
Distributed Algorithms for Edge Dominating Sets

Jukka Suomela
Helsinki Institute for Information Technology HIIT, University of Helsinki

P.O. Box 68, FI-00014 University of Helsinki, Finland
jukka.suomela@cs.helsinki.fi

ABSTRACT
An edge dominating set for a graph G is a set D of edges
such that each edge of G is in D or adjacent to at least one
edge in D. This work studies deterministic distributed ap-
proximation algorithms for finding minimum-size edge dom-
inating sets. The focus is on anonymous port-numbered net-
works: there are no unique identifiers, but a node of degree
d can refer to its neighbours by integers 1, 2, . . . , d. The
present work shows that in the port-numbering model, edge
dominating sets can be approximated as follows: in d-regular
graphs, to within 4 − 6/(d+ 1) for an odd d and to within
4−2/d for an even d; and in graphs with maximum degree ∆,
to within 4− 2/(∆− 1) for an odd ∆ and to within 4− 2/∆
for an even ∆. These approximation ratios are tight for all
values of d and ∆: there are matching lower bounds.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Prob-
lems—computations on discrete structures

General Terms
Algorithms, Theory

1. INTRODUCTION
This work studies the approximability of the edge dom-

inating set problem from the perspective of deterministic
(non-randomised) distributed algorithms in anonymous port-
numbered networks.

1.1 Edge Dominating Sets and Matchings
Let G be a simple, undirected graph with the edge set EG .

A set D ⊆ EG of edges is an edge dominating set for G if
each edge e ∈ EG \D is adjacent to at least one edge in D.
See Figure 1 for examples.

c© ACM, 2010. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in Proc. 29th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC’10, July 25–28, 2010, Zurich, Switzerland).
http://doi.acm.org/10.1145/1835698.1835783

By definition, any maximal matching is an edge dominat-
ing set. An edge dominating set is not necessarily a match-
ing; however, given an edge dominating set D, it is straight-
forward to construct a maximal matching with at most |D|
edges [25]. Hence a minimum maximal matching (a maxi-
mal matching with the smallest possible number of edges) is
also a minimum edge dominating set.

This is a corollary of a more general result due to Allan
and Laskar [1]: if a graph is claw-free (no induced subgraph
K1,3), then a minimum maximal independent set is also a
minimum dominating set. The line graph L(G) of any graph
G is claw-free, the dominating sets of L(G) correspond to the
edge dominating sets of G, and the maximal independent sets
of L(G) correspond to the maximal matchings of G.

1.2 Centralised Polynomial-Time Algorithms
From the perspective of centralised polynomial-time algo-

rithms, the problem of finding a minimum edge dominating
set is equivalent to the problem of finding a minimum maxi-
mal matching. Both of these are NP-hard optimisation prob-
lems [25], and they are hard to approximate to within factor
7/6− ε [9]. The problem of finding a minimum-weight edge
cover is as hard to approximate as minimum-weight vertex
cover [8].

The connection between matchings and edge dominating
sets implies a simple 2-approximation algorithm: any max-
imal matching is a 2-approximation of a minimum edge
dominating set. Approximating minimum-weight edge dom-
inating sets is less straightforward, but Fujito and Naga-
mochi [12] show how to find a 2-approximation. Polynomial-
time approximation schemes are known for planar graphs [6]
and civilised graphs [15].

1.3 Distributed Algorithms
Edge dominating sets have received little attention in the

distributed computing community. However, some results
related to matchings and independent sets have straightfor-

(a) (b) (c) (d)

Figure 1: (a) An edge dominating set. (b) A max-
imal matching and hence another edge dominating
set. (c) A minimum edge dominating set. (d) A min-
imum maximal matching and hence another mini-
mum edge dominating set.

http://doi.acm.org/10.1145/1835698.1835783

ward corollaries that concern the distributed approximabil-
ity of edge dominating sets.

On the positive side, one can again take any algorithm
that finds a maximal matching and apply it to find a 2-
approximation of a minimum edge dominating set. For ex-
ample, if we have unique node identifiers in the network,
we can use the deterministic algorithms by Hańćkowiak et
al. [14] and Panconesi and Rizzi [19], with running times
O(log4 n) and O(∆ + log∗ n) communication rounds, respec-
tively; here n is the number of nodes and ∆ is the maximum
degree.

The running times of these algorithms depend on n, and
this is unavoidable if we want to achieve an approximation
factor better than 3. Czygrinow et al. [10] and Lenzen and
Wattenhofer [17] show that finding a constant-factor approx-
imation of a maximum independent set in a cycle requires
Ω(log∗ n) communication rounds, and a simple local reduc-
tion [22] gives the same lower bound for finding a factor 3−ε
approximation of a minimum edge dominating set.

1.4 Algorithms in Port-Numbered Networks
The above results deal with deterministic distributed algo-

rithms in networks with unique node identifiers. This work
studies a strictly weaker model of computation: determin-
istic distributed algorithms in anonymous networks in the
port-numbering model : there are no node identifiers, but
a node of degree d can refer to its neighbours by integers
1, 2, . . . , d. See Section 2 for a formal definition of the model.

Computation in synchronous port-numbered networks has
been studied for decades; one of the pioneers was Angluin [2]
in 1980. However, the main focus has been on global prob-
lems such as leader election [2, 24], construction of span-
ning trees [24], computation of functions that depend on all
nodes [5, 7, 23], recognition of topological properties [2, 24],
and graph exploration and rendezvous [16]. Such problems
typically require Ω(n) communication rounds – or, in many
cases, are unsolvable in the port-numbering model.

Much less is known about graph problems that are of a
more local nature and have potential for efficient, highly
scalable distributed algorithms. Classical packing problems
such as matchings and independent sets are typically un-
solvable for trivial reasons, but covering problems are more
promising. Node-based covering problems (the task is to
choose a subset of nodes that “covers” the graph) have been
studied in prior work: for example, the vertex cover problem
can be approximated within factor 2 in the port-numbering
model in bounded-degree graphs [3, 4], and this approxima-
tion guarantee is tight. However, it seems that edge-based
covering problems have not been studied previously in this
model.

1.5 Contributions
The contributions are summarised in Table 1. This work

presents a complete characterisation of the deterministic ap-
proximability of edge dominating sets in the port-numbering
model, both in graphs of maximum degree ∆ and in d-
regular graphs, for all values of the parameters ∆ and d. All
approximation ratios are tight: there are exactly matching
upper and lower bounds.

