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ABSTRACT
Content-Based Multimedia Information Retrieval (CBMIR)
systems which leverage multiple retrieval experts (En) of-
ten employ a weighting scheme when combining expert re-
sults through data fusion. Typically however a query will
comprise multiple query images (Im) leading to potentially
N ×M weights to be assigned. Because of the large number
of potential weights, existing approaches impose a hierarchy
for data fusion, such as uniformly combining query image
results from a single retrieval expert into a single list and
then weighting the results of each expert. In this paper we
will demonstrate that this approach is sub-optimal and leads
to the poor state of CBMIR performance in benchmarking
evaluations. We utilize an optimization method known as
Coordinate Ascent to discover the optimal set of weights
(|En| · |Im|) which demonstrates a dramatic difference be-
tween known results and the theoretical maximum. We find
that imposing common combinatorial hierarchies for data fu-
sion will half the optimal performance that can be achieved.
By examining the optimal weight sets at the topic level, we
observe that approximately 15% of the weights (from set
|En| · |Im|) for any given query, are assigned 70%-82% of the
total weight mass for that topic. Furthermore we discover
that the ideal distribution of weights follows a log-normal
distribution. We find that we can achieve up to 88% of the
performance of fully optimized query using just these 15% of
the weights. Our investigation was conducted on TRECVID
evaluations 2003 to 2007 inclusive and ImageCLEFPhoto
2007, totalling 181 search topics optimized over a combined
collection size of 661,213 images and 1,594 topic images.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models

General Terms
Measurement, Experimentation
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1. MOTIVATION
Content-based multimedia information retrieval (CBMIR)

systems often combine multiple sources of evidence to an-
swer an information need. These systems typically employ
multiple ‘retrieval experts’ whose outputs are combined to
create a response. This problem can be phrased as a com-
bination of experts problem and is a case of Data Fusion.
CBMIR is particularly characterized by the use of multiple
‘noisy’ signals such as the color of an image, or the tex-
tures it contains, and through combining multiple sources of
noisy information, reasonable performance can be achieved
[17]. However this makes the role of weighted data fusion
paramount to the success of many CBMIR systems.

Given that the performance of any such retrieval system is
dependant upon the optimal generation of weights, and the
manner in which those weighted documents1 are combined,
it is essential that we know something about what the ideal
distribution of weights for a query is, and the manner in
which to combine these documents.

In order to gain significant insights into what the ideal
form of weighting for CBMIR data fusion is, and indeed how
ranked lists should be combined, we need to deviate from the
traditional empirical model typically used to evaluate new
algorithmic advances. Traditionally we have some form of
training data, either topics, data or both, some proposed
model which we want to test and some form of parameters
which require tuning and a set of evaluation metrics and
relevance assessments. Also included in this model is a test
set from which final results will be reported. The common
sequence of events is that a model is first optimised on train-
ing data, then the optimised model is used on the test data.
The final result typically reported is the outcome of the eval-
uation metrics run on the output of the model on the test
data, where presumably the model has not been overfitted.

The major problem with the established empirical model
is that of evaluation, where what we want to determine is
not the comparison of competing models and their associ-
ated performance, but rather given a maximally performing
model, what parameters were associated with it? In data
fusion tasks we will have a range of input sources of evi-
dence, which we will then combine in some manner in order
to compute a final response. The fundamental problem is
that using the established empirical model, we could eval-

1The term ‘document’ will refer to any multimedia artifact.



uate two different fusion systems, and after executing both
having first trained on the training collection we can make
the observation that system ‘a’ outperforms system ‘b’ by
15%. On the surface this seems fine, system ‘a’ has achieved
a good performance improvement over system ‘b’. However,
this 15% is a relative increase, it is only meaningful when
comparing the two systems under observation, and far less
important when we do not know when given a fixed set of
inputs, what the maximum achievable performance is. For
instance, if system ‘a’ scored a MAP of 0.2, but the theoreti-
cal maximum attainable given the same inputs was 0.8, then
the relative importance of system ‘a’s 15% improvement is
diminished as there is clearly room for greater improvement.
However, if the maximum was determined to be 0.21, then
that 15% improvement is very significant.

