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Abstract

We study the problem of clock synchronization in highly dynamic networks, where commu-
nication links can appear or disappear at any time. The nodes in the network are equipped with
hardware clocks, but the rate of the hardware clocks can vary arbitrarily within specific bounds,
and the estimates that nodes can obtain about the clock values of other nodes are inherently
inaccurate. Our goal in this setting is to output a logical clock at each node such that the logical
clocks of any two nodes are not too far apart, and nodes that remain close to each other in the
network for a long time are better synchronized than distant nodes. This property is called
gradient clock synchronization.

Gradient clock synchronization has been widely studied in the static setting, where the
network topology does not change. We show that the asymptotically optimal bounds obtained
for the static case also apply to our highly dynamic setting: if two nodes remain at distance
d from each other for sufficiently long, it is possible to upper bound the difference between
their clock values by O(d log(D/d)), where D is the diameter of the network. This is known
to be optimal even for static networks. Furthermore, we show that our algorithm has optimal
stabilization time: when a path of length d appears between two nodes, the time required until
the clock skew between the two nodes is reduced to O(d log(D/d)) is O(D), which we prove to
be optimal. Finally, the techniques employed for the more intricate analysis of the algorithm
for dynamic graphs provide additional insights that are also of interest for the static setting. In
particular, we establish self-stabilization of the gradient property within O(D) time.

1 Introduction

A core algorithmic problem in distributed computing is to establish coordination among the partici-
pants of a distributed system, which is often achieved through a common notion of time. Typically,
every node in a network has its own local hardware clock, which can be used for this purpose;
however, hardware clocks of different nodes run at slightly different rates, and the rates can change
over time. This clock drift causes clocks to drift out of synch, requiring periodic communication
to restore synchronization. However, communication is typically subject to delay, and although an
upper bound on the delay may be known, specific message delays are unpredictable. Consequently,
estimates for the current local time at other nodes are inherently inaccurate.
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A distributed clock synchronization algorithm computes at each node a logical clock, and the goal
is to synchronize these clocks as tightly as possible. Traditionally, distributed clock synchronization
algorithms focus on minimizing the clock skew between the logical clocks of any two nodes in the
network. The clock skew between two clocks is simply the difference between the two clock values.
The maximum clock skew that may occur in the worst case between any two nodes at any time
is called the global skew of a clock synchronization algorithm. A well-known result states that no
algorithm can guarantee a global skew better than Ω(D), where D denotes the diameter of the
network [1]. However, in many cases it is more important to tightly synchronize the logical clocks
of nearby nodes in the network than it is to minimize the global skew. For example, if a time
division multiple access (TDMA) protocol is used to coordinate access to a shared communication
medium in a wireless sensor network, it suffices to synchronize the clocks of nodes that interfere with
each other when transmitting. The problem of providing better guarantees on the synchronization
quality between nodes that are closer is called gradient clock synchronization. The problem was
introduced in a seminal paper by Fan and Lynch [7], where the authors show that a clock skew of
Ω(logD/ log logD) cannot be prevented between immediate neighbors in the network. The largest
possible clock skew that may occur between the logical clocks of any two adjacent nodes at any time
is called the local skew of a clock synchronization algorithm. For static networks, it has been proved
that the best possible local skew that an algorithm can achieve is bounded by Θ(logD) [15, 16].

While tight bounds have been shown for the static model, the dynamic case has not been as
well understood. A dynamic network arises in many natural contexts: for example, when nodes are
mobile, or when communication links are unreliable and may fail and recover. The dynamic network
model we consider in this article is general: it allows communication links to appear and disappear
arbitrarily, subject only to a global connectivity constraint (which is required to maintain a bounded
global skew). Hence the model is suitable for modeling various types of dynamic networks which
remain connected over time.

In a dynamic network the distances between nodes change over time as communication links
appear and disappear. Consequently, we divide the synchronization guarantee into two parts: a
global skew guarantee bounds the skew between any two nodes in the network at any time, and
a dynamic gradient skew guarantee that bounds the skew between two nodes as a function of the
distance between them and how long they remain at that distance.

In [11], three of the authors showed that a clock synchronization algorithm cannot react im-
mediately to the formation of new links, and that a certain stabilization time is required before
the clocks of newly-adjacent nodes can be brought into synch. The stabilization time is inversely
related to the synchronization guarantee: the tighter the synchronization required in stable state,
the longer the time to reach that state. Intuitively, this is because when strict synchronization
guarantees are imposed, the algorithm cannot change clock values quickly without violating the
guarantee, and hence it takes longer to react. The algorithm given in [11] achieves the optimal
trade-off between skew bound and stabilization time; however, its local skew bound is O(

√
D),

which is far from optimal.
In this article, we propose an algorithm, referred to as AOPT, that achieves the same asymptot-

ically optimal skew bounds as in the static model: if two nodes remain at distance d for sufficiently
long, the skew between them is reduced to O(d log(D/d)), where D is the dynamic diameter of the
network (corresponding roughly to the time it takes for information to propagate from one end of
the network to the other). The stabilization time of the algorithm, that is, the time to reach this
guarantee, is O(D).
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2 Related Work

The fundamental problem of synchronizing clocks in distributed systems has been studied exten-
sively and many results have been published for various models over the course of the last approxi-
mately 30 years (see, e.g, [20, 22, 23, 24]). Until recently, the main focus has been on bounding the
clock skew that may occur between any two nodes in the network. Using the well-known shifting
argument [20], which exploits the variable message delays to construct indistinguishable execu-
tions, it has been shown that a clock skew of D/2 cannot be prevented on any graph of diameter
D [1]. This lower bound holds even if clocks do not drift. Indistinguishable executions can also
be constructed by exploiting variable clock rates [5], which can be used together with the shifting
argument to prove a stronger lower bound of roughly D for algorithms that must ensure that all
clock values are always within a linear envelope of real time [16]. In light of these results, the
algorithm proposed by Srikanth and Toueg [24] is asymptotically optimal as it guarantees a skew of
at most O(D) between any two clocks. The accuracy of their algorithm is also optimal in the sense
that all clock values are within a linear envelope of real time, i.e., a better accuracy with respect
to real time cannot be guaranteed. A crucial shortcoming of this algorithm is that a clock skew of
Ω(D) may occur between neighboring nodes.

The problem of synchronizing clocks of nodes that are close-by as accurately as possible has
been introduced by Fan and Lynch [7]. In their work, the authors show that a clock skew of
Ω(logD/ log logD) between neighboring nodes cannot be avoided if the clock values must increase
at a constant minimum progress rate. Subsequently, this result has been improved to Ω(logD) [16].
If we take the minimum logical clock rate α, the maximum logical clock rate β, and the maximum
clock drift rate ρ into account, the more general statement of the lower bound is that a clock
skew of Ω(logbD), where b := min{1/ρ, (β − α)/(αρ)} cannot be avoided. The first algorithm
guaranteeing a sublinear bound on the worst-case clock skew between neighbors achieves a bound
of O(

√
ρD) [17, 18]. Recently, this result has been improved to O(logD) [15] (where the base of

the logarithm is a constant) and subsequently to O(logbD) [16]. Thus, tight bounds have been
achieved for static networks in which neither nodes nor edges fail.

The problem of synchronizing clocks in the presence of faults has also received considerable
attention (see, e.g., [4, 9, 13, 19, 21]). Some of the proposed algorithms are able to handle not
only simple crash failures but also Byzantine behavior, which is outside the scope of this article.
However, while these algorithms can tolerate a broader range of failures, their network model is
not fully dynamic as their results rely on the assumption that a large part of the network remains
non-faulty and stable at all times. For the fully dynamic setting, it has been shown that there is an
inherent trade-off between the clock skew S guaranteed between neighboring nodes that have been
connected for a long time and the time it takes to guarantee a small clock skew over newly added
edges. In particular, the time it takes to reduce the clock skew over new edges to O(S) is Ω(D/S),
where n denotes the number of nodes in the network [11]. In the same work, it is shown that for
S ∈ Ω(

√
ρD), there is an algorithm that reduces the clock skew between any two nodes to O(S) in

Θ(D/S) time. In this article, we show that S can be reduced to O(logbD), i.e., the same optimal
bound as for static networks can be achieved, while still establishing this bound within Θ(D/S)
time on newly formed edges.

Another notion of fault-tolerance is self-stabilization [3], i.e., the ability to recover correct
operation after a period of arbitrary transient faults. Many clock synchronization algorithms are
self-stabilizing simply because of their continuous strive for maintaining synchronization. However,
a strong gradient property is a more involved requirement than just minimizing the global skew,
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hence self-stabilization is not immediate for our algorithm; the previous works on the static case do
not yield this result. In contrast, in the dynamic setting, we exploit self-stabilization properties of
the algorithm in order to safely establish the gradient property on recently appeared edges (without
disrupting the guarantees for edges that have been present for a long time). Consequently, we obtain
self-stabilization of the gradient property as a corollary of our analysis.

3 Preliminaries

In this section we introduce the dynamic clock synchronization problem and the model for dy-
namic networks that will be used in this paper. We begin by reviewing classical (static) clock
synchronization.

Clock synchronization. In the clock synchronization problem, each node u is equipped with a
continuous and differentiable hardware clock Hu : R+

0 → R
+
0 , which is initialized to Hu(0) := 0. We

use hu(t) to denote the rate d
dtHu(t) at which node u’s hardware clock advances at time t.1 The

hardware clocks advance at roughly the rate of real time, but they suffer from clock drift bounded
by ρ ∈ (0, 1); formally, we assume that at all times t we have hu(t) ∈ [1− ρ, 1 + ρ] for all nodes u.
As a result, for any two times t1 ≤ t2 we have

(1− ρ)(t2 − t1) ≤ Hu(t2)−Hu(t1) ≤ (1 + ρ)(t2 − t1).

The objective of a clock synchronization algorithm (CSA) is to output a left-differentiable2

logical clock Lu : R+
0 → R

+
0 (also initialized to Lu(0) := 0), such that at all times, the logical clock

values of different nodes are close to each other (we elaborate on this requirement below). We use
lu(t) to denote the rate d

dtLu(t) of u’s hardware clock at time t. The logical clocks are also required
to have bounded drift: there must exist constants α, β > 0, such that for all t we have lu(t) ∈ [α, β].

In the algorithm we present in this paper, nodes always increase their logical clocks at either
the rate of their hardware clock hu(t), or at a rate of (1+µ) ·hu(t), where µ ∈ O(1) is a parameter
of the algorithm. Thus, the algorithm bounds the drift of the logical clocks, and we have that
α := 1− ρ and β := (1 + ρ)(1 + µ).

3.1 The Dynamic Graph Model

The estimate graph. In [12] two of the authors introduced an abstraction called the estimate
layer, which simplifies reasoning about CSAs. Synchronization typically involves periodic exchanges
of clock values between nodes, either through direct communication, or by other means (e.g.,
reference broadcast synchronization [6]). The estimate layer encapsulates all means by which nodes
can estimate the clock values of other nodes, and eliminates the need to reason explicitly about
delay bounds and other parameters of the system.

The estimate layer provides an estimate graph, where each edge {u, v} represents the fact that
node u has some means of estimating v’s current clock value and vice versa. The edges of the
estimate graph are not necessarily direct communication links between nodes (see [6] for examples).

1Unless otherwise specified, times are always in R
+

0 .
2This requirement can be dropped. It is introduced to simplify the presentation. The same results can be derived

even for discontinuous (in particular discrete) clocks by approximating the true clocks by left-differentiable functions
and accounting for the difference in the uncertainty of estimates.
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Node u is provided with a local estimate L̃v
u of Lv, whose accuracy is guaranteed by the estimate

layer:
∀t ∀u ∈ V, v ∈ Nu(t) : |Lv(t)− L̃v

u(t)| ≤ ǫ{u,v}, (1)

where ǫ{u,v} ∈ R
+ is called the uncertainty, or the weight, of the edge {u, v}, and Nu(t) is the set

of neighbors of u at time t, which will be formally introduced shortly. The uncertainty of a path
p = (u0, u1, . . . , uk), ǫp is defined as

ǫp :=

k∑

i=1

ǫ{ui−1,ui}.

In the sequel, we refer to estimate edges of the sort described above simply as edges; similarly,
when we say “the graph” we mean the estimate graph. We do not reason explicitly about the
communication graph, as the salient aspects of communication are encapsulated by the estimate
layer.

Dynamic networks. We consider dynamic networks over a fixed set of nodes V of size n := |V |.
Edge insertions and removals are modeled as discrete events controlled by a worst-case adversary.
In keeping with the abstract representation from [12], we say that there is an estimate edge {u, v}
between two nodes u, v ∈ V at time t ≥ 0 iff u and v have a means of obtaining clock value estimates
about each other at time t. As explained above, this does not necessarily mean that there is a direct
communication link between u and v at time t.

We do not assume that nodes detect the formation or failure of a communication link between
them at the same time, which introduces some asymmetry into the model. Hence, we model the
network as a directed dynamic graph G = (V,E), where E : R+

0 → 2(V ×V ) maps non-negative times
t to a set of directed estimate edges E(t) that exist at time t. If (u, v) ∈ E(t), then at time t node u
has an estimate for node v’s logical clock, but not necessarily vice-versa. Formally, the set of node
u’s neighbors at time t is defined as Nu(t) := {v | (u, v) ∈ E(t)}. We assume that any asymmetry
in the graph corresponds to the delay in nodes finding out about link status changes and is only
temporary; this is explained below.

In the following, we frequently refer to undirected edges {u, v}; when we write {u, v} ∈ E(t),
we mean that both (u, v) ∈ E(t) and (v, u) ∈ E(t). We say that edge {u, v} exists throughout a
time interval [t1, t2] if for all t ∈ [t1, t2] we have {u, v} ∈ E(t). By extension, a path p is said to
exist throughout [t1, t2] if all its edges exist throughout the interval.

Each undirected estimate edge {u, v} is associated with three parameters:

• The estimate uncertainty ǫ{u,v}, as explained above.

• The detection delay τ{u,v}. We assume that u and v detect if the edge disappears “at” the
respective other node within τ{u,v} ∈ R

+ time. Formally,

(a) if (u, v) /∈ E(t), then there is some time t′ ∈ [t− τ{u,v}, t + τ{u,v}] so that (v, u) /∈ E(t′);
and, symmetrically,

(b) if (v, u) /∈ E(t), then there is some time t′ ∈ [t− τ{u,v}, t+ τ{u,v}] so that (u, v) /∈ E(t′).

• We assume that u and v can exchange messages with message delay T{u,v}. More precisely,
nodes that share an estimate edge can actively exchange information if required (possibly
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through other nodes, if there is no direct communication link between them), and T{u,v}
bounds how long such communication might be delayed. Formally, if u sends a message at
time t and u ∈ Nv(t

′) for all t′ ∈ [t, t+ T{u,v}], then v will receive this message at some time
t′′ ∈ [t, t+ T{u,v}].3 If u is not during this entire interval in Nv, the message may or may not
be delivered; if it is delivered, however, it is guaranteed to arrive within the specified interval.

We remark that our algorithm will use explicit communication by messages as above only upon
formation of an edge, to perform a simple handshake.

Causality and the dynamic estimate diameter. While local message exchange may be in-
frequent, flooding techniques may ensure quick dissemination of timing information on a global
level without necessitating a large (amortized) number of messages per time unit. We therefore
characterize how information propagates through the dynamic graph without imposing a particular
communication structure. In this context, we are interested in the global skew. Our algorithm will
ensure that any node whose logical clock attains the current maximum clock value will run at the
speed of the hardware clock, i.e., no faster than at rate 1+ρ. Further, the logical clock of any node
always runs at least at rate 1−ρ. For estimating the global skew, the maximum logical clock speed
(1 + ρ)(1 + µ) is of no significance. More generally, this is true for any algorithm that satisfies an
optimal envelope condition, i.e., that guarantees the best approximation of real-time offered by the
hardware clocks.

For a synchronization message M sent from u at time t that is received by v at time t′ > t
let U(M) denote the uncertainty in its delay, i.e., in particular the receiver v knows that M was
in transit for at least t′ − t− U(M) time units (clearly, U(M) ≤ T{u,v} but potentially it is much
smaller).

We define the family of relations
η
 , η ∈ R

+
0 , on V ×R as specified below. Intuitively, for node

u and v, times t and t′ ≥ t, and a value η ≥ 0, (u, t)
η
 (v, t′) can be interpreted as follows. At

time t′, node v can lower bound u’s clock value at time t (hardware or logical) with an error of at
most η. Specifically,

• ∀u ∈ V, ∀t : (u, t) 0
 (u, t) (u knows its own clock perfectly).

• ∀u, v ∈ V, ∀t′′ ≥ t′ ≥ t, ∀η ∈ R
+
0 : (u, t)

η
 (v, t′) ⇒ (u, t)

η′
 (v, t′′), where η′ := η+ 4ρ

1+ρ (t
′′−t′)

(v knows that u’s clock runs at least at 1−ρ
1+ρ times the rate of v’s hardware clock. The maximum

error is obtained if u’s clock runs at rate 1 + ρ and v’s hardware clock runs at rate 1− ρ).

• If M is a message sent by v at time t′ and received by w at time t′′ ≥ t′, then ∀u ∈ V, ∀t ≤
t′, ∀η ∈ R

+
0 : (u, t)

η
 (v, t′) ⇒ (u, t)

η′
 (w, t′′), where η′ := η + (1− ρ)U(M) + 2ρ(t′′ − t′)

(u’s hardware clock progresses by at most (1 + ρ)(t′′ − t′) during the transit time, but w can
safely add (1− ρ)(t′′ − t′ − U(M)) to the estimate).

A fundamental lower bound [2] shows that the performance of a CSA in a static network
depends on the diameter of the network. In dynamic networks there is no immediate equivalent to

3Note that the neighbor relation seems to be “reversed” here in the prerequisite for the reception of a message.
This definition reflects that the estimate edge must exist for the node receiving the message. However, this detail is
irrelevant to the functionality of the algorithm.
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a diameter. Informally, the diameter corresponds to the time it takes (at most) for information to
spread from one end of the network to the other. The above relation integrates this information with
the amount of uncertainty that is attached to this communication; this is crucial in our scenario
comprising heterogeneous edges since, for instance, a communication path that is slower in terms
of the time it takes to traverse it might yield much more accurate estimates of clock values.

Definition 3.1 (Dynamic Estimate Radius and Diameter). Given a dynamic graph G, we say that
node v ∈ V has a dynamic estimate radius of Rv(t) at time t if for every u ∈ V , there is some t′ ≤ t

so that (u, t′)
Rv(t)
 (v, t), where Rv(t) is minimal with this property. Moreover, G has a dynamic

estimate diameter D(t) := maxv∈V {Rv(t)} (or simply “diameter” for short).

Because this definition refers to the actual communication, (some) dynamic estimate radii might
be much smaller than the dynamic diameter at the same instant of time. Moreover, both values
strongly depend on the structure of message exchange. However, the lower bounds from the static
case apply in the sense that the dynamic estimate diameter is lower bounded in terms of the maxi-
mum over all pairs of nodes v,w of the minimal sum of uncertainties on any possible communication
path from v to w. Hence, if the communication layer provides an asymptotically optimal dynamic
diameter, a global skew bound that behaves roughly as O(D(t)) (neglecting disturbances due to
large fluctuations of D(t)) is asymptotically optimal.

As the primary focus of this work is not on the global skew, we refrain from further discussing
these points except for the following remark. We can make an arbitrary node u0 artificially faster
(by multiplying its hardware clock rate by (1 + ρ)/(1 − ρ)) so that it is always the node with the
maximal hardware clock value in the network. This can be seen as replacing its hardware clock
by one of drift ρ̃ ≤ (1 + ρ)2/(1 − ρ) − 1 ≈ 3ρ. A CSA can easily guarantee that this node also
has the largest logical clock value in the network at all times. All our statements then apply if we
replace the drift bound ρ by ρ̃ and D(t) by Ru0

(t), which might be beneficial in networks with a
large discrepancy between D(t) and Ru0

(t).

3.2 Dynamic Clock Synchronization

Throughout the paper, we frequently refer to the skew on a path p = (u0, . . . , uk) at time t, by
which we mean |Lu0

(t)− Luk
(t)|. The goal of a CSA is to minimize the skew on all paths.

To measure the quality of a CSA we consider two kinds of requirements: a global skew constraint
which gives a bound on the difference between any two logical clock values in the system, and a
gradient skew constraint, which becomes stronger the closer two nodes u, v are in the subgraph
induced by the edges that have been present for a sufficiently long time to stabilize. In particular,
for nodes that remain neighbors for a long time, the gradient skew constraint imposes a much
smaller permissible clock skew than the global skew constraint.

Definition 3.2 (Global Skew). For any time t, a CSA guarantees a global skew of G(t), if for any
two nodes u, v ∈ V it holds that Lu(t)− Lv(t) ≤ G(t).

Definition 3.3 (Stable Gradient Skew). Given a non-decreasing function S : R+
0 → R

+
0 , we say

that a CSA A guarantees a stable gradient skew of S with stabilization time TS if for each time t
and each path p = (u0, . . . , uk) that exists throughout [t− TS, t], we have that

Lu0
(t)− Luk

(t) ≤ S(ǫp).
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More generally, one can express the skew bound as a function of the length of the time interval
during which the path p existed (cf. [10]). The literature on gradient clock synchronization (e.g., [8,
11, 16, 18]) is typically concerned with the local skew of a CSA, which bounds the skew on any
single edge. The local skew can be considered equivalent to the stable gradient skew S(1), provided
that all edges are of uniform weight 1.

The stable gradient skew and the stabilization time are functions of D, a bound on the dynamic
estimate diameter of the network that held for sufficient time (and are thus inherently dependent on
t as well), and potentially other parameters such as the bound on the clock drift ρ or the minimum
edge weight. We usually omit these dependencies to simplify the notation.

4 An Optimal Dynamic Gradient CSA

In this section we describe a CSA AOPT which achieves the optimal stable gradient skew, and
reaches this stable skew in the optimal stabilization time, in light of the trade-off presented in
Section 8. We begin in Section 4.1 by introducing the overall strategy used to achieve a stable skew
of Θ(d log(D/d)) in static graphs; this strategy also underlies the design of the dynamic algorithm.
In Section 4.2, we give an informal overview of the algorithm, and the technical details follow in
Section 4.3. We remark that both the description of the algorithm and in particular its analysis
given in Section 5 is complicated by a number of technical details that need to be resolved, but
may obfuscate the key ideas behind the reasoning. We refer the reader to [14] for a simplified
presentation in a less involved (but unrealistic) model focusing on the key aspects of the problem
and its analysis.

4.1 Achieving a Stable Skew of Θ(d log(D/d))

The optimal static algorithm [12, 16] and the algorithm we present here share the same high-level
structure. Both achieve a (static or stable) gradient skew of Θ(d logσ(D/d)) on paths of length
(or weight) d, where the base σ of the logarithm is a function of the parameter µ and the drift
ρ. In this section we introduce several notions that underlie the design of both algorithms. For
simplicity, we ignore here the dynamic behavior of the graph, and present the static-graph version
of the definitions (as used in [12, 16]), assuming that all edge weights are 1. This version is simpler
than the weighted dynamic-graph version and is helpful in understanding the dynamic algorithm.
In Section 5 we give the full dynamic versions of these notions and use them to analyze the dynamic
skew of the algorithm.

The static algorithm is based on a discretized version of the gradient skew requirement. Let
C = {Cs}s∈N be the non-increasing sequence defined by Cs := D/σs. The algorithm guarantees
the following condition (up to constants we neglect here): for any path p = (u0, . . . , uk) and any
integer s ∈ N, if the path p has length dp ≥ Cs, then at all times t we have

Lu0
(t)− Luk

(t) ≤ s · dp.

This discretized condition is equivalent to the standard Θ(d logσ(D/d))-gradient skew requirement:
if p is a path of length dp, then for s = ⌈logσ(D/dp)⌉ we have

Cs =
D

σ⌈logσ(D/dp)⌉
≤ dp,
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and therefore the discretized condition asserts that the skew on p is no greater than s · dp =
⌈logσ(D/dp)⌉ · dp ∈ Θ(dp logσ(D/dp)).

From the algorithm’s point of view, the discretized condition divides the paths into levels, where
paths of level s are of length d ≈ D/σs and the skew on such paths is upper bounded by s ·d. If we
evenly distribute the permissible skew over the edges of the path, we see that each of the d edges
should only contribute a skew of roughly s to the total. And indeed, this is exactly what each node
executing the algorithm tries to accomplish: it tries to ensure that for all s ∈ N, none of its edges
exhibit a skew of more than s. Similarly, in the weighted version of the static algorithm [12], each
node tries to ensure that no adjacent edge of weight we carries a skew of more than s · we, so that
when we sum over all the edges of a path p of weight wp the total skew will be no more than s ·wp.
The overall gradient skew is then O(wp · logσ(D/wp)), a direct generalization of the unweighted
case.

The description above is informal but we will see that tests of the form “is there some neighbor
whose clock is more than s ·we ahead or behind?” make up the basis of the algorithm. Essentially,
through such tests nodes check if their adjacent edges contribute more than their fair share of the
skew on some path.

If a node finds that the skew over some of its edges is too large, it can adjust the speed of its
logical clock to compensate. The algorithm uses only two rates, a slow rate and a fast rate. When
a node uses the slow rate we say that it is in slow mode, and when it uses the fast rate we say that
it is in fast mode. At the heart of the algorithm are the rules for deciding which mode to use; we
proceed to describe these rules, which are based on the static rules from [12, 16] but also take into
account the dynamic behavior of the graph.

4.2 Overview of the Algorithm

When an edge first appears, the algorithm is first concerned with reducing the skew on long paths
that contain the edge. Once this is accomplished, it allows the skew on shorter paths to also be
reduced, and then on even shorter paths, until eventually the skew on individual edges is reduced to
its stable value. In some sense, the algorithm takes the global skew G, which cannot be avoided, and
redistributes it throughout the network until the gradient property is satisfied. Notice that longer
paths have a larger (that is, weaker) gradient skew bound, so they are in some sense easier to deal
with. In particular, for the longest paths in the network, the gradient skew bound is the same as
the global skew bound. Since the global skew bound holds for any two nodes in the network, it can
never be violated by adding new edges, so these longest paths immediately satisfy their gradient
skew requirement as soon as they appear.