On a more conceptual level, the contributions are twofold.
First, this work highlights the different nature of edge-based
covering problems, in comparison with node-based covering
problems. Informally, in a regular port-numbered graph, all

Graph family Approx. ratio
Lower bound
Upper bound

Time

d-regular graphs:

d = 1, 3, . . . 4− 6

d+ 1
Theorem 2
Theorem 4

O(d2)

d = 2, 4, . . . 4− 2

d
Theorem 1
Theorem 3

O(1)

graphs with maximum degree ∆:

∆ = 1 1 trivial
trivial

O(1)

∆ = 3, 5, . . . 4− 2

∆− 1
Corollary 1
Theorem 5

O(∆2)

∆ = 2, 4, . . . 4− 2

∆
Corollary 1
Theorem 5

O(∆2)

Table 1: Approximability of edge dominating sets:
the best possible approximation ratios that can be
achieved by any deterministic distributed algorithm
in the port-numbering model.

nodes may look identical from the perspective of a distrib-
uted algorithm, but all edges do not look identical to each
other. Tight lower bound constructions for covering prob-
lems such as vertex covers and dominating sets are typically
trivial: a cycle or a complete graph will do. This is not the
case with edge-based problems.

Second, this work gives yet another example of the close
connection between the port-numbering model and local al-
gorithms. In a strictly local algorithm, the running time
does not depend on the number of nodes [18, 22]. Even
though the negative results hold for any algorithm, regard-
less of its running time, the matching positive results are
local algorithms: the running times depend on the parame-
ters d and ∆, but they are independent of n. Indeed, these
algorithms are the best known deterministic local algorithms
for the edge dominating set problem – it is not known if a
better approximation ratio can be achieved in constant time
with the help of unique node identifiers.

2. PRELIMINARIES
Let G be a simple, undirected graph with the node set VG

and the edge set EG . An edge e = {u, v} ∈ EG is said to
cover the nodes u and v, and an edge e1 ∈ EG is said to
dominate any edge e2 ∈ EG that is adjacent to e1, including
e1 itself. These terms are generalised to sets of edges and
nodes in a natural manner: for example, a set C ⊆ EG of
edges covers a set of nodes X ⊆ VG if for each v ∈ X there
is an e ∈ C that covers v. An edge cover is a set C ⊆ EG
that covers VG and an edge dominating set is a set D ⊆ EG
that dominates EG .

A set M ⊆ EG is a matching if each node v ∈ VG is
incident to at most one edge of M . More generally, a set
M ⊆ EG is a k-matching if each node v ∈ VG is incident to
at most k edges in M ; put otherwise, a subgraph induced by
a k-matching is a graph of maximum degree at most k. In
particular, the subgraph induced by a 2-matching consists
of paths and cycles. A matching is maximal if it is not a
proper subgraph of a matching.

a

2

1

1 1
2

1

3

2

4

3

1

2 1

3 2

(a) (b)

s t

M:

ts

b

a

c
d

b

cd

H:

2 3 21 4

1

2

1 1 2

1

3

2

31

Figure 2: Examples of port-numbered graphs: a
simple graph H and a multigraph M. For example,
VM = {s, t}, dM(s) = 3, dM(t) = 4, and the involution
pM maps (s, 1)↔ (t, 2), (s, 2)↔ (t, 1), (s, 3) 7→ (s, 3), and
(t, 3) ↔ (t, 4). (a) Ports (boxes) and connections (ar-
rows). (b) Nodes (circles), undirected edges (lines),
and directed edges (arrows).

A k-factor of G is a k-regular spanning subgraph H of G:
we have the same node set VH = VG , and each node v ∈ VH
has degree k in H. For example, a 1-factor forms a perfect
matching, and a 2-factor is a collection of disjoint cycles that
span VG .

A k-factorisation of G is a collection G(1),G(2), . . . ,G(c)
of k-factors of G such that each edge e ∈ EG is in exactly
one EG(i); that is, a k-factorisation partitions the edge set
into k-factors. For example, a 1-factorisation of a d-regular
graph G can be interpreted as a d-colouring of the edges of
G: each factor is a colour class.

Not all graphs admit a k-factorisation; an obvious nec-
essary condition is that the graph G has to be ck-regular
for some c. In the case of 1-factorisations, this condition
is not sufficient: there are regular graphs that cannot be
1-factorised (e.g., an odd cycle). However, in the case of
2-factorisations, this condition turns out to be sufficient. A
120-year-old result due to Petersen [20] shows that any 2k-
regular graph admits a 2-factorisation – see, e.g., Diestel [11,
p. 39] for a modern proof.

2.1 Port-Numbered Graphs
A port-numbered graph G is defined by a set of nodes VG

and two functions, dG : VG → N and pG : PG → PG , where

PG = {(v, i) : v ∈ VG , i ∈ PG(v)},
PG(v) = {1, 2, . . . , dG(v)}.

It is required that pG is an involution, i.e., a bijection that
is its own inverse.

The integer dG(v) is called the degree of the node v ∈ VG .
Each (v, i) ∈ PG is a port. If pG(v, i) = (u, j), we say that
the port i of v is connected to the port j of u. Figure 2a
shows two examples of port-numbered graphs.

Given the involution pG , we can define the multiset of
edges EG as follows: For each pair of ports (v, i), (u, j) ∈
PG with pG(v, i) = (u, j) and (v, i) 6= (u, j), we have an
undirected edge {v, u} ∈ EG , and for each fixed point (v, i) ∈

11 21 2

212121

4

4 3

3 4

4

3

33

3

2 1

3

3

2 1

C:

M:

4

3

3 1 2

12

2

Figure 3: An example of a covering graph. The
simple port-numbered graph C is a covering graph
of the multigraph M. The covering map f maps
each grey node of C to the grey node ofM, and each
white node of C to the white node of M.

PG with pG(v, i) = (v, i), we have a directed loop (v, v) ∈ EG ;
see Figure 2b for an illustration.

This way we can interpret any port-numbered graph G
as a graph with the node set VG and the edge set EG , and
we can also apply the usual graph-theoretic terminology; for
example, a port-numbered graph G is simple if the edge
set EG does not contain loops or multiple parallel edges.
Conversely, we can take any undirected graph G with the
node set VG and the edge set EG , and turn G into a port-
numbered graph by constructing an involution pG that is
compatible with EG .

2.2 Model of Computation
In a synchronous distributed algorithm, computation pro-

ceeds in synchronous communication rounds. In each round,
the following operations are performed in a port-numbered
graph G: (i) each node performs local computation, (ii) each
node v ∈ VG sends one message to each port i ∈ PG(v), and
(iii) each node v ∈ V receives one message from each port
i ∈ PG(v). The involution pG indicates how the messages
are routed: if pG(v, i) = (u, j), then the message sent by v
to its port i is received by u from its port j.

