
ar
X

iv
:1

00
4.

53
70

v1
 [

cs
.IR

]
29

 A
pr

 2
01

0

Self-Taught Hashing for Fast Similarity Search

Dell Zhang
DCSIS

Birkbeck, University of London
Malet Street

London WC1E 7HX, UK
dell.z@ieee.org

Jun Wang
Dept of Computer Science
University College London

Gower Street
London WC1E 6BT, UK

jun.wang@cs.ucl.ac.uk

Deng Cai
State Key Lab of CAD&CG

Zhejiang University
100 Zijinggang Road

Hangzhou 310058, China
dengcai@cad.zju.edu.cn

Jinsong Lu
DEMS

Birkbeck, University of London
Malet Street

London WC1E 7HX, UK
jingsong.lu@gmail.com

ABSTRACT
The ability of fast similarity search at large scale is of great
importance to many Information Retrieval (IR) applications.
A promising way to accelerate similarity search is semantic
hashing which designs compact binary codes for a large num-
ber of documents so that semantically similar documents
are mapped to similar codes (within a short Hamming dis-
tance). Although some recently proposed techniques are
able to generate high-quality codes for documents known
in advance, obtaining the codes for previously unseen doc-
uments remains to be a very challenging problem. In this
paper, we emphasise this issue and propose a novel Self-
Taught Hashing (STH) approach to semantic hashing: we
first find the optimal l-bit binary codes for all documents in
the given corpus via unsupervised learning, and then train
l classifiers via supervised learning to predict the l-bit code
for any query document unseen before. Our experiments on
three real-world text datasets show that the proposed ap-
proach using binarised Laplacian Eigenmap (LapEig) and
linear Support Vector Machine (SVM) outperforms state-
of-the-art techniques significantly.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing; H.3.3 [Information Stor-

age and Retrieval]: Information Search and Retrieval;
I.2.6 [Artificial Intelligence]: Learning; I.5.2 [Pattern

Recognition]: Design Methodology—classifier design and

evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07 ...$10.00.

General Terms
Algorithms, Experimentation, Performance

Keywords
Similarity Search, Semantic Hashing, Laplacian Eigenmap,
Support Vector Machine.

1. INTRODUCTION
The problem of similarity search (aka nearest neighbour

search) is: given a query document1, find its most similar
documents from a very large document collection (corpus).
It is of great importance to many Information Retrieval (IR)
[30] applications, such as near-duplicate detection [18], pla-
giarism analysis [43], collaborative filtering [26], caching [32],
and content-based multimedia retrieval [28].

Recently, with the rapid evolution of the Internet and the
increased amounts of data to be processed, how to conduct
fast similarity search at large scale has become an urgent re-
search issue. A promising way to accelerate similarity search
is semantic hashing [34] which designs compact binary codes
for a large number of documents so that semantically simi-
lar documents are mapped to similar codes (within a short
Hamming distance). It is extremely fast to perform similar-
ity search over such binary codes [42], because

• the encoded data are highly compressed and thus can
be loaded into the main memory;

• the Hamming distance between two binary codes can
be computed efficiently by using bit XOR operation
and counting the number of set bits [25, 46]: an ordi-
nary PC today would be able to do millions of Ham-
ming distance computation in just a few milliseconds.

Furthermore, we usually just need to retrieve a small number
of the most similar documents (i.e., nearest neighbours) for
a given query document rather than computing its similarity
to all documents in the collection. In such situations, we can
simply return all the documents that are hashed into a tight

1In similarity search, a document is used as the query for
retrieval, which is fundamentally different with the standard
keyword search paradigm, e.g., in TREC.

http://arxiv.org/abs/1004.5370v1

Hamming ball centred around the binary code of the query
document. For example, assuming that we use 4-bit binary
codes, if the query document is represented as ‘0000’, then
we can just check this code as well as those 4 codes within
one Hamming distance to it (i.e., having one bit difference
with it) — ‘1000’, ‘0100’, ‘0010’, and ‘0001’ — and return
the associated documents back. It will also be easy to filter
or re-rank the very small set of “good” documents (returned
by semantic hashing) based on their full content, so as to
further improve the retrieval effectiveness with just a little
extra time [42].

In addition, similarity search serves as the basis of a clas-
sic non-parametric machine learning method, the k-Nearest-
Neighbours (kNN) algorithm [31], for automated text cate-
gorisation [37] and so on. By enabling fast similarity search
at large scale, semantic hashing makes it feasible to exploit
“the unreasonable effectiveness of data” [14] to accomplish
traditionally difficult tasks. For example, researchers re-
cently achieved great success in scene completion and scene
recognition using millions of images on the Web as training
data [15, 44].

