode evaluates to this choice
and the associated path condition is appended to thePC. When
branching execution, the satisfiability of the path condition is checked
using off-the-shelf constraint solvers. If thePC is satisfiable, JPF
continues along the associated path; otherwise, JPF backtracks.
By default, SPF always explores the branch corresponding tofalse
first.

We present an example in Figure 1. For symbolic execution, on
lines 3-5, the program variablesx, y andb are assigned symbolic
variables using the ComplexCoverage extension described in Sec-
tion 2.2. As execution progresses, the variabler is expressed in
terms ofx andy. At each conditional bytecode, execution branches
to explore the bytecode evaluating totrue andfalse. Upon branch-
ing, the appropriate constraint, shown on each arrow, is appended
to the currentPC (see Figure 1, right). For example, two paths lead
from the top of the symbolic execution tree. The left path corre-
sponds to line7 evaluating totrue and addsSymb to thePC; the
right path corresponds to line7 evaluating tofalseand adds¬Symb

to thePC. The left path adds additional constraints relatingx and
y; the right path returns to the top of the loop and generates new
symbolic variables (indicated by the subscript2). Solving the con-
straints encoded in aPC give thetest inputsthat exercise that path.

SPF, unlike standard JPF, does not perform state matching asthis
is in general undecidable for path conditions on unbounded data. To
prevent SPF from attempting to explore a potentially infinite search
space, an upper limit is placed on the search depth or on the number
of constraints in the path condition. Thus SPF’s search is charac-
terized as a finitesymbolic execution treeas shown in Figure 1, for
a depth of 3 (choices). This is in contrast to concrete execution in
JPF, which is characterized as a potentially cyclic graph. This prop-
erty, as we will see in Section 3, is the key to partitioning symbolic
execution across multiple parallel instances.

2.2 ComplexCoverage
The ComplexCoverage extension provides functionality forboth

JPF and SPF related to generating test suites satisfying complex
structural coverage criteria. The functionality includesimproved
support for instrumentation, measuring coverage achievedby test
suites, and reducing the size of test suites while maintaining cover-
age. Generating tests using ComplexCoverage relies on an instrumen-
tation-based approach, in which eachtest obligationrequired by
the coverage metric is specified as instrumentation. Atest obliga-
tion for a structural coverage metric is a condition that must eval-
uate totrue at a specific point in the source code. For example,
on line 8 in Figure 1, the obligationx > y at line 8 is expressed

as Debug.storeTraceIf(x>y, "ob1"). If this statement is executed
whenx>y is satisfiable, it will store test inputs satisfying the obliga-
tion. When symbolic execution terminates, thecoverageachieved
is computed as the percentage of satisfied obligations.

The ComplexCoverage extension provides support for “tagging”
instrumentation with identifying strings, thus providinga link to
symbolic variables used by SPF and program variables in the code.
Additionally, it supports measuring the wallclock or CPU time re-
quired to generate each test, needed for our evaluation.

We perform our evaluation in Section 5 usingMC/DC cover-
age[6], a rigorous structural metric widely used in critical system
domains such as avionics software. Test suites providing MC/DC
coverage must cause each condition to evaluate totrue and false
and must demonstrate that each condition affects the value of the
expression. Our use of MC/DC is motivated in part by an ongoing
NASA project that aims at analyzing Simulink/Stateflow models
using JPF/SPF via translation into Java [18]. Furthermore,we use
MC/DC as achieving MC/DC is more difficult than achieving other
structural coverage criteria (such as statement or condition cover-
age) and thus represents a more significant challenge.

3. PARTITIONING FOR PARALLEL SYM-
BOLIC EXECUTION

Our goal is to parallelize symbolic execution in a manner use-
ful for a variety of environments, including fast multi-core ma-
chines with shared memory architectures, networked desktop ma-
chines, and cloud or grid computing environments. As previous
work in parallelized model checking has indicated that synchro-
nization overhead can be significant, potentially negatingany ben-
efits [12, 24], we are only interested in methods that requirevery
little communication.

We describe here our method of parallelization that statically
partitions and distributes execution by (1) generating a queue of
constraints and (2) distributing these constraints (as part of a stan-
dard JPF configuration) to workers, which use the constraints to
direct symbolic execution. We term this methodSimple Static Par-
titioning (SSP). In our evaluation, we compare SSP against an-
other method of parallelization, parallelrandom depth first search
(RDFS), described next. Both techniques, given sufficient time,
will explore an entire finite symbolic execution tree. Both tech-
niques are implemented as JPF listeners.

3.1 Random Depth First Search
Random depth first search (RDFS) performs depth first search

while randomly selecting the order branches in the tree are ex-
plored. It differs from SPF’s standard search technique only in
the use of randomization. While a simple technique, it has very
low overhead and is amenable to parallel execution via different
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random seeds. Furthermore, previous research has shown parallel
RDFS to be an effective method of detecting errors [9, 13]. RDFS
acts as a baseline for evaluating other techniques – if a technique
cannot outperform RDFS, it is unlikely to be of practical use.

Whenever aPCChoiceGeneratoris created, the technique ran-
domly decides the order each choice will be explored using Java’s
default random number generator (seeded with the current system
time or with a user-provided seed). By default, both orderings (true,
falseandfalse, true) are equally likely; however, the technique can
be configured to favor one ordering over another.

3.2 Simple Static Partitioning (SSP)
We partition the traversal of a symbolic execution tree by us-

ing a set of constraints over the input variables of the program un-
der analysis. These constraints are distributed to parallel workers
which use them as pre-conditions for the symbolic executionper-
formed with SPF. For each pre-condition, SPF explores only asub-
set of the symbolic execution tree, representing only the program
executions for the inputs that satisfy the pre-condition. To compute
the set of constraints, we first perform a “shallow” symbolicexe-
cution of the code under analysis and process the path conditions
(PCs) that are generated automatically. SPF’s standard depth first
search or RDFS can be used to explore the tree.