All nodes run the same deterministic distributed algo-
rithm A. Initially, each node v ∈ VG knows only its degree
dG(v). After each round, a node may decide to stop com-
putation and announce its output. The running time of the
algorithm A is the maximum number of synchronous rounds
until all nodes have stopped.

When we use a distributed algorithm A to find an edge
dominating set D in a simple port-numbered graph G, we
assume that each node v ∈ VG outputs a subset X(v) ⊆
PG(v) of port numbers; if i ∈ X(v) and pG(v, i) = (u, j)
then the edge {u, v} is in the set D. Naturally, we require
that the output is internally consistent: if i ∈ X(v) and
pG(v, i) = (u, j), then we must also have j ∈ X(u).

2.3 Covering Maps
Let G and H be two port-numbered graphs. A surjection

f : VH → VG is a covering map from H to G if (i) it preserves
the degrees, i.e., dH(v) = dG(f(v)) for all v ∈ VH, and
(ii) it preserves the connections, i.e., pH(v, i) = (u, j) implies
pG(f(v), i) = (f(u), j) for all (v, i) ∈ PH. If there exists a
covering map from H to G, then H is a covering graph of G.
See Figure 3 for an example.

A key observation is that if we apply any deterministic
distributed algorithm A both in the port-numbered graph
G and in its covering graph H, then the output of a node
v ∈ VH is necessarily identical to the output of the node

G(3)

6 3

5 4

1 2

1

2

2

2

2

2

1

1

1

2

2

2

2

2
1

2

1

1

1

1
1

1

3

3

4

3

3

3

3

4

4

4

4

4
4

4

4

4

3

3

3

34

3

5

6 5

6

6

6

6

6

5

5

5

5

6

6

6

5

5

5

5

5

6

6

M

a1

a2

a3

a4

a5

a6

b5

b4

b3

b2

b1

G = G(1) + G(2) +

Figure 4: The graph G constructed in the proof of Theorem 1 for d = 6. The thick lines indicate the optimal
edge dominating set S. The graph G is a covering graph of M.

f(v) ∈ VG [2, 7, 22, 24]. To see this, note that the initial state
of a node v ∈ VH is identical to the initial state of the node
f(v) ∈ VG , as both of them run the same algorithm A. Now
assume inductively that before the communication round t,
for each v ∈ VH the local state of v in H is the same as the
local state of f(v) in G. Then during the round t, for each
(v, i) ∈ PH the message sent to the port (v, i) in H equals
the message sent to (f(v), i) in G. Since the covering map
preserves the connections, it follows that for each (v, i) ∈
PH the message received from the port (v, i) in H equals
the message received from (f(v), i) in G; hence after the
round t, the local state of v ∈ VH is identical to the local
state of f(v) ∈ VG . Whenever the node v decides to stop and
announce its output, the node f(v) also stops and produces
the same output.

3. LOWER BOUND CONSTRUCTION:
EVEN DEGREE

In this section we prove the following theorem.

Theorem 1. For each d = 2, 4, . . . , there is a d-regular
port-numbered graph G such that no deterministic distrib-
uted algorithm can achieve a better approximation ratio than
4− 2/d for the minimum edge dominating set problem in G.

3.1 Graph
The graph G is constructed as follows (see Figure 4 for an

illustration in the case d = 6). The node set is VG = A ∪ B
where

A = {a1, a2, . . . , ad}, B = {b1, b2, . . . , bd−1}.

The edge set is EG = S ∪ T where

S =
{
{a1, a2}, {a3, a4}, . . . , {ad−1, ad}

}
,

T =
{
{ai, bj} : ai ∈ A, bj ∈ B

}
.

The graph G is d-regular. The subgraph induced by S
is a matching and the subgraph induced by T is the com-
plete bipartite graph Kd, d−1. By construction, S is an
edge dominating set: each edge in T is adjacent to an edge
in S. Moreover, S is an optimal edge dominating set, since

|EG | = (2d− 1)|S| and each edge can dominate at most
2d− 1 edges.

3.2 Port Numbering
Let k = d/2. Since G is 2k-regular, we can 2-factorise it;

let the factors be G(1),G(2), . . . ,G(k) – see Figure 4 for an
example. Each subgraph G(i) consists of cycles. Let H(i)
be an orientation of G(i) that consists of directed cycles –
that is, for each {u, v} ∈ EG(i) there is either (u, v) or (v, u)
in EH(i), and the outdegree and indegree of each node v of
H(i) is 1.

Now we are ready to define a port numbering pG for G.
For each i = 1, 2, . . . , k and for each (u, v) ∈ EH(i), we set
pG(u, 2i− 1) = (v, 2i) and conversely pG(v, 2i) = (u, 2i− 1);
see Figure 4.

3.3 Covering Map
Let M be a port-numbered multigraph with one node

VM = {x} of degree dM(x) = 2k. The involution pM maps
(x, 2i − 1) ↔ (x, 2i) for each i = 1, 2, . . . , k. See Figure 4
for an illustration in the case d = 6. Define the function
f : VG → VM by setting f(v) = x for all v ∈ VG ; it can be
checked that f is a covering map from G to M.

3.4 Approximation Ratio
Let A be a deterministic distributed algorithm that finds

an edge dominating set in any port-numbered 2k-regular
graph, and apply A to G; let D be the edge dominating set
produced by A. Since D 6= ∅, there is an edge e ∈ D; let
G(i) be the 2-factor with e ∈ EG(i). Hence there is a node
a that outputs a set X(a) which contains the port number
2i − 1 and another node b that outputs a set X(b) which
contains the port number 2i.

The covering map f shows that all nodes of G produce
the same output. Hence all nodes v ∈ VG output a set X(v)
with {2i − 1, 2i} ⊆ X(v), and the dominating set D has to
contain all edges of the factor G(i). We conclude that the
approximation ratio of A is at least

|D|
|S| ≥

|EG(i)|
|S| =

|VG |
|S| =

4k − 1

k
,

which completes the proof of Theorem 1.

1

b`,3

H(`, 2)+H(`, 1)

1

=H(`)

4

3

4

1

2

3

4

1

3

3

4

3

4
3

4

3

3

4

a`,1

a`,2

a`,4

a`,3

b`,4

c`

3

4

4

1

2 2

1

1

b`,1

b`,2

2
1

1

2

2

22
2

Figure 5: The component H(`) used in the proof of Theorem 2 for d = 5. The thick lines indicate the set S(`).

p2

5

1

1

1

1

5

5

5

5

55

p5

H(5)

p4

H(4)

p3

H(3)

p1

H(2)H(1)

q4

q3

q2

q1

1

1

1

1 5

5

5

5

3 4 5

555 5

2

43

1

2

5 5 5

Figure 6: The graph G constructed in the proof of Theorem 2 for d = 5. The thick lines indicate the optimal
dominating set D∗. For clarity, only a subset of edge is shown: edges of each H(`), edges connected to H(1),
edges connected to p1, and edges in Y . The components H(`) are illustrated in Figure 5 in more detail.

