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ABSTRACT

Symbolic execution is a popular technique for automatycgén-
erating test cases achieving high structural coverage b8korex-
ecution suffers from scalability issues since the numbesyoi-
bolic paths that need to be explored is very large (or evenitaji
for most realistic programs. To address this problem, wegse
a techniqueSimple Static Partitioningfor parallelizing symbolic
execution. The technique uses a set of pre-conditions titipar
the symbolic execution tree, allowing us to effectivelytdizite
symbolic execution and decrease the time needed to explere t
symbolic execution tree. The proposed technique requitis |
communication between parallel instances and is designeditk
with a variety of architectures, ranging from fast multreana-
chines to cloud or grid computing environments. We impleinoen
technique in the Java PathFinder verification tool-set aatLiate
it on six case studies with respect to the performance ingmant
when exploring a finite symbolic execution tree and perfograu-
tomatic test generation.
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Research Center
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1. INTRODUCTION

Software testing is a commonly used technique for validatin
the quality of software. It is typically a manual processtthe
counts for half of the total cost of software development anaih-
tenance [4]. The automation of testing not only reduces tist c
of producing software but also increases software reltgiiily en-
abling more thorough testing.

Symbolic execution [16] is a fully automated technique feng
erating test cases to achieve high testing coverage, agdti(er
with variations such as concolic execution) has become alpop
approach in recent years [14, 21]. Symbolic execution ifopeed
by executing programs with symbolic, rather than conciamts.
Execution branches when a condition (e.g.jfagtatement) is en-
countered, with the condition constraining the inputs oa laranch
and the negation of the condition constraining the inputshan
other branch. Test generation is performed by solving theltiag
constraints using a constraint solver.

The paths followed during symbolic execution forngyanbolic

We demonstrate speedup in both the analysis time over finite €xecution tregrepresenting all the possible executions through the

symbolic execution trees and in the time required to geadests
relative to sequential execution, with a maximum analysiet

program. However exploringll the possible program executions is
generally infeasible (the symbolic execution tree may b large

speedup of 90x observed using 128 workers and a maximum testOr even infinite) thus limiting the application of symboligegu-

generation speedup of 70x observed using 64 workers.
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tion in practice. One way to address this scalability probie to
use a compositional approach [11] that analyzes functioriso-
lation, encodes the analysis results as summaries andsréhese
summaries to analyze high-level functions.

We explore here a different, complementary approach that im
proves the scalability of symbolic execution via paraflation. Our
approach is motivated by the increased availability of radte
computers and the inherently parallelizable nature of ®jinlex-
ecution. Just as exploring a binary tree can be parallelviéu
little to no inter-process communication, so can explodngym-
bolic execution tree. This is an important advantage, agique
work in parallel model checking has indicated that synctnation
overhead can be significant, potentially negating any bisn@f2,
24]. Consequently, we investigate approaches to pargitebslic
execution requiring little or no inter-process commurimat

More specifically, we use a set of pre-conditionpéatition the
symbolic execution tree, allowing us to effectively distriie sym-
bolic execution and decrease the time needed to exploreythe s
bolic execution tree. The pre-conditions are computed lsy fier-
forming a “shallow” symbolic execution of the user code taocau
matically collect a large list of path conditions. Thesehpatndi-
tions are then processed to produce a list of constrainte tesbd
as pre-conditions. We refer to this technique as SimplecS®air-
titioning (SSP).

We also propose a generic client-server framework to perfor
test generation using multiple machines and/or cores. Tdrad-



work is designed primarily for flexibility and extensibijtand thus
can operate on a variety of architectures, ranging fromiroate

plexCoverage, that we use in our work. The model checker con-
sists of an extensible custom Java Virtual Machine (JVM}eher

machines with shared memory, to networked desktop magchines support for monitoring and influencing JPF’s search, andt @fse

to cloud or grid computing environments. Our framework igtbu
on top of the Java PathFinder (JPF) [26] tool-set, using $yimb
PathFinder (SPF) [17], a JPF extension that performs syimexi
ecution for Java bytecode. Using this framework, we haveldev
oped listeners for coordinating parallel automatic testegation,
including coverage measurement and test suite reduction.

We have implemented Simple Static Partitioning within fhésne-
work. We have evaluated its effectiveness in terms of (13gezdup
in the time required to completely explore a finite symbolie e
ecution tree relative to sequential symbolic executiom @) the
speedup in the time required to generate a test suite aobiapre-
determined level of Modified Condition/Decision Coverage
(MC/DC) [6] relative to one or more parallel instances ofdam
depth first search. We used six case examples in our evaiuatio
Altitude Switch from the avionics domain, a Wheel Brake $yst
from the automotive domain and four data structures comynonl
used in conjunction with Java Pathfinder [27].

Our results demonstrate analysis time speedups up to 3@ for

Java methods for instrumenting Java programs. JPF's defaale
of execution, termedoncrete executignperforms explicit-state
model checking over Java bytecode.

JPF has been designed to be extensible, and consequently muc
of JPF’s execution can be monitored or replaced. Our work ex-
tends JPF via two mechanisntShoiceGeneratorandJPF listen-
ers ChoiceGeneratorsire the mechanism by which JPF explores
the state spacé&hoiceGeneratorsorrespond to non-deterministic
choices made during execution, and often are generatedstryin
mentation in the source code being explor#@F listenersmonitor
JPF’s exploration of the search space, the operation osdfBtom
JVM, and the creation and execution®hoiceGeneratorsOften,
JPF listeners are used to selectively influence executidisteaer
can monitor for a specific event and modify decisions madetsy J
including modifying the operation d€hoiceGenerators

Improvements or enhancements that build upon JPF areedferr
to asJPF extensionsr simply extensions There exist several ex-
tensions to JPF relevant to automatic test generation.ismitbrk,

of 6 systems using 64 workers, with a maximum speedup of 90x however, only two extensions are used: Symbolic PathfirisleFy,

observed using 128 workers. For small numbers of workers (2-
8) we demonstrate speedups consistently larger than 90%eof t
maximum (linear) speedup for 3 of 6 systems, with the othexeth

an extension to JPF for performing symbolic execution, aothC
plexCoverage, an extension which improves upon JPF andsSPF’
test generation functionality by adding functionality foeasuring

systems demonstrating speedups of 30% to 90% of the maximumcomplex structural coverage criteria such as MC/DC. Weflgrie

speedup depending on the number of workers. Finally, we demo
strate consistent and significant speedup in automatigessra-
tion over parallel random depth first search for systemsiregLon
average at least 10 minutes when using random depth firsthsear
with speedups ranging between 5.3x and 70x using 64 workers.

Our approach is related to previous work on parallelizinf-so
ware model checking [9, 12, 13, 24]. However, all of these are
done in the context of explicit state space exploration. r&te
little work on parallelizing symbolic execution. We are awaf
two such approaches [7, 15], both of them very recent. Urdike
approach, they both operate primarily hynamicallypartitioning
the symbolic execution tree for load balancing. The worlsekt
to ours is King's master thesis [15], which uses a queue dfseb
for exploration. However this queue is populated dynarhjicelr-
ing execution, and not statically as in our case. King deltnates
consistent speedup in analysis time for a small number okever
(2-4), but with decreases in speedup as the number of woirkers
creases to 6 or 8. In contrast, our approach does not exhdpsd
in overall speedup as the number of cores increases. Wedpravi
more extensive comparison in Section 7.

Our contributions are thus: (1) the description and impleme
tation of an effective technique for statically partitingia sym-
bolic execution tree and distributing the partitions asrparallel
instances, (2) the development of a flexible, extensibleénmork
for parallelizing Java Pathfinder, and (3) an evaluationusfweork
in terms of the speedup when exploring a finite symbolic ettecu
tree and the performance of automatic test generation.