To effectively partition and distribute execution, we require a set
of constraints to bedisjoint andcomplete. We also desire the set
to beuseful. If for any two constraintsA andB in the set,A ∧ B

is false, then each worker will potentially explore different parts of
the symbolic execution tree, and we state the set of constraints is
disjoint. If the disjunction of all the constraints in the set simplifies
to true, then every possible path will be explored by at leastone in-
stance of symbolic execution, and we state our set of constraints is
complete. Finally, if each constraint in the set will cause symbolic
execution to ignore some, but not all of the symbolic execution tree
it would usually explore – i.e, each constraint will affect execution
– we state the set containsusefulconstraints. Ideally, each partition
will require the same amount of time to explore. Creating such par-
titions is difficult without a priori knowledge of the entiresymbolic
execution tree; consequently, we heuristically partitionthe tree.

Our parallelization technique, Simple Static Partitioning (SSP),
is described in detail below. The user provides two inputs tothe
SSP technique: the depth of the shallow execution step, and the
minimum number of constraints desired. Following this, SSPthen
performs a shallow symbolic execution of the system to the depth
provided by the user, collecting all PCs observed at said depth.
These PCs are then broken into a set of individual constraints (i.e.
no conjunctions). Using this set, SSP operates by (1) selecting a
symbolic variable commonly used in the set, (2) generating aset
of constraints that use the variable (using the set of individual con-
straints for guidance), (3) removing all the variables usedin the
newly generated set of constraints from future consideration and
(4) repeating until we can (combinatorially) generate the number
of constraints desired. These constraints are then placed in queue
and distributed to parallel workers.

SSP with inputs depth D and suggested queue size SQS:

1. Perform shallow execution, collecting all PCs at depthD.

2. Split each PC into individual constraints and count the frequency of
each constraint. Place every constraint in a setIndConsalong with
its frequency.

3. Count the frequency of each symbolic variable inIndCons. Place
every variable in a setAvailableVarsalong with its frequency.

4. UsingIndCons, label symbolic variables as “expensive” or “cheap”,
where “cheap” variables are usedonly in constraints that are “cheap”.

Constraints are “expensive” if they use multiplication and/or divi-
sion, and “cheap”otherwise.

5. Create an empty setGeneratedConstraints, containing sets of con-
straints generated by SSP. The product of the size of each setof con-
straints represents the number of constraints we can generate (we
term thisnumGeneratable).

6. WhilenumGeneratable< SQS:

(a) Choose the cheap variableV with the highest frequency from
AvailableVars. If no cheap variable is inAvailableVars, choose
the expensive variableV with the highest frequency.

(b) If V (1) is only referenced in equality constraints, (2) a sym-
bolic integer and (3) the range ofV is no more than twice the
number of equalities usingV in IndCons, then:

Add {All constraints referencingV} to GeneratedConstraints
else:

C = Most common constraint referencingV in C
Add {C, ¬C} to GeneratedConstraints

(c) Remove every variable referenced inGeneratedConstraints
from AvailableVars.

7. Generate every combination of constraints using the setsin Gen-
eratedConstraints(i.e, Cartesian product ofGeneratedConstraints).
Each combination represents a conjunction of constraints.Order the
conjunctions (process described underConstraint Queue) to create
ConstraintQueue.

The key intuitions behind this technique are: (1) more commonly
used variables are likely to partition the state space in useful ways,
(2) the performance of constraint solvers suffers when multiplica-
tion and division are used; avoid those constraints, and (3)if V

can only take on a small range of values, each value is likely to be
important, so use all possible constraints forV rather than picking
only one. Steps 6a and 6b handle intuitions 2 and 3, respectively.
Also note that 6c prevents overconstraining a variable (conserva-
tively) , i.e., selecting multiple constraints for the samevariable
such that the constraints cannot all be satisfied.

The resulting set of partitions meets our stated goals. Eachcon-
junction differs from the others, and thus the set of conjunctions is
disjoint. Each set of constraints inGeneratedConstraintsis com-
plete, and thus the Cartesian product of these constraints is obvi-
ously complete. Finally, the constraints are drawn from observed
PCs and are thususeful, provided every symbolic variable in the
constraints is generated (some dynamically generated variables may
be referenced but not generated, but this is rare in practice).

User Control The user’s control over SSP is limited to the depth of
the shallow execution and the queue size minimum (which we term
thesuggested queue size). Both of these can influence the perfor-
mance of SSP. The larger the depth of shallow execution, the better
SSP’s knowledge of the underlying symbolic execution tree will
be, which may lead to better constraints. For example, branches
that terminate at a depth less than the user-specified depth are ig-
nored. Naturally, large depths increase the time required by SSP.
Thus selection of depth must be balanced between creating effec-
tive partitions and controlling the overhead incurred.

Similarly, the suggested queue size determines the number of
constraints in the queue. A larger number of partitions increases
the overhead required (e.g., more communication, greater overlap
in partitions), but allows more freedom in load balancing. This is
discussed in greater detail in Section 6. Note that the suggested
queue size is simply aminimumsize; the partitioning process may
(and often does) produce more partitions and thus a larger queue.

Constraint Queue As we will see in Section 4, our paralleliza-
tion framework uses a queue to distribute JPF configurations. If
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(b) Selective Concretization Example

Figure 2: Constraining Path Condition (PC) in Simple StaticPartitioning

the set of constraints is larger than the number of workers, order-
ing is relevant, as it determines which constraints are distributed
first. SSP ordersConstraintQueuesuch that constraints on theith
symbolic variables chosen in Step 6a change every2

i−1 items in
the queue. In other words, constraints on the first symbolic vari-
able differ between sequential items in the queue, constraints on
the second symbolic variable chosen differ between every 2 items
in the queue, etc. This ordering was chosen so that constraints over
more common symbolic variables change more frequently in the
queue.