4. LOWER BOUND CONSTRUCTION:
ODD DEGREE

In this section we prove the following theorem.

Theorem 2. For each d = 1, 3, . . . , there is a d-regular
port-numbered graph G such that no deterministic distrib-
uted algorithm can achieve a better approximation ratio than
4− 6/(d+ 1) for minimum edge dominating sets in G.

4.1 Graph
Let k = (d− 1)/2. For each ` = 1, 2, . . . , d, we first

construct a 2k-regular graph H(`) as follows (see Figure 5
for an illustration in the case d = 5). The node set is
VH(`) = A(`) ∪B(`) ∪ C(`) where

A(`) = {a`,1, a`,2, . . . , a`,2k}, C(`) = {c`},
B(`) = {b`,1, b`,2, . . . , b`,2k}.

The edge set is EH(`) = R(`) ∪ S(`) ∪ T (`) where

R(`) =
{
{c`, b`,i} : b`,i ∈ B(`)

}
,

S(`) =
{
{a`,1, a`,2}, {a`,3, a`,4}, . . . , {a`,2k−1, a`,2k}

}
,

T (`) =
{
{a`,i, b`,j} : a`,i ∈ A(`), b`,j ∈ B(`), i 6= j

}
.

The subgraph induced by R(`) is a star, the subgraph in-
duced by S(`) is a matching, and the subgraph induced by

T (`) is a crown graph (a complete bipartite graph minus a
perfect matching).

Since the graph H(`) is 2k-regular, we can again find a
2-factorisation and hence construct a port numbering pH(`)

so that for each node u and each i = 1, 2, . . . , 2k, the port
2i− 1 of u is connected to the port 2i of an adjacent node v
and vice versa; see Figure 5 for an example.

The port-numbered graph G contains the port-numbered
components H(`) for each ` = 1, 2, . . . , d as subgraphs. The
node set of G consists of the node sets of the components
H(`) and the sets

P = {p1, p2, . . . , pd}, Q = {q1, q2, . . . , q2k}.

We create the following connections, in addition to those
inherited from the components H(`):

(p`, `)↔ (c`, d) ∀` = 1, 2, . . . , d,

(pi, `)↔ (b`,i, d) ∀` = 1, 2, . . . , d, i = 1, 2, . . . , 2k, i 6= `,

(pd, `)↔ (b`,`, d) ∀` = 1, 2, . . . , d,

(qi, `)↔ (a`,i, d) ∀` = 1, 2, . . . , d, i = 1, 2, . . . , 2k.

See Figure 6 for an illustration in the case d = 5. Note, in
particular, that each edge that joins a node u ∈ P ∪Q to a
node v ∈ VH(`) connects the port ` of u to the port d of v.

y

3 3

33

5 5

1
1

1

11 2 4

51

5
x1

x2
x3

x4

x5

3

42 42

5

42

5

4242

3

Figure 7: The multigraph M from the proof of The-
orem 2. The graph G in Figure 6 is a covering graph
of M.

4.2 Optimal Solution
Define the edge sets

Y =
{
{p`, c`} : ` = 1, 2, . . . , d

}
, D∗ = Y ∪

⋃
` S(`).

Now D∗ is an optimal edge dominating set for the graph G;
each edge e /∈ D∗ is adjacent to exactly one edge in D∗. By
construction, |D∗| = (k + 1)d.

4.3 Covering Map
Let M be a port-numbered multigraph with the node set

VM = {x1, x2, . . . , xd, y}.

All nodes v ∈ VM have degree dM(v) = d. The involution
pM maps

(x`, 2i− 1)↔ (x`, 2i) ∀` = 1, 2, . . . , d, i = 1, 2, . . . , k,

(y, `)↔ (x`, d) ∀` = 1, 2, . . . , d.

See Figure 7 for an illustration in the case d = 5.
Define the function f : VG → VM as follows:

f(v) = x` for each ` = 1, 2, . . . , d, v ∈ VH(`),

f(v) = y for each v ∈ P ∪Q.

It can be checked that f is a covering map from G to M.
Hence we have partitioned the node set of G in d+ 1 equiv-
alence classes and the edge set of G in (k + 1)d equivalence
classes.

4.4 Approximation Ratio
Assume that A is a deterministic distributed algorithm

that finds an edge dominating set in any port-numbered d-
regular graph. Apply A to G; let D be the edge dominating
set produced by A. Consider an ` ∈ {1, 2, . . . , d}. To domi-
nate S(`), there must exist a node a`,i ∈ A(`) that is incident
to an edge e ∈ D; in particular, the output X(a`,i) is non-
empty. Since f(a`,i) = x` and f−1(x`) = VH(`), we conclude
that all nodes v ∈ VH(`) produce the same non-empty set of
port numbers, let us call it X`.

If d ∈ X`, then D contains 2d−1 edges that join P ∪Q to
H(`). Otherwise D contains all edges in one of the 2-factors
of H(`); for example, if 1 ∈ X`, then also 2 ∈ X` and D
contains all edges of H(`) that connect the port 1 of a node
to the port 2 of another node; since H(`) has 2d− 1 nodes,
the 2-factor contains 2d− 1 edges.

This way we can find d disjoint sets of edges that are con-
tained in D, one for each `, and each set consists of 2d − 1

edges; hence |D| ≥ (2d− 1)d. We conclude that the approx-
imation ratio of A is at least

|D|
|D∗| ≥

(2d− 1)d

(k + 1)d
=

4k + 1

k + 1
,

which completes the proof of Theorem 2.

5. DISTINGUISHABLE NEIGHBOURS
This section introduces concepts and lemmas that are used

in Sections 6 and 7 to facilitate algorithm design. Through-
out this section, let G be a simple port-numbered graph.
Then for each edge {v, u} ∈ EG there are unique port num-
bers i and j such that pG(v, i) = (u, j); we use the notation
`G(v, u) = i and `G(u, v) = j to refer to these port numbers.

The label pair of an edge {v, u} ∈ EG is the unordered pair
`G{u, v} = {`G(v, u), `G(u, v)}. The set of uniquely labelled
edges of v ∈ VG consists of the edges incident to v whose
label pair is different from the label pair of any other edge
incident to v. We say that the node u is the distinguishable
neighbour of v ∈ VG if {v, u} ∈ EG is the uniquely labelled
edge of v that minimises the port number `G(v, u).