Although some recently proposed techniques are able to
generate high-quality codes for the documents known in ad-
vance, obtaining the codes for previously unseen documents
remains to be a very challenging problem [42]. Existing
methods either have prohibitively high computational com-
plexity or impose exceedingly restrictive assumptions about
data distribution (see Section 3.2). In this paper, we em-
phasise this issue and propose a novel Self-Taught Hashing
(STH) approach to semantic hashing. As illustrated in Fig-
ure 1, we first find the optimal l-bit binary codes for all
documents in the given corpus via unsupervised learning,
and then train l classifiers via supervised learning to predict
the l-bit code for any query document unseen before.

Our experiments on three real-world text datasets show
that the proposed approach using binarised Laplacian Eigen-
map (LapEig) [3] and linear Support Vector Machine (SVM)
[23, 36] outperforms state-of-the-art techniques significantly,
while maintaining a high running speed.

The rest of this paper is organised as follows. In Section
2, we review the related work. In Section 3, we present our
approach in details. In Section 4, we show the experimental
results. In Section 5, we make conclusions.

2. RELATED WORK
There has been extensive research on fast similarity search

due to its central importance in many applications. For
a low-dimensional feature space, similarity search can be
carried out efficiently with pre-built space-partitioning in-
dex structures (such as KD-tree) or data-partitioning index
structures (such as R-tree) [7]. However, when the dimen-
sionality of feature space is high (say > 10), similarity search
aiming to return exact results cannot be done better than
the naive method — a linear scan of the entire collection
[45]. In the IR domain, documents are typically represented
as feature vectors in a space of more than thousands of di-
mensions [30]. Nevertheless, if the complete exactness of
results is not really necessary, similarity search in a high-
dimensional space can be dramatically speeded up by using
hash-based methods which are purposefully designed to ap-
proximately answer queries in virtually constant time [42].

Such hash-based methods for fast similarity search can be
considered as a means for embedding high-dimensional fea-

ture vectors to a low-dimensional Hamming space (the set
of all 2l binary strings of length l), while retaining as much
as possible the semantic similarity structure of data. Unlike
standard dimensionality reduction techniques such as Latent
Semantic Indexing (LSI) [5, 8] and Locality-Preserving In-
dexing (LPI) [17, 16], hashing techniques map feature vec-
tors to binary codes, which is key to extremely fast simi-
larity search (see Section 1). One possible way to get bi-
nary codes for text documents is to binarise the real-valued
low-dimensional vectors (obtained from dimensionality re-
duction techniques like LSI) via thresholding [34]. An im-
provement on binarised-LSI that directly optimises a Ham-
ming distance based objective function, namely Laplacian
Co-Hashing (LCH), has been proposed recently [50].

The most well-known hashing technique that preserves
similarity information is probably Locality-Sensitive Hash-
ing (LSH) [1]. LSH simply employs random linear projec-
tions (followed by random thresholding) to map data points
close in a Euclidean space to similar codes. It is theoretically
guaranteed that as the code length increases, the Hamming
distance between two codes will asymptotically approach the
Euclidean distance between their corresponding data points.
However, since the design of hash functions for LSH is data-
oblivious, LSH may lead to quite inefficient (long) codes in
practice [34, 48].

Several recently proposed hashing techniques attempt to
overcome this problem by finding good data-aware hash
functions through machine learning. In [34], the authors pro-
posed to use stacked Restricted Boltzmann Machine (RBM)
[19, 20], and showed that it was indeed able to generate
compact binary codes to accelerate document retrieval. Re-
searchers have also tried the boosting approach to Similarity
Sensitive Coding (SSC) [38] and Forgiving Hashing (FgH)
[2] — they first train AdaBoost [35] classifiers with simi-
lar pairs of items as positive examples (and also non-similar
pairs of items as negative examples in SCC), and then take
the output of all (decision stump) weak learners on a given
document as its binary code. In [44], both stacked-RBM and
boosting-SSC were found to work significantly better and
faster than LSH when applied to a database containing tens
of millions of images. In [48], a new technique called Spectral
Hashing (SpH) was proposed. It has demonstrated signifi-
cant improvements over LSH, stacked-RBM and boosting-
SSC in terms of the number of bits required to find good
similar items. There is some resemblance between the first
step of SpH and the unsupervised learning stage of our STH
approach, because both are related to spectral graph parti-
tioning [6, 13, 40]. Nevertheless, we use a different spectral
method and take a different way to address the entropy max-

imising criterion (see Section 3.1). More importantly, in or-
der to process query documents, SpH has to assume that the
data are uniformly distributed in a hyper-rectangle, which is
apparently very restrictive. In contrast, our proposed STH
approach can work with any data distribution and it is much
more flexible (see Section 3.2). The superiority of STH to
SpH has been confirmed by our experimental results (see
Section 4).

A somewhat related, but different, line of research is to
use hashing representations for machine learning [41, 47].
The objective of such techniques is to accelerate complex
learning algorithms, but not similarity search. Our work is
basically the other way around.