Example Let’s suppose we run SSP using the example from Fig-
ure 1 with a depth of 3 and a suggested queue size of 4. Execution
to depth of 3 yields the PCs corresponding to the 4 paths shownin
Figure 1. SSP then proceeds producing the following sets:

Step 1:Collected PCs ={ b ∧ x > y, b ∧ x ≤ y, ¬b ∧ b2, ¬b ∧ ¬b2 }
Step 2: IndCons = { (b, 2), (¬b, 2), (x > y, 1), (x ≤ y, 1), (b2, 1),
(¬b2, 1) }
Step 3:AvailableVars= { (b, 4), (x, 2), (y, 2), (b2, 2) }
Step 6b:GeneratedConstraints (1st iteration) ={{ b, ¬b}}
Step 6c:AvailableVars (1st iteration) = { (x, 2), (y, 2), (b2, 2)}
Step 6b: GeneratedConstraints (2nd iteration) = {{ b, ¬b}, { x > y,
x ≤ y} }
Step 6c:AvailableVars (2nd iteration) = { (b2, 2)}
Step 7:ConstraintQueue ={ b∧x > y,¬b∧x > y, b∧x ≤ y,¬b∧x ≤ y

}

As we can see, the symbolic variableb is the most commonly
referenced symbolic variable inAvailableVars, and is thus selected
first. The most common constraints referencingb areb and¬b (seen
in IndCons); we arbitraily choose one and add it and its negation to
GeneratedConstraints. We removeb from AvailableVars, leaving
x, y andb2, each with a frequency of 2. We arbitarily choosex, and
select the most common constraint referencingx, x > y, and add it
and its negation (x ≤ y) to GeneratedConstraints. We then remove
bothx andy from AvailableVars, leavingb2. We can now gener-
ate 4 conjunctions using the sets inGeneratedConstraints. The
suggested queue size is 4, so we terminate, generate theConstrain-
tQueueand order it according to the rules above.

Distributing and Using Constraints The technique above only
generates constraints. Once this is complete, we must distribute
these constraints to workers. Distributing constraints ishandled us-
ing the general purpose parallel JPF framework, described in Sec-
tion 4. The queue of constraints is transformed into a queue of
worker configurations, with each worker configuration containing
a constraint to be used in the exploration of a subtree.

When a worker configuration is retrieved by a worker, the con-

straint is effectively used as an initial precondition. An example
of this is given in Figure 2(a). As shown, an initial precondition
of x ≤ y is used. As a result, line9 cannot evaluate totrue and
some of the symbolic execution tree shown in Figure 1 is not ex-
plored. Two separate instances of SPF conducted in parallelcan be
used to divide computation. One instance would use the precondi-
tion x ≤ y, and another instance would use the preconditionx > y.
Taken together, these two instances explore the entire treeshown in
Figure 1 while exploring different parts of said tree. (Clearly, this
would lead to less than optimal partitioning, as significantoverlap
exists between the two workers.)

Selective ConcretizationIn symbolic execution, the use of the
constraint solver can be quite expensive. Consequently, wehave
implemented an optimization when using constraints of the form
var == value, calledselective concretization. This optimization
leverages SPF’s ability to handle both concrete and symbolic val-
ues, i.e., mixed-mode execution. In this technique, one or more
variables normally assigned symbolic values are instead assigned
a singleconcretevalue. While functionally equivalent to directly
using the constraint, replacing a symbolic variable with a single
concrete value reduces the size of path constraints, potentially im-
proving the performance of the constraint solver.

An example of when selective concretization occurs is shownin
Figure 2(b). In this example, the constraint used isb == true,
and the variableb is concretized astrue. As a result, line7 cannot
evaluate tofalse, and only roughly half of the symbolic execution
tree explored in Figure 1 is explored. We expect this technique to be
effective when working with systems that contain importantinputs
with a discrete domain, such as boolean values, flags, flight modes
etc. These type of inputs are often present in NASA and avionics
software.

PCs as ConstraintsReaders familiar with symbolic execution may
note that we can statically partition by simply using the setof PCs
collected at a specified depth (plus all PCs for leaves at smaller
depths) as the set of constraints. Such a set would be disjoint and
complete, and the cost of constructing such a set is very low.How-
ever, this method presents problems: namely, unless we wishto
create a very large number of partitions (> 1000), we must collect
PCs from a very shallow depth, thus partitioning using very limited
information.

For example, for the TreeMap case study presented in Section5
a very shallow execution (maximum depth of 9) requiring lessthan
1 second and produces 21 PCs, with only 3 symbolic variables (out
of 28 potentially produced) referenced. If we increase the depth
to 21, symbolic execution requires only 10 seconds, but produces
2,511 PCs, with 10+ symbolic variables referenced. As the cost to
collect large numbers of PCs is negligible, but the cost of using each
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PC directly as a constraint is potentially high (due to overhead), we
desire a method of transforming a large set of PCs into a smaller
set of partitions. SSP represents such a method.

4. PARALLEL JPF FRAMEWORK
We present here a general framework for parallelizing JPF. This

framework allows us to not only parallelize SPF, but also core-JPF
and other JPF extensions. Our framework is built using a simple
client-server model, with coordination and communicationacross
parallel instances of JPF handled by an extension of JPF listeners.
By using JPF listeners for inter-process communication, our frame-
work has the same flexibility and extensibility present in JPF. This
allows for both parallel approaches incorporating significant inter-
process communication, or (as with SSP) approaches with very lit-
tle communication.

Parallel JPF InstancesTo run parallel instances of JPF, the user
first starts the server, known as theJPF manager, and provides a
parallel configurationto the JPF manager. The user then starts one
or more clients, directing the clients to connect to the JPF manager.
We hereafter refer to these clients asworkers. The parallel con-
figuration specifies how parallel instances of JPF should be config-
ured and is similar to a standard JPF configuration. The configura-
tion can specify global configuration used byall parallel instances,
such as the system to explore, and can specifyindividual config-
uration for a single worker, such as the random seed to use. The
parallel configuration is processed by the JPF manager to create a
list of individual JPF configurations, known asworker configura-
tions. These worker configurations are placed in a queue, and sent
to clients upon request. Each client, upon receiving an worker con-
figuration, creates and starts a JPF instance using the configuration.
Upon termination of the JPF instance, the client will request a new
worker configuration; if the queue is exhausted, the client exits.