Neighbor sets. Throughout the algorithm, each node partitions its neighbors according to the
amount of time it has had an edge to each neighbor. More precisely, each node u maintains an
ordered list N0

u , N
1
u , . . . of neighbor sets, where N0

u ⊇ N1
u ⊇ . . .. To simplify the presentation we

initially assume an infinite list of sets; we will later see that nodes only need to store a finite prefix
of the list, but we defer this discussion to a later point. Moreover, as the neighbor sets change at
discrete times, we need a convention what N s

u(t) means if the set is modified at time t. We define
that if node v is added to N s

u at time t− and removed at time t+ (without intermediately leaving
the set) then v ∈ N s

u(t) for all t ∈ [t−, t+]. We assume that the neighbor sets change only finitely
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often in finite time, implying that for all u, v, and s, the set {t | v ∈ N s
u(t)} is closed.4

Informally, if v ∈ N s
u at time t, then at time t node u is concerned with maintaining a good

skew on paths of level s containing edge {u, v}. In contrast, if v 6∈ N s
u, then node u is “not worried”

about level s paths containing {u, v}. Accordingly, when an edge {u, v} is discovered, node u first
adds v to N0

u , then after some time it adds v to N1
u , and so on. Recall from Section 4.1 that the

index s of a level decreases as the length of the path in the level increases, so adding edges in the
order N0

u , N
1
u , . . . corresponds to dealing first with longer paths and then with shorter ones.

Specifically, when node u first discovers edge {u, v}, it immediately adds v to N0
u ; hence Nu =

N0
u , because this is the set of all neighbors that node u has discovered. Each of the remaining sets

is updated within time Θ(G/µ). The sets are updated in a loosely synchronized manner. Both
nodes u and v coordinate adding the edge {u, v} to their respective sets. In a time interval during
which nodes add edges to their level s neighbor set N s

u, we can only show non-trivial gradient
skew guarantees for levels different from s. In order to always have non-trivial guarantees for the
skew on paths of all lengths, we need to loosely synchronize the insertions of different edges such
that insertions of different edges on different levels are sufficiently separated from each other. The
details appear in Section 4.3.

Whenever a node u discovers that one of its edges {u, v} has disappeared, it immediately
removes node v from all neighbor sets N0

u , N
1
u , . . . Finally, for simplicity, we assume that at time

0, Nu(0) contains all edges that are present at time 0 and all neighbor sets N s
u are initialized to

Nu(0), i.e., for all s ≥ 0, N s
u(0) = Nu(0) as there is no violation at time 0.

The fast and slow conditions. Each edge e is associated with a weight κe, which roughly
corresponds to the uncertainty ǫe of the edge. The algorithm is designed to guarantee the following
conditions governing when a node is in fast or in slow mode. These conditions are not the actual
rules used by nodes to determine when to enter fast or slow mode, but we will see in Section 4.3
that the rules are quite similar; the conditions we give here refer to the clock values of neighbors,
which a node cannot estimate exactly, and the actual triggers for entering fast or slow mode have
to compensate for this inaccuracy. We will see in Section 5 that the fast and slow mode triggers
(given in Section 4.3) implement the fast and slow mode conditions (given below).

The first condition, FC, specifies when a node u must be in fast mode. It states that some
neighbor in N s

u is “too far ahead of u”, and no other neighbor in N s
u is “too far behind”, where

“too far” here roughly corresponds to s times the weight of the edge (as outlined in Section 4.1).

Definition 4.1 (FC: The Fast Mode Condition). For all s ∈ N, u ∈ V , and times t, if

• For some w ∈ N s
u(t) we have Lw(t)− Lu(t) ≥ s · κ{u,w}, and

• For all v ∈ N s
u(t) we have Lu(t)− Lv(t) ≤ s · κ{u,v} + 2µτ{u,v},

then node u is in fast mode at time t.

The term 2µτ{u,v} in the second requirement compensates for the drift that can accumulate on
an edge while only one of its endpoints is aware of its existence (recall that the length of this period
is bounded by τ{u,v}).

4This convention simplifies the notation in our proofs. However, since clocks are continuous functions, this
convention does not bear any implication for the behavior of the algorithm.
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The condition SC for being in slow mode is roughly symmetric to the fast mode condition: it
states that some node in N s

u is “too far behind u”, and no other node in N s
u is “too far ahead”.

The condition uses a value δ > 0 that corresponds to the smallest uncertainty in the network. An
exact value will be defined in Lemma 5.2; the algorithm is oblivious of δ and is correct if there
exists any such δ > 0 under which the slow mode condition is satisfied, and Lemma 5.2 shows that
such a value exists.

Definition 4.2 (SC: The Slow Mode Condition). For all s ∈ N, u ∈ V , and times t, if

• For some w ∈ N s
u(t) we have Lu(t)− Lw(t) ≥

(
s+ 1

2

)
· κ{u,w} − δ, and

• For all v ∈ N s
u(t) we have Lv(t)− Lu(t) ≤

(
s+ 1

2

)
· κ{u,v} + δ + µ(1 + ρ)τ{u,v},

then node u is in slow mode at time t.

The slow mode condition uses a slightly different value for “too far” from the fast mode condi-
tion. There are two immediate reasons for this: first, the conditions for being in fast mode and in
slow mode must be mutually exclusive, otherwise a node might be required to be in both modes
at the same time; hence the term (s + 1/2) instead of s. And second, the slack δ is necessary to
smooth out the discontinuities that occur when a neighbor is removed from N s

u, by providing a
small region around (s+1/2) ·κe in which a neighbor of u that is behind u can still keep node u in
slow mode. Lemma 6.5 below captures this intuition formally and shows how the slack δ is used.
Moreover, for technical reasons in SC a smaller term of (1 + ρ)µτ{u,v} is sufficient to address the
issue that skew may accumulate while only one endpoint of an edge is aware of the edge.

Note that the fast and slow mode conditions are disjoint, and their union does not cover the en-
tire state space. In such cases nodes choose their mode according to their estimate of the maximum
logical clock in the network, as described below.

Max estimates. As in [11, 16, 17, 18], each node maintains a local estimate Mu of the maximum
logical clock value in the network. Max estimates are computed by flooding: each node always
adds its current estimate Mu to each message it sends, and updates the estimate conservatively so
that it cannot exceed the actual maximum logical clock value in the system. When a node receives
a larger max estimate from some neighbor, it updates its own max estimate to match. The max
estimates are computed such that the following constraints can be guaranteed.

Condition 4.3. If the dynamic graph has a dynamic estimate diameter of D(t), then for all t ≥ 0
and for all nodes u we have

Mu(t) ≤ max
v∈V

{Lv(t)} , (2)

Mu(t) ≥ max
v∈V

{Lv(t)} −D(t), (3)

Mu(t) ≥ Lu(t), (4)

Specifically, node u updates its max estimate Mu as follows. Whenever Mu = Lu, node u
increases Mu at the rate of its logical clock. If Mu > Lu, node u has to make sure that it only
increases Mu at a rate such that Mu remains upper bounded by the largest logical clock Lv in the
network. As the largest logical clock progresses at rate at least 1− ρ and node u’s hardware clock
progresses at rate at most 1 + ρ, this can be achieved if u increases Mu at rate 1−ρ

1+ρ times the rate

11



of its hardware clock. These rules suffice to guarantee (2) and (4). In order to also guarantee (3),
nodes piggy-back their current max estimate to each message sent. Whenever a node u receives a
message from a node v, u increases its max estimate to the largest possible value such that Mu is
guaranteed to remain upper bounded by Mv (or by the existing max estimate Mu if that is larger).
Condition (3) now follows directly from the definition of D(t).

Note that as a result of Condition 4.3, the max estimate of any node is always accurate up to
the diameter D(t). In addition, (4) asserts that nodes cannot set their logical clock ahead of their
max estimate. The max estimate Mu(t) is used to determine the mode of node u when neither FC
nor SC are satisfied.

Definition 4.4 (MC: The Max Estimate Condition). For all u ∈ V and times t:

• If Lu(t) = Mu(t) and for all v ∈ Nu(t), we have Lu(t) ≥ Lv(t), then node u is in slow mode
at time t.

• If Lu(t) ≤ Mu(t) − ι and for all v ∈ Nu(t), we have Lu(t) ≤ Lv(t), then node u is in fast
mode at time t,

where ι > 0 is some small constant used to separate the two conditions.5

Global skew estimates. At all times t ≥ 0, the algorithm requires each node u to have an
estimate G̃u(t) of the global skew G(t). We require that

For all nodes u ∈ V and for all times t ≥ 0, G̃u(t) ≥ G(t). (5)

It turns out that a lack of guarantees on the accuracy of these estimates and/or their speed of
change over time and across the network significantly complicates edge insertion. For the sake of
a more accessible presentation, we thus assume a static (i.e., neither time- nor node-dependent)
global skew estimate

For all times t ≥ 0, G̃ ≥ G(t). (6)

for now. Note that G̃ must be chosen conservatively, as it must bound the global skew for all
times, and thus relying on it may result in unnecessarily slow edge insertions. We will discuss how
to adapt edge insertion to the much weaker condition (5) in Section 7, alongside a proof of the
resulting (time-dependent) gradient property.

4.3 Detailed Description of the Algorithm

We describe the parameters and constants used to define the algorithm, the local variables main-
tained at each node, and finally the continuous and discrete transitions that modify these variables.

4.3.1 Parameters and Constants

ρ: As specified in Section 3, the constant ρ ∈ (0, 1) specifies an upper bound on the drift of the
hardware clocks.

5The analysis of the algorithm goes through even if we change the condition for entering fast mode to Lu(t) <

Mu(t). However, such a requirement cannot be realized, because there is no “first point in time” when Lu(t) < Mu(t).
To ensure that the algorithm is realizable we make sure that when we require a node to be in a certain mode, the
conditions of the requirement form a closed region, and are strictly separated from any other requirement.
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µ: This parameter governs the fastest possible logical clock rate. In slow mode, the logical clock
is increased at the same rate as the hardware clock, and in fast mode the rate of the hardware
clock is multiplied by 1 + µ. The value of µ is bounded from below as a function of the drift ρ,
because we must ensure that a node in fast mode is always faster than a node in slow mode, even
when the hardware clock progresses slowly for the node in fast mode and quickly for the node in
fast mode. To ensure that for any u, v ∈ V we always have (1 + µ)hu(t) > hv(t) it is sufficient to
require (1 + µ)(1− ρ) > 1 + ρ, which is equivalent to σ > 1 (see below). For technical reasons, we
require that

µ ≤ 1

10
. (7)

σ: The base of the logarithm in the desired gradient skew function, which is Θ(d logσ(D/d)). To
obtain the best asymptotic gradient skew bound, we set

σ :=
(1− ρ)µ

2ρ
> 1, (8)

and control the base of the logarithm by setting the value of µ appropriately. Clearly, we must
require that σ > 1, which imposes the constraint that µ > 2ρ/(1− ρ).

κ{u,v}: Each edge {u, v} ∈
(V
2

)
is associated with a weight κ{u,v}, corresponding roughly to the

uncertainty ε{u,v}. The weights must satisfy

κ{u,v} > 4(ǫ{u,v} + µτ{u,v}). (9)

The term 4µτ{u,v} compensates for the time during which the edge {u, v} only exists for one of its
nodes u and v. Otherwise, the asymmetric behavior could result in one of the nodes erroneously
being in fast mode (or, similarly, slow mode). Therefore, the time uncertainty of τ{u,v} with respect
to the symmetric existence of edges is reflected in κ with a prefactor of µ; we remark that µ also
occurs as a factor in a term contributing to ǫ{u,v} (in any system), as there must be a non-zero
delay for propagating information about Lu to v.

4.3.2 Local Variables

Each node u maintains the following local variables throughout the execution of the algorithm.

Lu: the logical clock of node u.

multu: the current rate-multiplier for node u’s logical clock. It can take only two values, 1 or
1+µ; when u is in slow mode we have multu = 1, and when u is in fast mode we have multu = 1+µ.

Mu: node u’s current estimate for the maximum logical clock in the network.

Nu = N0

u
: the set of all neighbors node u is aware of.

N1

u
,N2

u
, . . .: the neighbor sets of node u for each of the levels it maintains.
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G̃u: the nodes’ current global skew estimate. We assume that at all times t, G̃u(t) is an upper

bound on the actual global skew at time t. Prior to Section 7, we assume that simply G̃u(t) = G̃
for all nodes and times.

T0
{u,v} < T1

{u,v} < T2
{u,v} < . . .: the logical times for adding edge {u, v}. For each edge

{u, v} and each s = 1, 2, . . . , nodes u and v decide on logical times T
{u,v}
1 , T

{u,v}
2 , . . . when they add

the respective neighbor to their respective level-s neighbor set. That is, node u adds v to N s
u when

its logical clock reaches Lu(t) = T
{u,v}
s . For convenience, each node also maintains a logical time

T
{u,v}
0 that is used to define the times T

{u,v}
s for s ≥ 1. Note that the nodes u and v use the same

values for T
{u,v}
0 , T

{u,v}
1 , . . ., but because their logical clocks are not perfectly synchronized, they

may update their neighbor sets at different times. For each edge {u, v}, the times T
{u,v}
1 , T

{u,v}
2 , . . .

define a converging sequence, so that edges can be added on all infinite levels in finite time. In
fact, in the analysis we assume that all nodes update all sets, that is, they use infinite levels. Note

however, that only a O(log G̃) levels are needed in the algorithm. Further, the times T
{u,v}
s only

depend on T
{u,v}
0 and on G̃{u,v}. All neighbor sets N s

u(t) are therefore implicitly given by Lu(t)
and some bounded additional information for each edge {u, v}, so that the sets N s

u(t) could be
maintained by only managing a constant number of values per edge.

4.3.3 Rules for Updating the Local Variables

The algorithm makes three kinds of discrete transitions: the first kind occurs when a node discovers
the formation or failure of a communication link. The second kind occurs when a node u’s logical

clock reaches an update time T
{u,v}
s for some s ∈ N and an incident new edge. The responses to

these events are given in Listing 1.
The third and final kind of transition is triggered when the slow mode trigger, the fast mode trig-

ger, or the max estimate triggers, which correspond to SC, FC, and MC and will be stated shortly,
require the node to change its mode; the logic governing a node’s mode is shown in Listing 3. When
no trigger holds and MC does not hold, the node is free to choose its mode nondeterministically;
for example, it can stay in its current mode until it is required to switch modes.6

Between discrete transitions the value of each node u’s logical clock increases at a rate of
lu = multu · hu(t). In the remainder of the section we describe the algorithm’s discrete transitions.

Coordinating with new neighbors and calculating the insertion times. When a new edge
is formed, the two nodes start a simple protocol during which they agree on the logical times for
adding each other to the respective neighbor sets. For simplicity, we assume that for each potential
edge {u, v}, one of the two nodes u and v is the leader of the edge. This can for example be
determined by assuming that nodes u and v have unique identifiers.7 Assume that node u is the
leader of an edge {u, v}. As soon as node u discovers the edge {u, v}, it starts the protocol for
adding {u, v}. In order to make sure that also node v has discovered the edge, node u first waits for

6For simplicity it is assumed that the code in Listing 3 is evaluated continuously, so that, for example, as soon as
the fast mode trigger holds for some node, that node is already in fast mode. An implementation of the algorithm
can achieve this by adding a small “guard region” to the conditions, and changing mode before the triggers hold. All
the triggers are strictly separated from each other, so such regions can be added to each trigger.

7If we drop the assumption that we can predefine a leader for each potential edge, it would be possible to use a
more complicated handshake protocol to coordinate between the two nodes of an edge.
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Listing 1: Responses to other events at node u

1 ∆ :=
(1+ρ)(1+µ)(T{u,v}+τ{u,v})

1−ρ + τ{u,v}
2 when formation of an edge {u, v} to node v is discovered:
3 N0

u := N0
u ∪ {v}

4 if u is the leader of the edge {u, v} then
5 wait for at least ∆ time
6 if v ∈ N0

u(t
′) for all t′ with Lu(t

′) ∈ [Lu(t)− (1 + ρ)(1 + µ)∆, Lu(t)] then

7 G̃{u,v} := G̃u // we assume G̃u = G̃, except in Section 7

8 Lins := Lu + G̃{u,v} + (1 + ρ)(1 + µ)T{u,v}
9 send insertedge

(

{u, v} , Lins , G̃{u,v}

)

to v

10 call computeInsertionTimes
(

{u, v} , Lins , G̃{u,v}

)

11 when receiving message insertedge
(

{u, v} , Lins , G̃
)

from node v:

12 wait for at least T{u,v} + τ{u,v}, but at most ∆− τ{u,v} time

13 if v ∈ N0
u(t

′) for all t′ with Lu(t
′) ∈ [Lu(t)− (1 + ρ)(1 + µ)(T{u,v} + τ{u,v}), Lu(t)] then

14 call computeInsertionTimes
(

{u, v} , Lins , G̃
)

15 when failure of an edge to node v is discovered:
16 foreach s ∈ {0, 1, . . .} do
17 N s

u := N s
u \ {v}

18 T
{u,v}
s := ⊥

19 when Lu = T {u,v}
s

(for some s and v)
20 N s

u := N s
u ∪ {v}

at least τ{u,v} time units (w.r.t. real time). If the edge exists throughout that waiting period, node

u decides on a global skew estimate G̃{u,v} for the edge insertion (which is just node u’s current

global skew estimate G̃u) and a logical time to start adding the edge. Node u sends this information
to node v. If node v sees the edge when receiving the information, it computes the edge insertion
times based on the received information. The protocol guarantees that a) either both nodes insert
the edge or they do not start inserting or cancel the insertion within τ{u,v} time units of each other,
and b) if both nodes insert the edge, they use the same insertion times and global skew estimate
for the insertions. For further details and a formal argument, we refer to Lemma 5.5. Pseudo-code
of the coordination protocol is given in Listing 1. The computation of the insertion times based
on a logical time for start inserting and a given global skew estimate is given in Listing 2. When
inserting an edge {u, v}, u and v compute a time interval of length I{u,v} during which the edge

{u, v} is inserted on all levels. The duration I{u,v} depends on the global skeq estimate G̃{u,v} of the
edge and it is computed differently depending on whether we work with a fixed, static global skew
estimate G̃ or whether the global skew estimate is allowed to be dynamically adapted. Outside
Section 7, we assume the global skew estimate to be a fixed value G̃. The insertion duration I{u,v}
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Listing 2: Calculating insertion times

1 procedure computeInsertionTimes
(

{u, v} , L, G̃
)

:

2 Compute I{u,v} := I(G̃{u,v}) according to (10) or (11)

3 T
{u,v}
0 := min

{

T ≥ L : T
I{u,v}(G̃)

∈ Z

}

4 for s ∈ {1, 2, . . . } do

5 T
{u,v}
s := T

{u,v}
0 +

(
1− 1

2s−1

)
I{u,v}(G̃)

of an edge {u, v} is then computed as

I{u,v} := I(G̃) :=
(
20(1 + µ)

(1− ρ)
+ 56µ +

8 + 56µ

σ

)

· G̃
µ
. (10)

In Section 7, we show how our clock synchronization algorithm can adapt to a changing global
skew. In this case, the time for inserting an edge has to be chosen larger mainly because we need to
make sure that the time is chosen such that it is based on a global skew estimate that holds during
the complete insertion process. The insertion time is further increased because the insertions of
different edges might use different global skew estimates and thus, the times of inserting the edges on
different levels are harder to coordinate (and separate) properly. For details, we refer to Section 7.
In the case of a dynamic global skew, the insertion duration I{u,v} of an edge {u, v} is computed as

I{u,v} := I(G̃{u,v}) := 2⌈log2 ℓ{u,v}⌉, (11)

where ℓ{u,v} := (1 + ρ)(1 + µ)(δ{u,v} + 2τ{u,v}) + 8B ·
G̃{u,v}

µ
.

The parameter B is a constant that is introduced for convenience and which has to satisfy the
following conditions:

µ

2ρ
≥ B ≥ 320 · 27

(1− ρ)2
. (12)

We note that together with (7), the above inequality directly implies that for the dynamic global
skew analysis in Section 7, we can assume that

ρ

(1− ρ)2
≤ 1

6400 · 27 . (13)

In the technical analysis, we sometimes use I for I(G̃), if G̃ is clear from the context. Note that

the sequence T
{u,v}
1 , T

{u,v}
2 , . . . converges to

T {u,v}
∞ := T

{u,v}
0 + I{u,v}.

Also note that although the sequence is infinite, it (and also the sets N s
u) can be implicitly stored

using only bounded information. Further, if an edge {u, v} with leader u appears at time t, the
total time to insert {u, v} on all levels is in the order of

Θ
(
T{u,v} + τ{u,v} + I{u,v}

)
⊆ O

(

T{u,v} + τ{u,v} +
G̃u(t)

µ

)

.
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Listing 3: Setting the rate of node u’s logical clock

1 if the slow mode trigger is satisfied then
2 multu := 1

3 else if the fast mode trigger is satisfied then
4 multu := 1 + µ

5 else // Neither slow nor fast mode trigger are satisfied; check for max

estimate triggers

6 if Lu =Mu then
7 multu := 1

8 else if Lu ≤Mu − ι then
9 multu := 1 + µ

For convenience, for a given execution and a level s ≥ 1, we define Ts to be the set of all level s

insertion times T
{u,v}
s used for any possible edge {u, v} at any time. Further, we define T :=

⋃

s≥1 Ts

to be the set of all edge insertion times of a given execution.

The fast and slow mode triggers. The rules for deciding when to enter the fast mode or the
slow mode correspond to the conditions from Section 4.2, but they compensate for the uncertainty
of the clock estimates to ensure that the conditions are satisfied. The triggers for switching modes
are as follows.

Definition 4.5 (Fast Mode Trigger). Node u satisfies the fast mode trigger at time t if there exists
an integer s ∈ N such that

• For some w ∈ N s
u(t) we have L̃w

u (t)− Lu(t) ≥ s · κ{u,w} − ǫ{u,w}, and

• For all v ∈ N s
u(t) we have Lu(t)− L̃v

u(t) ≤ s · κ{u,v} + 2µτ{u,v} + ǫ{u,v}.

The slow mode trigger incorporates some slack, which we also encountered in Definition 4.2; we
now define it as a parameter δe for each edge e, and require

δe ∈
(

0,
κe
2

− 2ǫe − 2µτe

)

.

This constraint ensures that the fast mode and the slow mode triggers are mutually exclusive (see
Lemma 5.3). We note that κe

2 − 2ǫe − 2µτe > 0 due to (9), which constrains the choice of κe.

Definition 4.6 (Slow Mode Trigger). Node u satisfies the slow mode trigger at time t if there
exists an integer s ∈ N such that

• For some w ∈ N s
u(t) we have Lu(t)− L̃w

u (t) ≥
(
s+ 1

2

)
κ{u,w} − δ{u,w} − ǫ{u,w}, and

• For all v ∈ N s
u(t) we have L̃v

u(t)− Lu(t) ≤
(
s+ 1

2

)
κ{u,v} + δ{u,v} + ǫ{u,v} + µ(1 + ρ)τ{u,v}.

The fast and slow mode triggers are disjoint (as we will prove later), and since both are closed
regions, they are strictly separated from each other: there are some states that satisfy neither
condition. In these in-between regions, nodes choose their mode based on the max-estimate trigger,
which ensures that MC is satisfied.
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Definition 4.7 (Max Estimate Triggers). Node u satisfies the fast max estimate trigger at time t
if the slow mode trigger is not satisfied and Lu(t) ≤ Mu(t) − ι. It satisfies the slow max estimate
trigger at time t if the fast mode trigger is not satisfied and Lu(t) =Mu(t).

The code implementing these triggers is shown in Listing 3.

5 Analysis

In this section, we analyze the algorithm described in Section 4 and bound its worst-case global
and dynamic gradient skew.

5.1 Basic Properties

We begin with some basic properties which were stated informally in Section 4. Essentially, in
this subsection we show that the algorithm behaves “as intended,” which is the foundation for our
subsequent reasoning about skews. The first property states that the neighbor set N s

u is a subset
of N s−1

u for all s ≥ 1 at all times.

Lemma 5.1. For all u ∈ V , at all times t ≥ 0 we have Nu(t) = N0
u(t) and N s

u(t) ⊆ N s−1
u (t) for

all s ≥ 1.

Proof. At time 0, the neighbor sets are initialized to N s
u(0) = Nu(0) for all s ≥ 0. Further, for

every edge e = {u, v} of node u, the update times T e
s are reached in order s = 1, 2, . . ., and at

each such time, we only add to N s
u nodes that already belong to N1

u , . . . , N
s−1
u . Therefore node

additions preserve the property.
Nodes are only removed from neighbor sets in Line 17 of Listing 1. As a node is removed from

all the neighbor sets, also node removals preserve the property claimed by the lemma. Formally,
the claim of the lemma therefore follows by induction on node u’s discrete transitions.

In Section 4.2 we introduced the fast and slow mode conditions (FC and SC), and claimed
that the algorithm implements these conditions; now we prove this claim. Our goal is to show that
when the inaccuracy of the estimates is taken into account, the fast and the slow mode triggers hold
whenever the fast and the slow mode conditions apply, respectively. Likewise, the max estimate
condition MC is satisfied by the algorithm.

Lemma 5.2. Algorithm AOPTsatisfies the fast and slow mode conditions, as well as the max
estimate condition.

Proof. Let us start with FC. Suppose that the antecedent of FC holds at node u: that is, there is
some s ∈ N such that for some w ∈ N s

u(t) we have

Lw(t)− Lu(t) ≥ s · κ{u,w}, (14)

and for all v ∈ N s
u(t) we have

Lu(t)− Lv(t) ≤ s · κ{u,v} + 2µτ{u,v}. (15)

The estimate L̃w
u (t) that node u has for node w satisfies Lw(t) ≤ L̃w

u (t) + ǫ{u,w}, and combined
with (14) we obtain

L̃w
u (t)− Lu(t) ≥ s · κ{u,w} − ǫ{u,w}.
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Similarly, for all v ∈ N s
u(t) we have Lv(t) ≤ L̃v

u(t) + ǫ{u,v}, so from (15),

Lu(t)− L̃v
u(t) ≤ s · κ{u,v} + 2µτ{u,v} + ǫ{u,v}.