A better use when determining what the maximum per-
formance is for a fixed set of inputs, is to study the proper-
ties of this maximally performing model. Rather than being
primarily concerned with the maximum performance MAP
value, to flip this around such that given we have a model
which achieves excellent performance, what are the proper-
ties of this model that led to this performance. In order to
achieve this it necessitates optimisation directly on the test
data. We are in-fact not proposing any particular model for
data fusion in this paper, but rather we have created and
observed the optimal model for this retrieval problem, such
that we can report on the properties of this model which
future systems should seek to leverage.

The objective of this paper therefore is to study what are
the variables which generate a maximally performing CB-
MIR data fusion system, and if there are any commonalities
to these that can be discovered so as to inform the devel-
opment of new data fusion algorithms and systems. The
performance of these models is in themselves immaterial, it
is these factors which we wish to identify and examine. In
particular in this paper, we will be examining the impact of
combinational hierarchies upon performance, and the distri-
bution that an ideal form of weighting takes.

No doubt at this point after mention of optimizing directly
on the test set, alarm bells are ringing in several readers
minds, however we believe we have good justification for
doing this. Whilst we have laboured the point as to why
we are examining models optimized on the test data, we
believe this is necessary as the approach is unorthodox, and
inadequately justified can lead to the the results presented
in this paper being dismissed out of hand.

The paper is organized as follows. Section 2 presents re-
lated work in data fusion and evaluation, with reference to
CBMIR applications. Section 3 details our experimental en-
vironment including retrieval experts, data sets, and a brief
discussion of the optimization technique. Section 4 presents
the results of our optimization on TRECVID 2003-2007 and
ImageCLEFPhoto 2007 and discusses observations on this
data set. Section 5 tests these observations to determine if
they can be exploited by existing data fusion approaches.
We finish with our conclusions in Section 6.

2. RELATED WORK
Early data fusion research began with experimentation

into the combination of different retrieval models, document
representations and query representations [13, 6, 16]. Re-
search by Belkin et al. [2, 3] noted that varying these differ-
ent factors produced different sets of relevant documents, yet

exhibited no major changes in performance metrics. Croft
[5] notes that observations from these early studies suggested
that it was beyond the capabilities of a single system to re-
trieve all the relevant documents for a given query. Accord-
ing to Croft this resulted in two streams of IR systems being
developed, one stream was to create single models which
can combine multiple sources of evidence such as the IN-
QUERY system based on an inference network. The alterna-
tive stream is the development of systems which effectively
combine the outputs of multiple searches from different re-
trieval models [7]. Croft notes for the task of multimedia
retrieval, as different modalities are combined this requires
the development of systems which combine the ranking from
multiple subsystems (what we would term experts) [5].

Investigations into the behaviour of data fusion began
with observations about low overlaps of the documents re-
turned by different ranking models [13, 6, 16]. Belkin et
al. [2] found “Different representations of the same query,
or of the documents in the database, or different retrieval
techniques for the same query, retrieve different sets of doc-
uments (both relevant and nonrelevant)”. Lee [9] examined
this research but contrasted it against the findings of Tur-
tle et al. and Saracevic et al. [18, 16], where Turtle et
al. in experiments combining probabilistic and Boolean re-
trieval results found that the relevant documents retrieved
were shared by both approaches, whilst Saracevic & Kan-
tor found that different query formulations found different
documents, but that a document’s odds of being judged as
relevant increased monotonically as a document appeared in
multiple result sets. Lee took these findings to formulate a
new hypothesis for the effectiveness of data fusion: “different
runs might retrieve similar sets of relevant documents but
retrieve different sets of nonrelevant documents” [9].