The paper is organized as follows: Section 2 gives backgroun
on Java Pathfinder and Symbolic Pathfinder, Sections 3 antt 4 ou
line our partitioning technique and the parallel framewdBec-
tions 5 and 6 evaluate our technique and discuss the imiplsat
and finally Sections 7 and 8 discuss related work and conclude

2. JAVA PATHFINDER

Java Pathfinder (JPF) is an open-source tool-set for vagfyi
Java bytecodes. It includes an explicit-state model-ctre@tore-
JPF) and several extensions, e.g. Symbolic PathFinder anmd C
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describe the relevant aspects of these extensions bel@\1%g
and [23] for details.

2.1 Symbolic Pathfinder (SPF)

Symbolic execution is a form of program analysis in which sym
bolic values are used instead of concrete input values. dgram
state is represented by the symbolic values of the program va
ables, the program counter (i.e., next bytecode to be exeérand
the path conditionRC). The path condition is a boolean formula
representing the constraints that must be satisfied by thédljc
values for execution to progress on the current path, iendbdes
the pre-conditionto follow that path.

SPF implements symbolic execution on top of JPF using a non-
standard bytecode interpretation. JPF's search mechasissed
to generate and explore the symbolic execution tree. Therkey
plementation details are (1) replacing JPF's standardcbgi in-
terpretation, (2) using variable attributes to store syimhiafor-
mation, and (3) generatingCChoiceGeneratorgvhen executing
conditional bytecodes.

JPF is implemented with an abstract bytecode factory, atigw
developers to change how bytecodes are interpreted. Thdasth
bytecode interpretation performs concrete executiongusial val-
ues (e.g., integers, floats, etc.) to explore the state splatee
bytecodes. SPF extends these bytecodes to allow variables t
represented by symbolic values and expressions, and @tgsag
symbolic values and expressions when executing said lggsco
Storage of symbolic values and expressions is accomplishes-
signing symbolic attributes to variables, fields, and stawérands.
Note that SPF’s bytecodes are a true extension of the sthndar
crete bytecodes, and thus both concrete values and symablies
can be used during the same execution. We term this feattioues-
mode executian

When a conditional bytecode (e.g., those compiled fifostate-
ments switchstatements, etc.) is executed in SPF, execution branches
to explore the result of the bytecode evaluatingrte or false A
choice generatoP CChoiceGeneratgiis used to nondeterministi-
cally choose which branch to explore. By default, two chsjtreie



int r;
while (true) {

[3] bool ean b = Debug. get Synbol i cBool ean("b");
[ 4] int x = Debug. get Synboliclnteger("x");
[ 5] int y = Debug. get Synboliclnteger("y");
[ 6]

[7] if (b) {

[8] Debug. storeTracel f (x>y, "obl");

[9] if (x >y)

[10] r = x;

[11] el se

[12] r=vy;

[13] }

[14] }

b: Symp, x: Symy, y: Symy
PC: true

r: Symy r: Symy PC: =Symp A| [PC: =Symp A
PC: Symp A PC: Symp, A Symp - Symp
Symx > Symy| |Symy = Symy 2 2

Figure 1: Symbolic Execution Example (Depth of 3)

andfalse are generated by BCChoiceGenerator Each choice
generated is associated with a path condition — the bytécode-
dition if true and the negation of the bytecode’s conditioffaise
When a choice is explored, the bytecode evaluates to thiseho
and the associated path condition is appended tdPtheWhen
branching execution, the satisfiability of the path cowdiis checked
using off-the-shelf constraint solvers. If tRC is satisfiable, JPF
continues along the associated path; otherwise, JPF bakktr
By default, SPF always explores the branch correspondifigise
first.

We present an example in Figure 1. For symbolic execution, on
lines 3-5, the program variables, y andb are assigned symbolic
variables using the ComplexCoverage extension describ&ec-
tion 2.2. As execution progresses, the variable expressed in
terms ofx andy. At each conditional bytecode, execution branches
to explore the bytecode evaluatingttae andfalse Upon branch-
ing, the appropriate constraint, shown on each arrow, iergbd
to the currenPC (see Figure 1, right). For example, two paths lead
from the top of the symbolic execution tree. The left pathreor
sponds to line7 evaluating tarue and addsSym,, to the PC; the
right path corresponds to lirkeevaluating tdalseand adds-Sym,
to thePC. The left path adds additional constraints relatingnd
y; the right path returns to the top of the loop and generates ne
symbolic variables (indicated by the subsc&pt Solving the con-
straints encoded inRAC give thetest inputshat exercise that path.

SPF, unlike standard JPF, does not perform state matchthisas
is in general undecidable for path conditions on unbound¢al. do
prevent SPF from attempting to explore a potentially inéiisiéarch
space, an upper limitis placed on the search depth or on theeu
of constraints in the path condition. Thus SPF's search asath
terized as a finiteymbolic execution tre@s shown in Figure 1, for
a depth of 3 (choices). This is in contrast to concrete ei@tumn
JPF, which is characterized as a potentially cyclic gratis prop-
erty, as we will see in Section 3, is the key to partitioninghbyplic
execution across multiple parallel instances.

2.2 ComplexCoverage

The ComplexCoverage extension provides functionalitybfith
JPF and SPF related to generating test suites satisfyingpleam
structural coverage criteria. The functionality includegproved
support for instrumentation, measuring coverage achibyetkst
suites, and reducing the size of test suites while maimtgiocover-
age. Generating tests using ComplexCoverage relies osnrimen-
tation-based approach, in which eatlst obligationrequired by
the coverage metric is specified as instrumentationesh obliga-
tion for a structural coverage metric is a condition that must-eva
uate totrue at a specific point in the source code. For example,
on line 8 in Figure 1, the obligatiorx > y at line 8is expressed
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as Debug.storeTracelf(x>y, "obl1") If this statement is executed
whenx>y is satisfiable, it will store test inputs satisfying the ghbli
tion. When symbolic execution terminates, tteerageachieved
is computed as the percentage of satisfied obligations.

The ComplexCoverage extension provides support for “tagigi
instrumentation with identifying strings, thus providimglink to
symbolic variables used by SPF and program variables indte.c
Additionally, it supports measuring the wallclock or CPthé re-
quired to generate each test, needed for our evaluation.

We perform our evaluation in Section 5 usiMC/DC cover-
age[6], a rigorous structural metric widely used in criticaksgm
domains such as avionics software. Test suites providingINIC
coverage must cause each condition to evaluateumand false
and must demonstrate that each condition affects the vdltleo
expression. Our use of MC/DC is motivated in part by an ongjoin
NASA project that aims at analyzing Simulink/Stateflow misde
using JPF/SPF via translation into Java [18]. Furthermesyse
MC/DC as achieving MC/DC is more difficult than achievingath
structural coverage criteria (such as statement or camdgover-
age) and thus represents a more significant challenge.

3. PARTITIONING FOR PARALLEL SYM-
BOLIC EXECUTION

Our goal is to parallelize symbolic execution in a manner use
ful for a variety of environments, including fast multi-eoma-
chines with shared memory architectures, networked dpskim-
chines, and cloud or grid computing environments. As previo
work in parallelized model checking has indicated that Byoc
nization overhead can be significant, potentially negagimg ben-
efits [12, 24], we are only interested in methods that requeny
little communication.

We describe here our method of parallelization that stilfica
partitions and distributes execution by (1) generating euguof
constraints and (2) distributing these constraints (asqfa stan-
dard JPF configuration) to workers, which use the conssamt
direct symbolic execution. We term this meth®isnple Static Par-
titioning (SSP) In our evaluation, we compare SSP against an-
other method of parallelization, paralieindom depth first search
(RDFS) described next. Both techniques, given sufficient time,
will explore an entire finite symbolic execution tree. Bodth-
niques are implemented as JPF listeners.