Whenever a node has at least one uniquely labelled edge,
then it also has exactly one distinguishable neighbour. For
example, in the graph H of Figure 2, a is the distinguish-
able neighbour of b, and d is the distinguishable neighbour
of c. However, the node a does not have any uniquely la-
belled edges, and hence it does not have a distinguishable
neighbour, either. A key observation is that this can happen
only if the node has an even degree (see Figure 8a for an ex-
ample of a 3-regular graph: all nodes have distinguishable
neighbours).

Lemma 1. Let v ∈ VG be a node with an odd degree. Then
the node v has a distinguishable neighbour.

Proof. For all i and j, there are at most two edges in-
cident to v with the label pair {i, j}: one connected to the
port i and the other connected to the port j. Discard such
pairs of edges with duplicate label pairs; since dG(v) is odd,
at least one edge with a unique label pair is retained.

Let MG(i, j) consist of all edges {v, u} ∈ G such that
pG(v, i) = (u, j) and u is the distinguishable neighbour of
v; see Figure 8b for an illustration.

Lemma 2. For all i and j, MG(i, j) is a matching in G.

Proof. To reach a contradiction, assume that {v, t} and
{v, u} are two distinct but adjacent edges in MG(i, j) for
some i, j. We must have `G(v, t) 6= `G(v, u) and `G(v, t),
`G(v, u) ∈ {i, j}; in particular, i 6= j. W.l.o.g., let `G(v, t) =
i and `G(v, u) = j. From the definition of MG(i, j), it fol-
lows that t has to be the distinguishable neighbour of v, and
v has to be the distinguishable neighbour of u; moreover,
`G{v, t} = `G{v, u} = {i, j}. However, then {v, t} cannot
be a uniquely labelled edge of v, and t cannot be the distin-
guishable neighbour of v.

Note that the sets MG(i, j) can be constructed by a dis-
tributed algorithm in constant time. To rephrase Lemmas
1 and 2, we can construct a collection of matchings whose
union covers all nodes with an odd degree. Note that the
matchings MG(i, j) are not necessarily disjoint; we may have
i 6= j and MG(i, j) ∩MG(j, i) 6= ∅.

MG(1, 3)MG(1, 2)MG(1, 1)

(d)

(c)(b)(a) 1

2

3

2

1

3

2

23

3

3

2

3

2

2

3

13

2

2

2

3

1

1

1

1

3
1

3

1

3

21

2

11

MG(3, 3)MG(3, 2)MG(3, 1)

MG(2, 1) MG(2, 3)MG(2, 2)

Figure 8: (a) A 3-regular port-numbered graph G; an arrow from u to v indicates that v is the distinguishable
neighbour of u. (b) The matchings MG(i, j). (c) Phase I of the algorithm from Theorem 4. (d) Phase II.

6. OPTIMAL ALGORITHMS FOR
REGULAR GRAPHS

Let us first present a trivial algorithm that shows that the
lower bound of Theorem 1 is tight.

Theorem 3. There is a deterministic distributed O(1)-
time algorithm that finds a factor 4− 2/d approximation
of a minimum edge dominating set in any d-regular port-
numbered graph for any d = 1, 2,

Proof. The algorithm outputs all edges that are con-
nected to a port with port number 1.

Let D be the output of the algorithm in a port-numbered
graph G. First observe that D is a feasible solution, as it
covers all nodes and hence dominates all edges. To analyse
the approximation ratio, note that the number of edges in
the solution D is at most |VG |. Since the graph is d-regular,
we have d|VG | = 2|EG |. Each edge in an optimal solution D∗

dominates at most 2d − 1 edges, i.e., |EG | ≤ (2d− 1)|D∗|.
Thus the approximation factor is |D|/|D∗| ≤ 4− 2/d.

The following result shows that the lower bound of Theo-
rem 2 is tight as well.

Theorem 4. There is a deterministic distributed O(d2)-
time algorithm that finds a factor 4 − 6/(d+ 1) approxima-
tion of a minimum edge dominating set in any d-regular port-
numbered graph for any d = 1, 3,

Proof. Let G be a d-regular port-numbered graph. The
algorithm constructs an edge dominating set D ⊆ EG in two
phases, both of which can be implemented in O(d2) commu-
nication rounds. Initially, set D ← ∅.

In phase I, we consider each pair (i, j) with i, j ∈ {1, 2,
. . . , d} sequentially (in an arbitrary order), and for each pair
(i, j) we process all distinguishable edges e ∈ MG(i, j) in

parallel: if both endpoints of e are already covered by D,
we ignore e, otherwise we add e to D. See Figure 8c for an
example.

In phase II, we consider again each pair (i, j) sequentially,
and for each pair (i, j) we process all edges e ∈ D ∩MG(i, j)
in parallel: if both endpoints of e are covered by D \ {e},
remove e from D. Finally, the algorithm outputs the set D;
see Figure 8d for an example.

Recall that each set MG(i, j) is a matching; hence the de-
cisions related to the edges in MG(i, j) are independent of
each other and can be performed in parallel. Phase I con-
structs a spanning forest D: The set D covers the same set
of nodes as the union of the sets MG(i, j), as we ignore only
redundant edges; therefore D is an edge cover. Moreover, we
never add edges that could close a cycle; hence the subgraph
induced by D is a forest.

Phase II removes some redundant edges from D; the prop-
erty that D is an edge cover is preserved throughout phase II.
Moreover, phase II guarantees that there cannot be a path
of length 3 in the forest D: if there is a path with three
edges, both endpoints of the middle edge are covered by
other edges. Thus D is a forest of node-disjoint stars. In
particular, each tree in D contains at most d edges, and
therefore |D| ≤ d|VG |/(d+ 1).

It follows that the set D is a feasible solution – an edge
cover is an edge dominating set. Moreover,

|D| ≤ d

d+ 1
|VG | =

2

d+ 1
|EG | ≤

4d− 2

d+ 1
|D∗|.

7. OPTIMAL ALGORITHMS FOR
BOUNDED-DEGREE GRAPHS

So far we have discussed distributed algorithms for regular
graphs; now we turn our attention to bounded-degree graphs.
Throughout this section ∆ is a positive integer.

F

D∗

M

Edge weights

2 2

−3

2

−3

Definition of CPhase III

Matching D∗ Internal nodes (black) and costs

t

u
s

x

c(x) = 1
2

c(u) = c(v) = 1

c(t) = 3
2

c(s) = 2

Phase IIPhase I
C

v

P

Figure 9: Algorithm from Section 7 (a schematic illustration, not derived from any specific port numbering).

