
On the Theoretical Gap Between
Synchronous and Asynchronous MPC Protocols∗

Zuzana Beerliová-Trubíniová
ETH Zurich, Switzerland
bzuzana@inf.ethz.ch

Martin Hirt
ETH Zurich, Switzerland

hirt@inf.ethz.ch

Jesper Buus Nielsen
University of Aarhus, Denmark

jbn@cs.au.dk

ABSTRACT
Multiparty computation (MPC) protocols among n parties
secure against t active faults are known to exist if and only if

• t < n/2, when the channels are synchronous, and
• t < n/3, when the channels are asynchronous, respec-

tively.

In this work we analyze the gap between these bounds, and
show that in the cryptographic setting (with setup), the
sole reason for it is the distribution of inputs: given an or-
acle for input distribution, cryptographically-secure asyn-
chronous MPC is possible with the very same condition
as synchronous MPC, namely t < n/2. We do not know
whether the gaps in other security models (perfect, sta-
tistical) have the same cause. We stress that all previous
asynchronous MPC protocols inherently require t < n/3,
even once inputs are distributed. In particular, all pub-
lished asynchronous multiplication sub-protocols inherently
require t < n/3 and cannot be used in our setting.

Furthermore, we show that such an input-distribution ora-
cle can be reduced to an oracle that allows each party to syn-
chronously broadcast one single message. This means that
when one single round of synchronous broadcast is available,
then asynchronous MPC is possible at the same condition
as synchronous MPC, namely t < n/2. If such a round
cannot be used, then MPC (and even Byzantine agreement)
requires t < n/3.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Theory

Keywords
Cryptography, Asynchronous network, Multi-party compu-
tation, MPC

∗This work was supported by the Zurich Information Secu-
rity Center, and by the Danish Agency for Science Technol-
ogy and Innovation. It represents the views of the authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

1. INTRODUCTION

1.1 Multiparty Computation
Secure multiparty computation (MPC) allows a set of n

parties to securely evaluate any agreed function of their in-
puts, even if t of the parties are corrupted by a central adver-
sary. In this paper we focus on an active adversary, that can
take full control over the corrupted parties (i.e., read their
internal state and make them send wrong messages). A pro-
tocol is called secure if the uncorrupted parties output the
correct function values (correctness), and if the adversary
does not learn anything that cannot efficiently be derived
from the inputs and outputs of the corrupted parties (pri-
vacy).

The MPC problem dates back to Yao [Yao82], and the
first generic solutions were presented in [GMW87, CDG87].
These protocols are secure for t < n/2, and this is known to
be optimal.1

1.2 Synchronous vs. Asynchronous Commu-
nication

In the literature, mainly two communication models are
considered: In the synchronous model, it is assumed that
the delay of messages in the network is bounded by a known
constant. This allows protocols to proceed in rounds, with
the guarantee that every message sent in some round will be
delivered at the beginning of the next round. In contrast, in
the asynchronous model, arbitrary delays in the network are
allowed, with the only restriction that every sent message
must eventually be delivered. In order to model the worst
case, the adversary is allowed to control the scheduling of
messages in the network.

Summarizing, the synchronous model is very convenient,
but not at all realistic, and the asynchronous model is quite
realistic, but much less convenient. In fact, the bounds for
the feasibility of MPC differ depending on whether the un-
derlying network is synchronous (then t < n/2 is possible)
or asynchronous (then t < n/3 is required).

1.3 Contributions
In this paper, we analyze the theoretical gap in the con-

ditions for synchronous MPC (i.e., t < n/2) and asyn-
chronous MPC (i.e., t < n/3), and demonstrate that asyn-
chronous MPC is possible for t < n/2 if an “input distri-
bution oracle” is available (respectively, if the inputs are
predistributed). Hence, the reason why t < n/3 is required

1For t < n, still some reduced notion of security is achiev-
able.

211

in asynchronous MPC is the input phase. We stress that
all previous asynchronous MPC protocols [BCG93, BKR94,
HNP05, BH07] cannot handle t < n/2, even when an ap-
propriate input distribution oracle is available: All these
protocols proceed by evaluating the circuit gate-by-gate, in-
crementally obtaining a sharing or a probabilistic encryption
of each wire. Obviously, obtaining a consistent sharing or
encryption of a wire immediately implies Byzantine agree-
ment, which provably is not possible in an asynchronous
network with t ≥ n/3 [Tou84].

Furthermore, we show that the input distribution oracle
can be reduced to (a single invocation of) an oracle that al-
lows each party to synchronously broadcast one single mes-
sage. This means that when one single round of synchronous
broadcast is available, then asynchronous MPC is possible
at the same condition as synchronous MPC, namely t < n/2.
This is the weakest synchronicity assumption for which MPC
with t < n/2 is known to exist (c.f. [FN09]).

The resulting MPC protocol provides cryptographic se-
curity against a static, computationally bounded adversary
corrupting t < n/2 parties. The protocol even provides in-
put guarantee, i.e., it allows every player to provide input.2

However, the protocol requires quite a strong setup, similar
to [CDN01, HNP05]. We do not know whether t < n/2 can
be achieved with weaker or even without setup assumptions.

Several of our new techniques are also of independent in-
terest: For reducing the input distribution oracle to the
broadcast oracle (with t < n/2), we present an almost
non-interactive verifiable secret-sharing scheme, and an al-
most non-interactive zero-knowledge proof of knowledge.
Furthermore, we present the first asynchronous multiplica-
tion protocol for t < n/2. We stress that all previously
known asynchronous multiplication protocols inherently re-
quire t < n/3, and cannot easily be pimped to t < n/2
(our focus). In other words, no asynchronous multiplication
protocol in the literature can be applied to our setting with
t < n/2. As a consequence, our multiplication protocol is
different from all protocols in the literature, see Section 4.1
for details.