Hence the fast mode trigger is satisfied and node u is in fast mode.
Now consider SC. Define δ := mine∈E{δe} > 0, and suppose that for this value of δ the

antecedent of SC holds at node u: there is some s ∈ N such that for some w ∈ N s
u(t) we have

Lu(t)− Lw(t) ≥
(

s+
1

2

)

κ{u,w} − δ, (16)

and for all v ∈ N s
u(t) we have

Lv(t)− Lu(t) ≤
(

s+
1

2

)

κ{u,v} + δ + µ(1 + ρ)τ{u,v}. (17)

Now we use the other direction of the estimate accuracy guarantee: for all w ∈ N s
u(t) we have

Lw(t) ≥ L̃w
u (t)− ǫ{u,w}. In particular, since δ ≤ δ{u,w} for any w ∈ N s

u(t), from (16) we obtain

Lu(t)− L̃w
u (t) ≥

(

s+
1

2

)

κ{u,w} − δ − ǫ{u,w} ≥
(

s+
1

2

)

κ{u,w} − δ{u,w} − ǫ{u,w}.

Moreover, when replacing w with v we get that Lv(t) ≥ L̃v
u(t) − ǫ{u,v}, which together with (17)

yields

L̃v
u(t)− Lu(t) ≤

(

s+
1

2

)

κ{u,v} + δ + ǫ{u,v} + µ(1 + ρ)τ{u,v}

≤
(

s+
1

2

)

κ{u,v} + δ{u,v} + ǫ{u,v} + µ(1 + ρ)τ{u,v}.

Therefore the slow mode trigger is satisfied, and node u is in slow mode.
It remains to show that the algorithm also satisfies the max estimate condition MC. Suppose

first that MC requires the node to be in slow mode. ThenMu(t) = Lu(t) and the fast mode trigger
cannot be satisfied, as there is no neighbor v ∈ Nu with Lv > Lu. Thus, u is in slow mode either
because the slow mode trigger applies or because neither the slow nor fast mode trigger applies and
Lu(t) =Mu(t), cf. Listing 3.

Similarly, if MC requires the node to be in fast mode, Mu(t) ≥ Lu(t) − ι and there is no
neighbor v ∈ Nu with Lv > Lu. Hence, the slow mode trigger is not satisfied and u will be in fast
mode. Hence, the max estimate condition MC is satisfied.

Next we show that the slow and fast mode triggers are never in conflict. While this statement
is not needed for deriving the guarantees of the algorithm, we could not actually implement the
algorithm if it did not hold.

Lemma 5.3. For all u ∈ V , the slow and fast mode triggers are never satisfied at the same time.

Proof. Suppose for the sake of contradiction that for some node u ∈ V and time t, the fast mode
trigger is satisfied for an integer s and the slow mode trigger is satisfied for an integer s′. We
consider two cases.

19



I. s ≤ s′. Due to Lemma 5.1, we have that N s′
u (t) ⊆ N s

u(t) in this case. Because the slow mode
trigger is satisfied for s′, there is a node w ∈ N s′

u such that

Lu(t)− L̃w
u (t) ≥

(

s′ +
1

2

)

κ{u,w} − δ{u,w} − ǫ{u,w}. (18)

However, since w ∈ N s′
u (t) ⊆ N s

u(t), the second part of the fast mode condition applies to w,
and it states that

Lu(t)− L̃w
u (t) ≤ s · κ{u,w} + ǫ{u,w} + 2µτ{u,w}. (19)

Combining (18) and (19) yields

(

s′ +
1

2

)

κ{u,w} − δ{u,w} − ǫ{u,w} ≤ s · κ+ ǫ{u,w} + 2µτ{u,w}

≤ s′ · κ+ ǫ{u,w} + 2µτ{u,w}.

By re-arranging the terms, we obtain

κ{u,w} ≤ 4ǫ{u,w} + 4µτ{u,w} + 2δ{u,w}. (20)

However, recall that δe is chosen in the range (0, κe/2− 2ǫe− 2µτe) for each edge e. Therefore
4ǫ{u,w} + 4µτ{u,w} + 2δ{u,w} < κ{u,w}, contradicting (20).

II. s > s′, that is, s ≥ s′ + 1. In this case Lemma 5.1 states that N s
u(t) ⊆ N s′

u (t). Because the
fast mode trigger is satisfied for s, there is some node w ∈ N s

u(t) such that

L̃w
u (t)− Lu(t) ≥ s · κ{u,w} − ǫ{u,w}. (21)

Because w ∈ N s
u(t) ⊆ N s′

u (t), the second part of the slow mode trigger also applies to w:

L̃w
u (t)− Lu(t) ≤

(

s′ +
1

2

)

κ{u,w} + δ{u,w} − ǫ{u,w} + µ(1 + ρ)τ{u,w}. (22)

As before, we combine (21) and (22) and obtain

(

s′ +
1

2

)

κ{u,w} + δ{u,w} + ǫ{u,w} + µ(1 + ρ)τ{u,w} ≥ s · κ{u,w} − ǫ{u,w}

≥ (s′ + 1)κ{u,w} − ǫ{u,w}.

Re-arranging the terms yields

κ{u,w} ≤ 4ǫ{u,w} + 2δ{u,w} + 2µ(1 + ρ)τ{u,w}. (23)

However, since ρ < 1, we have 2µ(1 + ρ)τ{u,w} < 4µτ{u,w}, and since δ{u,w} < κ{u,w}/2 −
2ǫ{u,w} − 2µτ{u,w}, we have 4ǫ{u,w} + 2δ{u,w} + 2µ(1 + ρ)τ{u,w} < κ{u,w}, contradicting (23).
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Finally, we characterize the behavior of the neighbor coordination mechanism introduced in
Section 4.3 to ensure that nodes add each other as neighbors in a roughly symmetric manner.
Intuitively, node u is trying to insert (or has inserted) edge {u, v} at time t if and only if its

variables T
{v,w}
s 6= ⊥ at time t. If the edge disappears in the view of one of the nodes, at the latest

τ{v,w} time later this happens also for the other, and both stop considering the edge for evaluating
their mode until it is reinserted. However, for the sake of the analysis, we want to discard the

initial time period in which it is possible that not both u and v agree on the values T
{v,w}
s ; this

time period is irrelevant, since neither node will actually add the edge to one of its neighbor sets
for s ∈ N before this agreement is established. This is captured by the following definition and
lemma. We state them for the general case that G̃u(t) is not constant, as this does not affect the
proof of the lemma and will be of use in Section 7.

Definition 5.4. For any node u and any time t, we define the set T
{u,v}
u (t) :=

{

T
{u,v}
0 , . . . , T

{u,v}
∞

}

,

where T
{u,v}
s , s ∈ N0 refers to the state of u’s respective variable at time t. We simply write

T
{u,v}
u (t) = ⊥ if u never computed these variables or set them to ⊥ according to Algorithm 1.

If T
{u,v}
u (t) 6= ⊥, denote by T

{u,v}
u,0 (t) the time T

{u,v}
0 ∈ T

{u,v}
u (t); otherwise, T

{u,v}
u,0 (t) := ∞.

We define the Boolean variable

A{u,v}
u (t) :=

(

T{u,v}
u (t) 6= ⊥∧ t ≥ min

{

T
{u,v}
u,0 (t), T

{u,v}
v,0 (t)

})

.

Lemma 5.5. For every (potential) edge {u, v} and for all t ≥ 0, the following three statements are
true:

(I)
(
A{u,v}

u (t) ∧ A{u,v}
v (t)

)
=⇒ T{u,v}

u (t) = T{u,v}
v (t),

(II)
(
A{u,v}

u (t) ∧ ¬A{u,v}
v (t)

)
=⇒

(
¬A{u,v}

u (t+ τ{u,v}) ∧ ¬A{u,v}
v (t+ τ{u,v})

)
,

(III)
(
¬A{u,v}

u (t) ∧ A{u,v}
v (t)

)
=⇒

(
¬A{u,v}

u (t+ τ{u,v}) ∧ ¬A{u,v}
v (t+ τ{u,v})

)
.

Proof. Without loss of generality, assume that node u is the leader of edge {u, v}. If node u has

never discovered neighbor v before time t, we have A{u,v}
u (t) = false and because v can only start

inserting the edge after receiving a message from u, we also have A{u,v}
v (t) = false. Hence, we can

assume that there has been a time t′ ≤ t when u discovered neighbor v. Let t be the last such time
before t.

Case 1: A{u,v}
u

(t) = true. Thus, v ∈ Nu(t
′) for all t′ ∈ [t, t]. Consequently, u ∈ Nv(t

′) for all
t′ ∈ [t+ τ{u,v}, t− τ{u,v}]. Abbreviate

∆ :=
(1 + ρ)(1 + µ)(T{u,v} + τ{u,v})

1− ρ
+ τ{u,v}.

At the logical time tS when Lu(tS) − Lu(t) = (1 + ρ)(1 + µ)∆, u sent a message to v, inform-

ing it about the times T
{u,v}
u (t), by communicating the global skew estimate G̃{u,v} = G̃u(tS)

and Lins = Lu(tS) + G̃u(tS) + (1 + ρ)(1 + µ)T{u,v}. Based on these parameters, in the call to

computeInsertionTimes, the logical time T
{u,v}
u,0 is set to a value of at least Lins . Let t0 be the time

such that min {Lu(t0), Lv(t0)} = T
{u,v}
u,0 . We claim that t0 ≥ tS + T{u,v}. To see this, consider any
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node w ∈ {u, v} and bound

Lw(tS + T{u,v}) ≤ Lw(tS) + (1 + ρ)(1 + µ)T{u,v}
≤ Lv(tS) + G(tS) + (1 + ρ)(1 + µ)T{u,v}
≤ Lv(tS) + G̃u(tS) + (1 + ρ)(1 + µ)T{u,v}
= Lins

≤ T
{u,v}
u,0 .

In particular, the definition of t implies that t ≥ t0 ≥ tS + T{v,w}.

Case 1a: A{u,v}
v

(t) = true. In this case we need to show that T
{u,v}
u (t) = T

{u,v}
v (t) in order

to establish (I). Denote by tR the maximal time in [0, t] when v received an insertedge({u, v} , ·, ·)
message from u; such a time must exist, as otherwise A{u,v}

v (t) = false. Because u waits for at least
∆ time after an edge has formed (from u’s perspective) before sending a message, v cannot receive
any other insertedge({u, v} , ·, ·) message from u during [tS−∆+T{u,v}, tR] ⊇ [tR−T{u,v}−τ{u,v}, tR].
We claim that u ∈ Nv(t

′) for all t′ ∈ [tR − T{u,v} − τ{u,v}, t]. Otherwise, v would satisfy T
{u,v}
s = ⊥

for all s ∈ {0, 1, . . .} at some time t′ ∈ [tR − T{u,v} − τ{u,v}, t], and if there is only such a t′ < tR, it
would have ignored the message received at time tR because

Lv(tR − T{u,v} − τ{u,v}) ≥ Lv(tR)− (1 + ρ)(1 + µ)(T{u,v} + τ{u,v}).

We conclude that the message sent by u at time tS is received by v; therefore, tR ∈ [tS , tS + T{u,v}]
is actually the time when this message is received. (I) now follows because tS + T{u,v} ≤ t0 ≤ t,

v computes T
{u,v}
v (tR) = T

{u,v}
u (tS) upon reception of the message, and v does not change these

variables again until time t.

Case 1b: A{u,v}
v

(t) = false. In this case we need to show that
(
¬A{u,v}

u (t+ τ{u,v})∧¬A{u,v}
v (t+

τ{u,v})
)
in order to establish (II). We claim that there is a time t′ ∈ [tS − ∆ + τ{u,v}, t] so that

u /∈ Nv(t
′). Otherwise, we had u ∈ Nv throughout [tS −∆+ τ{u,v}, t] and v would receive and not

discard the message by u, as

Lv(tR) ≥ Lv(tS) ≥ Lv

(
tS −∆+ τ{u,v}

)
+ (1 + ρ)(1 + µ)(T{u,v} + τ{u,v}).

However, this would entail that A{u,v}
v (t) = true, so indeed such a time t′ must exist.

Denote by t′′ ∈ [t′ − τ{u,v}, t
′ + τ{u,v}] ⊆ [tS −∆, t + τ{u,v}] a time so that v /∈ Nu(t

′′); by the
communication model, such a time exists. In fact, we have that t′′ > tS , as the edge must be
continuously present from the perspective of u for (1 + ρ)(1 + µ)∆ local time, i.e., since at least

∆ real time, before it sends a message. Therefore, u will set T
{u,v}
s := ⊥ for all s ∈ {0, 1, . . .} at

time t′′. While the definition of t admits that u may observe the reappearance of the edge at a

time larger than t, u will not recompute the values T
{u,v}
s or send another message to v by time

t+ τ{u,v}. This implies that also v does not recompute its values T
{u,v}
s during [t′′, t+ τ{u,v}], and

it follows that
(
¬A{u,v}

u (t+ τ{u,v}) ∧ ¬A{u,v}
v (t+ τ{u,v})

)
, as claimed.

Case 2: A{u,v}
u

(t) = false ∧A{u,v}
v

(t) = true. In this case we need to show that
(
¬A{u,v}

u (t+

τ{u,v})∧ ¬A{u,v}
v (t+ τ{u,v})

)
in order to establish (III). Denote by tR the latest time before t when

v received an insertedge({u, v} , ·, ·) message from u; as A{u,v}
v (t) = true, such a time must exist.
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Denote by tS ∈ [tR −T{u,v}, tR] the time when it was sent. Note that A{u,v}
v (t) = true also implies

that v neither discarded the message, i.e., it recomputed the times T
{u,v}
s at time tR, nor did it set

T
{u,v}
s := ⊥ for any s during [tR, t]. Hence, u ∈ Nv(t

′) for all t′ ∈ [tR − T{u,v} − τ{u,v}, t]. We infer
that v ∈ Nu(t

′) for all t′ ∈ [tR−T{u,v}, t− τ{u,v}] ⊆ [tS , t− τ{u,v}]. This implies that u cannot detect
the reappearance of the edge during this interval and thus will not call computeInsertionTimes

during (tS , t+ τ{u,v}]; it follows that A{u,v}
u (t+ τ{u,v}) = false.

To see that also A{u,v}
v (t+ τ{u,v}) = false, note that since A{u,v}

u (t) = false, it must hold that
v /∈ Nu(t

′) for some t′ ∈ [tS , t]. Therefore, u /∈ Nv(t
′′) for some t′′ ∈ [tS − τ{u,v}, t + τ{u,v}] ⊆

[tR − T{u,v} − τ{u,v}, t + τ{u,v}]. As u ∈ Nv(t
′) for all t′ ∈ [tR − T{u,v} − τ{u,v}, t], we obtain that

t′′ ∈ (t, t+ τ{u,v}] ⊆ (tR, t+ τ{u,v}]. Consequently, v resets T
{u,v}
s := ⊥ for all s ∈ {0, 1, . . .} at time

t′′ ∈ (tR, t+ τ{u,v}], yielding that A{u,v}
v (t+ τ{u,v}) = false. This proves Statement (III), concluding

the proof.

5.2 The Global Skew

Like its predecessors in [12, 16], our algorithm achieves an asymptotically optimal global skew. In
static networks of diameter D where each message has an uncertainty U in its transit time, the best
possible global skew guarantee is Θ((ρ+U)D) [12, 16], and the dynamic estimate diameter satisfies
D(t) ∈ Ω((ρ + U)D) at all times. Let D := maxtD(t) be the maximal network uncertainty of a
given execution of our algorithm. In the following, we show that the algorithm always guarantees
a global skew of O(D). In fact, we show the following stronger statement:

Theorem 5.6. Let ι be defined as in Definition 4.4.

I. On any dynamic graph executing AOPT, at any time the global skew increases at rate at most
2ρ.

II. On any dynamic graph executing AOPT, at any time t when the global skew exceeds D(t) + ι,
it decreases at rate at least µ(1− ρ)− 2ρ > 0.

Proof. It suffices to show that (i) any node with the largest clock value throughout the network is
in slow mode and (ii) whenever the global skew exceeds D(t) + ι, any node with the smallest clock
value in the network is in fast mode. The theorem then follows because any clock in slow mode is
at most 2ρ faster than any other clock and

(1 + µ)(1 − ρ)− (1 + ρ) = µ(1− ρ)− 2ρ
(8)
> 0.

Let u and v be nodes with the largest and smallest logical clock values at an arbitrary time t,
respectively. By Inequalities (2) and (4), we have Mu(t) = Lu(t). Provided that G(t) = Lu(t) −
Lv(t) > D(t) + ι, from Inequality (3) it follows that Mv(t) ≥ Lu(t)−D(t) > Lv(t)− ι. Therefore,
due to the max estimate condition MC, we conclude that Statements (i) and (ii) are true, yielding
the claims of the theorem.

Note that Statement II. of the theorem implies that the global skew is self-stabilizing in the
sense that it is reduced at an asymptotically optimal rate of µ(1− ρ)− 2ρ ∈ Ω(µ) when it exceeds
the best possible guarantee. One could add a simple consistency check mechanism to the algorithm
that forces logical clocks to be instantaneously set to close values (i.e., violate the progress bound
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of (1 + ρ)(1 + µ)) whenever a global skew exceeding a certain multiple of D(t) is detected. While
(together with self-stabilizing implementations of the algorithms rules and neighbor sets) this would
ensure quick stabilization from arbitrarily corrupted states, such behavior might be undesired if
D(t) decreases rapidly in a fault-free execution, as clock values would change too rapidly; this could
also cause violations of the gradient skew bound.

5.3 Analysis of the Gradient Skew

5.3.1 Preliminary Definitions and Statements

As described in Section 4.1, the gradient skew requirement states that paths of certain lengths
cannot have an average skew that exceeds a certain bound. In particular, for every positive integer
s, there is a length Cs such that paths p of length κp ≥ Cs have an average skew of at most O(sκe)
per edge e, where the values Cs are exponentially decreasing in s. Since in the process of the
analysis we will have to use different such sequences Cs, we do not explicitly define the values here,
but will work with an abstract gradient sequence as defined in the following Definition 5.7 for most
of the analysis.

Definition 5.7 (Gradient Sequences). A gradient sequence is a non-increasing sequence of values
C = {Cs}s∈N.

The specific sequences that will later be used to prove the gradient skew properties of the
algorithm roughly look as follows. At all times t, we have C1 ≥ 2G(t). As a consequence, the
gradient skew property for level 1 will follow directly from the bound on the global skew. Further,
for most levels s, we have Cs+1 = Cs/σ such that also for short paths, we obtain a sufficiently
strong requirement on the skew.

We have seen that the different values of s correspond to different average skew bounds.
Throughout the proof, we will mostly make arguments for a particular such level s. In the fol-
lowing, we define the sets of edges and paths used when arguing about level s.

Definition 5.8 (Level-s Edge Set). For all s ∈ N, we define

Es(t) :=

{

{u, v} ∈
(
V

2

) ∣
∣
∣ v ∈ N s

u(t) ∧ u ∈ N s
v (t)

}

.

Definition 5.9 (Level-s Paths). We define for all u0 ∈ V , s ∈ N, and all times t the set of level-s
paths starting at node u0 at time t to be

P s
u0
(t) := {p = (u0, . . . , uk) | ∀i ∈ {0, . . . , k − 1} : {ui, ui+1} ∈ Es(t)}.

For convenience of notation, we also define reversed and concatenated paths.

Definition 5.10 (Path Reversal and Concatenation). Given the path p = (u0, . . . , uk), the corre-
sponding reversed path is p̄ := (uk, . . . , u0). Given two paths p = (u0, . . . , uk) and q = (uk, . . . , uℓ),
their concatenation is p ◦ q := (u0, . . . , uk, . . . , uℓ).

Note that for all levels s and all times t, reversal and concatenation of level-s paths again yield
level-s paths.

In addition, we define two notions of “weighted skew”, essentially capturing how far away certain
paths are from the level-s skew bound. The multiplicative factors in the two conditions correspond
to the factors in the fast and slow mode condition FC and SC.
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Definition 5.11. For all paths p = (u, . . . , v), all s ∈ N, and all times t we define

ξsp(t) := Lu(t)− Lv(t)− sκp.

We further define for all u ∈ V that

Ξs
u(t) := max

p∈P s
u(t)

{ξsp(t)}.

Definition 5.12. For all paths p = (u, . . . , v), all s ∈ N, and all times t we define

ψs
p(t) := Lv(t)− Lu(t)−

(

s+
1

2

)

κp.

Furthermore, we set for all u ∈ V

Ψs
u(t) := max

p∈P s
u(t)

{ψs
p(t)}.

A gradient sequence C defines what clock skew is allowed on different paths. Rather than
directly defining a gradient skew requirement as described in Section 4.1, we define a condition
that is based on the value introduced in Definition 5.12. If this requirement is satisfied, we say that
the system is legal. Legality is formally defined as follows.

Definition 5.13 (Legality). Given a weighted, dynamic graph G and a gradient sequence C, for
each s ∈ N the system is (C, s)-legal at time t and node u ∈ V , if and only if it holds that

Ψs
u(t) <

Cs

2

The system is C-legal at t and u if it is (C, s)-legal for all s ∈ N at node u and time t.

The legality definition can be used to derive an upper bound on the clock skew between any
two nodes u and v.

Lemma 5.14. Assume that for some s ∈ N and a path p = (u, . . . , v) ∈ P s
u(t), the system is

(C, s)-legal at nodes u and v at time t. Then, |Lv(t)− Lu(t)| < (s+ 1/2)κp + Cs/2.

Proof. Since the system is (C, s)-legal at u at time t, we have that

Lv(t)− Lu(t)−
(

s+
1

2

)

κp = ψs
p(t) ≤ Ψs

u(t) <
Cs

2
.

We therefore get that Lv(t)−Lu(t) < (s+1/2)κp+Cs/2. From legality at v and because p ∈ P s
u(t)

implies that the reversed path is in P s
v (t), we get the same upper bound on Lu(t)− Lv(t).

We now show a few simple properties that follow from the various definitions and the basic
structure of the algorithm.

Lemma 5.15. The following statements hold at all times t and all nodes u ∈ V .

(i) ∀s, s′ ∈ N, s′ ≤ s: P s
u(t) ⊆ P s′

u (t).

(ii) ∀s, s′ ∈ N, s′ ≤ s: Ψs
u(t) ≤ Ψs′

u (t).

(iii) If for some s ∈ N the system is (C, s)-legal and Cs = Cs+1, then the system is also (C, s+1)-
legal.

Proof. Statement (i) is a direct consequence of Lemma 5.1 and Definition 5.9. Statement (ii) follows
from Definition 5.12 together with Statement (i). Finally, Statement (iii) follows from Statement (ii)
together with Definition 5.13.
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5.3.2 Stabilization Condition and Convergence to Small Skews

In order to prove the claimed bound on the stabilization time, we require a stabilization condition,
which depends on the s-legality of the system for a certain s ∈ N. For ease of presentation, for
every s ∈ N, we define a parameter that will be used in the definition of the stabilization condition,
as well as throughout the remainder of the proof.

∀s ≥ 2 : Θs :=
Cs−1

(1 + ρ)µ
. (24)

Definition 5.16 (Stabilization Condition). For a node u ∈ V , a gradient sequence C, an integer
s > 1, and a time t, we say that u satisfies the (C, s)-stabilization condition at time t if and only if

(S0) For all t′ ∈ [t−Θ2, t], we have C1 ≥ 2G(t′).

(S1) For all s′ ∈ {2, . . . , s− 1} and all nodes v ∈ V for which |Lu(t) − Lv(t)| ≤ s′Cs′−1 +
(
2ρ +

µ(1 + ρ)
)
Θs′, the system is (C, s′)-legal at node v at all times in [t−Θs′ , t].

(S2) We have:
∀Ts ∈ Ts : |Lu(t)− Ts| ≥ (1 + µ)(1 + ρ)Θs + sCs−1

A simple observation is that the stabilization condition directly implies level-1 legality.

Lemma 5.17. Let t ≥ 0 be a time and assume that condition (S0) of the stabilization condition
holds at some node u ∈ V at some time t′ ∈ [t, t+Θ2]. Then the system is (C, 1)-legal at all nodes
v ∈ V at time t.

Proof. Consider arbitrary nodes v,w ∈ V . For any path p = (v, . . . , w), we have

ψ1
p(t) = Lw(t)− Lv(t)−

3

2
κp < |Lw(t)− Lv(t)| ≤ G(t)

(S0)

≤ C1

2
.

Given Definition 5.13, this implies that v is (C, 1)-legal at time t.

This can be seen as an induction anchor, starting from which increasingly stronger bounds can
be established for higher levels s. The core theorem of our analysis, stated next, provides the
matching induction step.

Theorem 5.18. Fix a level s > 1, a node u ∈ V and an interval [t−, t+]. Let Λs := Cs−1/(2(1 −
ρ)µ), and suppose that for each t ∈ [t−, t+] and for each path (u, . . . , v) ∈ P s

u(t), if κ(u,...,v) ≤ Cs−1,
then the endpoint v satisfies the (C, s)-stabilization condition at time t. In this case, for all

t ∈
[
t− + Λs + 2Θs, t

+
]

we have

Ψs
u(t) < 2ρΛs =

ρCs−1

(1− ρ)µ
=
Cs−1

2σ
.

Proving this theorem is technically challenging, but self-contained. Therefore, we postpone its
proof to Section 6, in order to show how it is used to establish the desired gradient skew first.
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5.3.3 Derivation of Skew Bounds

We now have all the necessary technical tools to prove the gradient skew bound of our algorithm.
As pointed out earlier, our algorithm has some self-stabilization [3] properties in the following sense:
Even if we start the algorithm from a configuration in which no non-trivial gradient skew bound
holds, the system adapts and converges to a state in which the desired gradient skew bound holds.
Edge insertion exploits this by adding edges level by level, every time waiting until the respective
level and all higher levels have stabilized to small skews again. This entails that, at any given time,
for level-s paths all but at most one level contributes a reduction by factor σ to the skew bound
given by level-s legality. Taking into account the connection between logical clock values and real
time, this motivates the following definition.

