
Unifying Dependent Clustering and Disparate Clustering
for Non-homogeneous Data

M. Shahriar Hossain1, Satish Tadepalli1, Layne T. Watson1,
Ian Davidson3, Richard F. Helm2, Naren Ramakrishnan1

1Dept. of Computer Science, 2Dept. of Biochemistry, Virginia Tech, VA 24061, USA
3Dept. of Computer Science, UC Davis, CA 95616, USA

Email: {msh, stadepal, ltw}@cs.vt.edu, davidson@cs.ucdavis.edu, helmrf@vt.edu, naren@cs.vt.edu

ABSTRACT
Modern data mining settings involve a combination of attribute-
valued descriptors over entities as well as specified relation-
ships between these entities. We present an approach to
cluster such non-homogeneous datasets by using the rela-
tionships to impose either dependent clustering or disparate
clustering constraints. Unlike prior work that views con-
straints as boolean criteria, we present a formulation that
allows constraints to be satisfied or violated in a smooth
manner. This enables us to achieve dependent clustering
and disparate clustering using the same optimization frame-
work by merely maximizing versus minimizing the objective
function. We present results on both synthetic data as well
as several real-world datasets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining; I.2.6
[Artificial Intelligence]: Learning

General Terms: Algorithms, Measurement, Experimenta-
tion.

Keywords: Clustering, relational clustering, contingency
tables, multi-criteria optimization.

1. INTRODUCTION
This paper focuses on algorithms for mining non-homogeneous

data involving attribute-valued descriptors over objects from
different domains and connected through a relationship. Con-
sider, for instance, the schematic in Fig. 1 (top) which re-
veals many-many relationships between companies and coun-
tries. Each company is characterized by a vector indicating
stock values, profit margins, earnings ratios, and other fi-
nancial indicators. Similarly, countries are characterized by
vectors in a different space, denoting budget deficits, infla-
tion ratio, unemployment rate, etc. Each company is also
related to the countries that it conducts business in.

Since Fig. 1 (top) has two different vector spaces and one
relation, there can be diverse objectives for clustering such
a non-homogeneous dataset. We study two broad objectives
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here. In Fig. 1 (bottom left), we seek to cluster compa-
nies (by their financial indicators) and cluster countries (by
their economic indicators) such that the relationships be-
tween individual entities are preserved at the cluster level.
In other words, companies within a cluster tend to do busi-
ness exclusively with countries in a corresponding cluster.
In Fig. 1 (bottom right), we identify clusters of companies
and clusters of countries where the original relationships be-
tween companies and countries are actually violated at the
cluster level. In other words, clusters in the company space
tend to do business with (almost) all clusters in the country
space. These two conflicting goals of clustering are meant
to reflect two competing hypotheses about companies and
their economic performances:

1. Dependent clustering: Fortunes/troubles of indi-
vidual companies are inter-twined with the fortunes
and woes of the countries they do business in. This
school of thought would support the contention that
General Motors’s (GM) financial troubles began with
the collapse of the mortgage industry in the United
States.

2. Disparate clustering: Diversification helps prepare
companies for bad economic times, and hence perfor-
mance of companies may not necesarily be tied to (and
is, hence, independent of) country indicators. An oft
cited example here is that Google is well positioned to
weather economic storms because its advertisers were
broad based.

Observe that in either case, the clusters are still local in their
respective attribute spaces, i.e., points within a cluster are
similar whereas points across clusters are dissimilar.

Without advocating any point of view, we posit that it
is important to design clustering algorithms that can sup-
port both the above analysis objectives. The need for clus-
tering non-homogeneous data with such conflicting crite-
ria arises in many more contexts, including bioinformatics
(studied here), social networks [15], hypertext modeling, rec-
ommender systems, paleontology, and epidemiology.

The chief contributions of this paper are:

• An integrated framework for clustering that unifies de-
pendent clustering and disparate clustering for non-
homogeneous datasets. Unlike prior work that views
constraints as boolean criteria, we present a formula-
tion that allows constraints to be satisfied or violated
in a smooth manner.



Figure 1: Clustering non-homogeneous data with
two different criteria. Here both domains are clus-
tered into three clusters each based on their at-
tribute vectors. (left) Dependent clustering. (right)
Disparate clustering.

• While the idea of dependent clustering through a rela-
tion has been studied previously [2], the idea of dis-
parate clustering where the objects are of different
spaces has not been studied before. We propose this
problem here and, moreover, show how we can view
dependent clustering and disparate clustering as two
sides of the same coin. We propose an integrated ob-
jective function whose minimization or maximization
leads us to disparate or dependent clustering (resp.)