2. PRELIMINARIES

2.1 Model
We consider a set of n parties P = {P1, . . . , Pn}, each Pi

holding an input xi. The faultiness of parties is modeled by a
central poly-time adversary who can corrupt up to t < n/2 of
the parties (for a given threshold t) and make them deviate
from the protocol in any desired matter. The number of
actually corrupted parties is denoted by f .

The parties are connected by a network of asynchronous,
authenticated point-to-point channels. The messages can
be delayed arbitrarily and the order of the messages does
not have to be preserved (however every sent message is
eventually delivered). The computation proceeds in steps.
In every step one party is active—it is activated by receiving
a message, then it performs some local computation and
eventually sends out some messages. To model the worst
case scenario, we give the power to schedule the message

2Normally, asynchronous MPC protocols ignore the inputs
of up to t honest parties. This can only be prevented with
additional synchronicity assumptions and special technical
tricks [HNP05, BH07].

delivery to the adversary—he can choose in every step which
of the messages in the network is to be delivered.

Our protocol can be proved statically secure in a
simulation-based sense [Can00]. We conjecture that using
the techniques that were used by [DN03] in order to present
an adaptively secure version of [CDN01], our protocol can
be modified to be adaptively secure as well. However, since
adaptive security is not the focus of this paper, the consider-
able complications needed to obtain adaptive security would
only blur the focus of the paper.

We assume a trusted setup allowing threshold signa-
tures and encryption and concurrent non-malleable zero-
knowledge proofs. Details are given in the following sub-
sections.

2.2 Threshold Signatures
We use a threshold signature scheme with threshold t.

There is a publicly known verification key vk and a secret
signature key sk. Each Pi holds a signature key share ski.
Given a message m the party Pi can compute a signature
share σi on m and can prove to any other party, using a
two-party zero-knowledge protocol, that σi is a correct sig-
nature share on m. Given the verification key vk and t + 1
correct signature shares, anyone can compute a signature
σ = σsk(m). The system is unforgeable by a poly-time ad-
versary knowing up to t of the shares ski—it takes a signa-
ture share from at least one honest party to create a valid
signature on m under vk. The system from [Sho00] meets
these requirements.3

2.3 Threshold Homomorphic Encryption
Our protocols will use ideas from [HNP05], which uses

threshold homomorphic encryption to implement asyn-
chronous MPC. One possible instantiation of threshold ho-
momorphic encryption is using Paillier’s encryption sys-
tem [Pai99] as used in [CDN01]. The details are described
in [HNP05], but all we need for the level of discussion in this
extended abstract is the following.

Threshold Decryption.
In a threshold system, with threshold t, there is an en-

cryption key ek and a decryption key dk. The encryption
key is known by all parties and dk is shared among the
parties, with each Pi holding a share dki. Given ek, a plain-
text x and a randomizer r anyone can compute a ciphertext
X = Eek(x; r). For a ciphertext X each Pi can compute
a decryption share Xi and can prove, using a two-party
zero-knowledge protocol, that Xi is a correct decryption
share. Given the encryption key ek and t + 1 correct de-
cryption shares, from different parties, anyone can compute
the plaintext x = Ddk(X). The system is indistinguishable
under chosen plaintext attack (IND-CPA) against an adver-
sary knowing t of the shares dki.

If such a system has been setup and t < n/2, then any
party Pd, which is allowed to, can decrypt a ciphertext X
asynchronously: The party sends X to all parties. Each
party which agrees that Pd is allowed to decrypt X sends a
decryption share to Pd and proves to Pd that the decryption
share is correct. The party Pd waits for n−t shares to arrive
for which valid proofs were provided. Since there are n − t

3The system from [Sho00] uses the random oracle model to
be non-interactive. To avoid the random oracle we simply
use interactive proofs, as described in e.g. [Nie02].

212

honest parties, if Pd is allowed to decrypt X, then this is
deadlock free. And, since n − t ≥ t + 1, Pd eventually gets
enough shares to compute x = D(X).

Homomorphic Encryption.
We assume that the encryption is homomorphic modulo

some publicly known integer N . There exists some oper-
ation � on ciphertexts such that Eek(x; r) � Eek(y; s) =
Eek(x + y mod N ; t) for some randomizer t, which can be
computed efficiently from x, r, y, s if these are known. We
also assume that given X = Eek(x; r) one can compute
X ′ = Eek(N − x; s) for some randomizer s, which can be
computed efficiently from x and r. We assume that these op-
erations can be performed efficiently given just the encryp-
tion key ek. We use C ∈ E(x) to mean that there exists a
randomizer r such that C = Eek(x; r). Note that by combin-
ing the homomorphic properties one can take any ciphertext
B ∈ E(b) and any integer a ∈ ZN and efficiently compute
an encryption C ∈ E(ab mod N) using double-and-add. We
call this multiplication by a constant and write C = a � B.
We write A � B for A � (−1 � B). We also assume that it
is possible to take any ciphertext C ∈ E(c) and efficiently
compute a uniformly random ciphertext C′ ∈R E(c), using
just the encryption key. We write C′ ← [C] and call this
re-randomization. We write C′ = [C](r) when we want to
make explicit the randomness r used for re-randomization.
To guarantee robustness of some of our protocols we as-
sume that there exists a concurrent, non-malleable zero-
knowledge (ZK) proof which allows a party having computed
C′ = [a � B](r) to prove to another party that it knows a
such that there exists r such that C′ = [a � B](r)—the ver-
ifier is expected to know just ek, B and C′.