3.1 Random Depth First Search

Random depth first search (RDFS) performs depth first search
while randomly selecting the order branches in the tree afe e
plored. It differs from SPF's standard search technique aml
the use of randomization. While a simple technique, it hay ve
low overhead and is amenable to parallel execution via rdiffe



random seeds. Furthermore, previous research has shoaliepar
RDFS to be an effective method of detecting errors [9, 13]FBD
acts as a baseline for evaluating other techniques — if anigaé
cannot outperform RDFS, it is unlikely to be of practical use

Whenever &PCChoiceGeneratois created, the technique ran-
domly decides the order each choice will be explored using'da
default random number generator (seeded with the currestersy
time or with a user-provided seed). By default, both ordgsigrue,
falseandfalse true) are equally likely; however, the technique can
be configured to favor one ordering over another.

3.2 Simple Static Partitioning (SSP)

We partition the traversal of a symbolic execution tree by us
ing a set of constraints over the input variables of the @ogun-
der analysis. These constraints are distributed to panatiekers
which use them as pre-conditions for the symbolic execypien
formed with SPF. For each pre-condition, SPF explores oslyba
set of the symbolic execution tree, representing only thogam
executions for the inputs that satisfy the pre-conditiomc@mpute
the set of constraints, we first perform a “shallow” symbaie-
cution of the code under analysis and process the path comslit
(PCs) that are generated automatically. SPF’s standarth fiext
search or RDFS can be used to explore the tree.

To effectively partition and distribute execution, we rgqua set
of constraints to belisjoint andcomplete We also desire the set
to beuseful If for any two constraintsA and B in the set,A A B
is false, then each worker will potentially explore diffet@arts of
the symbolic execution tree, and we state the set of contdra
disjoint If the disjunction of all the constraints in the set simpkfi
to true, then every possible path will be explored by at leastin-
stance of symbolic execution, and we state our set of contria
complete Finally, if each constraint in the set will cause symbolic
execution to ignore some, but not all of the symbolic exerutiee
it would usually explore —i.e, each constraint will affegeeution
— we state the set containsefulconstraints. Ideally, each partition
will require the same amount of time to explore. Creatindhquer-
titions is difficult without a priori knowledge of the entisymbolic
execution tree; consequently, we heuristically partittoatree.

Our parallelization technique, Simple Static Partiti@gn{$SP),
is described in detail below. The user provides two inputth&o
SSP technique: the depth of the shallow execution step, land t
minimum number of constraints desired. Following this, 3
performs a shallow symbolic execution of the system to thetide
provided by the user, collecting all PCs observed at saidhdep
These PCs are then broken into a set of individual conssrgiret.
no conjunctions). Using this set, SSP operates by (1) sefeat
symbolic variable commonly used in the set, (2) generatisgta
of constraints that use the variable (using the set of idd@i con-
straints for guidance), (3) removing all the variables usethe
newly generated set of constraints from future considamagind
(4) repeating until we can (combinatorially) generate tbenber
of constraints desired. These constraints are then placgqdeue
and distributed to parallel workers.

SSP with inputs depth D and suggested queue size SQS

1. Perform shallow execution, collecting all PCs at ddpth

2. Split each PC into individual constraints and count tlegdiency of
each constraint. Place every constraint in alisé€onsalong with
its frequency.

3. Count the frequency of each symbolic variabldridCons Place
every variable in a séivailableVarsalong with its frequency.

. UsingIindCons label symbolic variables as “expensive” or “cheap”,
where “cheap” variables are usexlyin constraints that are “cheap”.
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Constraints are “expensive” if they use multiplication amddivi-
sion, and “cheap”otherwise.

5. Create an empty s&@eneratedConstraintontaining sets of con-
straints generated by SSP. The product of the size of eacii cai-
straints represents the number of constraints we can geng@re
term thisnumGeneratable

6. WhilenumGeneratable SQS

(a) Choose the cheap variablewith the highest frequency from
AvailableVars If no cheap variable is iAvailableVars choose
the expensive variabM with the highest frequency.

(b) If V (1) is only referenced in equality constraints, (2) a sym-
bolic integer and (3) the range bfis no more than twice the
number of equalities using in IndCons then:

Add {All constraints referenciny}to GeneratedConstraints
else:

C = Most common constraint referenciivgin C

Add {C, —C} to GeneratedConstraints

(c) Remove every variable referenced @eneratedConstraints
from AvailableVars

7. Generate every combination of constraints using the ise®en-
eratedConstraintgi.e, Cartesian product @éeneratedConstraints
Each combination represents a conjunction of constrabitder the
conjunctions (process described un@emstraint Queugto create
ConstraintQueue

The key intuitions behind this technique are: (1) more comigno
used variables are likely to partition the state space ifuliseys,
(2) the performance of constraint solvers suffers wheniplida-
tion and division are used; avoid those constraints, andf(38)
can only take on a small range of values, each value is likehet
important, so use all possible constraints ¥orather than picking
only one. Steps 6a and 6b handle intuitions 2 and 3, respégctiv
Also note that 6¢ prevents overconstraining a variable gepra-
tively) , i.e., selecting multiple constraints for the saxsgiable
such that the constraints cannot all be satisfied.

The resulting set of partitions meets our stated goals. Each
junction differs from the others, and thus the set of corfjions is
disjoint Each set of constraints i@eneratedConstraints com-
plete and thus the Cartesian product of these constraints is obvi
ously complete. Finally, the constraints are drawn fromeobesd
PCs and are thussefu| provided every symbolic variable in the
constraints is generated (some dynamically generateablas may
be referenced but not generated, but this is rare in practice

User Control The user’s control over SSP is limited to the depth of
the shallow execution and the queue size minimum (which we te
the suggested queue sjzeBoth of these can influence the perfor-
mance of SSP. The larger the depth of shallow execution,dtierb
SSP’s knowledge of the underlying symbolic execution tréé w
be, which may lead to better constraints. For example, besc
that terminate at a depth less than the user-specified depfig-a
nored. Naturally, large depths increase the time requise8®P.
Thus selection of depth must be balanced between creafiec ef
tive partitions and controlling the overhead incurred.

Similarly, the suggested queue size determines the nunfber o
constraints in the queue. A larger number of partitionseases
the overhead required (e.g., more communication, greagntap
in partitions), but allows more freedom in load balancindnisTis
discussed in greater detail in Section 6. Note that the stgde
queue size is simply minimumsize; the partitioning process may
(and often does) produce more partitions and thus a largarequ

Constraint Queue As we will see in Section 4, our paralleliza-
tion framework uses a queue to distribute JPF configuratidhs



b: Symp, x: Symy, y: Symy
PC: Symx =< Symy

PC: =Symp A
Symx = Symy|

3
LA
LT [ symy PC: =Symp A PC: =Symp A
£ not explored 3|PC: Symy, A Symyx = Symy (|Symy < Symy
*'|Symx = Symy A Symbz A Symbz

(a) Constraint as Precondition

b: true, x: Symy, y: Symy
PC: true

. e,
O S

not explored ‘-

r: Symx r: Sym
PC: Symy PC: Symy
> Symy = Symy

(b) Selective Concretization Example

Figure 2: Constraining Path Condition (PC) in Simple StaticPartitioning

the set of constraints is larger than the number of workedgre
ing is relevant, as it determines which constraints areibiged
first. SSP order€onstraintQueusuch that constraints on thh
symbolic variables chosen in Step 6a change egéry items in
the queue. In other words, constraints on the first symbalic v
able differ between sequential items in the queue, comssrain
the second symbolic variable chosen differ between evetgrds

in the queue, etc. This ordering was chosen so that contstiaier
more common symbolic variables change more frequently én th
queue.