Communication between WorkersCommunication between work-
ers is accomplished by remote listeners and remote listenerman-
agers. Figure 3 illustrates communication between objectsin our
framework for one worker and one remote listener.Remote lis-
tenersare JPF listeners extended to communicate with a remote
listener manager. Remote listeners are specified in the worker con-
figurations, and are registered with the worker’s JPF instance. Re-
mote listener managersare specified in the parallel configuration
given to the JPF manager, and are created and maintained by the
JPF manager. Once created, remote listener managers generate and
append configuration information for one or more remote listen-
ers for each worker configuration, and communicate with these re-
mote listeners during execution. Thus remote listener managers
and remote listeners are associated in a one to many relationship
– each remote listener manager communicates with every remote
listener instance it configures. Communication between a remote
listener and a remote listener manager is bidirectional – the listener
can send information to the remote listener manager, and there-
mote listener manager can send information in response. As with
JPF listeners, multiple types of remote listeners and remote listener
managers can be used simultaneously.

JPF worker-server communication is implemented using Java
Remote Method Invocation (Java RMI) [8]. The JPF manager (i.e.
the server) is implemented as a remote object, and workers and re-
mote listeners communicate with the JPF manager via the object’s
methods. This is a very flexible method of communication – work-
ers can be run simultaneously on the same computer (e.g, multi-
core computers), on different computers (e.g. cloud computing) or
any combination thereof.
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Figure 3: Parallel JPF Support (1 Worker Shown)

Parallel Search Implementing a parallel search technique in our
framework can be done in two ways. The simplest method is to
implement a configurable JPF listener or heuristic. Runningthe
parallel search technique is then done by running the same listener
or heuristic, configured differently, on each worker. For example,
to implement parallel RDFS, we implemented a JPF listener con-
figurable with a “random seed” parameter to perform RDFS. To
run parallel RDFS, we use a configuration globally specifying that
workers should use RDFS and explore the same program, but that
eachworker should use a different seed. We use a remote listener
to collect the results produced by each worker.

While simple, this method has the drawback of requiring each
worker to be separately configured. A different method wouldbe to
implement the technique as a remote listener, using the remote lis-
tener manager’s ability to generate configuration info. Forexample,
SSP is implemented in this fashion; the remote listener manager
runs the partitioning heuristic, and uses the resulting constraints to
generate configuration info. Note that parallel search techniques
that require communicationduring JPF’s execution must be imple-
mented using a remote listener.

Example Remote ListenerConsider Figure 4 illustrating a remote
listener we use for monitoring MC/DC test generation. We wish to
measure the coverage achieved, collect the MC/DC test suites gen-
erated by potentially remote workers, and combine and reduce the
MC/DC test suites without reducing the coverage achieved. To im-
plement this, each remote listener detects when its corresponding
JPF instance generates a test satisfying an obligation, sends cov-
erage information to the remote listener manager, and sendsthe
generated MC/DC test suite when JPF execution terminates. The
remote listener manager processes and displays coverage informa-
tion to the user, and combines and reduces the generated MC/DC
test suites. The remote listener manager also generates theconfigu-
ration information for the remote listeners. The end resultof using
this remote listener is (1) the total MC/DC coverage achieved is
displayed to the user and (2) an MC/DC test suite achieving this
coverage is stored on the user’s machine.

5. EVALUATION
We evaluate SSP using two metrics: the time to completely ex-

plore a finite symbolic execution tree, and the the time to gener-
ate tests meeting the MC/DC structural coverage criterion (this in-
cludes the time to collect, combine and reduce the MC/DC test
suites). Specifically, we investigated two questions:

Reduction in Analysis Time: How does the (1) size of the con-

188



Additional

Workers

Worker #1

Manager

MC/DC Coverage Information

Reduced MC/DC Test Suite User Storage

User 
Screen

MC/DC
Remote 
Listener 
Manager

MC/DC
Remote 
Listener

JPF 
Instance

Monitor Execution

MC/DC Test Suite

S
a
ts

if
ie

d
 M

C
/D

C
 

O
b
li
g
a
ti

o
n
s

M
C

/D
C

 T
e
s
t 

S
u
it

e MC/DC Test Suite(s)

Satsified MC/DC Obligations

Figure 4: MC/DC Remote Listener

straint queue and (2) the NPW (number of parallel workers)
influence the time to completely explore a finite symbolic
execution tree?

Reduction in Test Generation Time: How does the NPW influ-
ence the time to generate tests satisfying the MC/DC cover-
age criterion?

The former is a general performance metric: how much faster
can we explore a symbolic execution tree when using our paral-
lelization technique, and how well does it scale? The lattermea-
sures how well our parallelization technique specifically improves
automatic test generation.

5.1 Experimental Setup
To investigate these questions, we vary both the size of the con-

straint queue and the NPW independently. Based on the length
of time required to analyze our case examples, we use constraint
queues of suggested sizes 8, 64, and 128. Larger constraint queues
were too large, as they would reduce the average time required to
analyze each partition to very small values for some case exam-
ples (1-5 seconds), potentially making overhead a major factor in
the time required. Recall from Section 3 the suggested size is the
minimumqueue size; the actual queue size is larger for most case
examples. Actual queue size is indicated in parentheses next the
case example name in Tables 2, 4 and 3. We examined NPWs of
2, 4, 6, 8, 16, 32, 64, 92, and 128. We use six case examples in
our evaluation. Both the server and the workers were run on a Dual
Quad Core Intel Xeon 2.33 GHz with 16 GB of RAM running on
SLED 10.1. Our implementation along with the case examples,are
freely available from JPF’s Sourceforge web-site1.

Automatic test generation is a problem of reachability in the
state space, and there has been work indicating that other reachabil-
ity problems (specifically detecting concurrency errors) can be im-
proved through parallel RDFS [9]. We therefore use parallelRDFS
as a baseline when evaluating question 2, using a large number of
runs with 64 different random seeds to prevent bias.

Given the number of NPWs, case examples, queue sizes, and the
number of RDFS runs, we wished to run 42,066 test generation runs
and 120 analysis runs, using up to 128 cores in parallel. The time
required to perform such an experiment is infeasible, and wedo
not have access to such a large number of cores (even using several
multi-core machines). We therefore control costs via simulation
and resampling. We describe our evaluation of questions 1 and 2 in
Sections 5.3 and Section 5.4, respectively.
1At time of writing, we are using the SVN repository at
https://javapathfinder.svn.sourceforge.net.