Figure 1: The proposed STH approach to semantic hashing.

3. APPROACH
The proposed Self-Taught Hashing (STH) approach to se-

mantic hashing is a general learning framework that consists
of two distinct stages, as illustrated in Figure 1. We call the
approach “self-taught” because the hash function is learnt
from the data that are auto-labelled by itself in the previous
stage2.

3.1 Stage 1:
Unsupervised Learning of Binary Codes

Given a collection of n documents which are represented
as m-dimensional vectors {xi}

n
i=1 ⊂ R

m. Let X denote the
m × n term-document matrix: [x1, . . . ,xn]. Suppose that
the desired length of code is l bits. We use yi ∈ {−1,+1}l

to represent the binary code for document vector xi, where

the p-th element of yi, i.e., y
(p)
i , is +1 if the p-th bit of code

is on, or −1 otherwise. Let Y denote the n× l matrix whose
i-th row is the code for the i-th document, i.e., [y1, . . . ,yn]

T .
A“good”semantic hashing should be similarity preserv-

ing to ensure effectiveness. That is to say, semantically sim-
ilar documents should be mapped to similar codes within a
short Hamming distance.

Unlike the existing approaches (such as SpH [48]) that
aim to preserve the global similarity structure of all docu-
ment pairs, we focus on the local similarity structure, i.e.,
k-nearest-neighbourhood, for each document. Since IR ap-
plications usually put emphasis on a small number of most
similar documents for a given query document [30], preserv-
ing the global similarity structure is not only unnecessary
but also likely to be sub-optimal for our problem. Therefore,
using the cosine similarity3 [30], we construct our n×n local

2It is, however, worth noticing that the term “self-taught
learning”has been mentioned in [33] where the intention was
to describe a strategy for transfer learning based on sparse
coding, whereas in this paper the term has a rather different
meaning.
3Our approach can work with any legitimate similarity mea-
sure, though we focus on cosine similarity in this paper.

similarity matrix W as

Wij =

{

x
T
i xj

‖xi‖·‖xj‖
if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 otherwise
(1)

where Nk(x) represents the set of k-nearest-neighbours of
document x. In other words, W is the adjacency matrix of
the k-nearest-neighbours graph for the given corpus [3]. A
by-product of focusing on such a local similarity structure
instead of the global one is that W becomes a sparse ma-
trix. This not only leads to much lower storage overhead,
but also brings a significant reduction to the computational
complexity of subsequent operations. Furthermore, we in-
troduce a diagonal n × n matrix D whose entries are given
by Dii =

∑n

j=1 Wij . The matrix D provides a natural mea-
sure of document importance: the bigger the value of Dii is,
the more “important” is the document xi as its neighbours
are strongly connected to it [3].

The Hamming distance between two binary codes yi and
yj (corresponding to documents xi and xj) is given by the
number of bits that are different between them, which can
be calculated as 1

4
‖yi − yj‖

2. To meet the similarity pre-

serving criterion, we seek to minimise the weighted average
Hamming distance (as in SpH [48])

1

4

n
∑

i=1

n
∑

j=1

Wij‖yi − yj‖
2 (2)

because it incurs a heavy penalty if two similar documents
are mapped far apart. After some simple mathematical
transformation, the above objective function can be rewrit-
ten in matrix form as 1

4
Tr(Y TLY), where L = D − W is

the graph Laplacian [6], and Tr(·) means the matrix trace.
We found the above objective function (2) actually pro-

portional to that of a well-known manifold learning algo-
rithm, Laplacian Eigenmap (LapEig) [3], except that LapEig
does not have the constraint yi ∈ {−1,+1}l. So, if we relax
this discreteness condition but just keep the similarity pre-

serving requirement, we can get the optimal l-dimensional
real-valued vector ỹi to represent each document xi by solv-

ing the following LapEig problem:

argmin
Ỹ

Tr(Ỹ T
LỸ) (3)

subject to Ỹ
T
DỸ = I

Ỹ
T
D1 = 0

where Tr(Ỹ TLỸ) gives the real relaxation of the weighted
average Hamming distance Tr(Y TLY), and the two con-
straints prevent the collapse into a subspace of dimension
less than l. The solution of this optimisation problem is
given by Ỹ = [v1, . . . ,vl] whose columns are the l eigenvec-
tors corresponding to the smallest eigenvalues of the follow-
ing generalised eigenvalue problem (except the trivial eigen-
value 0):

Lv = λDv (4)

The above LapEig formulation (3) may look similar to the
first step of SpH [48]. This is because SpH is motivated by
a spectral graph partitioning method ratio-cut [13], while
LapEig is closely connected to another spectral graph par-
titioning method normalised-cut [40]. Many independent
studies have shown that normalised-cut has better theoreti-
cal properties and empirical performances than ratio-cut [6,
40].