Testing this hypothesis Lee introduced two evaluation met-
rics to measure the degree of overlap between relevant doc-
uments and nonrelevant documents, termed Roverlap and
NRoverlap. Lee [9] finds that the best result from data fu-
sion was achieved when result sets were combined in which
relevant documents had high overlap and low overlap for
non-relevant documents. The work of Vogt et al. [19] con-
firms Lee’s observations by conducting pairwise experiments
combining 61 TREC submissions. Vogt and Cottrell term
the relevant overlap as the ‘Chorus Effect’, that multiple
retrieval systems return the same relevant documents.

Croft [5] interprets the findings of the work of Lee and
of Vogt and Cottrell as being the result of combination of
uncorrelated classifiers. Assuming that the retrieval systems
being combined are good, that as the result lists being com-
bined are truncated to 1000 results, and that for a given
TREC query there are typically only 100-200 relevant doc-
uments, that most good systems will return within the 1000
results the 100-200 relevant documents, but as the ‘clas-
sifiers’ (search systems) are uncorrelated, they will return
different sets of nonrelevant documents. Furthermore this
emphasizes earlier observations that combinations of inde-
pendent good search systems, produce gains in performance
when fused [5].

The data fusion hypothesis of Lee was critically examined
by both McCabe et al. [11] and Beitzel et al. [1]. Both con-
ducted approaches where various system parameters were
held constant whilst varying one aspect, such as the rank-
ing model, stemming, stopping, relevance feedback etc. The
work of McCabe et al. found that when systemic parame-



ters are held constant, that the combination of vector, prob-
abilistic and Boolean retrieval models did not improve per-
formance of retrieval, contrary to previous accepted wisdom.
This was further demonstrated by a lack of performance im-
provement when combining results from TREC-6, 7 and 8
queries which produced high overlaps in both Roverlap and
Noverlap, meaning that each of the approaches were return-
ing very similar content. Nevertheless this work found that
the overlap coefficients were a good predictor of the potential
for performance improvement with data fusion, particularly
when systems were combined with weights, such that a poor
performing system could be discounted. The combination of
a poor system with a good system, using weights where the
good system was weighted highly, produced performance in-
creases, lending support to the application of weights for
expert combination [11].

Beitzel et al. [1] like McCabe also conducted experiments
where system parameters are held constant to measure the
impact of combination of different aspects of retrieval sys-
tems. The work of Beitzel et al. specifically examined the
combination of “highly effective retrieval strategies”. As-
suming this, Beitzel et al. hypothesize that combination
of highly effective systems through voting mechanisms like
CombMNZ are more likely to harm performance, as the
highly effective systems have already been optimized and
will rank relevant documents highly, therefore the candi-
dates for promotion up a ranked list are lower ranked com-
mon nonrelevant documents as the relevant documents are
already highly ranked. They further hypothesize that as
constants such as the query and stemming for each retrieval
model are held constant, that different models will produce
approximately the same set of documents for a query, only
the relative ranks of these sets are likely to be different. For
highly effective systems Beitzel et al. found that the combi-
nation of retrieval models (e.g. vector space and probabilis-
tic) hurts performance, rather than helps, whilst the overlap
coefficients defined by Lee [9] provide a poor indicator of po-
tential for improvement through data fusion [1].

These two results however give credence to the application
of weighted data fusion to the task of CBMIR. Given that
CBMIR is characterized by the combination of multiple poor
retrieval experts [17], we are unlikely to be combining mul-
tiple experts that actually perform consistently well for any
set of queries. Furthermore as the work of McCabe shows,
weighted combination of poor retrieval experts can lead to
significant performance improvements.

Within the multimedia research community, several fu-
sion approaches have been investigated. Yan et al. propose
the use of ‘Query-Class’ dependent weights [22], where a
set of predefined query classes are assigned feature weights
learned from the training data. This approach is extended
by Kennedy et al. [8] to automatically discover query classes
from training data. These approaches, however, typically
weight entire features (retrieval experts).