2.4 Concurrent, Non-malleable ZK
All ZK proofs mentioned above, and in the following sec-

tions, can be implemented as in [CDN01, HNP05] by trans-
forming three-move, public-randomness, honest-verifier ZK
proofs as described in [Dam00]. This yields concurrent, non-
malleable ZK proofs for the common reference string model.

3. PROTOCOL OVERVIEW
On a high level, our protocol follows the standard ap-

proach with homomorphic threshold encryption, along the
lines of [FH96, CDN01, HNP05]. At the beginning, an en-
cryption of each party’s input is distributed. Then, the
agreed function is evaluated gate-by-gate, where for each
gate, an encryption of its value is computed. Finally, the
value of the output gate(s) is decrypted using threshold de-
cryption.

As a matter of fact, the above description is not quite
true: In an asynchronous model with t < n/2, no agree-
ment on whatsoever can be achieved (provably, with t ≥ n/3
Byzantine agreement is impossible[Tou84]). Hence, the par-
ties cannot reach agreement, neither on their input values,
nor on the (probabilistic) encryptions of intermediate val-
ues. The latter issue is avoided with a technical trick: in
our protocol, the players do not reach agreement on encryp-
tions, but only on the plaintexts inside the encryptions. I.e.,
of the very same value, several different encryption are flow-
ing around. The first issue (agreement on inputs) provably
cannot be avoided in an asynchronous network with t < n/2
(this would imply Byzantine agreement). Therefore, we sim-

ply assume an input distribution oracle (which later will be
reduced to a broadcast oracle).

The impossibility of Byzantine agreement in our model
implies that the function to be evaluated must be determin-
istic. However, probabilistic polynomial-time (PPT) func-
tions can easily be computed by evaluating a deterministic
function on the actual inputs and some additional random
inputs provided by the parties. Furthermore, for the sake
of simplicity we assume that the function has public out-
puts only. Also this restriction can easily be overcome by
letting the parties input random pads that are XORed on
their local outputs. Thus we can assume without loss of
generality that the function to be computed is deterministic
with public outputs.

We prove the following results.

Theorem 1. For t < n/2, any PPT function can be eval-
uated on predistributed inputs over an asynchronous net-
work.

Theorem 2. For t < n/2, any PPT function can be com-
puted over an asynchronous network, when one synchronous
broadcast round is available.

In the following section, we describe the asynchronous
MPC protocol with predistributed inputs. In the subse-
quent section, we describe the input stage when given a
single round of synchronous broadcast. Finally, we discuss
under which assumptions this broadcast round can be sim-
ulated.

4. ASYNCHRONOUS MPC WITH t < n/2
AND PREDISTRIBUTED INPUTS

In this section we present an asynchronous MPC protocol
which allows to distributively evaluate an agreed function
on predistributed inputs. This protocol tolerates t < n/2
corrupted parties, which means (among other things), that
Byzantine agreement cannot be achieved.

The function is evaluated in the usual gate-by-gate man-
ner. Starting with the given input encryptions, the parties
jointly compute encryptions of each intermediary value (one
after the other), until eventually an encryption of the output
is available and jointly decrypted (using threshold decryp-
tion). As asynchronous Byzantine agreement is not possible
for t < n/2, agreement on the encryptions of intermediary
values cannot be guaranteed (however, agreement on the
intermediary values is possible, as they can be deterministi-
cally derived from the predistributed inputs).

We solve the issue of inconsistent views on encryptions by
evaluating the whole circuit many times in parallel, once for
every party, denoted as king. The other parties act as slaves
and help the king evaluating his copy of the circuit. When
the king is honest, then all slaves will have consistent views
on all encryptions. When the king is faulty, inconsistencies
will occur, but we will show that they do not violate privacy
(by cheating, the king learns either the correct output or
some uniformly random value).

The protocol proceeds in two phases: In the computation
phase, the circuit is evaluated n times in parallel, once for
every king. In the subsequent termination phase, the parties
ensure that all parties have learned the output, and hence all
programs can safely be stopped. Note that not necessarily
all kings can (or must) finish their copy of the circuit; once

213

t+1 kings have finished with the same output, then obviously
this must be the correct output, and all parties adopt this
value and stop.

4.1 Computation Phase
We assume that for every input wire, the parties have

agreement on the ciphertext X = E(x) of the input value
x. Then every king Pk runs (with the help of the other
parties acting as slaves) his own circuit evaluation, learning
an encryption of the output of every gate. Throughout the
whole computation it holds: whenever an honest party holds
a ciphertext X for the output wire of some gate, then indeed
x = D(X) is the correct value of that wire;4 however, we do
not require that all slaves hold the same encryption X of a
wire when the king is faulty. To every gate a unique gate id
gid is assigned. In the following, we present the protocols
for addition, output, and multiplication gates.

4.1.1 Addition Gate:
Whenever a slave Pi of Pk holds ciphertexts X and Y of

the input wires of an addition gate gid, he computes Z =
X � Y as encryption of the output wire.

4.1.2 Output Gates:
Whenever a slave Pi of Pk holds a ciphertext Z of an

output gate gid, he sends to Pk a decryption share of Z, and
gives a(n interactive) ZK proof that the decryption share is
correct for Z. Once Pk holds a ciphertext Z of the output
gate gid, and receives t + 1 valid decryption shares for this
Z, he computes the output z for gate gid.