Definition 5.19 (Gradient Sequences for Static Global Skew Estimate). Set

∆s :=

(

1− 1

2s−1

)

I(G̃) +
(

5(1 + µ)

2(1 − ρ)µ
+ 2s

)

Cs−1. (25)

Fix a time t and let L(t) be maximal satisfying that L(t) ≤ Lu(t) for all u ∈ V and that L(t)/I(G̃) ∈
Z. Then, for s ∈ N, u ∈ V , and a parameter Ĝ, define

C(t,u)
s :=

{
2Ĝ

σs−1 if Lu(t) ≥ L(t) + ∆s
2Ĝ

σmax{s−2,0} else.

The next lemma shows that the system is legal at all nodes and times with respect to the
above gradient sequences, granted that Ĝ is an upper bound on the global skew and there is some
initial time period of length Λ2 + 3Θ2 ∈ O(Ĝ) during which the system is legal. For simplicity,
we also make the assumption that σ ≥ 3. However, by modifying the insertion times computed in
Algorithm 2 (using a base depending on σ), one can handle any σ > 1; the downside is that I(G̃)
goes to infinity as σ approaches 1.

Lemma 5.20. Assume that σ ≥ 3 and that the system is C(t,u)-legal at all times t ∈ [t0, t0+Λ2+3Θ2]
and nodes u. If Ĝ ≥ G(t) for all t ≥ t0, then the system is C(t,u)-legal at all times t ≥ t0 and nodes u.

Proof. Assume for contradiction that there is a node u ∈ V and a minimal time t̄ > t0 +Λ2 + 3Θ2

violating C(t̄,u)-legality.8 Because C
(t,u)
1 ≥ 2Ĝ ≥ 2G(t) for any t ≥ t0, (S0) is satisfied at time t

at any node v ∈ V . In particular, this is true for node u and time t̄, yielding that the system
is (C(t̄,u), 1)-legal at node u and time t̄ by Lemma 5.17. Let s̄ > 1 be the minimal level on

which legality is violated at node u and time t̄. By Lemma 5.15, this implies that C
(t̄,u)
s̄ 6= C

(t̄,u)
s̄−1 .

Therefore, Lu(t̄) /∈ [L(t̄) + ∆s̄−1, L(t̄) + ∆s̄).
We show that the preconditions of Theorem 5.18 are satisfied at node u for level s̄, times t+ = t̄

and t− = t̄− Λs − 2Θs̄, and the gradient sequence given by

Cs :=

{
2Ĝ

σs−1 if C
(t̄,u)
s̄ = 2Ĝ

σs̄−1

2Ĝ
σmax{s−2,0} if C

(t̄,u)
s̄ = 2Ĝ

σs̄−2 .

8As logical clocks are continuous, the set of times when the system is not legal at some node is closed. Thus, in
any execution in which the claim of the lemma does not hold, such a minimal time exists.
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This leads to the desired contradiction, as then

Ψs̄
u(t̄) <

Cs̄−1

2σ
=
C

(t̄,u)
s̄

2
.

Hence, it remains to show that for any t ∈ [t̄−Λs−2Θs̄, t̄] and any path (u, . . . , v) ∈ P s̄
u(t) with

κ(u,...,v) ≤ C
(t̄,u)
s̄−1 , v satisfies the (C(t̄,u), s̄)-stabilization condition at time t. As C1 = C

(t̄,u)
1 ≥ 2G(t),

(S0) holds at all times.
For (S1) and (S2), we will make a case distinction. However, both cases will use the following

observation. The system is (C(t,v), s̄)-legal at node v and (C(t,u), s̄)-legal at node u at any time

t ∈ [t0, t̄) by the minimality of t̄. As Cs̄−1 ≤ min{C(t,u)
s̄ , C

(t,v)
s̄ }, this entails (C, s̄ − 1)-legality at

both nodes and we can apply Lemma 5.14 to bound

|Lv(t)− Lu(t)| ≤
(

s̄− 1

2

)

κ(u,...,v) +
Cs̄−1

2
≤ s̄Cs̄−1. (26)

As clocks are continuous, this bound also applies for t = t̄. We now proceed to the case distinction.

Case 1: L(t̄) ≥ L(t̄) + ∆s̄, i.e., C
(t̄,u)
s̄ = 2Ĝ

σs̄−1 . Then

Lv(t)
(26)

≥ Lu(t)− s̄Cs̄−1

≥ Lu(t̄)− (1 + ρ)(1 + µ)(t̄− t)− s̄Cs̄−1

≥ Lu(t̄)− (1 + ρ)(1 + µ)

(
1

2(1− ρ)µ
+

2

(1 + ρ)µ
+ s̄

)

Cs̄−1

= Lu(t̄)−
(
(5− 3ρ)(1 + µ)

2(1− ρ)µ
+ s̄

)

Cs̄−1

≥ L(t̄) + ∆s̄ −
(
(5− 3ρ)(1 + µ)

2(1− ρ)µ
+ s̄

)

Cs̄−1 (27)

> L(t̄) +

(

1− 1

2s̄−1

)

I(G̃)−
(
(1 + ρ)(1 + µ)

(1− ρ)µ
+ s̄

)

Cs̄−1

= L(t̄) +

(

1− 1

2s̄−1

)

I(G̃) + (1 + µ)(1 + ρ)Θs̄ + s̄Cs̄−1.

Hence, if (S2) is violated for some Ts̄ ∈ Ts̄, then Ts̄ > L(t̄)+
(
1− 1

2s̄−1

)
I(G̃). The smallest possible

such Ts̄ is L(t̄) +
(
2− 1

2s̄−1

)
I(G̃). However, by definition of L(t̄),

Lv(t) ≤ Lv(t̄)

≤ min
w∈V

{Lw(t̄)}+ G(t̄)

< L(t̄) + I(G̃) + G̃

≤ L(t̄) +
3I(G̃)

2
−
(
1 + µ

µ
+ 2

)

2Ĝ

= L(t̄) +
3I(G̃)

2
− (1 + µ)(1 + ρ)Θ2 − 2C1

σ≥3
≤ L(t̄) +

(

2− 1

2s̄−1

)

I(G̃)− (1 + µ)(1 + ρ)Θs̄ − s̄Cs̄−1,
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as s̄ ≥ 2. Therefore, (S2) is satisfied.
Next, consider any s ∈ {2, . . . , s̄ − 1} and node w ∈ V with |Lv(t) − Lw(t)| ≤ sCs−1 + (2ρ +

µ(1 + ρ))Θs). We have that

Lw(t) ≥ Lv(t)− sCs−1 − (2ρ+ µ(1 + ρ))Θs

(28)

≥ L(t̄) + ∆s̄ −
(
(5− 3ρ)(1 + µ)

2(1 − ρ)µ
+ s̄

)

Cs̄−1 −
(

2ρ

(1 + ρ)µ
+ s+ 1

)

Cs−1

> L(t̄) + ∆s̄ −
(
(5− 3ρ)(1 + µ)

2(1 − ρ)µ
+ s̄

)

Cs̄−1 −
(
1

σ
+ s+ 1

)

Cs−1

= L(t̄) + ∆s̄ −
(
(5− 3ρ)(1 + µ)

2(1 − ρ)µ
+ s̄+ 1

)

Cs̄−1 − (s+ 1)Cs−1

σ≥3
≥ L(t̄) + ∆s+1 −

(
(5− 3ρ)(1 + µ)

2(1 − ρ)µ
+ s+ 2

)

Cs − (s+ 1)Cs−1

> L(t̄) +

(

1− 1

2s

)

I(G̃)− (s+ 1)Cs−1

= L(t̄) + ∆s +
I(G̃)
2s

−
(

5(1 + µ)

2(1− ρ)µ
+ 3s+ 1

)
2Ĝ
σs−2

σ≥3
≥ L(t̄) + ∆s +

1 + µ

µ
· Cs−1

= L(t̄) + ∆s + (1 + µ)(1 + ρ)Θs.

For any time t′ ∈ [t−Θs], this yields that

Lw(t
′) ≥ Lw(t)− (1 + µ)(1 + ρ)Θs ≥ L(t̄) + ∆s.

We conclude that C
(t′,w)
s = Cs, which by minimality of t̄ and s̄ implies that the system is (C, s)-legal

at node w and time t′, i.e., (S1) is satisfied. Therefore, all all preconditions of Theorem 5.18 are
satisfied and Case 1 leads to a contradiction.

Case 2: Lu(t̄) < L(t̄) + ∆s̄−1, i.e., C
(t̄,u)
s̄ = 2Ĝ

σs̄−2 . Then, for any s ∈ {2, . . . , s̄− 1}, time t, and
node w ∈ V , we have that

Cs =
2Ĝ

σmax{s−2,0}
≤ C(t,w)

s .

Thus, as t̄ ≥ t0 + Λs + 3Θ2 ≥ t0 + Λs + 2Θs̄ + Θs, by minimality of t̄ (S1) is satisfied for all
t ∈ [t̄− Λs − 2Θs̄, t̄].

Concerning (S2), note that

I(G̃)
2s̄−1

σ≥3
>

(
5(1 + µ)

2(1− ρ)µ
+ 2(s̄− 1)

)
2Ĝ

σmax{s̄−3,0}
+

(
1 + µ

µ
+ 2s̄

)
2Ĝ
σs̄−2

=

(
5(1 + µ)

2(1− ρ)µ
+ 2(s̄− 1)

)

Cs̄−2 + (1 + µ)(1 + ρ)Θs̄ + 2s̄Cs̄−1,

where we used that the ratio between left- and right-hand side is minimized for s̄ = 3 (as opposed
to minimal s̄ = 2 like in other places).
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Together with (26), this yields that

Lv(t)
(26)

≤ Lu(t) + s̄Cs̄−1

< L(t̄) + ∆s̄−1 + s̄Cs̄−1

= L(t̄) +

(

1− 1

2s̄−2

)

I(G̃) +
(

5(1 + µ)

2(1− ρ)µ
+ 2(s̄− 1)

)

Cs̄−2 + s̄Cs̄−1

≤ L(t̄) +

(

1− 1

2s̄−1

)

I(G̃)− (1 + µ)(1 + ρ)Θs̄ − s̄Cs̄−1.

As L(t̄) +
(
1− 1

2s̄−1

)
I(G̃) is the smallest possible logical time that is at least L(t̄) and in Ts̄, (S2)

cannot be violated for any Ts̄ ≥ L(t̄). On the other hand,

Lv(t) ≥ Lv(t̄)− (1 + µ)(1 + ρ)(t̄− t)

≥ L(t̄)− (1 + µ)(1 + ρ)(Λs + 2Θs̄)

> L(t̄)− 5(1 + µ)

2(1− ρ)µ
· 2Ĝ
σs̄−2

σ≥3
≥ L(t̄)− I(G̃)

2s̄−1
+

(
1 + µ

µ
+ s̄

)
2Ĝ
σs̄−2

= L(t̄)− I(G̃)
2s̄−1

+ (1 + µ)(1 + ρ)Θs̄ + s̄Cs̄−1.

Hence, (S2) can also not be violated with respect to any Ts̄ < L(t̄). Thus, again all preconditions
of Theorem 5.18 are met and the proof is complete.

In order to obtain a bound on the gradient skew, it remains to show that there is an interval
[t0, t0 +Λ2 +3Θ2] during which the system is C(t,u)-legal at all times t ≥ t0 and nodes u. If Ĝ ≈ G̃,
the above reasoning is sufficient for this purpose.

Corollary 5.21. If Ĝ ≥ G(t) at all times t and σ ≥ 3, the system is C(t,u)-legal at all times

t ≥ 2I(G̃)
1−ρ and nodes u.

Proof. Observe that within I
1−ρ time, it must occur that L(t) = minu∈V {Lu(t)}. Shifting the time

axis, it is hence sufficient to show the claim for all times t ≥ I(G̃)
1−ρ under the assumption that

L(0) = minu∈V {Lu(0)}.
We modify C(t,u) to “switch on” its guarantees level by level. That is, we consider the gradient

sequence

C̄(t,u)
s :=







C
(t,u)
1 if s = 1

C
(t,u)
s if s > 1 and Lu(t) ≥ L(0) + ∆s

C̄
(t,u)
s−1 if s > 1 and Lu(t) < L(0) + ∆s.

The proof is now analogous to the one of Lemma 5.20, with the exception that if Lu(t̄) < L(0)+∆s̄,

then C
(t,u)
s̄ = C

(t,u)
s̄−1 and Lemma 5.15 immediately yields a contradiction. As the case Lu(t̄) ≥

L(0) +∆s̄ only uses bounds for levels s ∈ {2, . . . , s̄− 1} at logical times of at least L(0) +∆s (and
on level 1 at times t ≥ 0), the weaker guarantees offered by C̄ are sufficient. Because during the
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time interval [0, 0 +Λ2 +3Θ2] we have that C̄
(
st, u) = C̄

(t,u)
1 = 2Ĝ, the prerequisite that the system

is legal at all nodes during this interval is satisfied.

Finally, observe that L
(

I
1−ρ

)

≥ L(0) + I, implying that C̄(t,u) = C(t,u) at times t ≥ I
1−ρ .

We can now infer that the system achieves a gradient skew based on Ĝ, an upper bound on the

global skew that holds at all times, and all edges that have been present for O
(
G̃
µ

)

time, where G̃
is the a priori upper bound on the global skew that is known to the algorithm.

Theorem 5.22. Suppose that σ ≥ 3 and Ĝ ≥ G(t) for all times t. Denote by GI(t) the graph on

nodes V with all edges {u, v} that have been continuously present for at least
2I+G̃+(1+ρ)(1+µ)T{u,v}

1−ρ ∈
O( G̃µ ) time. If path p = (u, . . . , v) exists in GI at time t, it holds that

|Lv(t)− Lw(t)| =
(

logσ
Ĝ
κp

+O(1)

)

κp.

Proof. As Ĝ ≥ G(t) for all t, we can apply Corollary 5.21. This shows that for all times t ≥ 2I
1−ρ ,

the system is C(t,u)-legal at each node u. In particular, it is legal w.r.t. the gradient sequence given

by Cs = 2Ĝ
σmax{s−2,0} . At smaller times, GI contains no edges. Hence, for any path p = (u, . . . , v)

that exists in GI at such a time t and any s ∈ N, Lemma 5.14 yields that

|Lv(t)− Lw(t)| ≤
(

s+
1

2

)

κp +
Cs

2
.

Choosing s = 2 +
⌈

logσ
Ĝ
κp

⌉

, we have that Cs ≤ κs and the statement of the theorem follows.

This theorem has two shortcomings. First, even if Ĝ ≪ G̃, it does not provide any guarantee at

times t≪ G̃
µ . Second, if the global skew is large and then decreases later, the gradient skew bound

does not adapt. In the next section, we address these points.

5.4 Fast Stabilization in Case of Small Global Skew

We will again rely on Lemma 5.20, but need to handle the case that Ĝ ≪ G̃ differently than in

Corollary 5.21. First, we prove the precondition of the lemma under the assumption that for O( Ĝµ )

time no edge is inserted, and then we show that within O( Ĝµ ) time, such a “silent” period must
occur.

Lemma 5.23. Set Γ := (29+8µ)Ĝ
2(1−ρ)µ ∈ O( Ĝµ ). Suppose that σ ≥ 3, that G(t) ≤ Ĝ for all t ∈ [t′, t′ + Γ],

and that no node inserts an edge during this interval. Then the system is C(t,u)-legal at all times
t ∈ [t′ + Γ− Λ2 − 3Θ2, t

′ + Γ] and nodes u.

Proof. Set Cs :=
2Ĝ

σs−1 , t2 := t′ +Λ2 +
(

2 + (1+µ)(1+ρ)
1−ρ

)

Θ2 +
C1

1−ρ and ts := ts−1 +Θs−1 +Λs + 2Θs

for 3 ≤ s ∈ N. Consider the gradient sequence

C(t)
s :=







2Ĝ if s = 1

C
(t)
s−1 if t < ts

Cs if t ≥ ts.
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We claim that the system is legal with respect to this sequence at all nodes and times t ∈ [t′, t′+Γ],
which we show by induction on the level s. For s = 1, the claim is trivial. For step from s − 1 to
s ≥ 2, note that, by Lemma 5.15, the claim is immediate from (s − 1)-legality for all times t < ts,
so assume that t ≥ ts. We apply Theorem 5.18 for level s with t+ = t, t− = t− Λs − 2Θs, and the
gradient sequence Cs, which will complete the induction step.

It remains to establish the preconditions of the theorem. (S0) holds because t− ≥ t′ + Θ2.

(S1) holds because for any time t′′ ≥ t − Λs − 2Θs − Θs′ ≥ ts−1 we have that C
(t′′)
s−1 = Cs−1.

Concerning (S3), by assumption there are no edge insertions during [t′, t′ + Γ]. W.l.o.g., we may
assume that there are no edge insertions after time t′+Γ: future events cannot influence past clock
values, and we can always extend the execution such that no further edges are inserted (e.g. by
removing all edges at time t′ + Γ). Hence, the only remaining case is that there is a logical time
Ts ∈ Ts and a node v such that Lv(t

′) > Ts, but Lv(t
−) < Ts + (1 + µ)(1 + ρ)Θs +Cs−1. However,

t− ≥ t2 − Λ2 − 2Θ2 ≥
(
(1+µ)(1+ρ)

1−ρ

)

Θ2 +
2C1

1−ρ and thus

Lv(t
−) ≥ Lv(t

′) + (1 + µ)(1 + ρ)Θ2 + 2C1

σ≥3/2
> Ts + (1 + µ)(1 + ρ)Θs + sCs−1,

showing (S2).
We conclude that the system is C-legal at all nodes and times t ∈ [t∞, t

′ + Γ], where t∞ :=
lims→∞ ts. As

t′ + Γ− t∞ = Γ− (1 + µ)(1 + ρ)

1− ρ
·Θ2 +

C1

(1− ρ)
−

∞∑

s=2

(Λs + 3Θs)

= Γ−
(

1 + µ

(1− ρ)µ
+ 1

)

C1 −
σ

σ − 1
·
(

C1

2(1− ρ)µ
+

C1

(1 + ρ)µ

)

σ≥3
>

5Ĝ
(1− ρ)µ

>
C1

2(1 − ρ)µ
+

C1

(1 + ρ)µ

= Λ2 + 3Θ2.

As Cs ≤ C
(t,u)
s for all times t and nodes u, the claim of the lemma follows.

Lemma 5.24. Set Γ′ := (2+(1+ρ)µ)(29+10µ)Ĝ
(1−ρ)2µ

∈ O( Ĝµ ) and suppose that G(t) ≤ Ĝ ≤ 20G̃
(1+ρ)(29+8µ) for

all t ∈ [t′, t′ + Γ′]. Then there is some time t′′ ∈ [t′, t′ + Γ′ − Γ] such that no edges are inserted
during t ∈ [t′′, t′′ + Γ].

Proof. If the statement does not hold for t′′ = t′, let t be the minimal time when an edge insertion
occurs during [t′, t′ +Γ] at some node u. Denoting by s the level on which the edge is inserted, we
have that Lu(t) = Ts for some Ts ∈ Ts. Observe that the next larger logical time at which some

edge could be inserted is Ts+
I
2s . For any node v, we have that Lv

(

t+ Ĝ
1−ρ

)

≥ Lv(t)+ Ĝ ≥ Ts and

Lv

(

t+ I
2s(1+ρ)(1+µ) +

Ĝ
(1+ρ)(1+µ)

)

≤ Ts+
I
2s . Hence, either the claim holds for t′′ = t+ Ĝ

1−ρ + ε (for

some sufficiently small ε > 0) or

I
2s

≤ (2 + (1 + ρ)µ)Ĝ
1− ρ

+ (1 + ρ)(1 + µ)Γ. (28)
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In the latter case, we use that for any node v, we have that

Lv

(

t+
I

(1− ρ)2s−1
+

Ĝ
1− ρ

)

≥ Ts +
I

2s−1
= zI

for some z ∈ Z. Setting t̄ := maxv∈V {tv |Lv(tv) = zI}, we then have that

Lv

(

t̄− Ĝ
1− ρ

)

≥ Lv(t̄)− Ĝ ≥ zI

and

Lv

(

t̄+
I − 2Ĝ

2(1 + ρ)(1 + µ)

)

≤ Lv(t̄) +
I
2
− Ĝ ≤

(

z +
1

2

)

I,

which due to
I − 2Ĝ

2(1 + ρ)(1 + µ)
>

20G̃
2(1 + ρ)(1− ρ)µ

≥ (29 + 8µ)Ĝ
2(1 − ρ)µ

= Γ

yields that no edges are inserted during [t′′, t′′ + Γ] if we set t′′ := t̄+ ε for sufficiently small ε > 0.
As

t̄+ Γ ≤ t+
I

(1− ρ)2s−1
+

Ĝ
1− ρ

+ Γ

≤ t′ +
I

(1− ρ)2s−1
+

Ĝ
1− ρ

+ 2Γ

(28)

≤ t′ +
(2 + (1 + ρ)µ)Ĝ

(1− ρ)2
+

2(1 + ρ)(1 + µ)Γ

1− ρ
+

Ĝ
1− ρ

+ 2Γ

<

(
4 + 2(1 + ρ)µ

1− ρ

)( Ĝ
1− ρ

+ Γ

)

= t′ + Γ′,

this proves the claim of the lemma.

Together, the above results yield the following theorem.

Theorem 5.25. Suppose that σ ≥ 3 and Ĝ ≥ G(t) for all times t. Set S := Γ′ if Ĝ ≤ 20G̃
(1+ρ)(29+8µ)

and S := 2I
1−ρ otherwise, and let s ∈ N. At any time t ≥ S ∈ O( Ĝµ ), any level-s path p = (u, . . . , v)

satisfies that

|Lv(t)− Lw(t)| =
(

s+
1

2

)

κp +
Ĝ

σmax{s−2,0}
.

Proof. If S 6= Γ′, we can apply Corollary 5.21. Otherwise, we apply Lemma 5.24 to show that
the preconditions of Lemma 5.23 are satisfied for a time t′ ≤ t − Γ. This enabls us to apply
Lemma 5.20 for a time t0 ≤ t. In both cases, we have shown C(t,u)-legality at all nodes u ∈ V . As

C
(t,u)
s ≤ Ĝ

σmax{s−2,0} for all t, u, and s, the claim now follows from Lemma 5.14.
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In particular, if the global skew is bounded by Ĝ for O( Ĝµ ) time, on fully inserted edges we have

a stable gradient skew that depends on Ĝ only.

Corollary 5.26. Denote by G∞(t) the graph on nodes V and with all edges that have been inserted
on all levels. Then for any path (u, . . . , v) in this graph we have that

|Lv(t)− Lw(t)| =
(

logσ
Ĝ
κp

+O(1)

)

κp.

5.5 Discussion

Before proceeding to the remaining more technical sections, we briefly put the obtained results in
context.

Optimality

Our algorithm is simultaneously optimal or asymptotically optimal in terms of several parameters:

Global Skew. The global skew bound given by Theorem 5.6 is optimal in the sense that there
are executions with dynamic diameter of D in which a skew of D cannot be avoided [12, 16].

Clock Rates. The algorithm guarantees that no logical clock runs at rate smaller than 1 − ρ
and the largest clock value increases at most at rate 1 + ρ, which is clearly optimal. Moreover,
the maximum logical clock rate is (1 + µ)(1 + ρ). The above proofs assumed that σ ≥ 3 and thus
µ ≥ 6ρ

1−ρ . However, more careful reasoning would show that any µ > 2ρ
1−ρ is feasible (at the expense

of diverging insertion times as µ approaches this bound). This is optimal, as it is necessary that
(1 − ρ)(1 + µ) > 1 + ρ so that nodes with slow hardware clocks can catch up to those with fast
hardware clocks.

Gradient Skew. Provided that the global skew has been bounded by Ĝ for sufficiently long, the

stable gradient skew between nodes u and v connected by a path p with κp is
(

logσ
Ĝ
κp

+O(1)
)

κp,

where κe = 4(ǫe + µτe). The first term is matched by a lower bound of ǫp logΘ(σ)
Ĝ
ǫp

for the static

case [16], i.e., if µτe ≪ ǫe, this bound is optimal up to factor 4 + o(1).
The additional slack of µτe compensates for the amount by which logical clock values can drift

apart while only one endpoint is aware of the edge. It seems plausible that such a term is needed,
but no matching lower bound is known. However, it is worth pointing out that ǫe ≥ µde, where de
is the time it takes for information on clock values to propagate along the edge e. One can thus
expect that in most systems τe ∈ O(ǫe).

Stabilization Time. For a given global skew bound Ĝ, Theorem 5.25 shows that within O( Ĝµ )
time the gradient skew bound holds for all inserted edges. A lower bound of Ω(D) for establishing
the gradient skew bound is given in Section 8, where D is the (current) diameter of the graph. As
pointed out above, there are executions in which a global skew of D cannot be avoided; in fact
a skew of Ω(D) can be hidden from the algorithm entirely. Therefore, for µ ∈ Θ(1), this bound
would be asymptotically optimal (recall that we assumed µ ∈ O(1); for larger values of µ, we would
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obtain a bound of Θ(Ĝ) in Theorem 5.25). Note also that O( Ĝµ ) time is trivially necessary, as a

newly inserted edge e may exhibit a skew of Ĝ, regardless of its uncertainty ǫe.
Unfortunately, our algorithm takes Θ( G̃µ + τe + Te) time to insert a newly discovered edge e,

cf. Theorem 5.22. The additive terms of τe and Te are necessary for guaranteeing any communication
between its endpoints, and therefore must be present either explicitly or via the abstraction of the
estimate layer (by making stronger assumptions on the interface it provides). However, it may be
the case that G̃ ≫ Ĝ, especially since we assume that G̃ is an upper bound on the global skew that
holds at all times. In Section 7, we discuss how to insert edges based on local, time-dependent
global skew estimates G̃u(t), overcoming this issue.