We now convert the above l-dimensional real-valued vec-
tors ỹ1, . . . , ỹn into binary codes via thresholding: if the
p-th element of ỹi is larger than the specified threshold,

y
(p)
i = +1 (i.e., the p-th bit of the i-th code is on); other-

wise, y
(p)
i = −1 (i.e., the p-th bit of the i-th code is off).

A “good” semantic hashing should also be entropy max-

imising to ensure efficiency, as pointed out by [2]. Accord-
ing to the information theory [39]: the maximal entropy of
a source alphabet is attained by having a uniform probabil-
ity distribution. If the entropy of codes over the corpus is
small, it means that documents are mapped to only a small
number of codes (hash bins), thereby rendering the hash ta-
ble inefficient. To meet this entropy maximising criterion,

we set the threshold for binarising ỹ
(p)
1 , . . . , ỹ

(p)
n to be the

median value of vp. In this way, the p-th bit will be on for
half of the corpus and off for the other half. Furthermore, as
the eigenvectors v1, . . . ,vl given by LapEig are orthogonal
to each other, different bits y(1), . . . , y(l) in the generated bi-
nary codes will be uncorrelated. Therefore this thresholding
method gives each distinct binary code roughly equal proba-
bility of occurring in the document collection, thus achieves
the best utilisation of the hash table.

3.2 Stage 2:
Supervised Learning of Hash Function

Mapping all documents in the given corpus to binary codes
does not completely solve the problem of semantic hash-
ing, because we also need to know how to obtain the binary
codes for query documents, i.e., new documents that are
unseen before. This problem, called out-of-sample extension

in manifold learning, is often addressed using the Nystrom
method [4, 9]. However, calculating the Nystrom extension
of a new document is as computationally expensive as an
exhaustive similarity search over the corpus (that may con-
tain millions of documents), which makes it impractical for
semantic hashing. In LPI [17, 16], LapEig [3] is extended to
deal with new samples by approximating a linear function
to the embedding of LapEig. However, the computational

complexity of LPI is very high because its learning algorithm
involves eigen-decompositions of two large dense matrices. It
is infeasible to apply LPI if the given training corpus is large.
In SpH [48], new samples are handled by utilising the latest
results on the convergence of graph Laplacian eigenvectors
to the Laplace-Beltrami eigenfunctions of manifolds. It can
achieve both fast learning and fast prediction, but it relies
on a very restrictive assumption that the data are uniformly
distributed in a hyper-rectangle.

Overcoming the limitations of the above techniques [4, 9,
17, 16, 48], this paper proposes a novel method to com-
pute the binary codes for query documents by considering
it as a supervised4 learning problem: we think of each bit

y
(p)
i ∈ {+1,−1} in the binary code for document xi as a

binary class label (class-“on” or class-“off”) for that docu-

ment, and train a binary classifier y(p) = f (p)(x) on the
given corpus that has already been “labelled” by the above
binarised-LapEig method, then we can use the learned bi-
nary classifiers f (1), . . . , f (l) to predict the l-bit binary code
y(1), . . . , y(l) for any query document x. As mentioned in the
previous section, different bits y(1), . . . , y(l) in the generated
binary codes are uncorrelated. Hence there is no redundancy
among the binary classifiers f (1), . . . , f (l), and they can also
be trained independently.

In this paper, we choose to use the Support Vector Ma-
chine (SVM) [23, 36] algorithm to train these binary classi-
fiers. SVM in its simplest form, linear SVM f(x) = sgn(wTx)
consistently provides state-of-the-art performance for text
classification tasks [10, 22, 49]. Given the documents x1, . . . ,xn

together with their self-taught binary labels for the p-th bit

y
(p)
1 , . . . , y

(p)
n , the corresponding linear SVM can be trained

by solving the following quadratic optimisation problem

argmin
w,ξi≥0

1

2
w

T
w +

C

n

n
∑

i=1

ξi (5)

subject to ∀n
i=1 : y

(p)
i w

T
xi ≥ 1− ξi

A notable advantage of using SVM classifiers here is that
we can easily achieve non-linear mappings if necessary by
plugging in non-linear kernels [36], though we do not explore
this potential in this paper.

3.3 Summary of Approach
We name the above proposed two-stage approach Self-

Taught Hashing (STH). In this paper, we choose binarised-
LapEig [3] for the unsupervised learning stage and linear-
SVM [23, 36] for the supervised learning stage, but obviously
it is possible to use other machine learning algorithms.

The learning process of STH for a given corpus can be
summarized as follows.

1. unsupervised learning of binary codes:

• construct the k-nearest-neighbours graph for the
given corpus;

• embed the documents in an l-dimensional space
through LapEig (4) to get an l-dimensional real-
valued vector for each document;

4Since in the second stage, the supervised learning algorithm
uses only the pseudo-labels input from the previous unsuper-
vised learning stage, the entire STH approach remains to be
unsupervised.