4.1.3 Multiplication Gates:
For multiplication, first the slaves help the king to gener-

ate a random multiplication triple [Bea91]. This triple con-
sists of two encrypted random factors and the corresponding
encrypted product. The actual multiplication is then evalu-
ated with help of this prepared triple.

Intuitively, the generation of the multiplication triple
proceeds as follows: Pk starts with the initial triple
(A0, B0, C0) =

`
E(1; ε), E(1; ε), E(1; ε)

´
, where ε denotes

some fixed agreed-upon randomness for encryption. Triv-
ially, (A0, B0, C0) is a correct multiplication triple (though
far from being random). Then, in turn for j = 0, . . . , t,
Pk sends (Aj , Bj , Cj) to some party, who randomizes it to
(Aj+1, Bj+1, Cj+1) =

`
Aj � E(u), Bj � E(v), Cj � E(uv) �

(u � Bj) � (v � Aj)
´

for randomly chosen u, v ∈ ZN , and
sends back to Pk the new triple (Aj+1, Bj+1, Cj+1) along
with a ZK proof that it was correctly generated. Clearly,
(At+1, Bt+1, Ct+1) is still a correct multiplication triple.
Furthermore, as t + 1 parties have randomized the triple,
at least one of them being honest, the resulting triple is a
random multiplication triple.

We first present the protocol that allows a party Pi to
randomize a triple (Aj , Bj , Cj) to (Aj+1, Bj+1, Cj+1), and
get the new triple certified to be a correct j-th randomization
for gate gid by party Pi for king Pk.

Protocol RandomizeTriple.
0. Pi has input Pk, gid, j, and (Aj , Bj , Cj).

4Note that the correct value of each wire is well-defined,
once the inputs are fixed.

1. Pi picks uniformly random plaintexts u, v ∈R ZN and
computes U ← E(u), V ← E(v), X ← [u � Bj], Y ←
[v � Aj] and Z ← [u � V]. It sends (Aj , Bj , Cj) and
(U, V, X, Y, Z) to all parties and gives a concurrent, non-
malleable ZK proof of knowledge to each party of:

• u such that U ∈ E(u) and X ∈ [u � Bj],

• v such that V ∈ E(v) and Y ∈ [v � Aj], and

• u such that U ∈ E(u) and Z ∈ [u � V].

2. Any P ∈ P receiving (A, B, C) and (U, V, X, Y, Z),
along with accepting proofs, computes Aj+1 =
Aj � U , Bj+1 = Bj � V , Cj+1 = Cj �
X � Y � Z, and sends a signature share on`
(Aj , Bj , Cj), (Pk, gid, j, Pi), (Aj+1, Bj+1, Cj+1)

´
to Pi.

3. Pi waits for t + 1 valid signature shares on`
(Aj , Bj , Cj), (Pk, gid, j, Pi), (Aj+1, Bj+1, Cj+1)

´
,

computes a signature σ, and outputs
[(Aj , Bj , Cj), (Pk, gid, j, Pi, σ), (Aj+1, Bj+1, Cj+1)].

The following protocol allows the king (with help of the
other parties) to generate a random multiplication triple
(with gid gid). The idea is to start with an initial triple
(i.e., encryption of (1, 1, 1)) and randomize it t + 1 times—
each time by a different party. For this the king first sends
a randomization request for the initial triple to every party.
Then he waits for the first correct answer and sends it as
the second randomization request to all other parties (ex-
cept the provider of the first randomization). Then again
the first correct answer is used for the next randomization,
etc. In every round, all but the first correct answers are
ignored.

Protocol GenerateTriple.
0. Pk: Initialize j = 0 and (A0, B0, C0) =

`
E(1; ε), E(1; ε),

E(1; ε)
´
.

1. For j = 0 to t do

1.1 Send a randomization request [Pk, gid, j,
(Aj , Bj , Cj)] to every party Pi of whom no random-
ization for gid has been stored so far.

1.2 Pi: Upon receiving a randomization request
[Pk, gid, j, (Aj , Bj , Cj)], employ the proto-
col RandomizeTriple to obtain [(Aj , Bj , Cj),
(Pk, gid, j, Pi, σ), (Aj+1, Bj+1, Cj+1)], and send it
to Pk. This is performed only once per gid and j.

1.3 Pk: Upon receiving (from some party Pi for
which no randomization for gid is stored so
far) the first (correct) randomization answer
[(Aj , Bj , Cj), (Pk, gid, j, Pi, σ), (Aj+1, Bj+1, Cj+1)],
store this answer. Further answers from other
parties (for the same j) are ignored.

2. Pk: Send [(Aj , Bj , Cj), (Pk, gid, j, Pij , σj), (Aj+1, Bj+1,
Cj+1)] for j = 0, . . . , t to every Pi ∈ P, who accepts
(A, B, C) = (At+1, Bt+1, Ct+1) as the final multiplica-
tion triple for gid if the following holds: For j = 0, . . . , t,
the j-th output triple is equal to (j + 1)-th input triple,
there are t + 1 different parties that have randomized,
and all transitions are correctly signed.

Given the multiplication triples (A, B, C) from Gener-
ateTriple, and given encryptions X and Y to be multiplied,
the following protocol computes an encryption of the prod-
uct Z.

214

Protocol Multiply.
0. Every Pi has input (A, B, C), X and Y .

1. Pi: send to Pk and all slaves decryption shares of
F = X � A and G = Y � B, and give proofs that the
decryption shares are correct.