Two previous investigations into the role of feature com-
bination for multimedia retrieval have been completed, by
McDonald and Smeaton [12] and by Yan and Hauptmann
[21]. McDonald and Smeaton empirically compare combina-
tion approaches for score, rank and probability techniques.
Their work evaluated these approaches by optimizing Mean
Average Precision (MAP) on a training collection with mul-
tiple topics, then applying these generalized optimized pa-
rameters to a test set. Our work differs as our optimizations

Eval. Type Keyframes Topic Images Topics
TRECVID 03 Video 72,462 138 25
TRECVID 04 Video 48,818 160 24
TRECVID 05 Video 78,206 228 24
TRECVID 06 Video 146,497 169 24
TRECVID 07 Video 295,350 719 24
ImageClef 07 Photo 20,000 180 60

Table 1: Details of corpora used

occur at the topic level (Average Precision), rather than the
topic set level (MAP). Furthermore the fusion approaches
detailed in [12] use a hierarchical approach which is likely
to obscure the effect individual query images have on per-
formance. Yan and Hauptmann [21] conduct experiments
with TRECVID 2002 data to construct a theoretical frame-
work for studying the upper bounds of combination func-
tions. They found that linear forms of combination may be
too restrictive for large numbers of experts to be combined
effectively. However, like McDonald and Smeaton, this work
examined combination at the expert level and as such did
not delve down to the granularity of pairs 〈Ii, Ej〉.

3. EXPERIMENTAL SETUP
The task we explore is an ad-hoc search task, where a

system is given an expression of an information need and is
required to return as many relevant matches as possible. For
our investigation we performed ‘fully automatic’ retrieval
which processes a query with no human intervention.

We used six different multimedia corpora, five of which came
from TRECVID [17] and one from ImageCLEF [4]. These
two campaigns share similar objectives as both seek to pro-
mote research in content-based retrieval by utilizing com-
mon test collections and open, metrics-based evaluations.
As previously noted, for all corpora we only consider the
visual information provided. In the case of video, we use
the extended keyframe set provided, meaning that in many
cases we index more than one keyframe per shot. For query
descriptions we make use of all visual data provided. In the
case of videos used as part of the topic description, we sam-
ple keyframes from this video and add it to the topic image
set. The six corpora we used are described in Table 1.

We make use of six global visual features defined in the
MPEG-7 specification [10]: Scalable Color (SC), Color Struc-
ture (CS), Color Layout (CL), Color Moments (CM), Edge
Histogram (EH) and Homogeneous Texture (HT). To com-
pute an answer to a visual query, we take the topic images
and we query them against each retrieval expert, produc-
ing for each pair 〈Ii, Ej〉 a ranked list of results. For our
experiments we produced ranked lists of 1000 results per
pair 〈Ii, Ej〉. Each ranked list is normalized using MinMax
[7], then weighted and linearly combined using CombSUM
[7]. We would note here that we deliberatly choose Comb-
SUM over CombMNZ, as through the processes discussed
in the paper, we have empirically shown that CombSUM
with linear weighting offers superior performance to that of
weighted CombMNZ (due to space constraints we cannot ex-
plore these results, see: [20]). The ranking metric for each
expert is implemented as defined by the MPEG-7 standard,
typically a variation on Euclidean distance.



The optimization method we use in this work is known
as Coordinate Ascent (also known as Alternating Variables
Method). It is a method which is able to optimize directly
on Average Precision (AP), by randomly initializing the lin-
ear weights, then finding a local maxima based on AP. The
method is then repeated multiple times so that a global max-
ima can be found. This approach has been used to good
effect by Metzler and Croft, and a complete explanation of
this method can be found in their work [14].

3.1 Hierarchical Combination Approaches
There are three basic levels of combination available to

CBMIR designers whose systems utilize multiple retrieval
experts and multiple query components: combination at the
‘query’ level [12], combination at the ‘expert’ level [22] and
direct combination. Figure 1 illustrates these variations.