• obtain an l-bit binary code for each document via
thresholding the above vectors at their median
point, and then take each bit as a binary class
label for that document;

2. supervised learning of hash function:

• train l SVM classifiers (5) based on the given cor-
pus that has been “labelled” as above.

Let s denote the average number of non-zero features per
document. In the first stage, constructing the k-nearest-
neighbours graph takes O(n2s+n2k) time using the selection
algorithm [7], solving the LapEig problem (4) takes O(lnkt)
time using the Lanczos algorithm [12] of t iterations (the
value of t is usually quite small), and the median-based bi-
narisation takes O(ln) time again using the selection algo-
rithm [7]. In the second stage, thanks to the recent advances
in large-scale optimisation, each of the l linear SVM classi-
fiers can be trained in O(sn) time or even less [24, 21], so
all training can be done in O(lsn) time. Both the value of
l and the value of k can be regarded as small constants, as
usually a short code length is desirable and just a few near-
est neighbours are needed. For example, l ≤ 64 and k = 25
in our experiments (see Section 4). Therefore the overall
computational complexity of the learning process is roughly
quadratic to the number of documents in the corpus while
linear to the average size of the documents in the corpus.

The predicting process of STH for a given query docu-
ment is simply to classify the query document using those
l learned classifiers and then assemble the output l binary
labels into an l-bit binary code. For linear SVM, classi-
fying a document only requires one dot-product operation
between two vectors, the aggregated support vector and the
document vector (with s′ non-zero features), which can be
done quickly in O(s′) time. Therefore the overall computa-
tional complexity of the prediction process for each query
document is linear to the size of the query document.

4. EXPERIMENTS
We now empirically evaluate our proposed STH approach

(using binarised-LapEig and linear-SVM), and compare its
performance with binarised-LSI [34], LCH [50], and SpH [48]
that represents the state of the art (see Section 2).

In the following STH experiments, the parameter k =
25 when constructing the k-nearest-neighbours graph for
LapEig5, and the SVM implementation is from LIBLINEAR
[11] with the default parameter values6.

4.1 Data
We have conducted experiments on three publicly avail-

able real-world text datasets: Reuters215787, 20Newsgroups8

and TDT29.

5In principle, the value of k for LapEig should be set to the
desired number of original nearest neighbours to be retrieved
(see Section 4.2).
6It is not necessary to fine tune the SVM parameters (such
as C) because it has already worked very well with its default
parameter values.
7http://www.daviddlewis.com/resources/testcollections/
reuters21578/
8http://people.csail.mit.edu/jrennie/20Newsgroups/
9http://www.nist.gov/speech/tests/tdt/tdt98/index.htm

The Reuters21578 corpus is a collection of documents that
appeared on Reuters newswire in 1987. It contains 21578
documents in 135 categories. In our experiments, those doc-
uments appearing in more than one category were discarded,
and only the largest 10 categories were kept, thus leaving us
with 7285 documents in total. We use the ModeApte split
here which gives 5228 (72%) documents for training and
2057 (28%) documents for testing.

The 20Newsgroups corpus was collected and originally
used for document categorisation by Lang [27]. We use the
popular ‘bydate’ version which contains 18846 documents,
evenly distributed across 20 categories. The time-based split
leads to 11314 (60%) documents for training and 7532 (40%)
documents for testing.

The TDT2 (NIST Topic Detection and Tracking) corpus
consists of data collected during the first half of 1998 and
taken from 6 sources, including 2 newswires (APW, NYT),
2 radio programs (VOA, PRI) and 2 television programs
(CNN, ABC). It consists of 11201 on-topic documents which
are classified into 96 semantic categories. In our experi-
ments, those documents appearing in more than one cate-
gory were discarded, and only the largest 30 categories were
kept, thus leaving us with 9394 documents in total. We ran-
domly selected 5597 (60%) documents for training and 3797
(40%) documents for testing. The averaged performance
based on 10 such random selections is reported in this pa-
per.

All the above datasets have been pre-processed by stop-
word removal, Porter stemming, and TF-IDF weighting [30].

For the purpose of reproducibility, we shall make the datasets
and code used in our experiments publicly available at the
first author’s homepage upon paper publication.

4.2 Evaluation
Given a dataset, we use each document in the test set

as a query to retrieve documents in the training set within
a specified Hamming distance, and then compute standard
retrieval performance measures: precision, recall, and their
harmonic mean (F1 measure) [30].

precision =
the number of retrieved relevant documents

the number of all retrieved documents
(6)

recall =
the number of retrieved relevant documents

the number of all relevant documents
(7)

The reported performance scores in the following Section are
averaged over all test queries in the dataset.