2. Pi and Pk: If t + 1 valid decryption shares for F and G
arrive, compute f = x + a mod N and g = y + b mod N
and let Z = E(fg) � (−f � B) � (−g � A) � C.

We first analyze the generation of the multiplication triple,
then the multiplication protocol.

4.2 Analysis of Computation Phase

4.2.1 Analysis of GenerateTriple:
Although there is no agreement among the parties on the

multiplication triple (A, B, C) (as such an agreement cannot
be achieved with t ≥ n/3) we are given certain guarantees
about the triple (except with negligible probability):

• When an honest slave Pi accepts a triple (A, B, C),
then A and B are encryptions of values a and b, and
C is an encryption of ab. Furthermore, the set of
corrupted parties (the adversary) cannot distinguish
a and b from uniformly random values. This is for-
malized by a game, where the adversary has to dis-
tinguish (D(A), D(B), D(C)) from (a, b, ab) with uni-
formly random a, b ∈ ZN with non-negligible advan-
tage. Correctness follows from the correctness of the
initial triple and the proofs of correct randomization.
The indistinguishability follows from the fact that A
and B result from t + 1 randomizations, so A and
B were randomized by at least one honest party Pi.
Therefore a and b sum over the ui respectively the vi

contributed by Pi. Furthermore, every randomizing
party Pj proves knowledge of its randomizers uj and
vj (using a concurrent, non-malleable proof of knowl-
edge, see Section 2.4). Hence we can, by rewinding,
extract the uj and vj from the view of the adversary.
So, for the adversary, distinguishing a and b from uni-
formly random is equivalent to distinguishing ui and
vi from uniformly random for at least one honest Pi,
which is impossible by the semantic security of the
cryptosystem and the proofs given by Pi being con-
current zero-knowledge.

• When an honest slave Pi accepts a triple (A, B, C) for
a gate gid, then the plaintexts of A and B are indistin-
guishable from uniformly random values which are sta-
tistically independent from the plaintexts of any triple
accepted for any other gate gid′ 6= gid. This does
not follow from the above property which addresses
the distribution of individual triples, but follows triv-
ially from the fact that honest parties use different ran-
domizers when contributing to different multiplication
gates gid.

• When for the same multiplication gate gid, two honest
parties accept the triples (A, B, C) and (A′, B′, C′), re-
spectively, then either the plaintexts of (A, B, C) and
(A′, B′, C′) are indistinguishable from uniformly ran-
dom, statistically independent values to the adversary,
or the adversary knows the plaintexts of A � A′ and

B � B′. This follows from the fact that either there
is at least one honest party Pi that has randomized
one triple in some position, but not the other one
in the same position with the same (ui, vi) (then the
plaintexts of the two triples are indistinguishable from
uniformly random statistically independent values), or
both triples have been randomized by exactly the same
set of honest parties Pi in exactly the same positions
with exactly the same (ui, vi). In this case only the ad-
versarially chosen randomizers are different, and they
are known to the adversary in the sense that they can
be extracted from the adversary in expected polyno-
mial time.

We now argue termination. Note that as long as at most t
parties have randomized the triple, there are still (n−t)−t ≥
1 honest parties Pi which did not yet do so and thus, when
requested, will eventually produce a randomization for gid
and send it to Pk. Therefore, eventually a chain of t + 1
randomizations will be achieved.

4.2.2 Analysis of Multiply:
If Pk is honest, then all slaves will constantly agree on

all ciphertexts X for each wire, and therefore the computa-
tion will terminate and will yield correct encryptions for all
wires. When Pk is corrupted we do not per se care about
the correctness of Pk, so what remains is to argue privacy.

The first important observation is that if an honest slave
Pi associates X to some wire, then X is an encryption of
the correct value for that wire. This holds for input wires
by assumption and is maintained by addition. As for multi-
plication gate z = xy, we can assume that X and Y decrypt
to correct values. If (A, B, C) was accepted by Pi as a cor-
rect triple, it is indeed a correct multiplication triple, except
with negligible probability. From this it follows that if Pi

computes some Z, then Pi computes a correct Z, except
with negligible probability. Different parties might, how-
ever, hold different Z if Pk is corrupted—only the plaintexts
are guaranteed to be the same.

We address the privacy. Assume that party Pi holds en-
cryptions X(i) and Y (i) of the factors, and gets the multi-
plication triple (A(i), B(i), C(i)) from Pk. At the same time,

Pj holds encryptions X(j) and Y (j) of the factors, and gets
the multiplication triple (A(j), B(j), C(j)) from Pk. Then,

Pk might learn the decryptions f (i) = x(i) +a(i) mod N and
g(i) = y(i) + b(i) mod N as well as the decryptions f (j) =
x(j)+a(j) mod N and g(j) = y(j)+b(j) mod N . However, by
the invariant that the values X(i) and Y (i) held by Pi (and

the values X(j) and Y (j) held by Pj) encrypt correct wire

values x and y, we have x(i) = x(j) = x and y(i) = y(j) = y.
Furthermore, from (A(i), B(i), C(i)) and (A(j), B(j), C(j)) be-
ing correct multiplication triples for the same gate gid, it
follows that either 1) they encrypt values (a(i), b(i)) and

(a(j), b(j)) which are uniformly random and independent, or

2) they encrypt values (a(i), b(i)) and (a(j), b(j)) which are in-

dividually uniformly random and (a(j), b(j)) = (a(i), b(j)) +
(δa, δb) for (δa, δb) known5 to the adversary. In the first

case, (f (i), g(i)) and (f (j), g(j)) are uniformly random and
independent and thus together leak no information to the
adversary. In the second case, (f (i), g(i)) is uniformly ran-
dom, and therefore leaks no information to the adversary,
5In the sense that we can extract them from the adversary
in expected poly-time.