The elements for weighting can be formally defined as fol-
lows. A CBMIR search topic will contain multiple example
visual images, Images I = {queryimagei ... queryimagen}
where 1 ≤ i ≤ n. A CBMIR system will have at its disposal
multiple retrieval experts, E = {expertj, ... expertm} where
1 ≤ j ≤ m. Therefore, we can define the pair 〈Ii, Ej〉, which
is a unique coupling of every example query image to every
visual retrieval expert. This will generate n × m pairs.

We can now further define the set of weights to be tuned
at each of the three different levels of combination. For
“Query” level combination, the results of every retrieval ex-
pert for a specific query image (Ii) are linearly combined
with uniform weight into a single ranked list which repre-
sents a given image. The merged results lists for every image
are then weighted and combined, meaning for this level we
need to optimize n weights (i.e. |I |), giving Image Weights
IW = {wi} where w is the weight and

P

wi = 1.
At an “Expert” level of combination we execute the oppo-

site. For a specific expert (Ej) we query against it all query
images for the topic, merging the results to produce for each
expert a single ranked list. We then weight the result list of
each expert, and combine to form our final ranked list. In
this level, we are required to optimize m weights (i.e. |E|),
formally Expert Weights EW = {wj} and

P

wj = 1.
Finally we have the “direct” level of combination which

specifies weights for every coupling of an example image and
retrieval expert. That is, for every pair 〈Ii, Ej〉 we are re-
quired to set a weight. This will produce a weight set of size
n×m (i.e. |I |·|E|) where IEW = {wij}, where i refers to the
query image, j refers to the retrieval expert and

P

wij = 1.

4. OPTIMIZATION RESULTS
We performed the optimization of CBMIR on TRECVID

2003 to 2007 and on ImageCLEFPhoto 2007. The results
are presented in Table 2 (where TV is TRECVID and IC is
ImageCLEFPhoto).

Eval. TV03 TV04 TV05 TV06 TV07 IC07
MAP 0.122 0.108 0.141 0.056 0.130 0.216

Uniform 0.059 0.029 0.065 0.016 0.042 0.128
BR N/A N/A 0.126 0.087 0.087 0.189*

Table 2: Optimized Results compared to ‘Best Re-
ported’ (BR). ‘Uniform’ represents using all pairs
〈Ii, Ej〉 with no weighting. *IC07 BR is visual only

Figure 1: Levels of combination for a single search
topic, with 2 retrieval experts (E) and 2 exam-
ple query images (I), giving 4 ranked lists (pairs
〈Ii, Ej〉). Three levels are available, combination at
the ‘Query’ Level, combination at the ‘Expert’ level
and direct combination without any hierarchy.



Figure 2: Standard Scores for assigned weights
across all corpora

This optimization generated automatic retrieval runs which
achieved excellent performance with the use of no semantic
information or text. For comparison, the row ‘BR’ shows
the best reported automatic system MAP from that year’s
activity. These figures are actually a bit startling, as the
very high levels of performance achieved run contrary to
expectations from previous experiments [17]. This is par-
ticularly apparent if we compare the optimized MAP to the
‘Uniform’ MAP. The ‘Uniform’ map demonstrates a retrieval
run where all pairs 〈Ii, Ej〉 are equally weighted, i.e. there is
no weighting at all. We can see that the optimal weights ap-
plied to pairs 〈Ii, Ej〉 can produce up to a 300% increase in
performance. The impact of these figures is such that peo-
ple question if such performance is achievable with low-level
visual MPEG-7 features and no text, as it runs contrary to
previous experimental knowledge.

We show the comparison to the best reported runs in that
year’s evaluation, as it demonstrates the effectiveness of our
optimization, producing retrieval runs which achieve excel-
lent performance. The comparison highlights the maximum
of what can be achieved with data fusion and global low-level
visual features, particularly when compared against the top
performing runs which made use of multiple evidence modal-
ities including text and semantic information. We note that
this comparison to published retrieval runs (‘BR’) is not a
fair comparison as we optimized on the test data, however
the intention of this work is to demonstrate the gains achiev-
able with optimized weights, even when compared against
retrieval runs that used high quality signals such as text.