Example Let's suppose we run SSP using the example from Fig-
ure 1 with a depth of 3 and a suggested queue size of 4. Exacutio
to depth of 3 yields the PCs corresponding to the 4 paths skown
Figure 1. SSP then proceeds producing the following sets:

Step 1:Collected PCs {b Az >y, bAx <y, ~bAbz, ~bA bz}
Step 2: IndCons ={(b,2), (—b,2), (z > y,1), (z < y,1), (b2,1),
(b2,1)}

Step 3:AvailableVars= {(b,4), (z,2), (y,2), (b2,2) }

Step 6b:GeneratedConstraints (1st iteration) ={{ b, —b}}

Step 6c¢:AvailableVars (1st iteration) ={ (z, 2), (v, 2), (b2, 2)}

Step 6b: GeneratedConstraints (2nd iteration) ={{ b, —b}, {z > v,
z <y}}

Step 6c¢:AvailableVars (2nd iteration) = { (b2,2)}

Step 7:ConstraintQueue ={bAz > y, “bAz > y,bAz <y, bAz <y

}

As we can see, the symbolic varialllés the most commonly
referenced symbolic variable AwvailableVars and is thus selected
first. The most common constraints referendirageb and—b (seen
in IndCong; we arbitraily choose one and add it and its negation to
GeneratedConstraintsWe removeb from AvailableVars leaving
x, y andbs, each with a frequency of 2. We arbitarily choasend
select the most common constraint referencing > y, and add it
and its negation < y) to GeneratedConstraintdVe then remove
both z andy from AvailableVars leavingb,. We can now gener-
ate 4 conjunctions using the sets @eneratedConstraints The
suggested queue size is 4, so we terminate, genera@otistrain-
tQueueand order it according to the rules above.

Distributing and Using Constraints The technique above only
generates constraints. Once this is complete, we musthditgr
these constraints to workers. Distributing constraintsisdled us-
ing the general purpose parallel JPF framework, describ&ke-
tion 4. The queue of constraints is transformed into a qudue o
worker configurationswith each worker configuration containing
a constraint to be used in the exploration of a subtree.

When a worker configuration is retrieved by a worker, the con-
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straint is effectively used as an initial precondition. Arample
of this is given in Figure 2(a). As shown, an initial precdra
of x < yis used. As a result, lin@ cannot evaluate ttrue and
some of the symbolic execution tree shown in Figure 1 is net ex
plored. Two separate instances of SPF conducted in pacaldbe
used to divide computation. One instance would use the pdéco
tion x <y, and another instance would use the preconditiony.
Taken together, these two instances explore the entirsti@en in
Figure 1 while exploring different parts of said tree. (Clgethis
would lead to less than optimal partitioning, as significaverlap
exists between the two workers.)

Selective Concretizationln symbolic execution, the use of the
constraint solver can be quite expensive. Consequenthhave
implemented an optimization when using constraints of tirenf
var == value, calledselective concretizationThis optimization
leverages SPF’s ability to handle both concrete and symbalr
ues, i.e., mixed-mode execution. In this technique, one arem
variables normally assigned symbolic values are instesigdred
a singleconcretevalue. While functionally equivalent to directly
using the constraint, replacing a symbolic variable withiregle
concrete value reduces the size of path constraints, [eltgnin-
proving the performance of the constraint solver.

An example of when selective concretization occurs is shiown
Figure 2(b). In this example, the constraint used is= true,
and the variablé is concretized atue. As a result, line/ cannot
evaluate tdfalse and only roughly half of the symbolic execution
tree explored in Figure 1 is explored. We expect this teamiq be
effective when working with systems that contain importaputs
with a discrete domain, such as boolean values, flags, fligiies
etc. These type of inputs are often present in NASA and asgoni
software.

PCs as ConstraintdReaders familiar with symbolic execution may
note that we can statically partition by simply using theafe®Cs
collected at a specified depth (plus all PCs for leaves atlemal
depths) as the set of constraints. Such a set would be digjoth
complete, and the cost of constructing such a set is veryHmw-
ever, this method presents problems: namely, unless we twish
create a very large number of partitions {000), we must collect
PCs from a very shallow depth, thus partitioning using venjted
information.

For example, for the TreeMap case study presented in Segtion
a very shallow execution (maximum depth of 9) requiring kes&
1 second and produces 21 PCs, with only 3 symbolic variabigs (
of 28 potentially produced) referenced. If we increase thpthl
to 21, symbolic execution requires only 10 seconds, butywesl
2,511 PCs, with 10+ symbolic variables referenced. As tlst two
collect large numbers of PCs is negligible, but the cost mfgisach



PC directly as a constraint is potentially high (due to oead), we
desire a method of transforming a large set of PCs into a emall
set of partitions. SSP represents such a method.

4. PARALLEL JPF FRAMEWORK

We present here a general framework for parallelizing JRIS T
framework allows us to not only parallelize SPF, but als@ediPF
and other JPF extensions. Our framework is built using a leimp
client-server model, with coordination and communica@mnoss
parallel instances of JPF handled by an extension of JRfnéss.
By using JPF listeners for inter-process communicationfraumne-
work has the same flexibility and extensibility present ifr.JPhis
allows for both parallel approaches incorporating sigaiftdnter-
process communication, or (as with SSP) approaches withlier
tle communication.

Parallel JPF InstancesTo run parallel instances of JPF, the user
first starts the server, known as tBBF manager and provides a
parallel configurationto the JPF manager. The user then starts one
or more clients, directing the clients to connect to the JRRager.

We hereafter refer to these clientswaerkers The parallel con-
figuration specifies how parallel instances of JPF shouldbbég:
ured and is similar to a standard JPF configuration. The aanafig
tion can specify global configuration used &ly parallel instances,
such as the system to explore, and can spenifwidual config-
uration for a single worker, such as the random seed to use. Th
parallel configuration is processed by the JPF manager &tecee
list of individual JPF configurations, known asrker configura-

tions These worker configurations are placed in a queue, and sent

to clients upon request. Each client, upon receiving an &rotkn-
figuration, creates and starts a JPF instance using the aoatfion.
Upon termination of the JPF instance, the client will reqaesew
worker configuration; if the queue is exhausted, the cligiise

Communication between WorkersCommunication between work-
ers is accomplished by remote listeners and remote listaaer
agers. Figure 3 illustrates communication between objectsir
framework for one worker and one remote listen&emote lis-

Generate remote
listener configs

fffffffffffffffffffffffffff

Parallel
Config

$End/receive
lnformatron

77777777777777

Figure 3: Parallel JPF Support (1 Worker Shown)
Parallel SearchImplementing a parallel search technique in our

framework can be done in two ways. The simplest method is to

implement a configurable JPF listener or heuristic. Runiirgy
parallel search technique is then done by running the satemnér

or heuristic, configured differently, on each worker. Foarmyple,

to implement parallel RDFS, we implemented a JPF listenar co
figurable with a “random seed” parameter to perform RDFS. To
run parallel RDFS, we use a configuration globally specgytimat
workers should use RDFS and explore the same program, kut tha
eachworker should use a different seed. We use a remote listener
to collect the results produced by each worker.