The leading constants in Theorem 5.22 and Theorem 5.25 are moderate. For example, if µ ≤ 1
100

and thus ρ ≤ µ
100 (ρ ≤ 10−5 for a typical quartz oscillator), then

2I + G̃
1− ρ

<
43G̃
µ

and

Γ′ <
58Ĝ
µ
.

We remark that in the interest of a more streamlined presentation, we did not attempt to opti-
mize constants. We conjecture that the leading constants can be reduced to less than 10 without
introducing additional techniques.

Comparison to Simultaneous Insertion on all Levels

In [16], we presented a simpler insertion strategy and analysis that inserts edges on all levels right
after discovering them. The idea is to initially give the edge a very large weight κ, so that the
gradient skew bound is trivially satisfied due to the global skew bound, and then reduce the weight
exponentially until the final value is reached. Adding some additional slack to the (final) κ, it is
then shown that the gradient property holds on all existing edges w.r.t. the time-dependent values
of κ.

Compared to the solution present so far, the gradient skew bound we achieve here is slightly
better (as no additional slack is needed). More importantly, the insertion time is asymptotically

optimal in case G̃ = Ĝ, in contrast to a multiplicative overhead of Θ( G̃
mine{ǫe}

) for the simpler
strategy. Given that the simpler strategy has a leading constant of at least 24 in its insertion time
bound, the above bounds compare favorably with this approach.

A big advantage of the simpler approach, however, is that it can readily use local and time-
dependent estimates G̃u(t) for edge insertion, thus performing better in case of a large gap between
G̃ and Ĝ. As mentioned earlier, we adapt our insertion strategy to account for such local estimates
in Section 7. Unfortunately, this results in a very large leading constant, meaning that the simpler

insertion strategy performs better in practice, as G̃
mine{ǫe}

is extremely unlikely to exceed 103. We
thus prove that an asymptotically optimal insertion time can be achieved even for time- and node-
dependent estimates of the global skew, but leave whether they can be used to obtain small insertion
times in practice open.
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6 Proving Convergence

On an abstract level, the proof of Theorem 5.18 follows the same strategy as in the static case.
Consider the potentials Ψs := maxu∈V {Ψs

u} and Ξs := maxu∈V {Ξs
u}, s ∈ N. By the design of the

algorithm, in the static case Ψs grows at any time at rate at most 2ρ = 1 + ρ − (1 − ρ) because
any node v that is the endpoint with larger clock value of a path maximizing Ψs must be in slow
mode. The reason is that SC not being satisfied at the node on level s implied the existence of
a neighbor w of v that is more than sκ ahead, yielding a path with even larger ψs-value. On the
other hand, the algorithm is much more aggressive with respect to Ξs: Whenever Ξs > 0, it is
shown that any node v that is the endpoint with the smaller clock value of a path maximizing Ξs

will be in fast mode. This holds as FC not being satisfied for s at v would permit to extend the
path by a neighbor w of v to a new path with larger ξs-value. These two statements play together
to ensure that the maximal values of Ψs, i.e., the sequence Cs, decreases exponentially in s, which
is the essence of the statement of Theorem 5.18.

6.1 Existence of Relevant Paths

Given the level-s stabilization condition, we can conclude that paths with sufficiently large ξ- or
ψ-values to be of interest cannot have a large weight, and infer that the system must have been
s′-legal for all 1 < s′ < s at one of the path’s endpoints for a long time.

Lemma 6.1. Let s > s′ ≥ 1 be two integers and let t ≥ 0 be a time. Assume that the (C, s)-
stabilization condition holds at node u at some time in [t, t + Θs′ ] (if s

′ > 1) or [t, t + Θ2] (if
s′ = 1), and let p = (u, . . . , v) be a path for which p ∈ P s′

u (t). Moreover, suppose that ξsp(t) ≥ 0 or
ψs
p(t) ≥ −κp/2. Then

κp ≤ Cs′

and the system is s′-legal at v and time t.

Proof. Because ψs
p(t) = ξsp̄(t)− κp/2, we assume, w.l.o.g., that ξsp(t) ≥ 0. It holds that

0 ≤ ξsp(t) = Lu(t)− Lv(t)− sκp ≤ G(t) − κp
2

≤ C1 − κp
2

,

implying κp ≤ C1. The last inequality follows from (S0) because the stabilization condition at node
u holds at some time t′ ∈ [t, t + Θ2]. Together with Lemma 5.17, this implies the claim of the
lemma for s′ = 1 (and arbitrary s > 1).

For s′ ≥ 2, we can therefore define s′′ to be the largest integer in {1, . . . , s′} for which both
κp ≤ Cs′′ and v is (C, s′′)-legal at time t. We want to show that s′′ = s′, so assume for the sake
of contradiction that s′′ < s′. From the precondition that p ∈ P s′

u (t), we also get that p ∈ P s′′
u (t)

(Statement (i) of Lemma 5.15). Since we have (C, s′′)-legality at nodes u and v at time t, we can
use Lemma 5.14 to obtain an upper bound on the skew between u and v:

|Lu(t)− Lv(t)| ≤
(

s′′ +
1

2

)

κp +
Cs′′

2
≤ (s′′ + 1)Cs′′ .

We know that the (C, s)-stabilization condition holds at node u at some time t′ ∈ [t, t + Θs′].
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Because logical clocks progress at a rate between 1− ρ and (1 + µ)(1 + ρ), we get

|Lu(t
′)− Lv(t

′)| ≤ |Lu(t)− Lv(t)|+ ((1 + µ)(1 + ρ)− (1− ρ))Θs′

≤ (s′′ + 1)Cs′′ + (2ρ+ µ(1 + ρ))Θs′

≤ (s′′ + 1)Cs′′ + (2ρ+ µ(1 + ρ)))Θs′′+1.

From Requirement (S1) of the (C, s)-stabilization condition at node u at time t′ for level s′′ + 1 ≤
s′ < s, we therefore get that the system is (C, s′′ + 1)-legal at node v and time t.

As p ∈ P s′′
u (t) also implies that p̄ ∈ P s′′

v (t), (s′′ + 1)-legality at node v and time t implies that

Cs′′+1

2
> Ψs′′+1

v (t) ≥ ψs′′+1
p̄ (t) = ψs

p̄(t) + (s− (s′′ + 1))κp ≥ ψs
p̄(t) + κp = ξsp(t) +

κp
2

≥ κp
2
,

i.e., κp < Cs′′+1, contradicting the maximality of s′′. We conclude that s′′ = s′, concluding the
proof.

Next, we show that the level-s stabilization condition guarantees that paths of relevant skew on
level s must have existed for at least Θs time on level s. Moreover, if we append an edge e to such
a path that exists only in one direction, we can still argue that the entire path has been a level-s
path until at most τe time ago.

Lemma 6.2. Assume that node u ∈ V satisfies the (C, s)-stabilization condition for a gradient se-
quence C and an integer s > 1 throughout a time interval [t−, t+]. Consider a path p = (u, . . . , v) ∈
P s
u(t

+). If ξsp(t
+) ≥ 0, ψs

p(t
+) ≥ −κp/2, ξsp̄(t+) ≥ 0, or ψs

p̄(t
+) ≥ −κp/2, then p ∈ P s

u(t) for all

t ∈
[
t− −Θs, t

+
]
.

Furthermore, let p′ = p ◦ (v,w) = (u, . . . , v, w). If w ∈ N s
v (t

+) and ξsp′(t
+ − τ{v,w}) ≥ 0, ψs

p′(t
+ −

τ{v,w}) ≥ −κp′/2, ξsp̄′(t+ − τ{v,w}) ≥ 0, or ψs
p̄′(t

+ − τ{v,w}) ≥ −κp′/2, then p′ ∈ P s
u(t) for all

t ∈
[
t− −Θs, t

+ − τ{v,w}

]
,

and this time interval is non-empty.

Proof. For all t, we have ξsp̄(t) = ψs
p(t) + κp/2 and ψs

p̄(t) = ξsp − κp/2. Therefore, assuming that
ξsp(t

+) ≥ 0, ψs
p(t

+) ≥ −κp/2, ξsp̄(t+) ≥ 0, or ψs
p̄(t

+) ≥ −κp/2 implies that either ξsp(t
+) ≥ 0 or

ψs
p(t

+) ≥ −κp/2. Because the system satisfies the (C, s)-stabilization condition at node u at time
t+, using Lemma 6.1, together with p ∈ P s

u(t
+) ⊇ P s−1

u (t+) both cases imply that κp ≤ Cs−1.
In the following, we define

T+
s := min

{
Ts ∈ Ts : Ts ≥ Lu(t

+)
}

and ∀s′ ≤ s : T−
s′ := max

{
Ts′ ∈ Ts′ : Ts′ ≤ Lu(t

−)
}
.

For all t ∈ [t−, t+], the stabilization condition yields that

T−
s + (1 + ρ)(1 + µ)Θs − sCs−1 < Lu(t) < T+

s − (1 + ρ)(1 + µ)Θs + sCs−1. (29)

Let X be the set of nodes of the path p. In order to prove the first part of the lemma, we show
that

∀t ∈ [t− −Θs, t
+], ∀x ∈ X : x is (C, s − 1)-legal at time t and N s

x(t) ⊇ N s
x(t

+). (30)
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Note that this directly implies the first part of the lemma. Before showing (30), we first show that

∀t ∈ [t− −Θs, t
+] for which (30) holds, ∀x ∈ X : T−

s < Lx(t) < T+
s . (31)

As at time t (30) holds, the sub-path (u, . . . , x) ∈ P s
u(t) ⊇ P s−1

u (t) and the system is (C, s−1)-legal
at both u and x at time t. Applying Lemma 5.14, we see that

|Lu(t)− Lx(t)| ≤ s · Cs−1

for all x ∈ X. Because t > t− −Θs, we have Lu(t) > Lu(t
−)− (1 + µ)(1 + ρ)Θs and therefore

|Lu(t
−)− Lx(t)| < (1 + µ)(1 + ρ)Θs + s · Cs−1.

Together with Inequality (29), this implies that T−
s < Lx(t) < T+

s and thus (31) for all x ∈ X.
Let us now show that (30) holds. Trivially, it holds that N s

x(t
+) ⊇ N s

x(t
+). In addition, due to

Statement (i) of Lemma 5.15 we have that p ∈ P s−1
u (t+) and Lemma 6.1 therefore establishes (30)

for time t = t+. Now suppose for the sake of contradiction that the non-empty maximal time interval
[t′, t+] ⊆ [t−−Θs, t

+] for which both statements of (30) are satisfied is not equal to [t−−Θs, t
+], i.e.,

t′ > t−−Θs. At time t′, (30) still holds and therefore from (31), we get that T−
s < Lx(t

′) < T+
s . As

nodes add level-s neighbors only at times Ts ∈ Ts, it follows that there is some time t′′ ∈ [t−−Θs, t
′)

such that N s
x(t) ⊇ N s

x(t
′) ⊇ N s

x(t
+) for all t ∈ [t′′, t′]. Therefore, p ∈ P s−1

u (t) ⊆ P s
u(t) for all such

t and because u satisfies the (C, s)-stabilization condition throughout interval [t−, t+] and thus at
some time in [t, t+Θs] ⊆ [t, t+Θs−1], we can apply Lemma 6.1 to infer that the system is (s− 1)-
legal at x at time t. This is a contradiction to the maximality of the interval [t′, t+] ⊆ [t− −Θs, t

+]
(i.e., the minimality of t′). We conclude that indeed t′ = t− − Θs, in particular showing the first
statement of the lemma.

It therefore remains to prove the second part of the lemma. For the path p′ used in the second
part of the claim, we know that either

ξsp′(t
+ − τ{v,w}) ≥ 0 or ψs

p′(t
+ − τ{v,w}) ≥ −κp′

2
. (32)

Let us first assume that τ{v,w} < Θs and that v ∈ N s
w(t

+ − τ{v,w}). From w ∈ N s
v (t

+) and (30),
this implies that w ∈ N s

v (t
+ − τ{v,w}) and thus p′ ∈ P s

u(t
+ − τ{v,w}). Further, by the stabilization

condition, the system is (C, s − 1)-legal at u at time t+ − τ{v,w}. Because by (32), either ξsp′(t
+ −

τ{v,w}) ≥ 0 or ψs
p′(t

+ − τ{v,w}) ≥ −κp′/2, Lemma 6.1 then implies that κp′ ≤ Cs−1. Therefore,
in that case exactly the same argument as for the first part of the lemma also shows that for all
t ∈ [t− −Θs, t

+ − τ{v,w}] we have p′ ∈ P s
u(t). To also prove the second claim, it therefore suffices to

show that τ{v,w} < Θs and that v ∈ N s
w(t

+ − τ{v,w}).
To this end, we will prove by induction that

(i) ∀s′ ∈ {1, . . . , s} : p′ ∈ P s′
u (t+ − τ{v,w}), and

(ii) ∀s′ ∈ {2, . . . , s} : τ{v,w} < Θs′ .

For s′ = s, these statements imply the above and hence complete the proof.
Before we continue with the induction, we make the following observation. In the first part of

the lemma, we proved (31), implying that no node x ∈ X adds a new neighbor to N s
x during the

interval [t−−Θs, t
+]. Thus, for all x ∈ X and all y ∈ N s

x(t
+), y has been added to N s

x at the latest
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at time t < t− − Θs for which Lx(t) = T−
s . As x adds y to set N s

x after adding y to sets N s′
x for

all s′ < s, this also implies that for all x ∈ X, all y ∈ N s
x(t

+), and all s′ ≤ s, node x adds y to N s′
x

at the latest at time t for which Lx(t) = T−
s′ . Note that this includes node w which is in the set

N s
v (t

+). By Lemma 5.5, both nodes on an edge add the edge to the respective neighbor sets at the
same logical times. We therefore also know that w adds v to N s′

w at the latest at time ts
′

w such that
Lw(t

s′
w) = T−

s′ . To prove (i) for a specific s′, it is thus sufficient to prove for all x ∈ X ∪ {w} (note
the inclusion of w!) that Lx(t

+ − τ{v,w}) ≥ T−
s′ .

We now proceed with the induction. We anchor it at s′ = 2. Let us first consider (ii) for s′ = 2.
From (S0) of the (C, s)-stabilization condition at node u at time t+, we have C1 > (1 + ρ)µτ{v,w}

and therefore

τ{v,w} <
C1

(1 + ρ)µ
= Θ2. (33)

Further, as node u satisfies the (C, s)-stabilization condition at time t+ (for s ≥ 2), from (S2), we
have

Lu(t
+ − τ{v,w}) ≥ Lu(t

+)− (1 + µ)(1 + ρ)τ{v,w}

(S2)

≥ T−
2 + (1 + µ)(1 + ρ)Θ2 + 2C1 − (1 + µ)(1 + ρ)τ{v,w}

(33)
> T−

2 + 2C1

(S0)

≥ T−
2 + G(t+ − τ{v,w}).

The last inequality follows from (S0) because we already know that τ{v,w} < Θ2. For every node
x ∈ V (and therefore in particular for every node x ∈ X ∪ {w}), we thus have

Lx(t
+ − τ{v,w}) > T−

2 .

We have already seen that this implies also Statement (i) for s′ = 2.
The induction step comes in two parts. First, we prove for s′ ∈ {1, . . . , s−1} that Statement (i)

for s′ and Statement (ii) for s′ imply Statement (ii) for s′ + 1. From Statement (i) for s′, we know
that p′ ∈ P s′

u (t) for t+ − τ{v,w}. From Statement (ii), we also know that t+ − τ{v,w} > t+ − Θs′ .
Since the (C, s)-stabilization condition holds at node u at time t+, we therefore know that u is
(C, s′)-legal at time t+ − τ{v,w}. Together with (32), Lemma 6.1 then implies that κp′ ≤ Cs′ . We
thus get that

τ{v,w}

(9)
<

κ{v,w}

(1 + ρ)µ

(κp′≤Cs′ )

≤ Cs′

(1 + ρ)µ
= Θs′+1,

To conclude the induction step, we now also show that Statement (i) for s′ and Statement (ii)
for s′ + 1 imply Statement (i) for s′ + 1. We lower bound Lu(t

+ − τ{v,w}) as follows:

Lu(t
+ − τ{v,w}) ≥ Lu(t

+)− (1 + µ)(1 + ρ)τ{v,w}

I.H.
> Lu(t

+)− (1 + µ)(1 + ρ)Θs′+1

(S2)

≥ T−
s′+1 + (1 + µ)(1 + ρ)Θs′+1 + (s′ + 1)Cs′ − (1 + µ)(1 + ρ)Θs′+1

= T−
s′+1 + (s′ + 1)Cs′ .
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As p′ ∈ P s′
u (t), for each x ∈ X ∪{w} Lemma 6.1 yields that the system is s′-legal at x and time

t+− τ{v,w} as well as κp′ ≤ Cs′ . By Lemma 5.14, it follows that Lx(t
+− τ{v,w}) > T−

s′+1. As already

noted, this implies that p′ ∈ P s′+1
u (t+ − τ{v,w}), as required.

6.2 Properties of Ξ

The next lemma shows, roughly speaking, that when a node u is too far ahead on some level-s
paths—that is, it has a positive Ξs

u value—then all endpoints of paths p satisfying ξsp = Ξs
u are

in fast mode, trying to catch up to u. Their clocks increase at a rate of at least (1 − ρ)(1 + µ),
the slowest possible fast rate. However, we do not know what node u itself does in this situation:
because of the local nature of the algorithm, u does not necessarily realize that it has a large
skew, and it can be in either slow mode or fast mode. In the latter case, the skew on the path
might actually increase, due to hardware clock drift; thus we cannot necessarily show that the skew
decreases. The lemma states that over an interval, the weighted skew Ξs

u increases by at most
u’s logical clock increase, minus the catching-up that nodes trailing behind u achieve at a rate of
(1 − ρ)(1 + µ). Finally, it may be the case that an edge e is not present throughout the entire
relevent time period, causing us to “jump” back in by τe time; in this case, we use some additional
slack in FC to gain a “reserve term” accounting for the resulting time difference later on.

Lemma 6.3. Assume that a node u ∈ V satisfies the (C, s)-stabilization for s > 1 throughout a
time interval [t−, t+], and that for all t ∈ (t−, t+) we have Ξs

u(t) > 0. Then there exists a time

t′ ∈
[
t− −Θs, t

−
]

such that

Ξs
u(t

+)− Ξs
u(t

′) ≤ Lu(t
+)− Lu(t

′)− (1 − ρ)(1 + µ)(t+ − t′)− (1 + ρ)µ(t− − t′).

Proof. Set u0 := u, and consider an arbitrary time t ∈ (t−, t+). Let p = (u0, . . . , uk) ∈ P s
u(t) be

any path such that Ξs
u(t) = ξsp(t) (that is, a path that maximizes the value of ξsp(t) at time t). By

assumption, ξsp(t) > 0. We will show that for the endpoint uk, the first condition of FC is satisfied;
specifically, the next node uk−1 on the path satisfies Luk−1

(t) − Luk
(t) ≥ s · κ{uk−1,uk}. Note that

since ξsp(t) = Lu0
(t)− Luk

(t)− s · κp > 0, we cannot have u0 = uk, i.e., uk−1 must exist.
Consider the sub-path (u0, . . . , uk−1). Because it is a sub-path of p, and p ∈ P s

u(t), we also have
(u0, . . . , uk−1) ∈ P s

u(t). Further, by choice of p we know that ξsp(t) = Ξs
u(t) ≥ ξs(u0,...,uk−1)

(t); that
is,

Lu0
(t)− Luk

(t)− s · κ(u0,...,uk) ≥ Lu0
(t)− Luk−1

(t)− s · κ(u0,...,uk−1),

which we can re-arrange to obtain

Luk−1
(t)− Luk

(t) ≥ s ·
(
κ(u0,...,uk) − κ(u0,...,uk−1)

)
= s · κ{uk−1,uk}.

This is the first condition of FC at node u. We cannot guarantee that the second condition holds,
but if it does, that is, if at time t we also have

∀v ∈ N s
uk
(t) : Luk

(t)− Lv(t) ≤ s · κ{uk,v} + 2µτ{uk,v}, (34)

then FC is satisfied at node uk at time t, and uk must be in fast mode. In that case we have
luk

(t) ≥ (1 − ρ)(1 + µ), which is the rate needed for the statement of the lemma. We proceed by
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considering the longest suffix of [t−, t+) such that FC holds for all nodes that maximize Ξs
u during

the interval. At the point where FC stops holding for some node uk that maximizes Ξs
u, we can

show that some other node is “to blame for this”, and that node has an even larger skew to u.
Let θ ∈ [t−, t+] be the infimal time such that for all t ∈ (θ, t+), condition (34) above holds for

all paths p (where p is a path maximizing ξsp(t), as defined above), where θ := t+ if no such time
exists.

By definition, Ξs
u(t) = maxp∈P s

u(t)
{ξsp(t)}. Each ξsp(t) is continuous and left-differentiable, since

it is obtained by taking the difference of logical clocks, which are themselves continuous and left-
differentiable. Therefore Ξs

u(t) is also continuous and left-differentiable. By choice of θ, for all
t ∈ (θ, t+) we have

d/dt−ξsp(t)(t) ≤ d/dt−Lu(t)− (1− ρ)(1 + µ)(t+ − θ)

(where p(t) is the path such that ξsp(t)(t) = Ξs
u(t)), because the other endpoint of p(t) is in fast mode

and its logical clock increases at a rate of at least (1− ρ)(1 + µ). Consequently also d/dt−Ξs
u(t) ≤

d/dt−Lu(t)− (1− ρ)(1 + µ)(t+ − θ). Using the mean-value theorem (which generalizes to the case
where the function is only semi-differentiable), we see that over any interval [θ1, θ2] ⊆ [θ, t+] where
P s
u does not change,

Ξs
u(θ2)− Ξs

u(θ1) ≤ Lu(θ2)− Lu(θ1)− (1− ρ)(1 + µ)(θ2 − θ1).

Now consider points in time when P s
u changes. If a path is removed from P s

u at time t then the
value of Ξs

u(t) can only decrease. If a path q is added to P s
u at time t, then Lemma 6.2 shows that

ξsq(t) < 0, (otherwise q must be in P s
u throughout [t−, t]). By the conditions of the current lemma

we know that Ξs
u(t) > 0, so ξsq(t) < Ξs

u(t), and again Ξs
u(t) is not increased by the addition of q. It

follows that over the entire interval [θ, t+],

Ξs
u(t

+)− Ξs
u(θ) ≤ Lu(t

+)− Lu(θ)− (1− ρ)(1 + µ)(t+ − θ). (35)

Therefore, if θ = t−, then we set t′ := t− and we are done.
Suppose that θ > t−. Let p = (u0, . . . , uk) be some path such that Ξs

u(θ) = ξsp(θ) and Condi-
tion (34) does not hold for uk (by choice of θ such a path exists); that is, there is some v ∈ N s

uk
(θ)

such that
Luk

(θ)− Lv(θ) > s · κ{uk,v} + 2µτ{uk,v}. (36)

Let p′ := p ◦ (uk, v) = (u0, . . . , uk, v). We use Lemma 6.2 to “switch” from path p to path p′ and
go back in time to time θ − τ{uk,v}, increasing the weighted skew as we go back in time. We have

ξsp′(θ − τ{uk,v}) = ξsp′(θ)− (Lu(θ)− Lu(θ − τ{uk,v})) + Lv(θ)− Lv(θ − τ{uk,v})

≥ ξsp(θ)− (Lu(θ)− Lu(θ − τ{uk,v})) + (1− ρ)τ{uk ,v}

+(Luk
(θ)− Lv(θ)− s · κ{uk ,v})

(36)
> ξsp(θ)− (Lu(θ)− Lu(θ − τ{uk,v})) + (1− ρ+ 2µ)τ{uk ,v}

= Ξs
u(θ)− (Lu(θ)− Lu(θ − τ{uk,v})) + (1− ρ+ 2µ)τ{uk ,v} (37)

≥ Ξs
u(θ)− (1 + ρ)(1 + µ)τ{uk,v} + (1− ρ+ 2µ)τ{uk,v}

> 0,
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where in the last step we used the fact that (1 − ρ)µ > 2ρ. Hence, Lemma 6.2 shows that
p′ ∈ P s

u(θ − τ{uk,v}), giving

Ξs
u(θ)− Ξs

u(θ − τ{uk,v}) ≤ Ξs
u(θ)− ξsp′(θ − τ{uk,v})

(37)
< Lu(θ)− Lu(θ − τ{uk,v})− (1− ρ+ 2µ)τ{uk ,v}.

We conclude that

Ξs
u(t

+)−Ξs
u(θ−τ{uk ,v})

(35)

≤ Lu(t
+)−Lu(θ−τ{uk,v})−(1−ρ)(1+µ)(t+−(θ−τ{uk,v}))−(1+ρ)µτ{uk ,v}.

(38)
From Lemma 6.2 we know that θ − τ{u,v} ≥ t− − Θs, that is, we did not go back too far in

time. Thus, if θ − τ{uk,v} ≤ t−, the statement follows by setting t′ := θ − τ{uk,v}: Recall that by
definition, θ ≥ t−, and hence (1 + ρ)µ(t− − (θ− τ{u,v})) ≤ (1 + ρ)µτ{u,v}; therefore (38) shows that

Ξs
u(t

+)− Ξs
u(t

′) ≤ Lu(t
+)− Lu(t

′)− (1 − ρ)(1 + µ)(t+ − t′)− (1 + ρ)µτ{uk,v}

≤ Lu(t
+)− Lu(t

′)− (1 − ρ)(1 + µ)(t+ − t′)− (1 + ρ)µ(t− − t′).

Otherwise, if θ − τ{uk,v} > t−, we drop the term −(1 + ρ)µτ{uk,v} from (38) to obtain

Ξs
u(t

+)− Ξs
u(θ − τ{uk,v})

(35)

≤ Lu(t
+)− Lu(θ − τ{uk,v})− (1− ρ)(1 + µ)(t+ − (θ − τ{uk,v})).