We analyzed the optimal weight topic sets IEW generated
for each topic and calculated the standard score (also known
as Z-Score). The standard score allows us to express for any
given pair 〈Ii, Ej〉 weight wij how far from the topic mean
weight it is in terms of standard deviations. This provides
us with a measure which can be used across topics reliably.
Figure 2 is a histogram of the distribution of standard scores
across all topics and corpora.

We can infer multiple insights from the presented distri-
bution and measures of central tendency. Firstly, that whilst
the distribution of weights has some properties of that of a
normal distribution, such as a majority of the data points
clustered around the mean and within the range ±3σ, there
does exist a very definitive positive skew. Secondly, as part
of this positive skew approximately 10%-11% of the weights

were assigned values > 1σ. The implications of this are that
overall the initial observations would suggest that a minority
of the pairs 〈Ii, Ej〉 received the majority of a topic’s weight.

Without other evidence there remains the possibility that
the effect presented is a corpora-specific event and that the
weights are indeed more normally distributed. To account
for this we present in Figure 3 a corpora-specific plot of the
weight distribution in the form of quantile-quantile (Q-Q)
plot. In this figure, the x-axis represents a theoretical normal
distribution of weights, whilst the y-axis is the actual weight
which was assigned. The dashed line displays the trend line
of the weights if they were normally distributed.
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Figure 3: Weight Distribution for TRECVID 2005

Examining the Q-Q plot, we can see the same distribu-
tional pattern, as it demonstrates a significant departure
from a normal distribution, particularly once the normalised
weights values exceed 1σ. The pattern shown in the plot is
similar to what would be expected if the distribution of the
weights was log-normal, again we can also see demonstrated
in each plot a positive skew. Whilst the data presented in
this Figure is only for 2005, this pattern was repeated for all
of our experimental corpora [20]. Based on this evidence this
indicates that within topics, a minority of 〈Ii, Ej〉 weights
are assigned a majority of the topic weight mass.

To explore this, we examined each corpus and its topics to
determine where topic weight was assigned. For each topic
we set a threshold of +1σ and calculated the total amount
of weight mass which was more than +1σ from the mean
weight, and what percentage of 〈Ii, Ej〉 were assigned these
weights over this threshold, i.e. wij > 1σ. The results of our
analysis are presented in Figure 4 which show two columns
for each topic. The first column in blue (dark), represents
the total amount of weight allocated in that topic which was
+1σ greater than the mean weight. The second column in
yellow (light) represents how many of the Query-Terms value
of wij was more than +1σ from the mean. For example, the



first graph in Figure 4 represents topics from TRECVID
2005. In topic ‘0149’ we can observe a blue bar at 70%, and
a yellow bar at 6%. This means that for topic ’0149’, 6% of
the pairs 〈Ii, Ej〉 used for that topic were allocated 70% of
the weight and the remaining 94% of 〈Ii, Ej〉 had only 30%
of the topic weight.
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Figure 4: Evaluation Campaign Weights

We can see from this graph that for all topics across
TRECVID 2005, achieving the maximum average precision
possible is dependant upon specific pairs 〈Ii, Ej〉 being al-
located the bulk of the weight for that topic, rather than
specific experts EW being correctly weighted. Whilst we
only show TRECVID 2005 here, the patterns expressed in
this graph are replicated for all evaluations examined.

The possibility exists that we are inadvertently seeing one
retrieval expert for a topic performing strongly, and thus all
pairs 〈Ii, Ej〉 which utilize that expert are up-weighted. We
examined the distribution of each of the six experts within
the set of highly weighted 〈Ii, Ej〉 to determine if there was
a bias towards any particular expert, shown in Table 3.