While simple, this method has the drawback of requiring each
worker to be separately configured. A different method wdnado
implement the technique as a remote listener, using theteelise
tener manager’s ability to generate configuration info.és@mple,
SSP is implemented in this fashion; the remote listener gema
runs the partitioning heuristic, and uses the resultingtraimts to
generate configuration info. Note that parallel searchriiggles
that require communicatioduring JPF’s execution must be imple-
mented using a remote listener.

tenersare JPF listeners extended to communicate with a remote Example Remote ListenerConsider Figure 4 illustrating a remote

listener manager. Remote listeners are specified in theavodao-
figurations, and are registered with the worker's JPF itgtaRe-
mote listener managerare specified in the parallel configuration

listener we use for monitoring MC/DC test generation. Wehvits
measure the coverage achieved, collect the MC/DC tesssyete-
erated by potentially remote workers, and combine and esthe

given to the JPF manager, and are created and maintainea by th MC/DC test suites without reducing the coverage achievedm?F

JPF manager. Once created, remote listener managers tgesuaala
append configuration information for one or more remoteefist
ers for each worker configuration, and communicate withehes
mote listeners during execution. Thus remote listener igensa
and remote listeners are associated in a one to many redhijon
— each remote listener manager communicates with everyteemo
listener instance it configures. Communication betweenrote
listener and a remote listener manager is bidirectionaé-tistener
can send information to the remote listener manager, andethe
mote listener manager can send information in response. iths w
JPF listeners, multiple types of remote listeners and redisiener
managers can be used simultaneously.

plement this, each remote listener detects when its canelpg
JPF instance generates a test satisfying an obligatiods seov-
erage information to the remote listener manager, and semds
generated MC/DC test suite when JPF execution terminates. T
remote listener manager processes and displays coverfagm
tion to the user, and combines and reduces the generated ®1C/D
test suites. The remote listener manager also generatesrifigu-
ration information for the remote listeners. The end reslilising
this remote listener is (1) the total MC/DC coverage actdeige
displayed to the user and (2) an MC/DC test suite achieviig th
coverage is stored on the user’s machine.

JPF worker-server communication is implemented using Java 5. EVALUATION

Remote Method Invocation (Java RMI) [8]. The JPF manager (i.
the server) is implemented as a remote object, and workersean
mote listeners communicate with the JPF manager via thetibje
methods. This is a very flexible method of communication —kwor
ers can be run simultaneously on the same computer (e.gi- mult
core computers), on different computers (e.g. cloud comgubr
any combination thereof.
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We evaluate SSP using two metrics: the time to completely ex-
plore a finite symbolic execution tree, and the the time toegen
ate tests meeting the MC/DC structural coverage critetiois {n-
cludes the time to collect, combine and reduce the MC/DC test
suites). Specifically, we investigated two questions:

Reduction in Analysis Time: How does the (1) size of the con-



Manager 5.2 Case Examples

; User . . .
MC/DC M We used six case examples in our experiment: two synchronous

Eﬁggéer reactive systems developed in Simulink and translatedva, Zand
Manager M four Java data structures. Metrics for each case exampkharen
C/DC Test Syia User Storage in Table 1.
aa & - < -
g§ 3 St 'M.C/oc Case # Classes| SLOC | #MC/DC BAS | SED | # lterations
=5 & 109 1y =Ry Example Obs
e 3 C/QCO - .,Sq/z-e( pl -
-+ I ey, ASW 5 425 9 757 | 26 2
s 9 s : WBS 1 231 90 1022 | 17 5
= BinHeap 2 268 98 926 | 16 6
BinTree 2 115 47 117:34 | 18 3
MC/DC | Monitor Execution JPE i Additional FibHeap 2 258 76 47:16 16 7
Remote |[<—— > | nctance || | Workers | TreeMap 2 447 172 4733 | 16 7
o H H .
Listener |<e5cTest sutte Table 1: Case Examples

BAS = Base Analysis Time (in minutes), SED = Shallow Exeaufiepth
Worker #1

The first system, the Altitude Switch (ASW), is a synchronous
Figure 4: MC/DC Remote Listener reactive component from the avionics domain. This compbnen

straint queue and (2) the NPW (number of parallel workers) turns power on to a Device Of Interest (DOI) when the airadaft
influence the time to completely explore a finite symbolic Scends below a threshold altitude above ground level (AGhg

execution tree? second system, the Wheel Brake System (WBS), is a a synalsono
Reduction in Test Generation Time: How does the NPW influ-  reactive component from the automotive domain. This detezsn

ence the time to generate tests satisfying the MC/DC cover- What pressure to apply to braking based on the environmesth B

age criterion? components were developed in Simulink. The ASW was autemati

) ) cally translated to Java using tools developed at the Véiitieini-
The former is a general performance metric: how much faster yersity [25]. The WBS was translated to C using tools devedbp
can we explore a symbolic execution tree when using our paral 4t Rockwell Collins and manually translated to Java.

lelization technique, and how well does it scale? The lattea- The remaining four systems are Java data structures. These s
sures how well our parallelization technique specificaipioves tems are used in previous related work [2, 27] and provide ex-
automatic test generation. amples from an additional domain. We perform analysis astl te

5.1 Experimental Setup generation for these data struct.ures by expllo.ring all btgssie-
) i - ) quences of data structure operations up to a finite lengtalithse-

To investigate these questions, we vary both the size ofdhe ¢ quences of data structure operations can generate extgpiibich
straint queue and the NPW independently. Based on the lengthyye catch and ignore.
of time required to analyze our case examples, we use comstra  The number of iterations explored and the length of sequence
queues of suggested sizes 8, 64, and 128. Larger CONSWw&ines  expjored for the data structures are finite and vary betwgstems.
were too large, as they would reduce the average time rehjtore  £ach length was chosen to allow for reasonably long, butfett
analyze each partition to very small values for some casmexa gjp|e analysis time when using a single instance of SPF,@ndd
ples (1-5 seconds), potentially making overhead a majdofan no more than 1 GB of memory. The depth for the shallow execu-
the time required. Recall from Section 3 the suggested sitteei tion was selected for each case example (1) to allow the stege
minimumqueue size; the actual queue size is larger for most casequeue size of 128 to be generated and (2) to allow SSP to com-
examples. Actual queue size is indicated in parenthesestimex  pjate in less than 10 seconds. As noted in Section 3, largehsie
case example name in Tables 2, 4 and 3. We examined NPWSs Ofincrease the amount of information available to SSP andaaor+
2,4,6,8, 16, 32, 64, 92, and 128. We use six case examples ingp|y improve the quality of the partitions. We intentioyadivoid
our evaluation. Both the server and.the workers were run opai D selecting large depths to avoid biasing our SSP results.
Quad Core Intel Xeon 2.33 GHz with 16 GB of RAM running on - Eor the evaluation in Section 5.4, we used JPF’s MC/DC instru
SLED 10.1. Our implementation along with the case examles, mentation Eclipse plugin [23] together with the Complex&mge

freely available from JPF's Sourceforge web-Site o JPF extension to automatically instrument our case exanfpte
Automatic test generation is a problem of reachability i th  \c/DC test generation. The evaluation in Section 5.3 was con
state space, and there has been work indicating that oterabil- ducted without instrumentation.

ity problems (specifically detecting concurrency erroes) be im-

proved through parallel RDFS [9]. We therefore use parRBFS 5.3 Evaluation of Analysis Performance

as a baseline when evaluating question 2, using a large mmhbe  For each case example, to evaluate the analysis perfornadince

runs with 64 different random seeds to prevent bias. SSP we measured the time required to (1) explore the symbolic
Given the number of NPWs, case examples, queue sizes, and theuecution tree using a single instance of SPF, and (2) expher

number of RDFS runs, we wished to run 42,066 testgeneratisr - symbolic execution tree for each combination of NPW and queu

and 120 analysis runs, using up to 128 cores in parallel. i@t sjze. For a case examplé we term the analysis time required for

required to perform such an experiment is infeasible, andie 5 single instance of SPF as thase analysis timeé3 for C, and

not have access to such a large number of cores (even useigbev  term the analysis time required for a specific NRMdnd specific

multi-core machines). We therefore control costs via satioh queue size as theP? analysis timeor C'. We define thestartup

and resampling. We describe our evaluation of questionslPam  time S as the time required to run SSP and construct the queue. For
Sections 5.3 and Section 5.4, respectively. a case examplé€’, we define thespeedugfor NPW z and queue