To determine whether a retrieved document is “relevant”
to the given query document, we adopt the following two
evaluation methodologies:

1. retrieving original nearest neighbours — the k

most similar documents, i.e., nearest neighbours, in
the original vector space are considered as the ground-
truth relevant documents (k = 25 in our experiments);

2. retrieving same-topic documents— the documents
on the same topic, i.e., in the same category, are con-
sidered as the ground-truth relevant documents.

The former methodology is used in [48]10, while the lat-
ter methodology is used in [34]. In our opinion, these two

10Actually only precision is used in [48], which is appropriate

methodologies emphasise different aspects of semantic hash-
ing, and thus are suitable for different target IR applications.
Therefore we use both of them in this paper.

The absolute performance scores of STH are not as im-
portant as how they compare with those of other semantic
hashing techniques. As previously mentioned in Section 1,
if necessary, we can always spend a little extra time to filter
or re-rank the similarity search results based on their full
content, thus achieve higher performance scores [42].

4.3 Results
Figure 2 and Figure 3 show the F1 measure of STH for

retrieving original nearest neighbours and same-topic doc-
uments respectively11. We vary the code length from 4-bit
to 64-bit and also the Hamming ball radius (i.e., the max-
imum Hamming distance between any retrieved document
and the query document) from 0 to 3, in order to show their
influences on the retrieval performance. It can be seen that
when the code length increases, STH is able to achieve a
higher F1 measure (using a bigger Hamming ball radius).
However, longer binary codes demand more memory and
a bigger Hamming ball radius requires more computation.
The optimal trade-off between effectiveness and efficiency
can be found by using a validation set of query documents.

Figure 4 and Figure 5 compare STH with several other
typical semantic hashing methods in terms of their precision-
recall curves (created by varying the code length from 4-
bit to 64-bit while fixing the Hamming ball radius at 1),
for retrieving original nearest neighbours and same-topic
documents respectively12. It is clear that on all datasets
and under both evaluation methodologies, STH outperforms
binarised-LSI, LCH, and the state-of-the-art technique SpH
(that has already been shown to work much better than LSH
[1], stacked-RBM13 [34] and boosting-SSC [38]). Using 16-
bit codes and Hamming ball radius 1, the performance im-
provements are all statistically significant (P value < 0.01)
according to one-sided micro sign test (s-test) [49].

We think the superior performance of STH is due to two
reasons:

• the binary codes produced by binarised-LapEig effec-
tively preserve the semantic similarity structure while
maximising the entropy of the hash table;

• the maximum-margin hyperplane produced by linear-
SVM ensures high generalisation ability [36].

for their application of pattern recognition but obviously
insufficient from the IR perspective. Due to this difference
in performance measurement, their results are not directly
comparable with ours.

11The F1 measure scores reported here should not be directly
compared with those in text categorisation papers, as we are
addressing a very different problem even though the same
datasets may have been used for experimentation.

12Although we could achieve higher retrieval performance by
utilising a bigger Hamming ball radius (e.g., 4), a large num-
ber of binary codes (e.g., C4

64 = 635376 for 64-bit codes)
would need to be checked for each query and then the effi-
ciency gain brought by semantic hashing would diminish.

13For example, on the 20Newsgroups dataset, stacked-RBM
achieves a maximum of F1 = 0.276 for retrieving same-topic
documents with 128-bit codes, while the same level of per-
formance can be obtained using our STH approach with just
8-bit codes.

We have also examined the approximation errors accumu-
lated in each step of STH (see Section 3.3). Our anatomy re-
veals that almost all approximation errors come from the di-
mensionality reduction step using LapEig. However, LapEig
does work better than alternative methods (such as LSI)
for this step in our experiments, and it is a well-known
hard problem to accurately detect the (intrinsic) dimen-
sionality of data or effectively reduce the dimensionality of
data. The median-based binarisation and SVM-based out-
of-sample extension both work perfectly incurring little ap-
proximation errors.

The proposed STH approach (using binarised-LapEig and
linear-SVM) to semantic hashing is pretty fast: on an ordi-
nary PC with Intel Pentium4 3.00GHz CPU and 2GB RAM,
our Matlab implementation of 64-bit STH takes approxi-
mately 0.0165 second per document for training (which is
about 10 times faster than SpH), and 0.0007 second per
document for prediction.

5. CONCLUSIONS
The main contribution of this paper is a novel Self-Taught

Hashing (STH) approach to semantic hashing for fast simi-
larity search. By decomposing the problem of finding small
codes for large data into two stages — unsupervised learn-
ing and supervised learning — we achieve great flexibility
in choosing learning algorithms. Using binarised-LapEig for
the first stage and linear-SVM for the second stage, STH sig-
nificantly outperforms binarised-LSI, LCH, and the state-of-
the-art technique SpH [48]. Since STH is a general learning
framework, it is promising to achieve even higher effective-
ness and efficiency if more powerful unsupervised or super-
vised learning algorithms can be employed.