CL CM CS SC EH HT
15% 17% 13% 13% 24% 18%

Table 3: Distribution of Retrieval Experts in 〈Ii, Ej〉
with wij > 1σ

There is a slight bias towards EH and to a lesser extent
the HT experts, however as there are only two texture but
four color experts, this bias can be accounted for. The data
presented in Figure 4 and Table 3 shows that highly weighted
〈Ii, Ej〉 are distributed across different experts.

We observe that the key to maximizing AP is to correctly
identify salient pairs 〈Ii, Ej〉 and ensure that these are highly
weighted, rather than weighting the overall performance of
any given retrieval expert. To test this observation, we de-
vise a series of experiments that utilize only highly weighted
pairs 〈Ii, Ej〉 to see if we still achieve good performance. A
highly-weighed pair 〈Ii, Ej〉 is a pair whose weight wij is
greater than +1σ of the mean weight for that topic.

5. EXPERIMENTS
To test our observations we devised three experiments in

order to (1) determine to what extent the highly-weighted
pairs 〈Ii, Ej〉 impact upon performance; (2) to determine if
the weighting of these pairs needs to be exact or if merely

identification is enough; and finally, (3) to determine the
impact the remainder of the pairs 〈Ii, Ej〉 which do not
have much weight allocated to them have upon performance.
As a comparison we have also included two optimizations,
“Query” level and “Expert” level optimizations. These rep-
resent the best performance achievable if we utilize existing
data fusion methods (such as Query-Class, single feature
machine learning [22][15]), and allow us to determine if our
suggested strategies of targeted weighting of pairs 〈Ii, Ej〉
rather than expert level weighting offers improvement.

• (1σ) 1σ: For each topic, only use highly-weighted
pairs 〈Ii, Ej〉 (i.e. pairs 〈Ii, Ej〉 whose assigned value
from optimization was +1σ for the mean weight). The
value of wij will be the value determined during opti-
mization (Section 4). This test will examine the im-
pact of precisely weighted high-performing pairs 〈Ii, Ej〉.
It can be thought of as a high-precision experiment as
for each topic we will be using only 5%-20% of the
available ranked lists for that topic.

• (1σU) 1σ Uniform: Using only the highly-weighed
pairs 〈Ii, Ej〉, assign each a uniform weight. This will
examine if just the identification of high-performing
pairs 〈Ii, Ej〉 is sufficient to yield performance increases,
specifically determining if accurate weighting of pairs
is required, or if they can be assigned a binary weight
[0,1]. As the task of determining the optimal set wij

is realistically only viable post-experiment, this exper-
iment tests if realistic fusion approaches can be de-
veloped, as it does not require perfect weights, only
identification of likely high performing pairs 〈Ii, Ej〉.

• (1σU-T) 1σ & Tail: We extend experiment 1σ, by
taking the remaining weight mass that isn’t assigned to
high-performing pairs and allocate it uniformly amongst
the remaining pairs in IEW . This experiment com-
plements the previous, we assign a large weight to the
high-performing pairs, whilst a low weight to the re-
mainder. As the high-performing pairs constitute only
5%-20% of available pairs for a topic, this experiment
is testing the impact of recall, i.e. can we include the
remainder of the data without accurate weighting so
as to increase our recall.

• Expert Optimized: We implement the“Expert”level
of combination as described in Section 3.1 and as is
implemented by several data fusion approaches. Here
we utilize the optimization approach as described in
Section 4 so as to determine the near-optimal set of
weights EW for “Expert” level combination, i.e. we
optimize weights wj . This demonstrates the best per-
formance that can be expected using the same query
images and experts as the previous experiments if we
impose a combination hierarchy at the “Expert” level.

• Query Optimized: This experiment is as for “Ex-
pert” optimized, except that the weight set we are op-
timizing is IE, i.e. weights wi, and demonstrates the
best performance that can be achieved if we combine
at the “Query” level.