At time of writing, we are using the SVN repository at SiZey asp%. Ideally, the speedup will be close to the NPW, as this
https://javapathfinder.svn.sourceforge.net. represents linear speedup. We define%henaximum speedugs
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%51. Ideally, this will be 100%. Finally, we define tlmverhead

as 10029*7;*5, whereQ is the set of worker runtimes, and thus
@ is cumulative time across all workers. Ideally, this will @3%.
Measuring the analysis time required using a single instarfic

SPF is simple — run SPF over the case example and measure th

total runtime. As noted above, however, we have limited ueses
and cannot run each combination of NPW and queue size. thstea
we ran each suggested queue simeeand simulated the results for

test and the obligation the test satisfies. Thus for each NPWie
can randomly sample test suites and determine for each coverage
obligationo the earliest time is satisfied by any test suite. This
information is used to determine the earliest time all addlignso

are satisfied by any of the sampled test suites. We term this th

time to finish (TTFJor the run. We performed resampling for each
NPW 1,000 times (or the maximum number of possible times) and
average the resulting TTFs.

each NPW. For each suggested queue size, we ran SSP usiag a sin e simulated test generation for the partitioning techeigs-

gle worker and measured the following for each item in theugue
the time required to retrieve the configuration (i.e., comivation
overhead), the time required to instantiate SPF, and thettrmun
SPF. Together, these times represent the total time rebtoreun

ing the same basic approach from the previous subsection. Fo
each item in the queue, this resulted in the same timing rimder
tion used in the previous subsection, as well as a test s\ite.
then simulated each NPW using the process outlined in thé-pre

the item. The time needed to instantiate and run SPF was mea-0US Section, with one exception: when an item is removed them

sured using JavaThreadMXBeartlass, while the communication
overhead was measured using wallclock time (to ensure fr@ets
blocking is counted). We also measured the time required3®y S
and the JPF manager’s startup time (i.e., time until the tcainé
queue is built).

For each queue size, this resulted in a list of runtimes fohea
item in the queue and the overhead incurred by the queudigil
process. Using these times, we simulated the total timedoh e
NPW of interest using the following process. First, we ceeat
runtime for each simulated parallel worker, with each maetini-
tialized to S, i.e. the time spent building the constraint queue. We
then (1) remove the first element of queue, (2) add the erntire t
required by said element to the runtime for the simulateclpar
lel worker with lowest current runtime (i.e., the next idl®nker)
and (3) repeat until the queue is empty. Finally, we selextihxi-
mum runtime from the list of simulated runtimes: this is thedest
time required by any simulated worker, and thus represhatsme
required to explore the symbolic execution tree in paral@ata

gueue and added to a simulated worker, we modified the teet sui
timing information for the item. Specifically, we increadéd time
required to generate each test, adding the (1) stored reritinthe
simulated worker (i.e., the total runtime for earlier quéeens run

on the simulated worker) and (2) the time required to regrighe
configuration and instantiate JPF. Once this process is leted)
we determine the TTF for the NPW simulated.

We list the test generation results in Table 4. In our ang)yge
explored only a suggested queue size of 64. This size wastegle
based on the results from Section 5.3, as we felt it repredeat
medium between too small a queue (leading to poor load halghc
and too large a queue (leading to high overhead).

5.5 Threats to Validity

We performed our experiments primarily as a pilot study t&l-ev
uate SSP. We do not perform any statistical analysis, andesur
sults should therefore not be viewed as a rigorous empisicaly.
Nevertheless, there are several points to consider wherpheting

collected is then used to compute the speedup, the % maximumour results. We used six case examples in our evaluation.ée s

speedup, etc.

This simulation ignores competition between simulateckers;
we address this in Section 5.5. We list the speedup resulefd-
ysis in Table 2, and metrics over individual queue items ipl&a.
Note we have omitted BinTree using a suggested queue siz3pf 1
as results for smaller queue sizes indicated the time to uddv
be prohibitive.

5.4 Evaluation of Test Generation Performance

For each case example, to evaluate the test generatiorr-perfo
mance, we generated tests automatically using both paRIIES
and the partitioning technique. As with our evaluation cdlgais
time, we are exploring a finite symbolic execution tree, ali-R
and SSP both completely explore the tree. Both techniques th
achieved the same MC/DC coverage, but differ in the timeiredu
to achieve this coverage. Our evaluation of test genergibofor-
mance is based on the difference in time required to reaslttw-
erage. We used the MC/DC remote listener described in $edtio
to collect the generated test suites.

The performance in parallel RDFS can vary depending on the
random seeds used. As in Section 5.3, we do not have the cesour
to run large numbers of test generation runs for each NPW as&l ¢

lected these examples because they are drawn from two demain
and because four of the examples (the data structures) tae of
used in studies related to JPF. The shape of the symbolicigarc
tree for these examples undoubtedly influences the eftewtiss of
SSP, and may not be representative. Additionally, testrg¢ine
using these examples may not be representative of Javaapnegr

in general.

We selected bounds for our systems to yield reasonably long,
but feasible analysis times. Additionally, we have sel@cbal-
low execution bounds (for partitioning) to yield low ovegukfor
constraint generation. It is possible longer bounds maylymre
different results (shorter bounds would prevent us fromegating
the largest queues and were thus not possible). Howevergale f
these bounds are fair and believe larger bounds would orgyave
our results.

To control costs, we simulate running parallel workers vpidin-
allel RDFS using 64 random seeds and 1,000 samples. It igfmss
that the pool of 64 test generation runs do not accuratekesemt
the possible runs RDFS. Itis also possible that 1,000 siedilauns
does not accurately represent the possible set of parafis! r

Additionally, we simulate running each NPW using one run for
each queue size, and ignore the possibility of blockings fas-

example. Instead, for each case example, we ran 64 RDFS runssible that during parallel execution, multiple workers nmaguest

using a single worker, each run with a different seed. Trosipced
64 test suites, one for each run. Each test suite achieveshthe
coverage, but the time required satisfy individual obligias varies
between test suites.

We then sampled from these test suites to simulate runnirg pa
allel RDFS for each NPW. When generating a test, the Complex-
Coverage extension records the CPU time required to gentirat
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a configuration at the same time, which causes some workers to
wait, thus lengthening the time required for analysis. Hmvethe
actual time required to retrieve a configuration is very $ntess

than 5 ms on average. Furthermore, the total number of regjises
small (equal to the queue size), and the time required to ach e
configuration is at aninimuma few seconds for all case examples
and queue sizes. Given this, the rate of requests will be en av



age low with respect to the time required to respond to theasis
for the NPW explored. We therefore do not believe this is aomaj
concern in our results.

Finally, we do not employ randomization when generatingstes
using our partitioning technique. It is possible SPF’s difsearch
order is particularly good at finding tests when used withparti-
tioning technique. However, it seems unlikely to be the dasall
the systems where improvement was observed.