215

and (f (j), g(j)) = (f (i), g(i)) + (δa, δb) and therefore leaks no

more information than (f (i), g(i)) to the adversary, as the

adversary can compute it from (f (i), g(i)) in expected poly-
time.

4.3 Termination Phase
As for now no party can terminate until it knows that all

honest parties for which it acts as slave terminated. How-
ever, this condition cannot be checked. Instead, we add the
following simple procedure inspired by [CKS00] to terminate
the protocol: When a king Pk learns the result z, it sends
a signature share on (“result”, z) to all parties and contin-
ues to act as slave. When it received signature shares from
t + 1 parties on (“result”, z), it constructs a signature σ
on (“result”, z), sends ((“result”, z), σ) to all parties and
terminates with output z. Any party ever receiving a value
of the form ((“result”, z), σ) where σ is a valid signature
on (“result”, z) sends it to all parties, and terminates with
output z. Eventually all n − t ≥ t + 1 honest Pk learn z
and thus some honest party eventually receives t+1 correct
signature shares. After this all honest parties will eventually
terminate.

5. ASYNCHRONOUS INPUT-DISTRIBU-
TION WITH t < n/2

In this section, we show how the input-distribution oracle
can be reduced to an oracle that allows each party to syn-
chronously broadcast one single message. More precisely,
we construct a protocol for securely distributing inputs in
an asynchronous network and t < n/2 faults, with a single
invocation to a broadcast functionality.

Note that in an asynchronous network with t ≥ n/3 with-
out some additional oracle, input-distribution (even of a sub-
set of parties) is impossible, as consistent distribution of a
single input implies Byzantine agreement.

In the following, we show how all inputs can be distributed
with t < n/2 with a single synchronous broadcast round.

In the input phase, every party Pi computes X = E(x; r)
for each of its inputs x and broadcasts X along with a ZK
proof of plaintext knowledge (PoPK).6 This ensures input
correctness, in the sense that if Pi is honest, then Ddk(X) =
x, and input privacy, in the sense that as long as at most t
parties are corrupted, the input x of an honest Pi remains
unknown to the adversary. This follows from the threshold
IND-CPA security of the encryption scheme and the PoPK
being ZK. Finally, the ZK proof of knowledge of x ensures
input knowledge, meaning that Pi knows Ddk(X) for his X.
This is needed for the simulation.

The proof of plaintext knowledge could be based on stan-
dard assumptions by resorting to generic non-interactive
zero-knowledge. In the following, we give a much more ef-
ficient proof, which exploits the fact that the proofs do not
need to be fully non-interactive, but asynchronous interac-
tion (with t < n/2) is allowed for verifying the proof. We
call such proofs almost non-interactive proofs.

The intuition of our almost non-interactive proof is the
following: The prover sends along with the encrypted in-
put a transcript of many instances of an interactive zero-
knowledge proof of plaintext knowledge with binary chal-
lenges. For each instance, the prover provides the answers

6The details of the PoPK are given below.

for both challenges, but encrypts them with the threshold
encryption scheme. To verify the proof, for each instance ex-
actly one response (depending on an agreed-upon challenge)
is decrypted. The challenge is generated simultaneously, by
letting every party Pi broadcast an encryption Ri of a ran-
dom value ri, where the encryption scheme has the property
that both the parties jointly as well as Pi alone can decrypt.7

Then the parties decrypt all contributions and compute the
challenge r as the sum.

In the next section, we describe how to generate the
random challenge (using almost non-interactive verifiable
secret-sharing). Subsequently, we describe in more detail
how to construct the almost non-interactive zero-knowledge
proof of plaintext knowledge.

5.1 Almost Non-Interactive Verifiable Secret-
Sharing

The following protocol allows a sender PS to verifiably
secret share a secret x with threshold t < n/2, using a single
round of synchronous broadcast. The reconstruction of the
shared value is fully asynchronous. We call this almost non-
interactive verifiable secret-sharing (ANI-VSS).

The ANI-VSS requires a setup—for every PS there is
an independent random key pair (pkS , skS) for a thresh-
old cryptosystem such that the public key pkS is known to
all parties and the secret key skS is shared among the other
parties with threshold t (such that correct decryption shares
from t + 1 parties are enough to decrypt under skS). We
also require that PS knows skS . If not already the case, this
can be ensured by all parties once-and-for-all sending their
shares of skS to PS .8 The protocol proceeds as follows:

Synchronous sharing: PS computes X ← EpkS (x) and
broadcasts X (using synchronous broadcast).

Asynchronous reconstruction:

1. Each Pi computes a decryption share of X using
his share of skS and sends the share to all parties
along with a proof of correctness.

2. Each Pj waits for t + 1 correct decryption shares
and reconstructs x = DskS (X).

5.1.1 Analysis:
We assume that the encryption schemes have perfect de-

cryption. This means that the broadcasted message X
uniquely defines a secret x = DskS (X). Reconstruction will
always terminate as at least the n− t ≥ t + 1 honest parties
send correct decryption shares.

In terms of simulation security, an ANI-VSS is extracted
by decrypting X. This is possible as the honest parties hold
enough decryption key shares to compute skS . When PS is
honest, an ANI-VSS is opened to any x′ simply by simulat-
ing the decryption of X to hit x′.