5.2 Case Examples
We used six case examples in our experiment: two synchronous

reactive systems developed in Simulink and translated to Java, and
four Java data structures. Metrics for each case example areshown
in Table 1.

Case # Classes SLOC # MC/DC BAS SED # Iterations
Example Obs.

ASW 15 425 94 7:57 26 2
WBS 1 231 90 10:22 17 5

BinHeap 2 268 98 9:26 16 6
BinTree 2 115 44 117:34 18 6
FibHeap 2 258 76 47:16 16 7
TreeMap 2 447 172 47:33 16 7

Table 1: Case Examples
BAS = Base Analysis Time (in minutes), SED = Shallow Execution Depth

The first system, the Altitude Switch (ASW), is a synchronous
reactive component from the avionics domain. This component
turns power on to a Device Of Interest (DOI) when the aircraftde-
scends below a threshold altitude above ground level (AGL).The
second system, the Wheel Brake System (WBS), is a a synchronous
reactive component from the automotive domain. This determines
what pressure to apply to braking based on the environment. Both
components were developed in Simulink. The ASW was automati-
cally translated to Java using tools developed at the Vanderbilt Uni-
versity [25]. The WBS was translated to C using tools developed
at Rockwell Collins and manually translated to Java.

The remaining four systems are Java data structures. These sys-
tems are used in previous related work [2, 27] and provide ex-
amples from an additional domain. We perform analysis and test
generation for these data structures by exploring all possible se-
quences of data structure operations up to a finite length. Invalid se-
quences of data structure operations can generate exceptions, which
we catch and ignore.

The number of iterations explored and the length of sequences
explored for the data structures are finite and vary between systems.
Each length was chosen to allow for reasonably long, but still fea-
sible analysis time when using a single instance of SPF, and to use
no more than 1 GB of memory. The depth for the shallow execu-
tion was selected for each case example (1) to allow the suggested
queue size of 128 to be generated and (2) to allow SSP to com-
plete in less than 10 seconds. As noted in Section 3, larger depths
increase the amount of information available to SSP and can favor-
ably improve the quality of the partitions. We intentionally avoid
selecting large depths to avoid biasing our SSP results.

For the evaluation in Section 5.4, we used JPF’s MC/DC instru-
mentation Eclipse plugin [23] together with the ComplexCoverage
JPF extension to automatically instrument our case examples for
MC/DC test generation. The evaluation in Section 5.3 was con-
ducted without instrumentation.

5.3 Evaluation of Analysis Performance
For each case example, to evaluate the analysis performanceof

SSP we measured the time required to (1) explore the symbolic
execution tree using a single instance of SPF, and (2) explore the
symbolic execution tree for each combination of NPW and queue
size. For a case exampleC, we term the analysis time required for
a single instance of SPF as thebase analysis timeB for C, and
term the analysis time required for a specific NPWx and specific
queue sizey as theP y

x analysis timefor C. We define thestartup
timeS as the time required to run SSP and construct the queue. For
a case exampleC, we define thespeedupfor NPW x and queue
sizey as B

P
y

x

. Ideally, the speedup will be close to the NPW, as this
represents linear speedup. We define the% maximum speedupas
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100B

xP
y

x

. Ideally, this will be 100%. Finally, we define theoverhead

as100
ΣQ−B+S

B
, whereQ is the set of worker runtimes, and thus

ΣQ is cumulative time across all workers. Ideally, this will be0%.
Measuring the analysis time required using a single instance of

SPF is simple – run SPF over the case example and measure the
total runtime. As noted above, however, we have limited resources
and cannot run each combination of NPW and queue size. Instead,
we ran each suggested queue sizeonceand simulated the results for
each NPW. For each suggested queue size, we ran SSP using a sin-
gle worker and measured the following for each item in the queue:
the time required to retrieve the configuration (i.e., communication
overhead), the time required to instantiate SPF, and the time to run
SPF. Together, these times represent the total time required to run
the item. The time needed to instantiate and run SPF was mea-
sured using Java’sThreadMXBeanclass, while the communication
overhead was measured using wallclock time (to ensure time spent
blocking is counted). We also measured the time required by SSP
and the JPF manager’s startup time (i.e., time until the constraint
queue is built).

For each queue size, this resulted in a list of runtimes for each
item in the queue and the overhead incurred by the queue-building
process. Using these times, we simulated the total time for each
NPW of interest using the following process. First, we create a
runtime for each simulated parallel worker, with each runtime ini-
tialized toS, i.e. the time spent building the constraint queue. We
then (1) remove the first element of queue, (2) add the entire time
required by said element to the runtime for the simulated paral-
lel worker with lowest current runtime (i.e., the next idle worker)
and (3) repeat until the queue is empty. Finally, we select the maxi-
mum runtime from the list of simulated runtimes: this is the longest
time required by any simulated worker, and thus represents the time
required to explore the symbolic execution tree in parallel. Data
collected is then used to compute the speedup, the % maximum
speedup, etc.

This simulation ignores competition between simulated workers;
we address this in Section 5.5. We list the speedup results for anal-
ysis in Table 2, and metrics over individual queue items in Table 3.
Note we have omitted BinTree using a suggested queue size of 128,
as results for smaller queue sizes indicated the time to run would
be prohibitive.

5.4 Evaluation of Test Generation Performance
For each case example, to evaluate the test generation perfor-

mance, we generated tests automatically using both parallel RDFS
and the partitioning technique. As with our evaluation of analysis
time, we are exploring a finite symbolic execution tree, and RDFS
and SSP both completely explore the tree. Both techniques thus
achieved the same MC/DC coverage, but differ in the time required
to achieve this coverage. Our evaluation of test generationperfor-
mance is based on the difference in time required to reach this cov-
erage. We used the MC/DC remote listener described in Section 4
to collect the generated test suites.