For each experiment we include the minimum and maximum
achieved for that corpus. The minimum is a ‘Uniform’ run,
where all pairs 〈Ii, Ej〉 are equally weighted, demonstrating



the performance achieved if no weighting scheme at all is em-
ployed. The maximum is the fully optimized result as shown
in Section 4, demonstrating the best performance that can
be achieved. These two figures provide a lower and upper
bound for data fusion performance comparisons, allowing us
to make decisions using absolute observations with regard to
the bounds, rather than relative observations by comparing
only to existing data fusion approaches.

Our results are presented in Figure 5. Each table presents
the minimum (Uniform All), maximum (All Optimized) and
results of the 5 experiments using MAP, recall and P10. For
every experiment’s MAP, we show in brackets how close that
approach came to achieving the optimal performance. The
MAP of each of the experiments, along with the maximum
MAP, is graphed in Figure 6. For each of our 5 runs we ran
significance tests (partial randomization) with ρ 0.05. For
the TRECVID benchmarks we found no significant differ-
ence between the ‘Query’ and ‘Expert’ levels of hierarchical
combination, indicating that if hierarchical combination is
employed and optimally weighted, there is no difference in
between them. However for ImageCLEF ‘Expert’ was sig-
nificantly different. For benchmarks TRECVID 2003-2006,
all runs using highly weighted (1σ) pairs performed signifi-
cantly better than the hierarchical combination approaches.
For TRECVID 2007, only run 1σ was significantly different.

The graph presents a clear stratification of the results,
particularly for benchmarks TRECVID 2003 - 2006. We
can clearly see the very large discrepancy in performance be-
tween the hierarchical fusion approaches (at the bottom of
the graph) versus the targeted weighting approaches in the
middle. This separation illustrates the performance gains
achievable by moving away from hierarchical combinations.
Of exception is TRECVID 2007 and ImageCLEF 2007, where
there is less of a difference in performance. These two bench-
marks exhibit the greatest ratio of topic images to collection
images – in the case of ImageCLEF one topic image for ev-
ery 112 collection images. This indicates that recall plays a
more prominent role in these evaluations, and that the selec-
tion of highly-weighted pairs may have been too restrictive
to provide adequate topic coverage. This is reinforced by the
run 1σU-T, which included all pairs 〈Ii, Ej〉: it performed
the best even though it used non-specific weights.

The run 1σ highlights that, using a subset of pairs 〈Ii, Ej〉
from IEW , very good performance can be achieved despite
a reduction in potential recall by not using all pairs. Far
more encouraging is the performance of runs 1σU and 1σU-
T. Whilst run 1σ had value as an illustrative run, it is hard to
conceptualize a data fusion algorithm that would create the
exact optimal weights for these pairs. However, as runs 1σU
and 1σU-T did not use the optimal weights, but rather only
identified what the high-performing pairs 1σU and 1σU-T
were (essentially a binary weighting), and still achieved ex-
cellent performance, it provides a clear direction for devel-
opment of data fusion algorithms. These runs demonstrate
that if methods can be developed to identify pairs 〈Ii, Ej〉
that are likely to be highly weighted, then exact weighting
is not required to obtain performance superior to that of
methods which employ hierarchies.

6. CONCLUSIONS
In this paper we have demonstrated that the application of

a data fusion hierarchy severely limits the performance that
a CBMIR retrieval run can possibly achieve. We propose
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Figure 6: MAP Values for Data Fusion experiments

that rather than weighting combinations at the “Expert” or
“Query” level, data fusion algorithms will achieve far greater
performance by optimizing specific instances of an example
query image and retrieval expert. Furthermore, we have
demonstrated through our optimization process, that the
ideal distribution of weights for data fusion in CBMIR is
that of a log-normal distribution. Our observations are ro-
bust, as they occur within a fixed frame of reference, i.e. the
lower and upper bounds achievable with data fusion, such
that we determined the absolute effectiveness of particular
approaches without having to make relative comparisons.
Of practical concern however is how these observations may
be interpreted to further aid CBMIR performance, and what
methods may be used to weight at the direct level. Poten-
tial avenues for exploration involve looking for some form of
correlation between documents which attract a large weight
and content-analysis techniques such as entropy measures.
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