Let A be a family of algorithms parametrised by ∆, and
let α be a real-valued function of ∆. We say that A finds an
α-approximation for edge dominating set in bounded-degree
graphs if the following holds for every ∆: if G is a port-
numbered graph such that dG(v) ≤ ∆ for all v ∈ VG , then the
algorithm A(∆) finds an α(∆)-approximation of a minimum
edge dominating set in G.

Obviously α(∆ + 1) ≥ α(∆) ≥ 1, and k-regular graphs
satisfy dG(v) ≤ k by definition. Hence Theorem 1 has the
following corollary.

Corollary 1. For any family of algorithms that finds an
α-approximation for edge dominating set in bounded-degree
graphs, we have α(1) ≥ 1 and α(2k + 1) ≥ α(2k) ≥ 4− 1/k
for all k = 1, 2,

In this section we show that the corollary is tight.

Theorem 5. There is a family of algorithms that finds an
α-approximation for edge dominating set in bounded-degree
graphs such that α(1) = 1 and α(2k + 1) = α(2k) = 4− 1/k
for all k = 1, 2, The running time of A(∆) is O(∆2).

The case ∆ = 1 is trivial: the optimal edge dominating
set consists of all edges. In what follows, let k ≥ 1 and
∆ = 2k + 1. We present the algorithm A(∆) and show that
α(∆) ≤ 4− 1/k; the claim α(2k) ≤ 4− 1/k then follows by
choosing A(2k) = A(2k + 1).

7.1 Algorithm
In the algorithm, we will construct two node-disjoint sets

of edges: a matching M and a 2-matching P . Initially, set
M ← ∅, and P ← ∅. Refer to Figure 9 for an illustration.

In phase I, we consider each pair (i, j) with i, j ∈ {1, 2,
. . . ,∆} sequentially, and for each pair (i, j) we process all
distinguishable edges e = {u, v} ∈ MG(i, j) in parallel: if
neither u nor v is covered by M , we add e to M . This phase
requires O(∆2) synchronous communication rounds.

In phase II, we consider each i ∈ {2, 3, . . . ,∆} sequentially.
Let Bi consist of the edges {u, v} ∈ EG such that dG(u) <
dG(v) = i and neither u nor v is covered byM . The subgraph
of G induced by Bi is bipartite; we can easily 2-colour it by
assigning the black colour to each node v with dG(v) = i

and the white colour to each node u with dG(u) < i. Hence
we can also find a maximal matching Mi in this subgraph
in O(i) rounds [13]:

• Each black node sends proposals to its white neigh-
bours, in the order of increasing port numbers, until a
proposal is accepted or the list of white neighbours is
exhausted.
• Each white node accepts the first proposal it gets (if

any), breaking the ties with its port numbers.

Each edge with an accepted proposal is added to Mi. After
constructing Mi, set M ← M ∪Mi, and proceed with the
next value of i. In total, phase II requires O(∆2) rounds.

In phase III, we consider the subgraph H induced by the
edges that are not yet covered by M . We find a 2-matching
P in H that dominates all edges in H. This is possible by
using a simple O(∆)-time algorithm [21] that constructs the
bipartite double cover H′ of H, finds a maximal matching
in the bipartite graph H′, and maps the matching back to
the original graph H. Informally, the algorithm proceeds as
follows:

• On odd rounds, each node sends proposals to its neigh-
bours, in the order of increasing port numbers, until
a proposal is accepted or the list of neighbours is ex-
hausted.
• On even rounds, each node receives proposals and ac-

cepts the first proposal it gets (if any), breaking the
ties with its port numbers.

Each edge with an accepted proposal is added to P . For a
node v of H, there are at most two edges incident to v in
P : an edge {v, u} such that v proposed and u accepted, and
another edge {v, t} such that t proposed and v accepted.

Finally, the algorithm outputs the set D = M ∪ P .

7.2 Feasibility
By construction, the set D dominates all edges. To see

this, let {v, u} ∈ EG be an edge that is not dominated by
M ; hence it is part of the subgraph H that we consider
in Phase III. If v does not send a proposal to u, then v
must have received an acceptance earlier and v is covered

by P . Otherwise u receives at least one proposal and hence
becomes covered by P .

7.3 Properties
Let us then proceed to analyse the approximation factor.

In the analysis, we need the following properties of M and P .

(a) The sets M and P are node-disjoint, M is a matching,
and P is a 2-matching in G.

(b) If v ∈ VG has an odd degree, then v is covered by M ,
or there is a neighbour u of v that is covered by M .

(c) If {v, u} ∈ P then dG(v) = dG(u).

The algorithm clearly preserves property (a). Property (b)
follows from phase I. To verify property (c), observe that if
dG(v) 6= dG(u), we would have covered v or u in phase II.

7.4 Definitions
For a set X ⊆ EG of edges, we say that a node v ∈ VG

is an X-node if it is covered by X. Hence each node is an
M -node, a P -node, or neither.

By property (b) above, we can construct a set C ⊆ EG of
edges such that (i) each edge e ∈ C joins a P -node and an
M -node, and (ii) each P -node with an odd degree is incident
to exactly one edge in C. Note that M , P , and C are disjoint
subsets of EG . Define F = EG \ (M ∪ P ∪ C).

Now let D∗ be an arbitrary maximal matching in G; in par-
ticular, D∗ can be a minimum maximal matching and hence
a minimum edge dominating set for G (recall Section 1.1).
We proceed to show that |D| is not too large in comparison
with |D∗|.

Each node covered byD∗ is called an internal node, and all
other nodes are called external nodes; we are primarily inter-
ested in internal P -nodes (nodes covered by P and D∗) and
external P -nodes (nodes covered by P but not D∗). Note
that each edge is incident to at most one external node; oth-
erwise D∗ would not be maximal.

7.5 Costs
We assign a cost c(v) to each internal node v as follows:

(i) Initially, c(v)← 0 for all v.
(ii) For each {u, v} ∈ D that connects an internal node u

and an external node v, we add c(u)← c(u) + 1.
(iii) For each {u, v} ∈ D that connects two internal nodes u

and v, we add c(u)← c(u)+1/2 and c(v)← c(v)+1/2.

By construction, 2c(v) ∈ {0, 1, 2, 3, 4}, and the total cost
of all internal nodes equals the size of the edge dominating
set D. Let I be the set of all internal nodes, and let Ix =
|{v ∈ I : c(v) = x/2}| be the number of internal nodes of cost
x/2. Observe that

2|D∗| = |I| =
∑

x Ix, 2|D| =
∑

x xIx.