The performance in parallel RDFS can vary depending on the
random seeds used. As in Section 5.3, we do not have the resources
to run large numbers of test generation runs for each NPW and case
example. Instead, for each case example, we ran 64 RDFS runs
using a single worker, each run with a different seed. This produced
64 test suites, one for each run. Each test suite achieved thesame
coverage, but the time required satisfy individual obligations varies
between test suites.

We then sampled from these test suites to simulate running par-
allel RDFS for each NPW. When generating a test, the Complex-
Coverage extension records the CPU time required to generate the

test and the obligation the test satisfies. Thus for each NPWx, we
can randomly samplex test suites and determine for each coverage
obligationo the earliest timeo is satisfied by any test suite. This
information is used to determine the earliest time all obligationso

are satisfied by any of the sampled test suites. We term this the
time to finish (TTF)for the run. We performed resampling for each
NPW 1,000 times (or the maximum number of possible times) and
average the resulting TTFs.

We simulated test generation for the partitioning technique us-
ing the same basic approach from the previous subsection. For
each item in the queue, this resulted in the same timing informa-
tion used in the previous subsection, as well as a test suite.We
then simulated each NPW using the process outlined in the previ-
ous section, with one exception: when an item is removed fromthe
queue and added to a simulated worker, we modified the test suite
timing information for the item. Specifically, we increasedthe time
required to generate each test, adding the (1) stored runtime for the
simulated worker (i.e., the total runtime for earlier queueitems run
on the simulated worker) and (2) the time required to retrieve the
configuration and instantiate JPF. Once this process is completed,
we determine the TTF for the NPW simulated.

We list the test generation results in Table 4. In our analysis, we
explored only a suggested queue size of 64. This size was selected
based on the results from Section 5.3, as we felt it represented a
medium between too small a queue (leading to poor load balancing)
and too large a queue (leading to high overhead).

5.5 Threats to Validity
We performed our experiments primarily as a pilot study to eval-

uate SSP. We do not perform any statistical analysis, and ourre-
sults should therefore not be viewed as a rigorous empiricalstudy.
Nevertheless, there are several points to consider when interpreting
our results. We used six case examples in our evaluation. We se-
lected these examples because they are drawn from two domains
and because four of the examples (the data structures) are often
used in studies related to JPF. The shape of the symbolic execution
tree for these examples undoubtedly influences the effectiveness of
SSP, and may not be representative. Additionally, test generation
using these examples may not be representative of Java programs
in general.

We selected bounds for our systems to yield reasonably long,
but feasible analysis times. Additionally, we have selected shal-
low execution bounds (for partitioning) to yield low overhead for
constraint generation. It is possible longer bounds may produce
different results (shorter bounds would prevent us from generating
the largest queues and were thus not possible). However, we feel
these bounds are fair and believe larger bounds would only improve
our results.

To control costs, we simulate running parallel workers withpar-
allel RDFS using 64 random seeds and 1,000 samples. It is possible
that the pool of 64 test generation runs do not accurately represent
the possible runs RDFS. It is also possible that 1,000 simulated runs
does not accurately represent the possible set of parallel runs.

Additionally, we simulate running each NPW using one run for
each queue size, and ignore the possibility of blocking. It is pos-
sible that during parallel execution, multiple workers mayrequest
a configuration at the same time, which causes some workers to
wait, thus lengthening the time required for analysis. However, the
actual time required to retrieve a configuration is very small, less
than 5 ms on average. Furthermore, the total number of requests is
small (equal to the queue size), and the time required to run each
configuration is at aminimuma few seconds for all case examples
and queue sizes. Given this, the rate of requests will be on aver-
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age low with respect to the time required to respond to the requests
for the NPW explored. We therefore do not believe this is a major
concern in our results.

Finally, we do not employ randomization when generating tests
using our partitioning technique. It is possible SPF’s default search
order is particularly good at finding tests when used with ourparti-
tioning technique. However, it seems unlikely to be the casefor all
the systems where improvement was observed.

SQS 8 P2 P4 P6 P8 P16

ASW(8) 1.88 3.71 3.79 7.17
WBS(25) 1.83 3.4 4.75 5.92 11.7

BinHeap(25) 1.94 1.94 1.94 1.94 1.94
BinTree(18) 0.95 1.89 2.47 3.0 3.0
FibHeap(8) 1.89 2.81 3.71 3.71

TreeMap(25) 1.49 1.69 1.82 1.83 1.84

SQS 64 P2 P4 P6 P8 P16 P32 P64

ASW(64) 1.93 3.82 5.67 7.46 14.45 27.01 47.52
WBS(100) 1.87 3.73 5.49 7.23 13.47 23.76 44.82

BinHeap(125) 1.76 2.06 2.17 2.22 2.27 2.28 2.29
BinTree(162) 0.83 1.56 2.42 3.02 4.57 5.45 5.58
FibHeap(64) 1.96 3.94 5.72 7.54 10.68 13.55 14.81

TreeMap(125) 1.93 2.75 3.13 3.33 3.48 3.55 3.55

SQS 128 P2 P4 P6 P8 P16 P32 P64 P128

ASW(128) 0.95 1.91 2.78 3.79 7.38 13.75 24.39 42.9
WBS(200) 1.9 3.77 5.67 7.42 14.77 27.56 48.57 90.7

BinHeap(625) 1.8 2.25 2.42 2.5 2.66 2.72 2.74 2.74
FibHeap(512) 1.67 3.33 4.99 6.64 13.06 23.57 32.84 41.15
TreeMap(625) 1.61 3.14 4.42 5.18 6.17 6.75 7.07 7.14

Table 2: Speedup for Suggested Queue Sizes 8, 64 and 128
Px = Initial Precondition with NPW =x, SQSY = Suggested Queue Size

Avg Time Max Time Std Dev Overhead (%)
ASW (8) 63.1 66.3 1.3 6.0%
ASW (64) 7.7 10.0 0.3 3.0%
ASW (128) 7.8 11.1 0.5 108.9%

WBS (25) 23.1 28.5 0.6 5.1%
WBS (100) 6.6 8.9 0.5 6.3%
WBS (200) 3.3 5.6 0.2 4.8%

BinHeap (25) 21.7 290.4 67.6 0.1%
BinHeap (125) 4.5 247 27.7 5.8%
BinHeap (625) 0.9 205.8 11.0 40.7%