5.2 Almost Non-Interactive ZKPoK
We now describe a system which allows a prover P to

give a ZK proof of knowledge (ZKPoK) towards all par-
ties such that all parties agree on the outcome of the proof.
The protocol uses only one round of synchronous broadcast,

7This way no PoPK for Ri is necessary.
8In fact, the fact that they could do this is sufficient for the
analysis.

216

followed by an asynchronous computation. We call it an
ANI-ZKPoK.

We consider some NP relation R and assume that P holds
an (instance, witness)-pair (x, w). We assume that there is
a standard three-move Σ-protocol for R, where P computes
the first message a, gets a challenge e ∈ {0, 1} and replies
with some response z. The verifier accepts or rejects based
on (x, a, e, z). We use that from two accepting conversa-
tions (x, a, 0, z0) and (x, a, 1, z1) one can compute (in PPT)
a witness w such that (x, w) ∈ R. The protocol proceeds as
follows:

Synchronous proof: The synchronous round proceeds as
follows:

• Prover P : For k = 1, . . . , κ, compute a first mes-

sage a(k) and a reply z
(k)
0 to the challenge e = 0

and a reply z
(k)
1 to the challenge e = 1. Then

broadcast x and each a(k) and ANI-VSS each z
(k)
0

and z
(k)
1 .

• Each other party Pi: ANI-VSS a uniformly ran-
dom value ri ∈ {0, 1}κ.

Asynchronous verification: The verification of the proof
is asynchronous, and proceeds as follows:

1. Reconstruct each ri and compute (e1, . . . , eκ) =
⊕n

i=1ri.

2. For k = 1, . . . , κ in parallel: Reconstruct z
(k)
ek and

accept the proof if and only if (a(k), ek, z
(k)
el) is an

accepting conversation for k = 1, . . . , κ.

5.2.1 Analysis:
After the first (synchronous) part, all par-

ties will hold consistent proof transcripts

(a(1), Z
(1)
0 , Z

(1)
1), . . . , (a(κ), Z

(κ)
0 , Z

(κ)
1) (as broadcasted by

the prover) as well as consistent encryptions of challenge-
contributions Ri of every party Pi (as broadcasted by
Pi). It follows that in the asynchronous part all parties
will reconstruct the same r1, . . . rn leading to the same
(e1, . . . , eκ) and thus leading to the same outcome of the
verification test. It is clear that if the prover is honest,
this outcome will be accepting. Since each reconstruction
eventually terminates, the proof eventually terminates.

Assume that P broadcasted
(a(1), Z

(1)
0 , Z

(1)
1), . . . , (a(κ), Z

(κ)
0 , Z

(κ)
1) without know-

ing a witness for x. Then for each k there exists e′k
such that (a(k), e′k, z

(k)

e′
k

) is not accepting.9 Thus there

is at most one challenge e = (e1, . . . , eκ) for which
the verification of the proof is not rejecting, namely
(1 − e′1, . . . , 1 − e′κ). As the prover had to choose and

broadcast (a(1), Z
(1)
0 , Z

(1)
1), . . . , (a(κ), Z

(κ)
0 , Z

(κ)
1) without

knowing the ri’s of the honest parties (and thus without
knowing the resulting challenge e), his success probability
is negligible.

9Contra-positively, if both encrypted conversations are
valid, then P can use his knowledge of the secret key to learn

the two valid conversations (a(k), 0, z
(k)
0) and (a(k), 1, z

(k)
1) in

poly-time and can then compute from these a valid witness
w in poly-time, which by definition means that he knows w.

To simulate a proof, the simulator will for each k use the
honest verifier simulator of the Σ-protocol to prepare a uni-
formly random bit ek for which it knows a valid conversation

(a(k), ek, z
(k)
ek). It lets z

(k)
1−ek

= z
(k)
ek . I.e., it can answer only

ek correctly. Then it lets e = e1 . . . , eκ. Then the simulator
extracts the ri contributed by corrupted parties from the
ANI-VSS’s. Finally the simulator forces the coin flip to hit
exactly the challenge e which it can answer by opening the
ANI-VSS for an honest Pj to rj = e⊕

L
i6=j ri.

10

6. CONCLUSIONS AND OPEN PROB-
LEMS

We presented an asynchronous protocol which evalu-
ates any agreed function on predistributed inputs, securely
against an active adversary corrupting t < n/2 parties. This
is the first asynchronous MPC protocol for t ≥ n/3. We
stress that all previous asynchronous MPC protocols (and
in particular the multiplication sub-protocols) inherently re-
quire t < n/3, even once inputs are distributed.

Furthermore, we have presented an asynchronous proto-
col for distributing the inputs with t < n/2, assuming an
oracle which allows every player to synchronously broadcast
one single message. We stress that asynchronous input dis-
tribution with t ≥ n/3 is not possible without the help of
an oracle. Furthermore, our protocol for input distribution
takes further advantage from the broadcast oracle and guar-
antees that all parties can provide input. This is provably
not possible when no such oracle is available.

These results can be brought together to an asynchronous
MPC protocol with t < n/2, for a model where the first
communication round is synchronous. Alternatively, it can
be interpreted as an asynchronous MPC protocol which tol-
erates t < n/3 faults in the first rounds, and then t < n/2.
Also, the result can be compared with the synchronous world
(without setup), where MPC is possible for t < n/3 when no
broadcast is available, and t < n/2 when black-box broad-
cast is available.