If we had c(v) = 2 for all v ∈ I, we would have |D| = 4|D∗|.
In what follows, we show that not all internal nodes can have
c(v) = 2.

7.6 Weights
We assign a weight w(e) to each edge e ∈ EG as follows:

(i) If e = {u, v} ∈ F ∪ C and u is an external P -node, let
w(e) = 2.

(ii) If e = {u, v} ∈ P and u is an external P -node, let
w(e) = 2− dG(u).

(iii) Otherwise, w(e) = 0.

Let w(v) be the total weight of the edges incident to v ∈
VG . Observe that each edge with a non-zero weight connects
an external P -node to an internal node. Hence the total
weight w(EG) of all edges in the graph can be derived by
two equivalent means: (i) summing w(v) over all external
P -nodes v, and (ii) summing w(v) over all internal nodes v.
We use this observation in a double-counting argument.

7.7 Double Counting
Let v be an external P -node. There are at most 2 edges

in P that are incident to v, and hence at least 2dG(v) − 2
edges in F ∪C that are incident to v. Hence the total weight
is w(v) ≥ 0. In particular, the total weight of all edges in
the graph is non-negative.

In the following, we consider an internal node v, and derive
an upper bound on w(v) as a function of c(v).

If c(v) = 2, then v has to be incident to two edges in D,
and these edges have to join v and an external node. Hence
the neighbours of v can be classified as follows: there are
two external nodes s and t, with {v, s} ∈ P , {v, t} ∈ P ;
there is one internal node u, with {v, u} ∈ D∗, and finally
dG(v) − 3 other nodes x1, x2, . . . , with {v, xi} ∈ F ∪ C. By
property (c), we have dG(v) = dG(s) = dG(t). Hence the
weights of the edges are w({v, s}) = w({v, t}) = 2 − dG(v),
w({v, u}) = 0, and w({v, xi}) ∈ {0, 2} for each i, depending
on whether xi happens to be an external P -node. It follows
that the total weight of incident edges is

w(v) ≤ 2(2− dG(v)) + (dG(v)− 3)2 = −2.

If c(v) = 3/2, then v has to have two neighbours, an exter-
nal P -node s and an internal P -node t such that {v, s} ∈ P
and {v, t} ∈ P . Again, dG(v) = dG(s), and hence we have
assigned the weight w({v, s}) = 2 − dG(v). There are two
sub-cases. First, if dG(v) = ∆, then v is also adjacent to an
M -node u such that {v, u} ∈ C; by the choice of w, we have
w({v, u}) = 0. In addition to s, t, and u, there are ∆ − 3
other nodes x1, x2, . . . adjacent to v; we have {v, xi} ∈ F
and hence w({v, xi}) ≤ 2. It follows that the total weight of
incident edges is

w(v) ≤ 2−∆ + (∆− 3)2 < ∆− 3.

Otherwise dG(v) ≤ ∆ − 1, and v is adjacent to dG(v) − 2
other nodes x1, x2 in addition to v; we have {v, xi} ∈ F ∪C
and hence w({v, xi}) ≤ 2. It follows that the total weight is

w(v) ≤ 2− dG(v) + (dG(v)− 2)2 ≤ ∆− 3.

If c(v) = 1, we always have at least two edges incident to v
with a non-positive weight: If v is incident to two edges in D,
then we have two internal P -nodes s and t with {v, s} ∈ P
and {v, t} ∈ P ; since each of s, t, and u is internal, these
edges have zero weight. Otherwise v is incident to only one
edge in D, let it be {v, s} ∈ D. In that case s has to be
an external node; hence there has to be another internal
node t with {v, t} ∈ D∗. The weight of {v, t} is zero, as
it joins a pair of internal nodes, and the weight of {v, s} is
2 − dG(v) ≤ 0 if {v, s} ∈ P and zero if {v, s} ∈ M . We
conclude that v is incident to at most dG(v)− 2 edges with
a positive weight; since the weight of any edge is at most 2,
we have the upper bound

w(v) ≤ (dG(v)− 2)2 ≤ 2∆− 4.

Finally, if c(v) ≤ 1/2, it is sufficient to note that v is
adjacent to another internal node u with {v, u} ∈ D∗, and
w({v, u}) = 0. Hence there are at most dG(v)− 1 edges inci-
dent to v with a positive weight; we have the upper bound

w(v) ≤ (dG(v)− 1)2 ≤ 2∆− 2.

Summing over all internal nodes i ∈ I, we can derive the
following upper bound on the total weight of all edges:

W = −2I4+(∆−3)I3+(2∆−4)I2+(2∆−2)I1+(2∆−2)I0.

Since 0 ≤ w(EG) ≤W , we have W ≥ 0 and

2I4 ≤ (∆− 3)I3 + (2∆− 4)I2 + (2∆− 2)I1 + (2∆− 2)I0.

7.8 Approximation Ratio
Now we are ready to derive an upper bound on the ap-

proximation ratio of the algorithm A(∆):

|D|
|D∗| =

∑
x xIx∑
x Ix

=
4I4 + 3I3 + 2I2 + I1
I4 + I3 + I2 + I1 + I0

= 4− 2I3 + 4I2 + 6I1 + 8I0
2I4 + 2I3 + 2I2 + 2I1 + 2I0

≤ 4− 2I3 + 4I2 + 6I1 + 8I0
(∆− 1)I3 + (2∆− 2)I2 + 2∆I1 + 2∆I0

≤ 4− 2

∆− 1
= 4− 1

k
;

here we have used the assumption that ∆ ≥ 3 and hence
3/∆ ≥ 2/(∆− 1). We conclude that α(∆) ≤ 4 − 1/k, and
Theorem 5 follows.

8. ACKNOWLEDGEMENTS
Thanks to Matti Åstrand, Patrik Floréen, Petteri Kaski,

Topi Musto, Valentin Polishchuk, Joel Rybicki, and Jara
Uitto for discussions, and to anonymous reviewers for their
comments. This work was supported in part by the Academy
of Finland, Grant 132380.

9. REFERENCES
[1] R. B. Allan and R. Laskar. On domination and

independent domination numbers of a graph. Discrete
Math., 23(2):73–76, 1978.

[2] D. Angluin. Local and global properties in networks of
processors. In Proc. 12th Symposium on Theory of
Computing (STOC 1980), pages 82–93. ACM Press,
1980.

[3] M. Åstrand, P. Floréen, V. Polishchuk, J. Rybicki,
J. Suomela, and J. Uitto. A local 2-approximation
algorithm for the vertex cover problem. In Proc. 23rd
Symposium on Distributed Computing (DISC 2009),
volume 5805 of LNCS, pages 191–205. Springer, 2009.