BinTree (18) 809.3 2349.7 880.5 106.55%
BinTree (162) 104.3 1262.74 264.0 140.51%

FibHeap (8) 373.5 763.8 225.2 5.5%
FibHeap (64) 43.9 191.4 43.7 0.2%
FibHeap (512) 6.6 60.7 8.6 19.8%

TreeMap (25) 119.7 1547.2 303.9 4.9%
TreeMap (125) 23.0 801.7 84.1 2.34%
TreeMap (612) 5.6 397.9 25.1 23.9%

Table 3: Runtime Metrics for Queue Items (in seconds)

6. DISCUSSION
In this section, we discuss (1) how various factors, including

NPW and constraint queue size, influence the time required bySSP
to completely explore a finite symbolic execution tree and (2) how
the NPW influences the time required to generate tests satisfying
the MC/DC coverage criterion.

6.1 Effectiveness of Parallelization
Our results indicate that speedup can be realized for all systems.

In particular, for NPW in the range of modern multi-core machines
(2, 4, and 8), the % maximum speedup is relatively high for most
systems, with many observed values higher than 90%. This is il-
lustrated in Figure 5, showing the maximum observed speedupfor
each case example. As we can see, several case examples are close
to the maximum speedup, thus achieving near-linear speedup.

However, our results do demonstrate variability between case ex-
amples. For two systems (WBS, FibHeap), significant speedupwas
observed for all queue sizes and NPW, with speedup nearly always
increasing as NPW and queue sizes increased. However, for the
other systems speedup plateaued at certain NPWs (e.g., BinHeap).
Furthermore, a larger queue size sometimes led toworseperfor-
mance than a smaller queue size for some NPWs, while simulta-
neouslyimprovingthe performance for other NPWs (e.g. FibHeap,
TreeMap). This leads to two key observations: (1) speedup with re-
spect to NPW ismonotonic, and (2) speedup with respect to queue
size isnotmonotonic, and thus care must be taken when suggesting
a queue size.

The first observation is perhaps unsurprising. SSP requireslittle
communication by design, and thus while increasing the NPW adds
a small amount of communication overhead, the gains from having
another worker nearly always outweigh it. Indeed, this is one of
the primary benefits of using only static partitioning – additional
workers can be added without worries of decreased performance.

The second observation is more interesting. Load balancingin
SSP is determined largely by the presence, quantity, and position
in the queue of large partitions. Given a queue with a small vari-
ance in the time required to explore each partition (relative to the
overall time required), we know that few, if any partitions,will re-
quire a significant percentage of the overall resources – such large
partitions likely do not exist. Of course, finding such a set of par-
titions is difficult, and SSP’s ability to do so varies depending on
the inputs. As shown in Table 3, the data structures tend to have a
few partitions that require substantially more time to explore than
the average partition. These partitions occur because certain oper-
ations (namely adding values to the data structure) are expensive,
and make subsequent operations (e.g., find) more expensive as well.
However, if large partitions exist, we can still achieve good load
balancing by placing such partitions earlier in the queue. Larger
partitions are explored early, and smaller partitions essentially “fill
the gaps” as larger partitions complete.

Consequently, improvements to load balancing when using static
partitioning must (1) reduce the variation in partition size or (2) im-
prove the queue ordering. One method of reducing variance inthe
constraint queue is to simply increase the size of the queue gener-
ated. Ideally, each partition in the original queue will be divided
into two or more smaller partitions, and the cumulative timeto ex-
plore these smaller partitions will be roughly equal to thatof the
original partition. Thus the average time to explore a partition will
decrease in the larger queue, while the cumulative time for both
queues will be roughly the same, reducing the variance. Indeed,
as shown in Table 3, the standard deviation (along with otherrun-
time metrics) decreases as the queue size increases. However, by
increasing the size of the queue, we increase the overhead. This
increase in overhead reduces or negates the performance gains for
most systems when using large queues. For example, the overhead
for the FibHeap system jumps from 0.2% to 19.8% when the queue
size is increased from 64 to 512, leading to reduced performance
for NPW of 2-8, butincreasedperformance due to better load bal-
ancing for NPW of 16-64. This suggests that queue size shouldbe
selected with respect to the NPW, perhaps using the ratio of queue
size versus NPW as a guide.

Furthermore, by increasing the queue size, we increase the like-
lihood that any “expensive” constraints will be selected, which can
cause the constraint solver to significantly slowdown. Thisfactor is
present in the ASW case example – when using a queue size of 128,
constraints containing multiplication and division are used. While
these constraints maintain the low variability, the overhead jumps
to over 100%.
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R1 R2 R4 R6 R8 R16 R32 R64 P2 P4 P6 P8 P16 P32 P64

ASW (64) 2686 2656 2632 2621 2613 2598 2581 2557 175 84 44 41 40 40 38
WBS (100) 28 13 7.3 4.7 3.5 1.5 0.8 0.5 10 10 10 0.5 0.5 0.5 0.5

BinHeap (125) 2075 1250 620 366 273 182 168 158 35 32 32 32 28 23 23
BinTree (64) 14 3.8 1.1 0.7 0.6 0.4 0.4 0.3 30 0.21 0.17 0.16 0.15 0.14 0.13
FibHeap (64) 948 901 873 862 851 838 828 819 503 220 157 108 60 26 26

TreeMap (125) 632 605 584 574 568 554 543 531 481 266 194 158 133 121 118

Table 4: Test Generation TTF (in seconds) for Suggested Queue Size 64
Rx = Randomized Depth First Search with NPW =x, Px = Initial Precondition with NPW =x

Figure 5: Small NPW Speedup (Maximum Observed)

A final note: the BinTree system is the only system in which a
speedup less than 1.0 was observed, indicating that exploring Bin-
Tree’s symbolic execution tree is faster usingone instance, rather
than two; all larger NPWs produce speedup. The reason is that
when the inputs are generated dynamically, as is the case forthe
method parameters, some of the collected constraints are useful
only for certain executions (e.g., executions where that method is
called); they are useless for other executions. These constraints are
usually not selected in favor of more generally applicable and thus
more numerous constraints; however, if selected, they may lead to
useless constraints over symbolic variables that are not generated.
In the future, we plan to address this problem by consideringthe
relationship between constraints and generation of symbolic vari-
ables. This phenomenon was not observed in the other examples.