We shall apply this technique to text mining tasks (such
as automated text categorisation [37]) and content-based
multimedia retrieval [28] in the near future. It would also
be interesting to combine semantic hashing and distributed
computing (e.g., [29]) to further improve the speed and scal-
ability of similarity search.

Acknowledgements
We are grateful to Dr Xi Chen (Alberta) for his valuable
discussion and the London Mathematical Society (LMS) for
their support of this work (SC7-09/10-6). We would also
like to thank the anonymous reviewers for their helpful com-
ments.

6. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In
Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 459–468,
Berkeley, CA, USA, 2006.

[2] S. Baluja and M. Covell. Learning to hash: Forgiving hash
functions and applications. Data Mining and Knowledge
Discovery (DMKD), 17(3):402–430, 2008.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation. Neural
Computation, 15(6):1373–1396, 2003.

[4] S. Belongie, C. Fowlkes, F. Chung, and J. Malik. Spectral
partitioning with indefinite kernels using the nystrom
extension. In Proceedings of the 7th European Conference on
Computer Vision (ECCV), pages 531–542, Copenhagen,
Denmark, 2002.

[5] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear
algebra for intelligent information retrieval. SIAM Review,
37(4):573–595, 1995.

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

code length

F
1

m
ea

su
re

d<=0
d<=1
d<=2
d<=3

(a) Reuters21578

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

code length

F
1

m
ea

su
re

d<=0
d<=1
d<=2
d<=3

(b) 20Newsgroups

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

code length

F
1

m
ea

su
re

d<=0
d<=1
d<=2
d<=3

(c) TDT2

Figure 2: The F1 measure of STH for retrieving original nearest neighbours.

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

code length

F
1

m
ea

su
re

d<=0
d<=1
d<=2
d<=3

(a) Reuters21578

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

code length

F
1

m
ea

su
re

d<=0
d<=1
d<=2
d<=3

(b) 20Newsgroups

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

code length

F
1

m
ea

su
re

d<=0
d<=1
d<=2
d<=3

(c) TDT2

Figure 3: The F1 measure of STH for retrieving same-topic documents.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

LSI
LCH
SpH
STH

(a) Reuters21578

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

LSI
LCH
SpH
STH

(b) 20Newsgroups

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

LSI
LCH
SpH
STH

(c) TDT2

Figure 4: The precision-recall curve for retrieving original nearest neighbours.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

LSI
LCH
SpH
STH

(a) Reuters21578

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

LSI
LCH
SpH
STH

(b) 20Newsgroups

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

LSI
LCH
SpH
STH

(c) TDT2

Figure 5: The precision-recall curve for retrieving same-topic documents.

[6] F. R. K. Chung. Spectral Graph Theory. American
Mathematical Society, 1997.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill, 2nd
edition, 2001.

[8] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society of Information Science
(JASIS), 41(6):391–407, 1990.

[9] P. Drineas and M. W. Mahoney. On the nystrom method for
approximating a gram matrix for improved kernel-based
learning. Journal of Machine Learning Research (JMLR),
6:2153–2175, 2005.

[10] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive
learning algorithms and representations for text categorization.
In Proceedings of the 7th ACM International Conference on
Information and Knowledge Management (CIKM), pages
148–155, Bethesda, MD, 1998.

[11] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

[12] G. H. Golub and C. F. V. Loan. Matrix Computations. The
Johns Hopkins University Press, 3rd edition, 1996.

[13] L. W. Hagen and A. B. Kahng. New spectral methods for ratio
cut partitioning and clustering. IEEE Transactions on CAD
of Integrated Circuits and Systems, 11(9):1074–1085, 1992.

[14] A. Y. Halevy, P. Norvig, and F. Pereira. The unreasonable
effectiveness of data. IEEE Intelligent Systems, 24(2):8–12,
2009.

[15] J. Hays and A. A. Efros. Scene completion using millions of
photographs. ACM Transactions on Graphics (TOG),
26(3):4, 2007.

[16] X. He, D. Cai, H. Liu, and W.-Y. Ma. Locality preserving
indexing for document representation. In Proceedings of the
27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 96–103, Sheffield, UK, 2004.

[17] X. He and P. Niyogi. Locality preserving projections. In
Advances in Neural Information Processing Systems (NIPS),
volume 16, pages 153–160, Vancouver and Whistler, Canada,
2003.

[18] M. R. Henzinger. Finding near-duplicate web pages: A
large-scale evaluation of algorithms. In Proceedings of the 29th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pages
284–291, Seattle, WA, USA, 2006.

[19] G. Hinton, S. Osindero, and Y. W. Teh. A fast learning
algorithm for deep belief nets. Neural Computation,
18(7):1527–1554, 2006.