To prove the claim, it is sufficient to find a time t′ ∈ [t− −Θs, θ − τ{uk,v}] for which

Ξs
u(θ−τ{uk,v})−Ξs

u(t
′) ≤ Lu(θ−τ{uk,v})−Lu(t

′)−(1−ρ)(1+µ)((θ−τ{uk,v})− t′)−(1+ρ)µ(t−− t′).
(39)

In other words, we need to show the original statement of the lemma, but only for the sub-interval
[t−, θ − τ{uk,v}] ⊂ [t−, t+]. The lemma then follows by summing (38) and (39).

To this end, we continue inductively, applying the entire argument over again to the interval
[t−, θ − τ{uk,v}]. At each step we go back in time at least minx 6=y∈V τ{x,y} > 0, and we never go
further back than t− −Θs; therefore the induction halts after a finite number of steps, at a time

t′ ∈
[
t− −Θs, t

−
]
,

for which it holds that

Ξu(t
+)− Ξu(t

′) ≤ Lu(t
+)− Lu(t

′)− (1 − ρ)(1 + µ)(t+ − t′)− (1 + ρ)µ(t− − t′),

as required.

We will also need a technical helper lemma about Ξs
u that guarantees that Ξs

u remains positive
under certain circumstances, enabling to apply Lemma 6.3.

Lemma 6.4. Let [t−, t+] be an interval such that node u satisfies the (C, s)-stabilization condition
throughout [t−, t+], where s > 1. If

Ξs
u(t

+) ≥ 2ρ(t+ − t−) (40)

and
Lu(t

+)− Lu(t
−) ≤ (1 + ρ)(t+ − t−), (41)

then for all t ∈ (t−, t+] we have Ξs
u(t) > 0.
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Proof. Let p = (u, . . . , v) be a path such that ξsp(t
+) = Ξs

u(t
+) ≥ 2ρ(t+ − t−) and let t ∈ [t−, t+]

Lemma 6.2 states that p ∈ P s
u(t) and hence Ξs

u(t) ≥ ξsp(t). How much can ξsp decrease when we go
back from time t+ to time t? We have

Lu(t
+)− Lu(t) = Lu(t

+)− Lu(t
−)−

(
Lu(t)− Lu(t

−)
)
≤ (1 + ρ)(t+ − t−)− (1− ρ)(t− t−).

Therefore,

ξsp(t) = ξsp(t
+)−

(
Lu(t

+)− Lu(t)
)
+
(
Lv(t

+)− Lv(t)
)

> 2ρ(t+ − t−)− (1 + ρ)(t+ − t−) + (1− ρ)(t− t−) + (1− ρ)(t+ − t)

= 2ρ(t+ − t−)− (1 + ρ)(t+ − t−) + (1− ρ)(t+ − t−)

= 2ρ(t+ − t−)− 2ρ(t+ − t−) = 0.

6.3 Decrease of Ψ and Stability

Next, we show a simple lemma that roughly states that if a node is in fast mode, then a condition
slightly weaker than the slow mode condition SC is false. We already know that SC itself cannot
hold when a node is in fast mode from Lemma 5.2. The weaker condition is almost the same as
SC, except that the slack δ is removed.

Lemma 6.5. Assume that for some node u ∈ V , a level s ∈ N, and times t− < t+ we have
(Lu(t

−), Lu(t
+)] ∩ Ts = ∅. If

t− < t0 := min
{
t ∈ [t−, t+] | Lu(t

+)− Lu(t) ≤ (1 + ρ)(t+ − t)
}
,

then

∃w ∈ N s
u(t0) : Lw(t0)− Lu(t0) >

(

s+
1

2

)

κ{u,w} + µ(1 + ρ)τ{u,w} (42)

or

∀v ∈ N s
u(t0) : Lu(t0)− Lv(t0) <

(

s+
1

2

)

κ{u,v}. (43)

Proof. Assuming the contrary, the logical negation of (42) ∨ (43) is

∀v ∈ N s
u(t0) : Lv(t0)− Lu(t0) ≤

(

s+
1

2

)

κ{u,v} + µ(1 + ρ)τ{u,w}

∧ ∃w ∈ N s
u(t0) : Lu(t0)− Lw(t0) ≥

(

s+
1

2

)

κ{u,w}.

Because (Lu(t
−), Lu(t

+)] ∩ Ts = ∅, no new neighbors are added to N s
u in the interval (t−, t+].

Neighbors can be removed during the interval, but there are only finitely many neighbors to remove
(N s

u(t
−) is finite). Recall that a node is considered being in N s

u at both the times of its insertion and
removal. Hence there is some t̃ ∈ [t−, t0) such that N s

u(t) = N s
u(t

′) for all t, t′ ∈ [t̃, t0]. Furthermore,
since logical clocks are continuous and δ > 0, there is a sub-interval [t′0, t0] ⊆ [t̃, t0] such that t′0 < t0
and for all t ∈ [t′0, t0] we have

∀v ∈ N s
u(t0) = N s

u(t) : Lv(t)− Lu(t) ≤
(

s+
1

2

)

κ{u,v} + µ(1 + ρ)τ{u,w} + δ

∧ ∃w ∈ N s
u(t0) = N s

u(t) : Lu(t)− Lw(t) ≥
(

s+
1

2

)

κ{u,w} − δ.
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Thus, SC applies at u for all t ∈ [t′0, t0], and u must be in slow mode during this interval, so
Lu(t0) − Lu(t

′
0) ≤ (1 + ρ)(t0 − t′0). But we also know by choice of t0 that Lu(t

+) − Lu(t0) ≤
(1 + ρ)(t+ − t0); therefore,

Lu(t
+)− Lu(t

′
0) = Lu(t

+)− Lu(t0) + Lu(t0)− Lu(t
′
0) ≤ (1 + ρ)(t+ − t′0),

contradicting the definition of t0.

We are now ready to prove our main theorem.

Proof of Theorem 5.18. Assume for the sake of contradiction that at some time t0 ∈ [t− + Λs +
2Θs, t

+] we have Ψs
u(t0) ≥ 2ρΛs; that is, there is a path (u = uk, . . . , u0) ∈ P s

u(t0) such that

ψs
(uk,...,u0)

(t0) = Ψs
u(t0) ≥ 2ρΛs. (44)

For the inverse path (u0, . . . , uk) we have

ξs(u0,...,uk)
(t0) = ψs

(u0,...,uk)
(t0) +

κ(u0,...,uk)

2
≥ 2ρΛs +

κ(u0,...,uk)

2
> 0. (45)

Lemma 6.1 shows that
κ(u0,...,uk) ≤ Cs−1. (46)

By the conditions of the lemma, u satisfies the (C, s)-stabilization condition throughout [t−, t+].
Hence Lemma 6.2 shows that for all t ∈ [t−, t0] we have (u0, . . . , uk) ∈ P s

u(t). In particular, each
sub-path (u0, . . . , ui) is also in P s

u throughout [t−, t0], and by the conditions of the lemma, this
shows that each node ui on the path satisfies the (C, s)-stabilization condition throughout [t−, t0].

We construct a sequence of non-increasing times t0 = t′0 ≥ t1 ≥ t′1 ≥ . . . tℓ ≥ tℓ′ , where
tℓ ≥ t0−Λs and tℓ′ ∈ [t−, t0−Λs], and where each pair ti, t

′
i for i < ℓ is associated with a path pi of

non-zero length ending at uk. The construction maintains the following properties for all 0 ≤ i ≤ ℓ:

(1) For all t ∈ [t−, t′i] we have pi ∈ P s
uk
(t).

(2) We have

ξspi(t
′
i) ≥ 2ρΛs +

κpi
2

− (1 + ρ)(t0 − t′i) + Lu(t0)− Lu(t
′
i). (47)

(3) If i < ℓ then we have

ξspi(ti+1) ≥ 2ρΛs +
κpi
2

− (1 + ρ)(t0 − ti+1) + Lu(t0)− Lu(ti+1). (48)

Constructing the sequence. We construct the sequence as follows: first, we show that we can
find an initial path p0 satisfying Properties (1) and (2). Then we show that if we have already
constructed the sequence up to i, such that Properties (1) and (2) hold for i, then we can extend
the construction by one step, choosing a time ti+1 such that (3) holds at i as well, and selecting
a new path pi+1 and time t′i+1 for which Properties (1) and (2) hold (until we finally reach some
time tℓ′ ∈ [t−, t0 − Λs] and the construction halts).
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For the base of the construction we set p0 := (u0, . . . , uk) and t
′
0 := t0. For this path we have

already seen that (u0, . . . , uk) ∈ P s
uk
(t) for all t ∈ [t−, t0], so Property (1) is satisfied. Also, at time

t0 we have ξsp0(t0) ≥ 2ρΛs + κp0/2 by choice of p0, and since t′0 = t0, this shows that Property (2)
holds.

Suppose that we have already constructed the sequence up to time t′i such that Properties (1)
and (2) hold. In particular, at time t′i we have

ξspi(t
′
i) ≥ 2ρΛs +

κpi
2

− (1 + ρ)(t0 − t′i) + Lu(t0)− Lu(t
′
i). (49)

Suppose further that t′i > t0 − Λs (otherwise the construction halts at i). Let pi = (w =
w0, . . . , wm = uk) be the path associated with the i-th step. We define

ti+1 := min
{
t ∈ [t0 − Λs, t

′
i] | Lw(t

′
i)− Lw(t) ≤ (1 + ρ)(t′i − t)

}
. (50)

The minimum is taken over a non-empty set because Lw(t
′
i)− Lw(t

′
i) ≤ (1 + ρ)(t′i − t′i).

From (49), we get that

ξspi(ti+1) = ξspi(t
′
i)−

(
Lw(t

′
i)− Lw(ti+1)

)
+
(
Luk

(t′i)− Luk
(ti+1)

)

(49)

≥ 2ρΛs +
κpi
2

− (1 + ρ)(t0 − t′i) + Lu(t0)− Lu(t
′
i) (51)

−(1 + ρ)(t′i − ti+1) + Luk
(t′i)− Luk

(ti+1)

= 2ρΛs +
κpi
2

− (1 + ρ)(t0 − ti+1) + Lu(t0)− Lu(ti+1). (52)

This shows that Property (3) holds at i.
If ti+1 = t0 − Λs, then we define t′i+1 := ti+1 and pi+1 := pi, and we are done. Thus, suppose

that ti+1 > t0 − Λs. In this case (52) shows that ξspi(ti+1) > 0. Consequently, since uk satisfies the
level s stabilization condition throughout [t−, t0], we can use Lemma 6.1 to show that κpi ≤ Cs−1.

For the (i + 1)-th step, we choose path pi+1 using Lemma 6.5, but first we must establish the
conditions of the lemma. From I.H. (1), for all t ∈ [t−, ti+1] ⊆ [t−, t′i] we have pi ∈ P s

u(t). Hence,
by the conditions of the lemma, node w satisfies the level s stabilization condition throughout
[t−, ti+1]. In particular, this implies that

Ts ∩ [Lw(t
−), Lw(ti+1)] = ∅,

because the level s stabilization condition implies that node w’s logical clock does not cross any
update point T e

s for any edge e at any point throughout the interval [t−, ti+1].
This allows us to apply Lemma 6.5, which shows that

∃w′ ∈ N s
w(ti+1) : Lw′(ti+1)− Lw(ti+1) >

(

s+
1

2

)

κ{w,w′} + µ(1 + ρ)τ{w,w′}, (53)

or

∀v ∈ N s
w(ti+1) : Lw(ti+1)− Lv(ti+1) <

(

s+
1

2

)

κ{v,w}. (54)

We consider each case separately.
First, suppose that (53) holds for some node w′ and define pi+1 := (w′, w) ◦ pi = (w′, w =

w0, . . . , wm = uk) and t′i+1 = ti+1 − τ{w,w′}. We call this a forward step, as the distance to uk
increases.

45



For the new path pi+1 we have

ξspi+1
(ti+1) = ξspi(ti+1) + Lw′(ti+1)− Lw(ti+1)− s · κ{w,w′}

(53)
> ξspi(ti+1) +

κ{w,w′}

2
+ µ(1 + ρ)τ{w,w′}

(52)

≥ 2ρΛs +
κpi+1

2
− (1 + ρ)(t0 − ti+1) + Lu(t0)− Lu(ti+1) + µ(1 + ρ)τ{w,w′}

> 2ρΛs − (1 + ρ)(t0 − ti+1) + (1− ρ)(t0 − ti+1)

> 0. (55)

By assumption we have ti+1 > t0−Λs, and hence ti+1 > t−+Θs. Because uk satisfies the (C, s)-
stabilization condition throughout [t−, ti+1], we can apply Lemma 6.2 to the interval [t−+Θs, ti+1]
to show that for all t ∈ [t−, t′i+1] we have pi+1 ∈ P s

uk
(t), so Property (1) holds. The lemma also

shows that t′i+1 ≥ t−.
Going back to time t′i+1, we have

ξspi+1
(t′i+1) = ξspi+1

(ti+1)−
(
Lw′(ti+1)− Lw′(t′i+1)

)
+
(
Luk

(ti+1)− Luk
(t′i+1)

)

≥ ξspi+1
(ti+1)− (1 + µ)(1 + ρ)(ti+1 − t′i+1) + Luk

(ti+1)− Luk
(t′i+1)

(55)
> 2ρΛs +

κpi+1

2
− (1 + ρ)(t0 − ti+1) + Lu(t0)− Lu(ti+1) + µ(1 + ρ)τ{w,w′}

− (1 + µ)(1 + ρ)τ{w,w′} + Luk
(ti+1)− Luk

(t′i+1)

= 2ρΛs +
κpi+1

2
− (1 + ρ)(t0 − ti+1 + τ{w,w′}) + Lu(t0)− Lu(t

′
i+1)

= 2ρΛs +
κpi+1

2
− (1 + ρ)(t0 − t′i+1) + Lu(t0)− Lu(t

′
i+1).

This shows that Property (2) holds for i+ 1.
Now let us turn to the other case, in which (54) holds. From I.H. (1) we know that pi ∈

P s
uk
(ti+1), and in particular, for the next node w1 on the path (w = w0, w1, . . . , wm = uk), we have

w1 ∈ N s
w(ti+1). Thus, (54) shows that

Lw(ti+1)− Lw1
(ti+1) <

(

s+
1

2

)

κ{w,w1}. (56)

In this case, we define pi+1 := (w1, . . . , wm = uk), that is, we remove w from the head of the
path, and t′i+1 := ti+1. We call this a backward step. Property (1) for i + 1 follows immediately
from I.H. (1) (for i). As for Property (2), we have

ξspi+1
(ti+1) = ξspi(ti+1)− Lw(ti+1) + Lw1

(ti+1) + s · κ{w,w1}

(56)
> ξspi(ti+1)−

κ{w,w1}

2
(52)

≥ 2ρΛs +
κpi
2

−
κ{w,w1}

2
− (1 + ρ)(t0 − ti+1) + Lu(t0)− Lu(ti+1)

= 2ρΛs +
κpi+1

2
− (1 + ρ)(t0 − ti+1) + Lu(t0)− Lu(ti+1).

Since t′i+1 = ti+1, Property (2) is satisfied for i+1. Note in particular that we have ξspi+1
(ti+1) > 0,

and hence pi+1 6= (uk), because ξ
s
(uk)

(t) = 0 for all times t. This concludes the induction.
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We note that the sequence we constructed is finite, that is, there is some ℓ ∈ N such that
t′ℓ ∈ [t−, t0−∆]. This is because every time we make a forward step we have t′i+1 ≤ ti+1−mine∈(V2)

τe,

so after finitely many such steps we reach time t0−∆; as for backward steps, each such step shortens
the path, so only finitely many backward steps can occur between two forward steps.

Properties of the chain construction. Let v0, . . . , vℓ−1 denote the first node on each path
p0, . . . , pℓ−1 in the sequence above. Before proceeding, we establish the following additional prop-
erties of the chain v0, . . . , vℓ−1.

(4) For all i = 0, . . . , ℓ− 1 we have κpi ≤ Cs−1.

(5) For all i = 0, . . . , ℓ− 1, node vi satisfies the level s stabilization condition throughout [t−, t′i].

(6) For all i = 0, . . . , ℓ − 1 we have Ξvi(t
′
i) ≥ 2ρ(t′i − (t0 − Λs)) and for all t ∈ (ti+1, t

′
i] we have

Ξs
vi(t) > 0.

(7) There is an index m ∈ {0, . . . , ℓ− 1} such that in the construction all steps prior to index m
are backward steps and all steps starting from index m are forward steps.

(8) For all m ≤ i < j ≤ ℓ, we have

Lvi(ti+1)− Lvj(t
′
j) ≤ (1 + ρ)(ti+1 − t′j)−

(

s+
1

2

)

κ(vi,...,vj). (57)

The proof of these properties follows.
Fix i ≤ ℓ − 1. We know that node u satisfies the level s stabilization condition throughout

[t−, t+]. From Property (1) for index i we have (vi, . . . , uk) = pi ∈ P s
uk
(t) for all t ∈ [t−, ti]. Also,

Property (2) states that

ξspi(t
′
i) ≥ 2ρΛs − (1 + ρ)(t0 − t′i) + Luk

(t0)− Luk
(t′i)

≥ 2ρ(t′i − (t0 − Λs)) ≥ 0

Consequently, Lemma 6.1 shows that κpi ≤ Cs−1, so Property (4) holds, and Property (5) follows
from the conditions of the current lemma.

Because pi ∈ P s
uk
(t′i) we have Ξs

vi(t
′
i) ≥ ξspi(t

′
i), and hence Ξs

vi(t
′
i) ≥ 2ρ(t′i − (t0 − Λs)). Also,

because t′i − (t0 − Λs) ≥ t′i − ti+1, we can apply Lemma 6.4 to show that Ξs
vi(t) > 0 throughout

(ti+1, t
′
i]. This shows that Property (6) holds.

To show Property (7), we show that if a forward step occurs at index i < ℓ−1 of the construction,
then at index i+ 1 we also take a forward step. The property follows.

Suppose that this is not the case, that is, at some index i < ℓ− 1 we have

Lvi(ti)− Lvi−1
(ti) >

(

s+
1

2

)

κ{vi−1,vi} + µ(1 + ρ)τ{vi−1,vi}

and at index i+ 1 we have vi+1 = vi−1 and

Lvi(ti+1)− Lvi−1
(ti+1) <

(

s+
1

2

)

κ{vi−1,vi}.
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We show that this implies that node vi−1’s average rate over the interval [ti+1, ti] was no greater
than 1 + ρ, contradicting the choice of ti as the minimal time such that vi−1’s average rate over
[ti, t

′
i−1] did not exceed 1 + ρ.
Summing the two inequalities above yields

Lvi−1
(ti)− Lvi−1

(ti+1) < Lvi(ti)− Lvi(ti+1)− µ(1 + ρ)τ{vi−1,vi}. (58)

By definition of ti+1 we have Lvi(t
′
i)−Lvi(ti+1) ≤ (1 + ρ)(t′i − ti+1), and since at index i we took a

forward step, we defined t′i = ti − τ{vi−1,vi}. Hence

Lvi(ti)− Lvi(ti+1) = Lvi(ti)− Lvi(t
′
i) + Lvi(t

′
i)− Lvi(ti+1)

≤ (1 + ρ)(1 + µ)τ{vi−1,vi} + (1 + ρ)(ti − τ{vi−1,vi} − ti+1)

= (1 + ρ)(ti − ti+1) + µ(1 + ρ)τ{vi−1,vi}.

Combining with (58) yields

Lvi−1
(ti)− Lvi−1

(ti+1) < (1 + ρ)(ti − ti+1) + µ(1 + ρ)τ{vi−1,vi} − µ(1 + ρ)τ{vi−1,vi}

≤ (1 + ρ)(ti − ti+1).

This is a contradiction.
This shows that after the first forward step in the construction (if one occurs), no backward

steps can occur. Thus, there is some index m ∈ {0, . . . , ℓ− 1} such that for all i = m, . . . , ℓ − 2,
node vi+1 is obtained from node vi by a forward step at time ti+1. (If no forward steps occur in
the construction then we set m := ℓ− 1.)

Finally we show Property (8). Fix i, j such that m ≤ i < j ≤ ℓ− 1. All steps between index m
and index ℓ− 1 are forward steps, and hence for each k = i, . . . , j − 1 we have

Lvk+1
(tk+1)− Lvk(tk+1) >

(

s+
1

2

)

κ{vk ,vk+1} + µ(1 + ρ)τ{vk ,vk+1}.

Also, because t′k+1 = tk+1 − τ{vk ,vk+1} we have

Lvk+1
(tk+1)− Lvk+1

(t′k+1) ≤ (1 + ρ)(1 + µ)τ{vk,vk+1},

and by definition of tk+2,

Lvk+1
(t′k+1)− Lvk+1

(tk+2) ≤ (1 + ρ)(t′k+1 − tk+2).

Summing the three inequalities above yields, for each k = i, . . . , j − 2,

Lvk(tk+1)− Lvk+1
(tk+2) < (1 + ρ)(tk+1 − tk+2)−

(

s+
1

2

)

κ{vk,vk+1}.

Summing over k = i, . . . , j − 2, we obtain

Lvi(ti+1)− Lvj−1
(tj) ≤ (1 + ρ)(ti − tj)−

(

s+
1

2

)

κ(vi,...,vj−1).

For the final step, from j− 1 at time tj to j at time t′j, we use only the first two inequalities, which
show that

Lvj−1
(tj)− Lvj (t

′
j) ≤ (1 + ρ)τ{vj−1,vj} −

(

s+
1

2

)

κ{vj−1,vj}.

Since tj − t′j = τ{vj−1,vj}, we combine the two inequalities above to obtain (57), as desired.
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Bounding Ξs. The chain construction provides us with a sequence of sub-intervals {[t0, t′m]} ∪
{[ti+1, t

′
i] | i = m, . . . , ℓ− 2} ∪

{
[t0 − Λs, t

′
ℓ−1]

}
, each associated with a node vi that has a non-

negative Ξs-value and a small average clock rate (at most 1 + ρ) over the entire sub-interval.
Roughly speaking, over each sub-interval, Lemma 6.3 shows that Ξs decreases at an average rate
of at least (1− ρ)(1 + µ)− (1 + ρ) = (1− ρ)µ− 2ρ; since at the end of the whole interval (time t0)
we had Ξs

v0(t0) ≥ 2ρCs−1/((1−ρ)µ), at the beginning (time t0−Λs = t0−Cs−1/((1−ρ)µ)) we will
be able to show that for some node we have Ξs(t0 − Λs) ≥ Ξs

v0(t0) + ((1 − ρ)µ − 2ρ) · Λs > Cs−1,
which will result in a contradiction to (s − 1)-legality at time t0 − Λs. Thus, our strategy now is
to apply Lemma 6.3 successively to the sub-intervals we obtained in the construction as we went
back in time from t0 to t0 −∆t.

However, when we apply Lemma 6.3 to a sub-interval [ti+1, t
′
i] there is some “overshoot”: the

lemma yields a time t′ ∈ [ti+1 − Θs, ti+1] such that over the interval [t′, t′i], Ξ
s decreases quickly,

but t′ falls in some other sub-interval [tj+1, tj ]. Before we can apply Lemma 6.3 again, we must
deal with two concerns:

• The new interval [tj+1, tj] is not necessarily contiguous to the interval [ti+1, t
′
i] to which we

applied Lemma 6.3; that is, we can have j > i + 1. Thus we define a sequence of indices
i0 ≤ . . . ≤ ih representing the indices of the sub-intervals in which we find ourselves after
each application of Lemma 6.3.

• We have t′ ∈ [tj+1, tj ], but we do not know whether t′ ∈ [tj+1, t
′
j ] or t′ ∈ (t′j , tj]. Our

construction in the previous part only ensures that vj has an average rate of at most 1 + ρ
over the interval [tj+1, t

′
j ]; hence, if we have t′ ∈ (t′j, tj ], we must first “go back in time” to t′j

before we can usefully apply Lemma 6.3 to vj.

In other words, in the current part of the proof, we successively apply two kinds of steps: the first
is an application of Lemma 6.3 to obtain a time t′ for which we have a large average Ξs-increase
rate; the second is a step back in time to the nearest preceding time t′j ≤ t′, in preparation for the
next application of Lemma 6.3.

Accordingly, we define two sequences of times, θ0 ≥ . . . ≥ θh and ϕ0 ≥ . . . ≥ ϕh, such that

tm+1 ≥ ϕ0 ≥ θ1 ≥ ϕ1 ≥ . . . ≥ θh ≥ t0 − Λs ≥ ϕh ≥ t−.

The first sequence ϕ0, . . . , ϕh represents the times obtained by successively applying Lemma 6.3;
the second sequence θ1, . . . , θh represents the second step back in time. Each θj is chosen such that
for some k ≤ ℓ− 1 we have θj ∈ [tk+1, t

′
k]. Note that since at each index j ≥ m we take a forward

step, we always have tj+1 ≤ t′j < tj (this is a property of the construction), and hence the index k
is unique. We define a sequence of indices i0 ≤ . . . ≤ ih as follows:

ij :=

{

m if j = 0,

the unique index k such that θj ∈ [tk+1, t
′
k] if j > 0.

(59)

Finally, each ϕj is chosen such that ϕj ∈ [tij+1−Θs, tij+1] (as ϕj is obtained by applying Lemma 6.3
to the interval [tij+1, θj ]).

We maintain the following properties:

(i) For all j = 0, . . . , h,

Ξs
vij

(ϕj) ≥ 2ρΛs+((1−ρ)µ−2ρ)(t0−tij+1)+(1−ρ+2µ)(tij+1−ϕj)−
(

Lvij
(tij+1)− Lvij

(ϕj)
)

.

(60)
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(ii) For all j = 1, . . . , h,

Ξs
vij

(θj) ≥ 2ρΛs+((1−ρ)µ−2ρ)(t0−t′ij)+(1−ρ)(1+µ)(t′ij−θj)−
(

Lvij
(t′ij )− Lvij

(θj)
)

. (61)

Intuitively, at each point ϕj we claim an average increase rate of ((1 − ρ)µ − 2ρ) for Ξs as we
go back in time over the interval [ϕj , t0]: this follows from (60), because Lvij

(tij+1) − Lvij
(ϕj) ≤

(1+ρ)(1+µ)(tij+1−ϕj). However, the statement of Property (i) is more precise, and keeps track of
the exact clock increase of vij . We need this additional information because the chain construction
relates the clock values of the different nodes at points where we switch from one to the other
(Property (8)), not at arbitrary times such as ϕj . Thus, we keep track of vij ’s increase from time
ϕj to time tij+1, at which the switch occurs. This leads us to show that because Ξs

vij
(ϕj) is large,

so is Ξs
vij+1

(ϕj), and allows the induction to go through.