This work leaves a lot of interesting open problems: First
of all, our protocol requires quite strong setup assumptions,
and it is not clear whether they are necessary. Furthermore,
the provided protocol provides cryptographic security only.
When e.g. perfect security is required, then MPC requires
t < n/3 in the synchronous case, respectively t < n/4 in
the asynchronous case. We do not know whether this gap
also stems solely from the input distribution, i.e., whether it
is possible to evaluate any function of predistributed values
over an asynchronous network perfectly secure with t < n/3.

10For the ANI-VSS described above, the extraction would
simply amount to decryption under the secret key used by
Pi. The honest parties have enough shares to facilitate this.

217

7. REFERENCES
[BCG93] Michael Ben-Or, Ran Canetti, and Oded

Goldreich. Asynchronous secure computation
(extended abstract). In Proceedings of the
Twenty-Fifth Annual ACM Symposium on the
Theory of Computing, pages 52–61, 16–18 May
1993.

[Bea91] Donald Beaver. Efficient multiparty protocols
using circuit randomization. In Joan
Feigenbaum, editor, Advances in Cryptology —
CRYPTO ’91, pages 420–432, Berlin, 1991.
Springer-Verlag. Lecture Notes in Computer
Science Volume 576.

[BH07] Zuzana Beerliová-Trub́ıniová and Martin Hirt.
Simple and efficient perfectly-secure
asynchronous mpc. In Advances in Cryptology -
ASIACRYPT 2007, Berlin, 2007. Springer.
Lecture Notes in Computer Science.

[BKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin.
Asynchronous secure computation with optimal
resilience. In Proc. ACM PODC ’94, pages
183–192, 1994.

[Can00] Ran Canetti. Security and composition of
multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[CDG87] David Chaum, Ivan Damg̊ard, and Jeroen
van de Graaf. Multiparty computations ensuring
privacy of each party’s input and correctness of
the result. In Carl Pomerance, editor, Advances
in Cryptology — CRYPTO ’87, pages 87–119,
Berlin, 1987. Springer-Verlag. Lecture Notes in
Computer Science Volume 293.

[CDN01] Ronald Cramer, Ivan Damgaard, and
Jesper Buus Nielsen. Multiparty computation
from threshold homomorphic encryption. In
Advances in Cryptology — EUROCRYPT 2001,
pages 280–300, Berlin, 2001. Springer-Verlag.
Lecture Notes in Computer Science Volume
2045.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor
Shoup. Random oracles in constantinople:
Practical asynchronous Byzantine agreement
using cryptography. In Proceedings of the 19th
ACM Symposium on Principles of Distributed
Computing (PODC 2000), pages 123–132.
ACM, July 2000.

[Dam00] Ivan Damg̊ard. Efficient concurrent
zero-knowledge in the auxiliary string model. In
EUROCRYPT, pages 418–430, 2000.

[DN03] Ivan Damg̊ard and Jesper Buus Nielsen.
Universally composable efficient multiparty
computation from threshold homomorphic
encryption. In D. Boneh, editor, Advances in
Cryptology — CRYPTO 2003, pages 247–264,
Berlin, 2003. Springer-Verlag. Lecture Notes in
Computer Science Volume 2729.

[FH96] Matthew Franklin and Stuart Haber. Joint
encryption and message-efficient secure
computation. Journal of Cryptology,
9(4):217–232, Autumn 1996.

[FN09] Matthias Fitzi and Jesper Buus Nielsen. On the
number of synchronous rounds sufficient for

authenticated Byzantine agreement. In Idit
Keidar, editor, Distributed Computing, 23rd
International Symposium, DISC 2009, volume
5805 of Lecture Notes in Computer Science,
pages 449–463. Springer-Verlag, 2009.

[GMW87] Oded Goldreich, Silvio Micali, and Avi
Wigderson. How to play any mental game or a
completeness theorem for protocols with honest
majority. In Proceedings of the Nineteenth
Annual ACM Symposium on Theory of
Computing, pages 218–229, New York City,
25–27 May 1987.

[HNP05] Martin Hirt, Jesper Buus Nielsen, and Bartosz
Przydatek. Cryptographic asynchronous
multi-party computation with optimal resilience
(extended abstract). In R.Cramer, editor,
Advances in Cryptology — EUROCRYPT 2005,
pages 322–340, Berlin, 2005. Springer-Verlag.
Lecture Notes in Computer Science Volume
3494.

[Nie02] Jesper Buus Nielsen. A threshold pseudorandom
function construction and its applications. In
M. Yung, editor, Advances in Cryptology —
CRYPTO 2002, pages 401–416, Berlin, 2002.
Springer-Verlag. Lecture Notes in Computer
Science Volume 2442.

[Pai99] Pascal Paillier. Public-key cryptosystems based
on composite degree residue classes. In Jacques
Stern, editor, Advances in Cryptology —
EUROCRYPT ’99, pages 223–238, Berlin, 1999.
Springer-Verlag. Lecture Notes in Computer
Science Volume 1592.

[Sho00] Victor Shoup. Practical threshold signatures. In
Bart Preneel, editor, Advances in Cryptology —
EUROCRYPT 2000, pages 207–220, Berlin,
2000. Springer-Verlag. Lecture Notes in
Computer Science Volume 1807.

[Tou84] Sam Toueg. Randomized Byzantine agreements.
In Proceedings of the third annual ACM
symposium on Principles of distributed
computing, pages 163–178, 1984.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure
computations (extended abstract). In 23rd
Annual Symposium on Foundations of
Computer Science, pages 160–164, Chicago,
Illinois, 3–5 November 1982. IEEE.

218