[20] G. Hinton and R. Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–507, July
2006.

[21] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan. A dual coordinate descent method for
large-scale linear svm. In Proceedings of the 25th
International Conference on Machine Learning (ICML),
pages 408–415, Helsinki, Finland, 2008.

[22] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the 10th European Conference on Machine
Learning (ECML), pages 137–142, Chemnitz, Germany, 1998.

[23] T. Joachims. Learning to Classify Text using Support Vector
Machines. Kluwer, 2002.

[24] T. Joachims. Training linear SVMs in linear time. In
Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 217–226, Philadelphia, PA, 2006.

[25] D. Knuth. The Art of Computer Programming.
Addison-Wesley, 3rd edition, 1997.

[26] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of
the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages
426–434, Las Vegas, NV, USA, 2008.

[27] K. Lang. Newsweeder: Learning to filter netnews. In
Proceedings of the 12th International Conference on Machine
Learning (ICML), pages 331–339, Tahoe City, CA, 1995.

[28] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based
multimedia information retrieval: State of the art and
challenges. ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMCCAP), 2(1):1–19,
2006.

[29] J. Lin. Brute force and indexed approaches to pairwise
document similarity comparisons with mapreduce. In
Proceedings of the 32nd Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR), pages 155–162, Boston, MA, USA, 2009.

[30] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[31] T. Mitchell. Machine Learning. McGraw Hill, international
edition, 1997.

[32] S. Pandey, A. Broder, F. Chierichetti, V. Josifovski, R. Kumar,
and S. Vassilvitskii. Nearest-neighbor caching for
content-match applications. In Proceedings of the 18th
International Conference on World Wide Web (WWW),
pages 441–450, Madrid, Spain, 2009.

[33] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng.
Self-taught learning: Transfer learning from unlabeled data. In
Proceedings of the 24th International Conference on Machine
Learning (ICML), pages 759–766, Corvalis, OR, USA, 2007.

[34] R. Salakhutdinov and G. Hinton. Semantic hashing.
International Journal of Approximate Reasoning (IJAR),
50(7):969–978, 2009.

[35] R. E. Schapire. The boosting approach to machine learning:
An overview. In Nonlinear Estimation and Classification.
Springer, 2003.

[36] B. Scholkopf and A. J. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[37] F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1–47, 2002.

[38] G. Shakhnarovich, P. A. Viola, and T. Darrell. Fast pose
estimation with parameter-sensitive hashing. In Proceedings of
the 9th IEEE International Conference on Computer Vision
(ICCV), pages 750–759, Nice, France, 2003.

[39] C. E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:379–423, 623–656, 1948.

[40] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 22(8):888–905, 2000.

[41] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and
S. Vishwanathan. Hash kernels for structured data. Journal of
Machine Learning Research (JMLR), 10:2615–2637, 2009.

[42] B. Stein. Principles of hash-based text retrieval. In Proceedings
of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 527–534, Amsterdam, The Netherlands, 2007.

[43] B. Stein, S. M. zu Eissen, and M. Potthast. Strategies for
retrieving plagiarized documents. In Proceedings of the 30th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pages
825–826, Amsterdam, The Netherlands, 2007.

[44] A. B. Torralba, R. Fergus, and Y. Weiss. Small codes and large
image databases for recognition. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1–8, Anchorage, AK,
USA, 2008.

[45] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces. In Proceedings of 24th International
Conference on Very Large Data Bases (VLDB), pages
194–205, New York City, USA, 1998.

[46] P. Wegner. A technique for counting ones in a binary computer.
Communications of the ACM (CACM), 3(5):322, 1960.

[47] K. Q. Weinberger, A. Dasgupta, J. Langford, A. J. Smola, and
J. Attenberg. Feature hashing for large scale multitask
learning. In Proceedings of the 26th Annual International
Conference on Machine Learning (ICML), page 140,
Montreal, Quebec, Canada, 2009.

[48] Y. Weiss, A. B. Torralba, and R. Fergus. Spectral hashing. In
Advances in Neural Information Processing Systems (NIPS),
volume 21, pages 1753–1760, Vancouver, Canada, 2008.

[49] Y. Yang and X. Liu. A re-examination of text categorization
methods. In Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 42–49, Berkeley, CA,
1999.

[50] D. Zhang, J. Wang, D. Cai, and J. Lu. Laplacian co-hashing of
terms and documents. In Proceedings of the 32nd European
Conference on IR Research (ECIR), page 577–580, Milton
Keynes, UK, 2010.

	1 Introduction
	2 Related Work
	3 Approach
	3.1 Stage 1:Unsupervised Learning of Binary Codes
	3.2 Stage 2:Supervised Learning of Hash Function
	3.3 Summary of Approach

	4 Experiments
	4.1 Data
	4.2 Evaluation
	4.3 Results

	5 Conclusions
	6 References