In Property (ii) we also keep track of vij ’s exact clock increase, but here the reason is different:
we simply do not have a good enough bound on vij ’s clock increase over the interval [θj , t

′
ij
]. The

choice of tij+1 yields an average rate of at most 1 + ρ over [tij+1, t
′
ij
], but tells us nothing about

arbitrary points in the interval, such as θj. Therefore, we keep track of vij ’s clock increase over
[θj, t

′
ij
], and also of the decrease (1− ρ)(1 + µ)(ti′j − θj) provided by Lemma 6.3, which represents

the fact that the other endpoints of paths maximizing Ξs are acting to catch up over [θj , t
′
ij
]. Later,

when we go back in time to ϕj+1 ≤ tij+1, we “complete” the sub-interval, and use the fact that vij ’s
average rate over [tij+1, t

′
ij
] is at most 1 + ρ to obtain the average decrease rate of ((1 − ρ)µ− 2ρ)

over all of [ϕj , t0].
The definition of the two sequences is mutually-recursive. We begin by showing how ϕj is

chosen, assuming that if j > 0 then we have already chosen θj such that Property (ii) holds.
First, consider the base case, j = 0: we must find a time ϕ0 ∈ [tm+1 − Θs, tm+1] satisfying

Property (i). This requires a bit more effort than the step, because we are claiming an average
decrease rate of ((1−ρ)µ−2ρ) for Ξs over an interval [ϕ0, t0] ⊇ [tm+1, t0]; but since we skipped the
prefix v0, . . . , vm−1 of the chain construction, the properties of the chain tell us nothing about vm
during the sub-interval [tm, t0]. Nevertheless, we show that we can apply Lemma 6.3 to the entire
interval [tm+1, t0].

Because only backward steps occur prior to index m, the path pm is a sub-path of p0; we know
that p0 ∈ P s

uk
(t) for all t ∈ [t−, t0], and hence pm ∈ P s

uk
(t) for all t ∈ [t−, t0] as well. Also, from

Property (3) of the construction,

ξspm(tm+1) ≥ 2ρΛs − (1 + ρ)(t0 − tm+1) + Luk
(t0)− Luk

(tm+1), (62)

so going forward to any time t ∈ [tm+1, t0] we have

Ξs
vm(t) ≥ ξspm(t) = ξspm(tm+1) + (Lvm(t)− Lvm(tm+1))− (Luk

(t)− Luk
(tm+1))

≥ 2ρΛs − (1 + ρ)(t0 − tm+1) + (Lvm(t)− Lvm(tm+1)) + (Luk
(t0)− Luk

(t))

≥ 2ρΛs − (1 + ρ)(t0 − tm+1) + (1− ρ)(t− tm+1) + (1− ρ)(t0 − t)

≥ 2ρ(Λs − (t0 − tm+1)),
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which is strictly greater than 0 for t 6= t0. This is sufficient to apply Lemma 6.3 to the interval
[tm+1, t0], yielding a time ϕ0 ∈ [tm+1 −Θs, tm+1] such that

Ξs
vm(ϕ0) ≥ Ξs

vm(t0) + (1− ρ)(1 + µ)(t0 − ϕ0)− (Lvm(t0)− Lvm(ϕ0)) + µ(1 + ρ)(tm+1 − ϕ0)

≥ ξspm(t0) + (1− ρ)(1 + µ)(t0 − ϕ0)− (Lvm(t0)− Lvm(ϕ0)) + µ(1 + ρ)(tm+1 − ϕ0)

≥ ξspm(tm+1) + (Lvm(t0)− Lvm(tm+1))− (Luk
(t0)− Luk

(tm+1))

+ (1− ρ)(1 + µ)(t0 − ϕ0)− (Lvm(t0)− Lvm(ϕ0)) + µ(1 + ρ)(tm+1 − ϕ0)

(62)

≥ 2ρΛs − (1 + ρ)(t0 − tm+1) + (1− ρ)(1 + µ)(t0 − ϕ0)− (Lvm(tm+1)− Lvm(ϕ0))

+ µ(1 + ρ)(tm+1 − ϕ0)

= 2ρΛs + ((1 − ρ)µ− 2ρ)(t0 − tm+1) + (1− ρ+ 2µ)(tm+1 − ϕ0)

− (Lvm(tm+1)− Lvm(ϕ0)) .

This shows that Property (i) holds for this choice of ϕ0.
For the step, suppose that at j ≥ 1 we have already chosen a time θj ≥ t0 − Λs such that

Ξs
vij

(θj) ≥ 2ρΛs + ((1− ρ)µ − 2ρ)(t0 − t′ij) + (1− ρ)(1 + µ)(t′ij − θj)−
(

Lvij
(t′ij )− Lvij

(θj)
)

.

Since θj ≤ t′ij by choice of ij , Properties (5) and (6) show that we have Ξs
vij

(t) > 0 for all

t ∈ (tij+1, θj ] and that vij satisfies the (C, s)-stabilization condition during [tij+1, θj]. Thus, we can
apply Lemma 6.3 to obtain a time ϕj ∈ [tij+1 −Θs, tij+1] such that

Ξs
vij

(ϕj) ≥ Ξs
vij

(θj) + (1− ρ)(1 + µ)(θj − ϕj)−
(

Lvij
(θj)− Lvij

(ϕj)
)

+ µ(1 + ρ)(tij+1 − ϕj).

Together with the induction hypothesis, we obtain

Ξs
vij

(ϕj) ≥ 2ρΛs + ((1− ρ)µ − 2ρ)(t0 − t′ij ) + (1− ρ)(1 + µ)(t′ij − θj) + (1− ρ)(1 + µ)(θj − ϕj)

−
(

Lvij
(t′ij )− Lvij

(ϕj)
)

+ µ(1 + ρ)(tij+1 − ϕj)

= 2ρΛs + ((1− ρ)µ − 2ρ)(t0 − t′ij ) + (1− ρ)(1 + µ)(t′ij − tij+1 + tij+1 − ϕj)

−
(

Lvij
(t′ij )− Lvij

(tij+1)
)

−
(

Lvij
(tij+1)− Lvij

(ϕj)
)

+ µ(1 + ρ)(tij+1 − ϕj).

Recall that by definition of tij+1 we have Lvij
(t′ij) − Lvij

(tij+1) ≤ (1 + ρ)(t′ij − tij+1). Thus, we
have

Ξs
vij

(ϕj) ≥ 2ρΛs + ((1− ρ)µ− 2ρ)(t0 − tij+1) + (1− ρ+2µ)(tij+1 −ϕj)−
(

Lvij
(tij+1)− Lvij

(ϕj)
)

.

Note that since ϕj ≥ tij+1 − Θs ≥ t0 − Λs − Θs, we have ϕj ≥ t−, as desired. This completes the
induction step for the sequence ϕj .

Next we show how θj+1 is chosen, assuming that we have already chosen a time ϕj satisfying
Property (i). Assume also that ϕj > t0 − Λs, as otherwise the construction halts. Recall that we
must choose θj+1 such that θj+1 ∈ [tk+1, t

′
k] for some k. Thus, if ϕj ∈ [tk+1, t

′
k] for some k, then we

set θj := ϕj ; otherwise it must be that ϕj ∈ (t′k, tk] for some unique k, and in this case we define
θj+1 := t′k.
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The choice of θj+1 induces an index ij+1 (which is the minimal index k from the definition of
θj+1). The induction hypothesis (Property (i)) states that Ξs

vij
(ϕj) is large, that is, there is some

path q ∈ P s
vij

(ϕj) such that ξsq(ϕj) is large. To show Property (ii) at j, we first extend q into a

path q′ starting at vij+1
, and show that because ξsq(ϕj) is large, so is ξsq′(ϕj). Then we go back in

time and show that ξsq′(θj+1) is large (that is, not much skew is lost as we step back from ϕj to
θj+1), and finally we show that q′ ∈ P s

vij+1
(θj+1), which implies that Ξs

vij+1
(θj+1) ≥ ξsq′(θj+1).

Formally, let q = (vij , . . . , x) ∈ P s
vij

(t) be a path such that ξsq(t) = Ξs
vij

(t). For the extended

path q′ := (vij+1
, . . . , vij ) ◦ q, we have

ξsq′(ϕj) = ξsq(ϕj)− Lvij
(ϕj) + Lvij+1

(ϕj)− s · κ(vij ,...,vij+1
)

= Ξs
vij

(ϕj)− Lvij
(ϕj) + Lvij+1

(ϕj)− s · κ(vij ,...,vij+1
)

(60)

≥ 2ρΛs + ((1− ρ)µ − 2ρ)(t0 − tij+1) + (1− ρ)(1 + µ)(tij+1 − ϕj)

−
(

Lvij
(tij+1)− Lvij+1

(ϕj)
)

− s · κ(vij ,...,vij+1
).

(Note that we omit the term µ(1+ρ)(tij+1−ϕj) in (60), which is non-negative because ϕj ≤ tij+1.)

Next we deal with the gap
(

Lvij
(tij+1)− Lvij+1

(t)
)

using Property (8), which shows that

Lvij
(tij+1)− Lvij+1

(t′ij+1
) ≤ (1 + ρ)(tij+1 − t′ij+1

)−
(

s+
1

2

)

κ(vij ,...,vij+1
);

thus we have

ξsq′(ϕj) ≥ 2ρΛs + ((1− ρ)µ − 2ρ)(t0 − t′ij+1
) + (1− ρ)(1 + µ)(t′ij+1

− ϕj)

−
(

Lvij+1
(t′ij+1

)− Lvij+1
(ϕj)

)

+
κ(vij ,...,vij+1

)

2
.

Now let us go back in time to θj+1. Note that by definition of θj+1 we have ϕj−θj+1 ≤ tij+1
−t′ij+1

≤
τ{

vij+1−1,vij+1

}. Therefore,

ξsq′(θj+1) = ξsq′(ϕj)−
(

Lvij+1
(ϕj)− Lvij+1

(θj+1)
)

+ (Lx(ϕj)− Lx(θj+1))

≥ 2ρΛs + ((1− ρ)µ− 2ρ)(t0 − t′ij+1
) + (1− ρ)(1 + µ)(t′ij+1

− ϕj)

−
(

Lvij+1
(t′ij+1

)− Lvij+1
(θj+1)

)

+
κ(vij ,...,vij+1

)

2
+ (1− ρ)(ϕj − θj+1)

= 2ρΛs + ((1− ρ)µ− 2ρ)(t0 − t′ij+1
) + (1− ρ)(1 + µ)(t′ij+1

− θj+1)

− (1− ρ)(1 + µ)(ϕj − θj+1) + (1− ρ)(ϕj − θj+1)

−
(

Lvij+1
(t′ij+1

)− Lvij+1
(θj+1)

)

+
κ(vij ,...,vij+1

)

2
> 2ρΛs + ((1− ρ)µ− 2ρ)(t0 − t′ij+1

) + (1− ρ)(1 + µ)(t′ij+1
− θj+1)

− µτ{
vij+1−1,vij+1

} −
(

Lvij+1
(t′ij+1

)− Lvij+1
(θj+1)

)

+
κ(vij ,...,vij+1

)

2

(9)
> 2ρΛs + ((1− ρ)µ− 2ρ)(t0 − t′ij+1

) + (1− ρ)(1 + µ)(t′ij+1
− θj+1)

−
(

Lvij+1
(t′ij+1

)− Lvij+1
(θj+1)

)

.

52



Finally, to show that q′ ∈ P s
vij+1

(θj+1), recall that q
′ = (vij+1

, . . . , vij ) ◦ q. Because θj+1 ≤ t′ij+1

(by definition of ij+1), Property (1) of the chain shows that pij+1
∈ P s

vij+1
(θj+1), and in particular

(vij+1
, . . . , vij ) ∈ P s

vij+1
(θj+1), as this is a sub-path of pij+1

. Thus, to show that q′ ∈ P s
vij+1

(θj+1),

it remains to show that q ∈ P s
vij

(θj+1).

By definition of q we have q ∈ P s
vij

(ϕj), and from (60) it follows that

ξsq(ϕj) = Ξs
vij

(ϕj) ≥ 2ρΛs + ((1 − ρ)µ− 2ρ)(t0 − tij+1) + (1− ρ+ 2µ)(tij+1 − ϕj)

− (1 + ρ)(1 + µ)(tij+1 − ϕj)

= 2ρΛs + 2((1 − ρ)µ − 2ρ)(t0 − ϕj)
(8)
> 0.

Also, from Property (5), vij satisfies the (C, s)-stabilization condition at time ϕj ≤ t′ij . Therefore,

Lemma 6.2 shows that for all t′ ∈ [t−, ϕj ] we have q ∈ P s
vij

(t′). In particular, then, q ∈ P s
vij

(θj+1).

This shows that Ξs
vij+1

(θj+1) ≥ ξsq′(θj+1) and completes the induction.

The induction ends at a time ϕh ∈ [t−, t0 − Λs] and a node vih satisfying

Ξs
vih

(ϕh) ≥ 2ρΛs + ((1− ρ)µ− 2ρ)(t0 − tih+1) + (1− ρ)(1 + µ)(tih+1 − ϕh)

−
(

Lvih
(tih+1)− Lvih

(ϕh)
)

+ (1 + ρ)µ(tih+1 − ϕh)

≥ 2ρΛs + ((1− ρ)µ− 2ρ)(t0 − tih+1) + (1− ρ)(1 + µ)(tih+1 − ϕh)

− (1 + ρ)(1 + µ)(tih+1)− ϕh) + (1 + ρ)µ(tih+1 − ϕh)

= 2ρΛs + ((1− ρ)µ− 2ρ)(t0 − ϕh)

≥ 2ρΛs + ((1− ρ)µ− 2ρ)Λs

= (1− ρ)µ · Cs−1

2(1− ρ)µ
=
Cs−1

2
,

where in the second to last step we again used that (1 − ρ)µ − 2ρ > 0 due to Inequality (7). Let
p = (vih , . . . , y) ∈ P s

vih
(ϕh) be a path such that ξsp(ϕh) = Ξs

vih
(ϕh) ≥ Cs−1/2. Thus,

Ψs−1
y (ϕh) ≥ ψs−1

p̄ (ϕh) = ξsp(ϕh) +
κp
2
>
Cs−1

2
. (63)

From Property (5), node vih satisfies the (C, s)-stabilization condition at time ϕh. Hence, we can
apply Lemma 6.1 to p, yielding that y is (C, s − 1)-legal at time ϕh, contradicting (63).

7 Dynamic and Local Global Skew Estimates

In this section, we extend the analysis to handling and adapting to dynamic global skew estimates.
From here on, we therefore assume that when inserting an edge {u, v}, the insertion duration
I{u,v} is computed according to (11) in Algorithm 2. In the next lemma, we show that with this
assumption the logical times of edge insertions on different levels are well separated, even if the
insertions are for different edges and if different global skew estimates are used for inserting the
different edges.
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Lemma 7.1. Let e and e′ be two edges that are inserted with global skew estimates G̃e and G̃e′,
respectively. Further, let s ≥ 1 and s′ ≥ 1 be two levels and consider the logical insertion times T e

s

and T e′

s′ . If s 6= s′, it holds that

|T e
s − T e′

s′ | ≥
min {Ie,Ie′}

27 · 4min{s,s′}−2
. (64)

If s = s′, either (64) holds or T e
s = T e′

s′ .

Proof. For convenience, we define ℓe :=
⌈

log2(G̃e/µ+ Te + τe)
⌉

and ℓe′ :=
⌈

log2(G̃e′/µ + Te′ + τe′)
⌉

.

The lengths Ie and Ie′ of the time insertion intervals are then Ie = B · 23+ℓe and Ie′ = B · 23+ℓe′ ,
respectively. Without loss of generality, assume that ℓe ≤ ℓe′ and thus also Ie ≤ Ie′ . Consider
the insertion times T e

s and T e′

s′ of the edges e and e′ on levels s and s′, respectively. We have
T e
s = T e

0 + Ie
(
1− 1

2s+1−1

)
and similarly T e′

s′ = T e′
0 + Ie′

(
1− 1

2s′+1−1

)
. Recall that T e

0 is chosen to be

an integer multiple of Ie and T e′
0 is chosen to be an integer multiple of I ′

e. Let ∆ℓ := ℓe − ℓe′ ≥ 0
such that Ie = Ie′ · 2∆ℓ . Defining Se

0 := T e
0 /Ie′ and Se′

0 := T e′
0 /Ie′ , we can then write T e

s and T e′

s′ as

T e
s = Ie′ ·






Se
0 + 2∆ℓ

(

1− 1

2s+1 − 1

)

︸ ︷︷ ︸
=:x







and T e′

s′ = Ie′ ·






Se′

0 + 1− 1

2s′+1 − 1
︸ ︷︷ ︸

=:y






, (65)

where Se
0, S

e′
0 , and ∆ℓ are all non-negative integers. Consider x and y as defined in (65). We then

have |T e
s − T e′

s′ | = Ie′ · |x − y| and it therefore suffices to bound |x − y|. For any integer a ≥ 1, it
holds that 1

2a−1 =
∑∞

i=1
1

2a·i
. As a consequence, we can write x and y as

x = ⌈x⌉ −
∞∑

i=1

1

2i(s+1)−kℓ
= ⌈x⌉ − 2kℓ

2s+1 − 1
and y = ⌈y⌉ − 1

2(s′+1) − 1
, (66)

where kℓ = ∆ℓ mod (s+ 1) and thus kℓ ∈ {0, . . . , s}. From (66), we have

⌈x⌉ − 1

2s−kℓ+1
> x = ⌈x⌉ − 1

2s−kℓ+1
· 2s+1

2s+1 − 1

(s≥1)

≥ ⌈x⌉ − 1

2s−kℓ+1
· 4
3

(s−kℓ≥0)

≥ ⌈x⌉ − 2

3
(67)

and

⌈y⌉ − 1

2s′+1
> y = ⌈y⌉ − 1

2s′+1
· 2s

′+1

2s′+1 − 1

(s′≥1)

≥ ⌈y⌉ − 1

2s′+1
· 4
3
.
(s′≥1)

≥ ⌈y⌉ − 1

3
. (68)

Let us first consider the case where ⌈x⌉ 6= ⌈y⌉. From the last inequalities of (67) and (68), we then
get that

|x− y| > 1

3
. (69)

Let us therefore come to the case where ⌈x⌉ = ⌈y⌉. If s− kℓ < s′, i.e., s− kℓ ≤ s′− 1, (67) and (68)
imply that

y − x >
1

2s−kℓ+1
− 1

2s′+1
· 4
3

(s′−1≥s−kℓ)

≥ 1

3 · 2s−kℓ+1
≥ 1

6 · 2min{s,s′}
. (70)

Similarly, if ⌈x⌉ = ⌈y⌉ and s− kℓ > s′, i.e., s− kℓ ≥ s′ + 1, we obtain

x− y >
1

2s′+1
− 1

2s−kℓ+1
· 4
3

(s−kℓ≥s′+1)

≥ 1

3 · 2s′+1
=

1

6 · 2min{s,s′}
. (71)
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Finally, for ⌈x⌉ = ⌈y⌉ and s− kℓ = s′, we either have kℓ = 0 and s = s′ in which case (67) and (68)
imply that x = y and therefore also T e

s = T e′

s′ . Otherwise, assume that kℓ > 0 and s = s′ + kℓ. We
then get

x− y =
1

2s
′+1

·
(

2s
′+1

2s
′+1 − 1

− 2s+1

2s+1 − 1

)

>
1

2s
′+1

· 2
s+1 − 2s

′+1

2s+s′+2

(s>s′)

≥ 1

8 · 22s′ =
1

8 · 4min{s,s′}
. (72)

Combining (69), (70), (71), and (72), we either have s = s′ and x = y or we get that

|x− y| ≥ 1

8 · 4min{s,s′}
=

1

27 · 4min{s,s′}−2
.

Consequently, we either have s = s′ and T e
s = T e′

s′ , or we obtain

|T e
s − T e′

s′ | ≥
Ie′

27 · 4min{s,s′}−2
=

min{Ie,Ie′}
27 · 4min{s,s′}−2

,

and thus the claim of the lemma follows.

“The” gradient property here is actually a time-dependent notion, since the global skew varies
over time. The algorithm will take some time to adapt to a smaller global skew, and this process is
complicated by potential simultaneous edge insertions. To capture the former, we define for each
time t a certain time P (t) that lies sufficiently far in the past for the algorithm to have time to
accomodate the corresponding global skew (at time P (t)). For each t ∈ R

+
0 such that this value is

defined, we set
P (t) := max{t′ ∈ [0, t] | B · G(t′) = µ(t− t′)}. (73)

Note that P (t) exists by continuity of f(t′) := BG(t′)− µ(t− t′) for all t ≥ BG(0)/µ, since this
implies f(0) < 0 and trivially we have that f(t) ≥ 0. In the following, let tmin denote the minimal
time so that P (tmin) exists, i.e., P : [tmin,∞) → R

+
0 such that P (t) ≤ t. Our goal will be to prove

a non-trivial gradient property for times t ≥ tmin; for smaller times, the algorithm had insufficient
time to converge to small skews (where the meaning of “small” depends on G(P (t)), as clarified
below).

Before proceeding with the definition of the gradient sequences we use, let us establish some
basic properties of P (t). In the following, we use the shorthand

Ĝ := 2G(P (t)).
Lemma 7.2. For each t ≥ tmin and all t′ ∈ [P (t), t], it holds that
(i) G(t′) ≤ Ĝ and
(ii) G(t′) ≥ (t− t′)µ/B.

Proof. Fix any t ≥ tmin. For t
′ ∈ [P (t), t], by Theorem 5.6 it holds that

G(t′) ≤ G(P (t)) + 2ρ(t′ − P (t)) ≤ G(P (t)) + 2ρ(t− P (t)) = G(P (t)) + 2ρBG(P (t))
µ

(12)

≤ Ĝ,

yielding Statement (i). Regarding Statement (ii), assume for the sake of contradiction that

f(t′) := BG(t′)− µ(t− t′) < 0.

Clearly, f is continuous and f(t) ≥ 0. Hence, there must exist some t′′ ∈ (t′, t] so that f(t′′) = 0.
This contradicts the maximality of P (t) ≤ t′ < t′′ ≤ t among times smaller or equal to t with the
property that f(t) = 0. We conclude that Statement (ii) must be true as well.
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The first property enables us to use Ĝ as a global skew upper bound for defining gradient
sequences pertinent for the entire interval [P (t), t]. As shown in the following lemma, the second
property guarantees that, during [(2P (t) + t)/3, t], no edge insertions happen on any level s > 0
that are based on a global skew estimate substantially smaller than G(P (t)).

Lemma 7.3. For each t ≥ tmin, all t
′ ∈ [(2P (t)+ t)/3, t], and any nodes u, v, if u adds v to N s

u for
any s > 0 at time t′, then it holds that the corresponding call to insertedge (see Listing 2) computes
I{u,v}(G̃) ≥ (1− ρ)BG(P (t))/(10µ), where G̃ is the global skew estimate passed to insertedge.

Proof. Fix t, t′, u, and v, and suppose u adds v to N s
u at time t′. Denote by t0 the (most recent)

time when u added v to N0
u and suppose that G̃ was used in the call to insertedge at time t0.

Assume that w ∈ {u, v} is the leader of edge {u, v}. We distinguish two cases, the first being
that t0 < P (t). For this case, note that the corresponding logical time for which the insertion is
complete on all levels satisfies

T {u,v}
∞ ≤ Lw(t0) + (1 + ρ)(1 + µ)(T{u,v} + 2τ{u,v}) + 2I{u,v}

(11)
= Lw(t0) + (1 + ρ)(1 + µ)(T{u,v} + 2τ{u,v}) + 2B · 23+⌈log(G̃/µ+T{u,v}+τ{u,v})⌉

(11)
< Lw(t0) + 3I{u,v}.

We conclude that the time t∞ so that Lw(t∞) = T
{u,v}
∞ is bounded from above by

t∞ ≤ t0 +
3I{u,v}
1− ρ

.

Moreover, if t′ > t∞ (which may happen if w = v), Statement (i) of Lemma 7.2 yields that

T {u,v}
∞ > Lu(t

′)

≥ Lw(t
′)− G(t′)

≥ Lw(t∞) + (1− ρ)(t′ − t∞)− Ĝ
= T {u,v}

∞ + (1− ρ)(t′ − t∞)− Ĝ.

Therefore,

t′ − t0 = t′ − t∞ + t∞ − t0 ≤
3I{u,v} + Ĝ

1− ρ
.

As t′ ≥ (2P (t) + t)/3 is equivalent to t− P (t) ≤ 3(t′ − P (t)), this leads to

G(P (t)) = µ(t− P (t))

B ≤ 3µ(t′ − P (t))

B <
3µ(t′ − t0)

B ≤
9µI{u,v} + 3µĜ

(1− ρ)B
(7,12)
<

9µI{u,v}
(1− ρ)B +

G(P (t))
10

.

Rearranging this inequality, we obtain that

(1− ρ)BG(P (t))
10µ

≤ I{u,v},

i.e., the claim of the lemma holds.
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The second case is that t0 ≥ P (t). Since trivially t0 < t′ ≤ t, Statement (ii) of Lemma 7.2
implies that

I{u,v} >
B · 23 · G̃

µ
≥ B · 23 · G(t0)

µ

(7,12)
> 3G(t0) +

4BG(t0)
µ

(73)

≥ 3G(t0) + 4(t− t0)

and hence

T
{u,v}
1 > Lw(t0) +

2I{u,v}
3

> Lu(t0) +
8(t− t0)

3

(7)
> Lu(t0) + (1 + ρ)(1 + µ)(t− t0).

We conclude that

t′ ≥ t0 +
T
{u,v}
1 − Lu(t0)

(1 + ρ)(1 + µ)
> t,

contradicting the prerequisite that t′ ∈ [(2P (t) + t)/3, t]. Therefore, the first case must always
apply and the proof is complete.