SQS 8 Ps P4 Ps Ps P16
ASW(8) 188 | 3.71 | 3.79 | 7.17
WBS(25) 1.83 34 4.75 ] 5.92 11.7
BinHeap(25) 194 194 | 194 194 | 194
BinTree(18) 095| 1.89 | 247 3.0 3.0
FibHeap(®) | 1.89 | 2.61 | 3.71 | 3.71
TreeMap(25) 149 169 | 1.82| 1.83| 1.84
SQS 64 P2 Py Pg Pg P16 P32 P64
ASW(64) 193 | 3.82 | 5.67 | 7.46 | 14.45| 27.01 | 47.52
WBS(100) 1.87 | 3.73 | 549 | 7.23 | 13.47 | 23.76 | 44.82
BinHeap(125) | 1.76 | 2.06 | 2.17 | 2.22 2.27 2.28 2.29
BinTree(162) 0.83 | 1.56 | 242 | 3.02 4.57 5.45 5.58
FibHeap(64) 196 | 3.94 | 572 | 754 | 10.68 | 13.55| 14.81
TreeMap(125) | 1.93 | 2.75 | 3.13 | 3.33 3.48 3.55 3.55
SQS 128 P2 Py Pg Ps P1ig P32 Ps4 Pi2s
ASW(128) 095 191 | 2.78 | 3.79 7.38 13.75 | 24.39 | 42.9
WBS(200) 1.9 3.77 | 5.67 | 7.42 | 14.77| 27.56 | 48.57 | 90.7
BinHeap(625) 1.8 225 | 242 25 2.66 2.72 2.74 2.74
FibHeap(512) | 1.67 | 3.33 | 499 | 6.64 | 13.06 | 23.57 | 32.84 | 41.15
TreeMap(625) | 1.61 | 3.14 | 4.42 | 5.18 6.17 6.75 7.07 7.14

Table 2: Speedup for Suggested Queue Sizes 8, 64 and 128
P, = Initial Precondition with NPW =, SQSY = Suggested Queue Size

Avg Time | Max Time | Std Dev | Overhead (%)

ASW (8) 63.1 66.3 1.3 6.0%
ASW (64) 7.7 10.0 0.3 3.0%

ASW (128) 7.8 11.1 0.5 108.9%
WBS (25) 23.1 28.5 0.6 5.1%
WBS (100) 6.6 8.9 0.5 6.3%
WBS (200) 3.3 5.6 0.2 4.8%
BinHeap (25) 21.7 290.4 67.6 0.1%
BinHeap (125) 45 247 27.7 5.8%
BinHeap (625) 0.9 205.8 11.0 40.7%

| BinTree (18) | 809.3 | 2349.7 880.5 106.55%

[ BinTree (162) | 1043 | 126274 | 2640 | 14051% |

FibHeap (8) 3735 763.8 225.2 5.5%
FibHeap (64) 439 191.4 437 0.2%
FibHeap (512) 6.6 60.7 8.6 19.8%
TreeMap (25) 119.7 1547.2 303.9 4.9%
TreeMap (125) 23.0 801.7 84.1 2.34%
TreeMap (612) 56 397.9 25.1 23.9%

Table 3: Runtime Metrics for Queue Items (in seconds)

6. DISCUSSION

In this section, we discuss (1) how various factors, inaigdi
NPW and constraint queue size, influence the time requireiS#%/
to completely explore a finite symbolic execution tree anjch(@v
the NPW influences the time required to generate tests \@atisf
the MC/DC coverage criterion.

6.1 Effectiveness of Parallelization

Our results indicate that speedup can be realized for aiésys
In particular, for NPW in the range of modern multi-core maels
(2, 4, and 8), the % maximum speedup is relatively high fortmos
systems, with many observed values higher than 90%. This is i
lustrated in Figure 5, showing the maximum observed spe@mup
each case example. As we can see, several case examplessare cl
to the maximum speedup, thus achieving near-linear speedup
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However, our results do demonstrate variability betweee ex-
amples. For two systems (WBS, FibHeap), significant speadisp
observed for all queue sizes and NPW, with speedup nearlyalw
increasing as NPW and queue sizes increased. However,dor th
other systems speedup plateaued at certain NPWs (e.g.eBpnH
Furthermore, a larger queue size sometimes leddose perfor-
mance than a smaller queue size for some NPWSs, while simulta-
neouslyimprovingthe performance for other NPWs (e.g. FibHeap,
TreeMap). This leads to two key observations: (1) speedtipne+
spect to NPW isnonotoni¢ and (2) speedup with respect to queue
size isnotmonotonic, and thus care must be taken when suggesting
a queue size.

The first observation is perhaps unsurprising. SSP redlittles
communication by design, and thus while increasing the NEu¢$ a
a small amount of communication overhead, the gains frormbav
another worker nearly always outweigh it. Indeed, this ie oh
the primary benefits of using only static partitioning — aitaial
workers can be added without worries of decreased perfaean

The second observation is more interesting. Load balarining
SSP is determined largely by the presence, quantity, anitigpos
in the queue of large partitions. Given a queue with a smait va
ance in the time required to explore each partition (retativthe
overall time required), we know that few, if any partitioms|| re-
quire a significant percentage of the overall resources k ksuge
partitions likely do not exist. Of course, finding such a depar-
titions is difficult, and SSP’s ability to do so varies depieigdon
the inputs. As shown in Table 3, the data structures tendue aa
few partitions that require substantially more time to exglthan
the average partition. These partitions occur becausaicernper-
ations (namely adding values to the data structure) arensiyee
and make subsequent operations (e.g., find) more expermsivela
However, if large partitions exist, we can still achieve gdoad
balancing by placing such partitions earlier in the queuarger
partitions are explored early, and smaller partitions retssky “fill
the gaps” as larger partitions complete.

Consequently, improvements to load balancing when usatigst
partitioning must (1) reduce the variation in partitionesar (2) im-
prove the queue ordering. One method of reducing variantteein
constraint queue is to simply increase the size of the quenerg
ated. Ideally, each partition in the original queue will beided
into two or more smaller partitions, and the cumulative timex-
plore these smaller partitions will be roughly equal to tbathe
original partition. Thus the average time to explore a gartiwill
decrease in the larger queue, while the cumulative time éoin b
queues will be roughly the same, reducing the variance. elshde
as shown in Table 3, the standard deviation (along with atiner
time metrics) decreases as the queue size increases. Hplwgve
increasing the size of the queue, we increase the overhelaid. T
increase in overhead reduces or negates the performamefgai
most systems when using large queues. For example, theeavkrh
for the FibHeap system jumps from 0.2% to 19.8% when the queue
size is increased from 64 to 512, leading to reduced perfocma
for NPW of 2-8, butincreasedperformance due to better load bal-
ancing for NPW of 16-64. This suggests that queue size shmild
selected with respect to the NPW, perhaps using the ratioexdie
size versus NPW as a guide.

Furthermore, by increasing the queue size, we increasékthe |
lihood that any “expensive” constraints will be selectetjchi can
cause the constraint solver to significantly slowdown. Téisor is
present in the ASW case example —when using a queue size of 128
constraints containing multiplication and division aredis While
these constraints maintain the low variability, the ovachgumps
to over 100%.



R1 R2 R4 Re Rs Ric | Rs2 | Rea | P2 Py Pg Ps Pig | P32 | Pea

ASW (64) 2686 | 2656 | 2632 | 2621 | 2613 | 2598 | 2581 | 2557 | 175 84 44 41 40 40 38
WBS (100) 28 13 7.3 4.7 3.5 15 0.8 0.5 10 10 10 0.5 0.5 0.5 0.5
BinHeap (125) | 2075 | 1250 [ 620 366 273 182 168 158 35 32 32 32 28 23 23
BinTree (64) 14 3.8 1.1 0.7 0.6 0.4 0.4 0.3 30 0.21] 0.17 | 0.16 [ 0.15| 0.14 | 0.13
FibHeap (64) 948 901 873 862 851 838 828 819 503 | 220 157 108 60 26 26
TreeMap (125) 632 605 584 574 568 554 543 531 481 | 266 194 158 133 121 118

Table 4: Test Generation TTF (in seconds) for Suggested QuelSize 64
R, = Randomized Depth First Search with NPWt=P,, = Initial Precondition with NPW =

NI %
6
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§ ] H FibHeap
[2) B TreeMap
A
2 N 7
0
2 4 6 8

Number of Parallel Instances

Figure 5: Small NPW Speedup (Maximum Observed)

A final note: the BinTree system is the only system in which a
speedup less than 1.0 was observed, indicating that empl&in-
Tree’s symbolic execution tree is faster usimge instance, rather

while thoroughly exploring theight side (or vice versa). SSP,
which partitions execution, is less prone to this.