[4] M. Åstrand and J. Suomela. Fast distributed
approximation algorithms for vertex cover and set
cover in anonymous networks. In Proc. 22nd
Symposium on Parallelism in Algorithms and
Architectures (SPAA 2010). ACM Press, 2010.

[5] H. Attiya, M. Snir, and M. K. Warmuth. Computing
on an anonymous ring. J. ACM, 35(4):845–875, 1988.

[6] B. S. Baker. Approximation algorithms for
NP-complete problems on planar graphs. J. ACM,
41(1):153–180, 1994.

[7] P. Boldi and S. Vigna. An effective characterization of
computability in anonymous networks. In Proc. 15th
Symposium on Distributed Computing (DISC 2001),
volume 2180 of LNCS, pages 33–47. Springer, 2001.

[8] R. Carr, T. Fujito, G. Konjevod, and O. Parekh. A
2 1
10

-approximation algorithm for a generalization of
the weighted edge-dominating set problem. J. Comb.
Optim., 5(3):317–326, 2001.

[9] M. Chleb́ık and J. Chleb́ıková. Approximation
hardness of edge dominating set problems. J. Comb.
Optim., 11(3):279–290, 2006.

[10] A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak.
Fast distributed approximations in planar graphs. In
Proc. 22nd Symposium on Distributed Computing
(DISC 2008), volume 5218 of LNCS, pages 78–92.
Springer, 2008.

[11] R. Diestel. Graph Theory. Springer, 3rd edition, 2005.

[12] T. Fujito and H. Nagamochi. A 2-approximation
algorithm for the minimum weight edge dominating set
problem. Discrete Appl. Math., 118(3):199–207, 2002.

[13] M. Hańćkowiak, M. Karoński, and A. Panconesi. On
the distributed complexity of computing maximal
matchings. In Proc. 9th Symposium on Discrete
Algorithms (SODA 1998), pages 219–225. SIAM, 1998.

[14] M. Hańćkowiak, M. Karoński, and A. Panconesi. On
the distributed complexity of computing maximal
matchings. SIAM J. Discrete Math., 15(1):41–57,
2001.

[15] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan,
S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns.
NC-approximation schemes for NP- and
PSPACE-hard problems for geometric graphs. J.
Algorithms, 26(2):238–274, 1998.

[16] D. R. Kowalski and A. Malinowski. How to meet in
anonymous network. Theoret. Comput. Sci.,
399(1–2):141–156, 2008.

[17] C. Lenzen and R. Wattenhofer. Leveraging Linial’s
locality limit. In Proc. 22nd Symposium on Distributed
Computing (DISC 2008), volume 5218 of LNCS, pages
394–407. Springer, 2008.

[18] M. Naor and L. Stockmeyer. What can be computed
locally? SIAM J. Comput., 24(6):1259–1277, 1995.

[19] A. Panconesi and R. Rizzi. Some simple distributed
algorithms for sparse networks. Distributed Computing,
14(2):97–100, 2001.

[20] J. Petersen. Die Theorie der regulären graphs. Acta
Mathematica, 15(1):193–220, 1891.

[21] V. Polishchuk and J. Suomela. A simple local
3-approximation algorithm for vertex cover. Inform.
Process. Lett., 109(12):642–645, 2009.

[22] J. Suomela. Survey of local algorithms, 2009.
Manuscript submitted for publication.

[23] M. Yamashita and T. Kameda. Computing functions
on asynchronous anonymous networks. Mathematical
Systems Theory, 29(4):331–356, 1996.

[24] M. Yamashita and T. Kameda. Computing on
anonymous networks: Part I – characterizing the
solvable cases. IEEE Trans. Parallel Distrib. Systems,
7(1):69–89, 1996.

[25] M. Yannakakis and F. Gavril. Edge dominating sets in
graphs. SIAM J. Appl. Math., 38(3):364–372, 1980.

http://dx.doi.org/10.1016/0012-365X(78)90105-X
http://dx.doi.org/10.1016/0012-365X(78)90105-X
http://dx.doi.org/10.1016/0012-365X(78)90105-X
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1023/A:1011445210568
http://dx.doi.org/10.1023/A:1011445210568
http://dx.doi.org/10.1023/A:1011445210568
http://dx.doi.org/10.1023/A:1011445210568
http://dx.doi.org/10.1007/s10878-006-7908-0
http://dx.doi.org/10.1007/s10878-006-7908-0
http://dx.doi.org/10.1007/s10878-006-7908-0
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/
http://dx.doi.org/10.1016/S0166-218X(00)00383-8
http://dx.doi.org/10.1016/S0166-218X(00)00383-8
http://dx.doi.org/10.1016/S0166-218X(00)00383-8
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1006/jagm.1997.0903
http://dx.doi.org/10.1006/jagm.1997.0903
http://dx.doi.org/10.1006/jagm.1997.0903
http://dx.doi.org/10.1006/jagm.1997.0903
http://dx.doi.org/10.1006/jagm.1997.0903
http://dx.doi.org/10.1016/j.tcs.2008.02.010
http://dx.doi.org/10.1016/j.tcs.2008.02.010
http://dx.doi.org/10.1016/j.tcs.2008.02.010
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/BF02392606
http://dx.doi.org/10.1007/BF02392606
http://dx.doi.org/10.1016/j.ipl.2009.02.017
http://dx.doi.org/10.1016/j.ipl.2009.02.017
http://dx.doi.org/10.1016/j.ipl.2009.02.017
http://www.iki.fi/jukka.suomela/local-survey
http://www.iki.fi/jukka.suomela/local-survey
http://dx.doi.org/10.1007/BF01192691
http://dx.doi.org/10.1007/BF01192691
http://dx.doi.org/10.1007/BF01192691
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1137/0138030
http://dx.doi.org/10.1137/0138030

	Introduction
	Edge Dominating Sets and Matchings
	Centralised Polynomial-Time Algorithms
	Distributed Algorithms
	Algorithms in Port-Numbered Networks
	Contributions

	Preliminaries
	Port-Numbered Graphs
	Model of Computation
	Covering Maps

	Lower Bound Construction: Even Degree
	Graph
	Port Numbering
	Covering Map
	Approximation Ratio

	Lower Bound Construction: Odd Degree
	Graph
	Optimal Solution
	Covering Map
	Approximation Ratio

	Distinguishable Neighbours
	Optimal Algorithms for Regular Graphs
	Optimal Algorithms for Bounded-Degree Graphs
	Algorithm
	Feasibility
	Properties
	Definitions
	Costs
	Weights
	Double Counting
	Approximation Ratio

	Acknowledgements
	References