In summary, we have established that for any time t ≥ tmin that (i) 2 · G(P (t)) is a valid upper
bound on the global skew throughout [P (t), t] and (ii) that no edge e is inserted on any level s > 0
during [(2P (t) + t)/3, t] with a value of Ie < (1 − ρ)BG(P (t))/(10µ). The latter property ensures
that the sets Ts, s > 0, are sufficiently “sparse” (i.e., insertion times are sufficiently well-separated)
for the algorithm to stabilize to small skews during [(P (t)+2t)/3, t], based on the guaranteed upper
bound of 2G(P (t)) on the global skew. Note that we restrict the time interval for which we show
convergence to [(P (t) + 2t)/3, t], so there is a buffer against interference from edge insertions with
small values of Ie that may have occured before time (2P (t)+ t)/3. However, we know little about
Ts ∩ (t,∞), since the global skew might decrease quickly after time t; this is a technical issue that
we will deal with by, essentially, ignoring insertions after time t.

Let us now formalize the above intuition by defining suitable time periods and (time- and node-
dependent) gradient sequences so that the preconditions of Theorem 5.18 will be satisfied for any
level s > 1, time, and node for which the respective gradient sequence C satisfies that Cs < Cs−1.

Definition 7.4 (Instability Periods). For a level s > 1, a time t ≥ tmin, and a node u, we define
the set of its s-unstable times (with respect to time t) as

Us(u, t) :=
{

t′ ∈ [(P (t) + 2t)/3, t]
∣
∣
∣ ∃Ts ∈ Ts : |Lu(t

′)− Ts| ≤ As(Ĝ)
}

,

where

As(Ĝ) :=
(
(7 + 2ρ)(1 + µ)

2µ(1− ρ)
+ 2s

)
2Ĝ
σs−2

. (74)

For a level s′ > 2, a time t ≥ tmin, and a node u, the set of s′-recovery times is

Rs′(u, t) :=
⋃

s<s′

{t′ ∈ [(P (t) + 2t)/3, t]
∣
∣ ∃Ts ∈ Ts : Bs,s′−1(Ĝ) < |Lu(t

′)− Ts| −As(Ĝ) ≤ Bs,s′(Ĝ)},

where

Bs1,s2(Ĝ) :=
s2−1∑

s=s1

βs(Ĝ) and βs(Ĝ) :=
(
(7 + 2ρ)(1 + µ)

2µ(1 − ρ)
+ s

)
2Ĝ
σs−2

. (75)
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Here, the time intervals Us(u, t) provide a “buffer” around the (logical!) times from Ts, during
which we will not make any non-trivial guarantees on level s at node u, i.e., the respective gradient
sequence C will satisfy that Cs = Cs−1. The additional “buffers” provided by the sets Rs′ ensure
that the gradient sequences at nodes with similar logical times do not differ in more than a single
level. This is crucial for applying Theorem 5.18, since it requires the level-s stabilization condition
to hold for all nodes with logical times from a certain range around the logical clock value of the
node we examine.

Before defining suitable gradient sequences based on the above sets, we must show that the sets
for different levels are pairwise disjoint. However, as mentioned earlier, we have no control over
edge insertions at times larger than t. We overcome this by first considering a constrained set of
executions for which there are no insertions after time t and only afterwards inferring skew bounds
for arbitrary executions.

Definition 7.5 (Insertion-bounded Executions). For t ∈ R
+
0 , an execution is called t-insertion-

bounded iff no edges are inserted on any level at times greater than t.

For such executions, we can show that the sets specified in Definition 7.4 are disjoint.

Lemma 7.6. Consider a t-insertion-bounded execution for some t ≥ tmin. Then it holds for all
nodes u and 1 < s′ < s that Us(u, t) ∩ Us′(u, t) = ∅ and Us(u, t) ∩Rs′(u, t) = ∅.
Proof. For a given s > 1 and Ts ∈ Ts, abbreviate

Us(Ts) :=
{

t′ ∈ [(P (t) + 2t)/3, t]
∣
∣
∣ |Lu(t

′)− Ts| ≤ As(Ĝ)
}

and, for s′ > s,

Rs′(Ts) := {t′ ∈ [(P (t) + 2t)/3, t]
∣
∣Bs,s′−1(Ĝ) < |Lu(t

′)− Ts| −As(Ĝ) ≤ Bs,s′(Ĝ)}.
This entails that

Us(u, t) =
⋃

Ts∈Ts

Us(Ts) and Rs′(u, t) =
⋃

s<s′

⋃

Ts∈Ts

Rs′(Ts).

Moreover, we have

Us(Ts) ∪
⋃

s′>s

Rs′(Ts) =
(

Ts −As(Ĝ)−Bs,∞(Ĝ), Ts +As(Ĝ) +Bs,∞(Ĝ)
)

, (76)

where

Bs,∞(Ĝ) := lim
s′→∞

Bs,s′(Ĝ) =
∞∑

s′=s

βs′(Ĝ).

Evaluating this limit is straightforward, yielding

As(Ĝ) +Bs,∞(Ĝ) =
2Ĝ
σs−2

(
(7 + 2ρ)(1 + µ)

2µ(1− ρ)

(

1 +
σ

σ − 1

)

+ s

(

2 +
σ

σ − 1

)

+
σ

(σ − 1)2

)

σ≥101
≤ 2Ĝ

4s−2

((
1407

200
+

201ρ

100

)

· 1 + µ

µ(1− ρ)
+

301s

100 · 12s−2
+

101

1002

)

s≥2
≤ 2Ĝ

4s−2

((
1407

200
+

201ρ

100

)

· 1 + µ

µ(1− ρ)
+

301

100
+

101

1002

)

(13,7)
<

16Ĝ
4s−2µ(1− ρ)

. (77)
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In particular, this expression is maximized for s = 2, giving

As(Ĝ) +Bs,∞(Ĝ) + Ĝ
(7,77)
<

17Ĝ
µ(1− ρ)

=
34G(P (t))
µ(1− ρ)

(73)
=

34 · (t− P (t))

(1− ρ)B
(12)

≤ (1− ρ)(t− P (t))

3
.

Now consider any Ts ∈ Ts such that Lv((2P (t)+ t)/3) > Ts for some v ∈ V . From Statement (i)
of Lemma 7.2 and the above inequality, we obtain that

Lu

(
P (t) + 2t

3

)

− Ts ≥ Lu

(
2P (t) + t

3

)

+
(1− ρ)(t− P (t))

3
− Ts

≥ Lv

(
2P (t) + t

3

)

− G
(
2P (t) + t

3

)

+
(1− ρ)(t− P (t))

3
− Ts

≥ (1− ρ)(t− P (t))

3
− Ĝ

> As(Ĝ) +Bs,∞(Ĝ),
and hence Us(Ts) = ∅ and Rs′(Ts) = ∅ for all s′ > s. Thus, any insertion time Ts lies sufficiently
far in the past and is of no concern. As the execution is t-insertion-bounded, we conclude that it
suffices to consider s, s′ ≥ 2, Ts ∈ Ts, and Ts′ ∈ Ts′ , so that there exists a node v inserting an
edge {v,w} on level s at the time tv ∈ [(2P (t) + t)/3, t] satisfying that Lv(tv) = Ts and a node v′

inserting an edge {v′, w′} on level s′ at the time tv′ ∈ [(2P (t)+ t)/3, t] satisfying that Lv′(tv′) = Ts′ .
Because we have s 6= s′, Lemma 7.1 states that

|Ts − Ts′ | ≥
min{I{v,w}(G̃),I{v′,w′}(G̃′)}

27 · 4min{s,s′}−2
,

where G̃ and G̃′ are the estimates used in the computation of the logical insertion times Ts and Ts′ ,
respectively (by the leaders of the inserted edges {u, v} and {u′, v′}). Applying Lemma 7.3, we see
that

min{I{v,w}(G̃),I{v′,w′}(G̃′)}
27 · 4min{s,s′}−2

≥ (1− ρ)BG(P (t))
10µ · 27 · 4min{s,s′}−2

(12)

≥ 32G(P (t))
4min{s,s′}−2µ(1− ρ)

=
16Ĝ

4min{s,s′}−2µ(1− ρ)

(77)
> As(Ĝ) +Bs,∞(Ĝ) +As′(Ĝ) +Bs′,∞(Ĝ).

Recalling (76), we conclude that
(

Us(Ts) ∪
⋃

s′′>s

Rs′′(Ts)

)

∩
(

Us′(Ts′) ∪
⋃

s′′>s′

Rs′′(Ts′)

)

= ∅.
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Thus, all cases are covered and the proof is complete.

With this lemma and the definitions preceding it at hand, we can now specify gradient sequences
suitable for deriving our skew bounds.

Definition 7.7 (Global and Local Gradient Sequences). Given times t ≥ tmin and t′ ∈ [P (t), t],
we define the global gradient sequence C(t,t′) as follows. Set ∆1(t) := t− P (t), and

∆s(t) :=

∞∑

s′=s

7Ĝ
2(1 − ρ2)µσmax{s′−3,0}

(78)

for s > 1. Denote by s′ ∈ N the uniqe level such that t′ ∈ [t−∆s′(t), t−∆s′+1(t)). Then

C(t,t′)
s :=







2Ĝ
σs−1 if s ≤ s′

2Ĝ
σs′−1

else.

For the above parameters and a node u, the local gradient sequence at u is given by

C(t,t′,u)
s :=







C
(t,t′)
s−1 if t′ ∈ ⋃s′′≤s Us′′(u, t) ∪Rs′′(u, t)

C
(t,t′)
s else.

Since

∆2(t) =

∞∑

s′=2

7Ĝ
2(1− ρ2)µσmax{s′−3,0}

=

(

1 +
σ

σ − 1

)
7Ĝ

2(1− ρ2)µ

=

(

1 +
σ

σ − 1

)
7(t− P (t))

2(1 − ρ2)B
(12)

≤ t− P (t)

3
(79)

< t− P (t),

the global sequences are well-defined (i.e., decreasing in s), implying the same for the local se-
quences. We are now ready to prove our main result.

Lemma 7.8. For any t-insertion-bounded execution with tmin ≤ t, it holds for all times t′ ∈ [P (t), t]
and nodes u ∈ V that u is C(t,t′,u)-legal at time t.

Proof. Suppose that this statement is false: Let t̄ be the smallest time such that there exists a node
u and a time t+ ≥ t̄ such that t̄ ∈ [P (t+), t+] and u is not C(t+,t̄,u)-legal at time t̄ for some level s̄.
W.l.o.g., assume that s̄ is the smallest level for which u is not C(t+,t̄,u)-legal at time t̄. To simplify
the notation, in the following we use Ĝ+ := 2G(P (t+)). Note that by statement (i) of Lemma 7.2,

G(t) ≤ Ĝ+ for all t ∈ [P (t+), t+]. This implies that for all t ∈
[
P (t+) + Θ

(t+,t̄,u)
2 , t+

]
, condition

(S0) of the stabilization condition (cf. Def. 5.16) holds and therefore by Lemma 5.17, the system
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is (C(t+,t̄,u), 1)-legal for all nodes v ∈ V and all times t′ ∈ [P (t+), t+]; hence, we in particular have
s̄ > 1.

We will now define a gradient sequence C̄ such that C̄s̄ = C
(t+,t̄,u)
s̄ and, for s < s̄, C̄s ≥ C

(t+,t̄,u)
s .

Note that, by minimality of s̄, node u is (C̄, s̄)-legal if and only if it is (C(t+,t̄,u), s̄)-legal. It is thus
sufficient to derive a contradiction to the assumption that node u is not (C̄, s̄)-legal at time t̄. The
sequence is defined as follows:

C̄s :=

{
2Ĝ+

σs−1 if C
(t+,t̄,u)
s̄ = 2Ĝ+

σs̄−1

2Ĝ+

σmax{s−2,0} if C
(t+,t̄,u)
s̄ = 2Ĝ+

σs̄−2 .

Note that due to the minimality of s̄, Statement (iii) of Lemma 5.15 shows that C
(t+,t̄,u)
s̄ < C

(t+,t̄,u)
s̄−1

and therefore either C
(t+,t̄,u)
s̄ = 2Ĝ+

σs̄−1 or C
(t+,t̄,u)
s̄ = 2Ĝ+

σs̄−2 . Hence, C̄ is well-defined for all cases.
We will use Theorem 5.18 to prove (C̄, s̄)-legality of u at time t̄, so our goal is to show that

node u satisfies the preconditions to apply the lemma. We set the time

t := t̄− 5

2
· C̄s̄−1

µ(1− ρ2)
. (80)

Further, for a time t ∈ [t, t̄], we define

Vu(t) :=
{
v ∈ V : ∃ path p = (u, . . . , v) ∈ P s̄

u(t) with κp ≤ C̄s̄−1

}
. (81)

In order to apply Theorem 5.18, we show that for all times t ∈ [t, t̄], each node v ∈ Vu(t) satisfies
the (C̄, s̄)-stabilization condition at time t. Setting t− = t and t+ = t̄, we can then apply the
lemma. Since

t̄− t =
5

2
· C̄s̄−1

µ(1− ρ2)
>

C̄s̄−1

2(1 − ρ)µ
+ 2Θ̄s̄,

the lemma implies that at time t̄,

Ψs̄
u(t̄) <

C̄s̄−1

2σ
≤ C̄s̄

2
.

By Definition 5.13, this is a contradiction to the assumption that u is not (C̄, s̄)-legal at time t̄.

We now show that the stabilization condition applies. Since C
(t+,t̄,u)
s̄ < C

(t+,t̄,u)
s̄−1 (or State-

ment (iii) of Lemma 5.15 and the minimality of s̄ yield a contradiction), we have that t̄ /∈
⋃s̄−1

s=0[t
+ −∆s(t), t

+ −∆s+1(t)]. Therefore, t̄ ≥ t+ −∆s̄. In particular,

t ≥ t̄− 5

2
· C̄1

µ(1− ρ2)

> t+ −∆2(t
+)− 5Ĝ+

2µ(1− ρ2)

(79)

≥ P (t+) +
2(t+ − P (t+))

3
− 5Ĝ+

2µ(1 − ρ2)

(73)
= P (t+) +

2BĜ+

3µ
− 5Ĝ+

2µ(1− ρ2)

(12)
> P (t+) +

14Ĝ+

2µ(1− ρ2)
− 5Ĝ+

2µ(1− ρ2)

(24)
> P (t+) + Θ̄2.

61



In other words, [t, t̄] ⊆ [P (t+) + Θ̄2, t
+]. As shown earlier, this entails that (S0) is satisfied at all

nodes and times t ∈ [t, t̄].
Concerning (S1), from the previous observation that t̄ ≥ t+ −∆s̄, we have for 1 < s < s̄ that

t = t̄− 5

2
· C̄s̄−1

µ(1− ρ2)

≥ t+ −∆s(t
+) +

(

∆s −∆s+1 −
5

2
· C̄s̄−1

µ(1− ρ2)

)

(78)

≥ t+ −∆s(t
+) +

(

7Ĝ+

2µ(1− ρ2)σmax{s−3,0}
− 5Ĝ+

2µ(1− ρ2)σmax{s̄−3,0}

)

> t+ −∆s(t
+) +

Ĝ+

(1 + ρ)µσmax{s−3,0}

≥ t+ −∆s(t
+) + Θ̄s.

Thus, for t ∈ [t− Θ̄s, t̄] and 1 < s < s̄, C
(t+,t)
s = 2Ĝ+/σs−1. We distinguish two cases according to

which gradient sequence we use for C̄.

Case C̄s = 2Ĝ/σmax{s−2,0} for all s: Because for any node v and s > 1, C
(t+,t,v)
s ≤ σC

(t+,t)
s =

C̄s, the minimality of t̄ and s̄ imply that for all t ∈ [t − Θ̄s, t̄], 1 < s < s̄, and v ∈ V , the system
is (C̄, s)-legal at node v and time t. In particular, (S1) is satisfied at time t at all nodes v ∈ Vu(t)
w.r.t. C̄ and s̄.

Case C̄s = 2Ĝ/σs−1 for all s: Consider 1 < s < s̄, a time t ∈ [t− Θ̄s, t̄], and a node v ∈ Vu(t).

We need to show that C
(t+,t,v)
s = C

(t+,t)
s = C̄s. Assume for the sake of contradiction that there is

a minimal level 1 < s < s̄ violating this claim for some t and v ∈ Vu(t). We apply Lemma 5.14 to
nodes u and v with respect to (C̄, s− 1)-legality, where κp ≤ C̄s̄−1 ≤ C̄s−1. This yields

|Lv(t)− Lu(t)| <
(

s+
1

2

)

κp +
C̄s−1

2
≤ sC̄s−1,

and thus

|Lv(t)− Lu(t̄)| < sC̄s−1 + (1 + ρ)(1 + µ)(t̄− (t− Θ̄s))

= sC̄s−1 +
5(1 + µ)C̄s̄−1

2µ(1− ρ)
+

(1 + ρ)(1 + µ)C̄s−1

µ(1− ρ)

(75)

≤ βs(Ĝ+). (82)

Moreover, the fact that C
(t+,t,v)
s 6= C

(t+,t)
s entails that

t ∈
⋃

s′≤s

Us′(v, t
+) ∪Rs′(v, t

+)

Therefore, there exist s′ ≤ s and Ts′ ∈ Ts′ so that

|Lv(t)− Ts′ | ≤ As′(Ĝ+) +Bs′,s(Ĝ+).
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Similarly, as we have that
2P (t+) + t+

3

(79)

≤ t+ −∆2 ≤ t̄ ≤ t+ (83)

and C
(t+,t̄,u)
s̄ = 2Ĝ+/σs̄−1 = C

(t+,t̄)
s̄ , it holds that

t̄ /∈
⋃

s′′≤s̄

Us′′(v, t
+) ∪Rs′′(v, t

+)

and hence
|Lu(t̄)− Ts′ | > As′(Ĝ+) +Bs′,s̄(Ĝ+).

Combining these two inequalities yields that

|Lu(t̄)− Lv(t)| > Bs′,s̄(Ĝ+)−Bs′,s(Ĝ+) = Bs,s̄(Ĝ+) ≥ βs(Ĝ+),

contradicting (82).
It remains to show (S2) for each v ∈ Vu(t) and all t ∈ [t, t̄]. Since we already established (S1),

we can apply Lemma 5.14 to nodes u and v with respect to (C̄s̄−1, s̄− 1)-legality, where κp ≤ C̄s̄−1.
This yields

|Lv(t)− Lu(t)| <
(

s̄− 1

2

)

κp +
C̄s̄−1

2
≤ s̄C̄s̄−1.

We claim that t̄ /∈ Us̄(u, t
+). For contradition, assume that t̄ ∈ Us̄(u, t

+). We then have C
(t+,t̄,u)
s̄ =

C
(t+,t̄)
s̄−1 . In order to have C

(t+,t̄,u)
s̄ 6= C

(t+,t̄,u)
s̄−1 , we thus need that C

(t+,t̄,u)
s̄−1 = C

(t+,t̄)
s̄−2 , which implies

that t̄ ∈ ⋃s′≤s̄−1 Us′(u, t̄) ∪ Rs′(u, t̄), which is a contradiction to the statement of Lemma 7.6. We
can therefore conclude that t̄ /∈ Us̄(u, t

+). Together with (83), this entails for any Ts̄ ∈ Ts̄ that
|Lu(t̄)− Ts̄| ≥ As̄(Ĝ+) and thus

|Lv(t)− Ts̄| ≥ |Lu(t̄)− Ts̄| − |Lu(t̄)− Lu(t)| − |Lu(t)− Lv(t)|
≥ As̄(Ĝ+)− (1 + ρ)(1 + µ)(t̄− t)− s̄C̄s̄−1

= As̄(Ĝ+)− 5(1 + µ)C̄s̄−1

2µ(1− ρ)
− s̄C̄s̄−1

(74)
=

(
(1 + ρ)(1 + µ)

(1− ρ)µ
+ s̄

)

C̄s̄−1

= (1 + ρ)(1 + µ)Θ̄s̄ + s̄C̄s̄−1.

We conclude that the preconditions for the application of Theorem 5.18 described earlier are met,
yielding the stated contradiction to the original assumption that the claim of the lemma is wrong.

Theorem 7.9. At all times t ≥ tmin and nodes u ∈ V , the system is C(t)-legal, where C
(t)
s =

4G(P (t))/σmax{s−2,0}.

Proof. Consider any execution of the algorithm and fix a time t ≥ tmin. We create a t-insertion-
bounded execution that is identical on [0, t) as follows. We modify the given execution in that
at time t all edges fail, i.e., E(t′) = ∅ for all t′ ≥ t. Moreover, all nodes become aware of the
non-existence of their incident edges at time t. Hence, all nodes clear their neighbor sets at time t
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and, for all s ∈ N, Ts ∩ (t,∞) = ∅. Therefore, the resulting execution is t-insertion-bounded and
identical to the original one on [0, t).

We can apply Lemma 7.8 to the new execution, showing that at time t, each node u is C(t,t,u)-

legal. As C
(t,t,u)
s ≥ C

(t,t)
s−1 = C

(t)
s , each node is C(t)-legal at time t in the modified execution. Since

the modified execution is identical to the original execution during [0, t) and logical clocks are
continuous, the claim of the theorem follows.

Corollary 7.10 (Gradient Property). For t ≥ tmin, set E
∞(t) := ∩∞

s=1E
s(t) and let p be a path

connecting u and v in (V,E∞) of minimal weight κp. For

s(p) := max{2 + ⌈logσ(4G(P (t))/κp⌉, 1},

it holds that
|Lu(t)− Lv(t)| ≤ (s(p) + 1)κp.

Proof. Since p is a path in (V,E∞) and Es(p) ⊆ E∞, p ∈ P
s(p)
u (t). By Theorem 7.9, the system is

C(t)-legal at u and v at time t. Applying Lemma 5.14 for level s(p), we obtain that

|Lu(t)− Lv(t)| ≤
(

s(p) +
1

2

)

κp +
C

(t)
s(p)

2
=

(

s(p) +
1

2

)

κp +
2G(P (t))

σmax{s(p)−2,0}
≤ (s(p) + 1)κp,

where the last inequality holds because s(p) = 1 implies that κp > 4G(P (t)).

8 Lower Bound on the Insertion Time

In this section, we strengthen the lower bound in [11] to match the stabilization time of AOPT.
The original lower bound stated, roughly speaking, that the stabilization time of any S-dynamic
gradient CSA with a stable gradient skew of S∞ cannot be better than Ω(D/S∞(1)) in graphs
of diameter D. For CSAs with O(log1/ρD)-local skew, this bound implies that the stabilization

time must be Ω(D/ log1/ρD). Algorithm AOPT has a stabilization time of O(D), which does not
match the bound in [11]; however, by refining the analysis in the lower bound, we can show that
the algorithm is in fact asymptotically optimal in its stabilization time. In the stronger bound we
reason about the full gradient property, which bounds the skew on paths of all distances, rather
than just the local skew property, which bounds the skew on single edges.

Let us call a dynamic gradient CSA non-trivial if it has a stable gradient skew satisfying
S∞(1) ∈ o(D). This essentially means that the algorithm guarantees a local skew (e.g., along single
edges) that is better than the global skew.

Theorem 8.1. Let F =
{
fD : R+

0 → R
+
0 |D ∈ R

}
be a family of functions, and let c1, c2 ∈ (0, 1/16)

be constants such that for all fD ∈ F we have fD(c1D) ≤ c2D. Let A be a non-trivial stabilizing
CSA guaranteeing a dynamic gradient skew of fD in graphs of weighted diameter D. Then the
stabilization time of A is at least Ω(D).

Proof Sketch. We show that for sufficiently large diameters D, we can add a new edge and cause
the skew on it to be larger than S after Ω(D) time. For simplicity we consider only line networks,
where D ∈ Θ(n), but the proof can easily be modified to hold in general networks.
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Consider a static line graph over n+1 nodes v0, . . . , vn, where the estimate graph is the same as
the communication graph and the weights of all edges are T . The diameter of the graph is D = nT .
Let c1, c2 be the constants from the statement of the theorem, and let u := v⌈c1n⌉, v := v⌊n−c1n⌋.
Finally, let ts ≥ TS be some time after the stabilization time of the algorithm. By definition of TS ,
at any time after ts, the skew on any path of weight d cannot exceed 2fD(d).

The distance between v0 and u and between v and vn is at least c1n; thus, for all t ≥ ts we have

Lv0(t)− Lu(t) ≤ fD(c1n) ≤ c2n,

Lv(t)− Lvn(t) ≤ fD(c1n) ≤ c2n.

Also, dist(u, v) ≥ n− c1n− 1− (c1n+ 1) = n− 2c1n− 2.
In [11], we show that we can create an execution E in which

(a) There exists a time t2 ≥ ts such that Lu(t2)− Lv(t2) ≥ 1
4 dist(u, v) ≥ n− 2c1n− 2, and

(b) The message delays on all edges between v0 and u and between v and vn are always at least
T/(1 + ρ).

Next we create a new execution E′, which is identical to E until time t1 := t2 − c1n ·T/(1 + ρ). At
time t1 in E′, an edge between v0 and vn appears. Our goal is to maintain a large skew on {v0, vn}
until time t2 to show that the algorithm has not stabilized by then.

Due to the large message delays, nodes u, v do not find out about the new edge until time
t2. Consequently, their skew in execution E′ is the same as in E. The paths v0, v1, . . . , u and
v, . . . , vn−1, vn, which have weight at least c1n by definition, are stable in both E and E′. Thus,
the skew on each path cannot exceed 2fD(c1n), that is, it cannot exceed 2c2n. It follows that the
skew between v0 and vn at time t2 in E′ is at least

Lv0(t2)− Lvn(t2) = Lv0(t2)− Lu(t2) + Lv(t2)− Lvn(t2) + Lu(t2)− Lv(t2)

≥ n− 2c1n− 2− 4c2n > n/2− 2.

For sufficiently large n, this value exceeds S∞(1), since we assumed that S∞(1) ∈ o(D). Thus, we
have showed that after c1n ·T/(1+ ρ) ∈ Ω(D) time since edge {v0, vn} appeared, the algorithm has
not yet stabilized.
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