Note that unlike most case examples used, BinTree performs
well using parallel RDFS, finding the maximum achievable-cov
erage in at most 14 seconds — a difficult feat to top. This, im co
junction with the SSP problem discussed above, is resplentsib
the poor performance of SSP relative to parallel RDFS.

7. RELATED WORK

We have already discussed some closely related work in sec-
tions 1. We add more discussion here.

Research on automatically generating tests to satisfgtsiial
coverage criteria has been conducted for many years [13erRe
approaches for Java programs include Korat by Boyapati ¢5]al
an explicit state enumeration technique for generatingimgsits
for a Java method. Korat has been parallelized by Siddigdi an

than two; all larger NPWSs produce speedup. The reason is thatKhurshid as PKorat [22] using a master/slave configuratioext

when the inputs are generated dynamically, as is the cag@dor
method parameters, some of the collected constraints &felus
only for certain executions (e.g., executions where thahoteis
called); they are useless for other executions. Thesereamistare
usually not selected in favor of more generally applicalolé gaus
more numerous constraints; however, if selected, they ey to
useless constraints over symbolic variables that are nargeed.
In the future, we plan to address this problem by considettieg
relationship between constraints and generation of syimbati-
ables. This phenomenon was not observed in the other example

6.2 Influence of NPW on Test Generation

Our results indicate that SSP significantly improves testge
tion performance for each case example except BinTree.rtitpa
ular, we observe that for the case examples where a singénies
of SPF requires at least 10 minutes to achieve the maximurmaach
able coverage, the performance improvements with resp&teW
are generally more scalable when using SSP than when using pa
allel RDFS, and for a given NPW, SSP outperforms parallel BDF

Both observations indicate that SSP is a more effective oteth
of improving test generation performance than parallel RDIR-
deed, the performance improvements observed in test demera
are larger than the analysis time speedup — for example héor t

plore candidate vectors in parallel. Korat was also pdiadle by

Misailovic et al. [10]. That work describes parallel teshgeation
and execution and it is similar in spirit with our approachjtgar-

titions the search space, but in the context of explicitestqtace
exploration. Also relevant is jCute by Sen et al. [21], a adiec
execution engine for Java; jCute has not been parallelipedter
we are aware of a parallel version of a concolic executiorinenig

Microsoft's SAGE system.

Our approach to automatic test generation is similar to @oun
example based test generation, first developed by Ammarr{Et a
using mutation operators and specifications. The approasbhéden
modified to generate tests satisfying structural coveragfeics by
Rayadurgam and Heimdahl [20] and to generate tests via dB&db
symbolic execution by Khurshid et al. [14].

Stern and Dill present in [24] a parallel version of the esipli
state model checker Mdrsuitable for verifying safety properties.
Holzmann and Bosnacki present in [12] a multi-core versitthe
explicit state model checker SPIN suitable for verifyingeliess
properties, as do Barnat et al. [3]. Dwyer et al. in [9] andZdol
mann et al. in [13] explore the use of hon-communicating lpara
lel randomized search for fault detection. These apprcavleze
shown to be effective and are very similar to the RDFS teakmiq
presented in this work. However, these approaches are éxaiip

FibHeap system and a NPW of 64, using SSP reaches the achiev-explicit state model checking, rather than symbolic execut

able maximum coverage 31x faster than 64 parallel RDFS des,
spite a corresponding analysis time speedup of only 15xthErr

Finally, in his master thesis [15], King parallelized syribex-
ecution using a dynamic load balancing approach. The approa

more, for the ASW system and a NPW of 64, using SSP reaches thedynamically populates a queue of subtrees, adding subivees

achievable maximum coverage 70x faster than the averageSRDF
run — agreaterthan linear speedup.

This results from the use of depth first search. When exgorin
a subtree in the symbolic execution tree, depth first seaquloees
the entire partition. If the subtree is large but containsmsatisfied
obligations, depth first search may spend significant tinpéoging
the partition without improving coverage. We have obsered
obligations are often distributed throughout the symbeiecution
tree. In this situation, a single instance of RDFS will inabiy
ignore obligations on théeft side of the symbolic execution tree
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nondeterministic choices are encountered. Idle workelsfpo
work and active workers contribute to this queue. The effeet
ness of his approach was measured in terms of speedup irsenaly
time (similar to Section 5.3) and the number of state patptoesd

in a specific amount of time, with NPl of 2, 4, 6 and 8. As casd-stu
ies, the same data structures were used (though not thessxaet
code), but he analyzed individual methods in isolation @/uile
analyzed method sequences. Speedups reported tend tsbéacalo
linear for NPW of 2, often reasonable for NPW of 4, but relaiyv
poor for NPW of 6 and 8. For several case examples, the spsedup



for NPW of 2-4 exceed the speedup for NPW of 8 (presumably due [11] P. Godefroid. Compositional dynamic test generatian.

to overhead). Furthermore, for at least one case exampiegle s
instance of symbolic execution outperforms a run with NPV8.of
In contrast, SSP does not exhibit a drop in speedup with asee

Proc. of the 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 47-54. ACM
New York, NY, USA, 2007.

NPW. Furthermore, speedup with SSP seems more consisti#nt wi [12] G. Holzmann and D. Bosnacki. The design of a multicore

NPW of 2-8 than King's approach.
8. CONCLUSIONS AND FUTURE WORK

We have presented a general framework for parallelizing Jav

Pathfinder and techniques for parallel symbolic executievetd
oped using this framework. We have evaluated these tecbsiigu

extension of the spin model check#EEE Transactions on
Software Engineering33(10):659-674, 2007.

[13] G. Holzmann, R. Joshi, and A. Croce. Tackling large
verification problems with the swarm to&roc. 15th Int'l.
SPIN Workshop5156:134—143, 2008.

[14] S. Khurshid, C. Pasareanu, and W. Visser. Generalized

terms of analysis time and MC/DC test generation time using s
case examples. We demonstrate up to 90x speedup in anatysis t
using 128 workers, and 70x speedup in automatic test gémerat

symbolic execution for model checking and testiRgoc. of
the 9th TACASpages 553-568, 2003.
[15] A. King. Distributed parallel symbolic execution. Mass

time using 64 workers. Furthermore, for small numbers ofkes
(2-8) we demonstrate speedups in analysis time consigtianger

than 90% of the maximum (linear) speedup for 3 of 6 systenth, wi
the other three systems demonstrating speedups of 30% t@B0%

the maximum speedup.

In the future, we would like to evaluate the partitioninghec
nigues in other contexts, such as fault detection. Giversitmé
larity between searching for states satisfying coveradigations
and searching for states violating assertions/propeftiedelieve
the partitioning techniques will perform well in this corte Fur-
thermore we plan to investigate other static partitioneghhiques
(e.g. based on the control flow graph) and study their effecti
ness in conjunction with dynamic partitioning, e.g. [7, .13)e
believe that such a combination will be most effective forgba
lelizing symbolic execution.
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