6.2 Influence of NPW on Test Generation
Our results indicate that SSP significantly improves test genera-

tion performance for each case example except BinTree. In partic-
ular, we observe that for the case examples where a single instance
of SPF requires at least 10 minutes to achieve the maximum achiev-
able coverage, the performance improvements with respect to NPW
are generally more scalable when using SSP than when using par-
allel RDFS, and for a given NPW, SSP outperforms parallel RDFS.

Both observations indicate that SSP is a more effective method
of improving test generation performance than parallel RDFS. In-
deed, the performance improvements observed in test generation
are larger than the analysis time speedup – for example, for the
FibHeap system and a NPW of 64, using SSP reaches the achiev-
able maximum coverage 31x faster than 64 parallel RDFS runs,de-
spite a corresponding analysis time speedup of only 15x. Further-
more, for the ASW system and a NPW of 64, using SSP reaches the
achievable maximum coverage 70x faster than the average RDFS
run – agreaterthan linear speedup.

This results from the use of depth first search. When exploring
a subtree in the symbolic execution tree, depth first search explores
the entire partition. If the subtree is large but contains nounsatisfied
obligations, depth first search may spend significant time exploring
the partition without improving coverage. We have observedthat
obligations are often distributed throughout the symbolicexecution
tree. In this situation, a single instance of RDFS will inevitably
ignore obligations on theleft side of the symbolic execution tree

while thoroughly exploring theright side (or vice versa). SSP,
which partitions execution, is less prone to this.

Note that unlike most case examples used, BinTree performs
well using parallel RDFS, finding the maximum achievable cov-
erage in at most 14 seconds – a difficult feat to top. This, in con-
junction with the SSP problem discussed above, is responsible for
the poor performance of SSP relative to parallel RDFS.

7. RELATED WORK
We have already discussed some closely related work in sec-

tions 1. We add more discussion here.
Research on automatically generating tests to satisfy structural

coverage criteria has been conducted for many years [19]. Recent
approaches for Java programs include Korat by Boyapati et al. [5],
an explicit state enumeration technique for generating test inputs
for a Java method. Korat has been parallelized by Siddiqui and
Khurshid as PKorat [22] using a master/slave configuration to ex-
plore candidate vectors in parallel. Korat was also parallelized by
Misailovic et al. [10]. That work describes parallel test generation
and execution and it is similar in spirit with our approach, as it par-
titions the search space, but in the context of explicit state space
exploration. Also relevant is jCute by Sen et al. [21], a concolic
execution engine for Java; jCute has not been parallelized however
we are aware of a parallel version of a concolic execution engine in
Microsoft’s SAGE system.

Our approach to automatic test generation is similar to counter-
example based test generation, first developed by Ammann et al. [1]
using mutation operators and specifications. The approach has been
modified to generate tests satisfying structural coverage metrics by
Rayadurgam and Heimdahl [20] and to generate tests via JPF-based
symbolic execution by Khurshid et al. [14].

Stern and Dill present in [24] a parallel version of the explicit
state model checker Murφ suitable for verifying safety properties.
Holzmann and Bosnacki present in [12] a multi-core version of the
explicit state model checker SPIN suitable for verifying liveness
properties, as do Barnat et al. [3]. Dwyer et al. in [9] and Holz-
mann et al. in [13] explore the use of non-communicating paral-
lel randomized search for fault detection. These approaches were
shown to be effective and are very similar to the RDFS technique
presented in this work. However, these approaches are examples of
explicit state model checking, rather than symbolic execution.

Finally, in his master thesis [15], King parallelized symbolic ex-
ecution using a dynamic load balancing approach. The approach
dynamically populates a queue of subtrees, adding subtreeswhen
nondeterministic choices are encountered. Idle workers poll for
work and active workers contribute to this queue. The effective-
ness of his approach was measured in terms of speedup in analysis
time (similar to Section 5.3) and the number of state paths explored
in a specific amount of time, with NPI of 2, 4, 6 and 8. As case stud-
ies, the same data structures were used (though not the exactsame
code), but he analyzed individual methods in isolation while we
analyzed method sequences. Speedups reported tend to be close to
linear for NPW of 2, often reasonable for NPW of 4, but relatively
poor for NPW of 6 and 8. For several case examples, the speedups
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for NPW of 2-4 exceed the speedup for NPW of 8 (presumably due
to overhead). Furthermore, for at least one case example, a single
instance of symbolic execution outperforms a run with NPW of8.
In contrast, SSP does not exhibit a drop in speedup with increased
NPW. Furthermore, speedup with SSP seems more consistent with
NPW of 2-8 than King’s approach.

8. CONCLUSIONS AND FUTURE WORK
We have presented a general framework for parallelizing Java

Pathfinder and techniques for parallel symbolic execution devel-
oped using this framework. We have evaluated these techniques in
terms of analysis time and MC/DC test generation time using six
case examples. We demonstrate up to 90x speedup in analysis time
using 128 workers, and 70x speedup in automatic test generation
time using 64 workers. Furthermore, for small numbers of workers
(2-8) we demonstrate speedups in analysis time consistently larger
than 90% of the maximum (linear) speedup for 3 of 6 systems, with
the other three systems demonstrating speedups of 30% to 90%of
the maximum speedup.

In the future, we would like to evaluate the partitioning tech-
niques in other contexts, such as fault detection. Given thesimi-
larity between searching for states satisfying coverage obligations
and searching for states violating assertions/properties, we believe
the partitioning techniques will perform well in this context. Fur-
thermore we plan to investigate other static partitioning techniques
(e.g. based on the control flow graph) and study their effective-
ness in conjunction with dynamic partitioning, e.g. [7, 15]. We
believe that such a combination will be most effective for paral-
lelizing symbolic execution.
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