• The idea of disparate clustering through a relation is
closely connected to the current topic of mining multi-
ple, alternative, clusterings [1, 18]. Alternative clus-
terings are to be expected in high dimensional datasets
where different explanations of the data may involve
using distinct subspaces of the data. For instance,
Fig. 1 (right) can be viewed as finding alternative clus-
terings for different types of objects (companies and
countries). The clusterings of (i) the companies and
(ii) the countries are alternative in the sense that we
cannot use the relational information to recover one
from the other and hence they are alternatives with
respect to the relational information. To our knowl-
edge, the literature on alternative clustering has not
explored this scenario of alternative clustering of ob-
jects of different types.
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Figure 2: Contingency tables for (left) dependent
clustering and (right) disparate clustering for the
scenarios from Fig. 1.

2. CLUSTERING USING CONTINGENCY
TABLES: A FRAMEWORK

As stated in the introduction, we require our clusters to
have two key properties. First, the individual clusters must
be local in the respective attribute spaces. Second, when
compared across relationships, the clusters must be either
highly dependent on each other, or highly independent of
each other. We present a uniform framework based on con-
tingency tables that works for both dependent and disparate
clusterings.

Fig. 2 presents contingency tables for the two clusterings
from Fig. 1. The tables are 3 × 3, where the rows denote
the clusters from the left domain (here, company clusters)
and the columns denote the clusters from the right domain
(here, country clusters). The cells indicate the number of
entries from the corresponding clusters that are related in
the original dataset. For instance, cell (1,1) of Fig. 2 (left)
indicates that there are 4 relationships between entities in
Cluster 1 of the companies dataset and entities in Cluster
1 of the countries dataset. Observe that the actual sizes of
the clusters are not reflected in this matrix, just the number
of relationships. Contrast this cell with the corresponding
entry of the disparate case, which shows the smaller number
of relationships (viz. 2) obtained from a different clustering.

Thus the ideal dependent case is best modeled by a diago-
nal or permutation contingency matrix. In practice, we can
aim to achieve a diagonally dominant matrix. Similarly, the
disparate case is modeled by a uniform (or near uniform)
distribution over all the contingency table entries. It is im-
portant to note, however, that we do not have direct
control over the contingency table entries. These en-
tries are computed from the clusters, which are in turn de-
fined by the prototype vectors. So the only variables that
we can adjust are the prototype vectors but the optimization
criteria must be stated in terms of the resulting contingency
tables. Mathematically,

Obj = F(Contingency table)

= F(n(Clustering1,Clustering2,Relation))

= F(n(v(Dataset1,Prototypes1),

v(Dataset2,Prototypes2),

Relation)) (1)

In reverse order,

• v is the clustering (assignment) function that finds
(separate) clusterings of the two datasets using pro-
totypes;

• n brings the clusterings together and prepares the con-
tingency table w.r.t. the underlying relation;

• Finally, F is the objective function that evaluates the



contingency matrix for either a dependent or an dis-
parate clustering (more on this later).

Here, the free parameters are the prototypes (Prototypes1,
Prototypes2) and the objective function Obj is meant to
be either minimized (for disparate clustering) or maximized
(for dependent clustering).

3. FORMALISMS
Let X and Y be two datasets, where X = {xs}, s =

1, . . . , nx is the set of (real-valued) vectors in dataset X ,
where each vector is of dimension lx, i.e., xs ∈ Rlx (Like-
wise Y = {yt}, t = 1, . . . , ny,yt ∈ Rly ). The many-to-many
relationships between X and Y are represented by a nx×ny
binary matrix B, where B(s, t) = 1 if xs is related to yt, else
B(s, t) = 0. Let C(x) and C(y) be the cluster indices, i.e.,
indicator random variables, corresponding to the datasets
X and Y and let kx and ky be the corresponding number
of clusters. Thus, C(x) takes values in {1, . . . , kx} and C(y)

takes values in {1, . . . , ky}. We present our formalisms in
accordance with the structure of Eqn. 1 so that they can
then be composed to yield the objective function.

3.1 Assigning data vectors to clusters
Let mi,X be the prototype vector for cluster i in dataset
X (similarly mj,Y ). (These are precisely the quantities
we wish to estimate/optimize for, but in this section, as-

sume they are given). Let v
(xs)
i (likewise v

(yt)
j ) be the clus-

ter membership indicator variables, i.e., the probability that
data sample xs is assigned to cluster i in dataset X (resp).

Thus,
∑rx

i=1 v
(xs)
i =

∑ry

j=1 v
(yt)
j = 1. The traditional k-

means hard assignment is given by:

v
(xs)
i =

{
1 if ||xs −mi,X || ≤ ||xs −mi′,X ||, i′ = 1 . . . kx,
0 otherwise.

(Likewise for v
(yt)
j .) Ideally, we would like a continuous

function that tracks these hard assignments to a high degree
of accuracy. A standard approach is to use a Gaussian kernel
to smooth out the cluster assignment probabilities. Here,
we present a novel smoothing formulation which provides
tunable guarantees on its quality of approximation and for
which the Gaussian kernel is a special case. First we define

γ(i,i′)(xs) =
||xs −mi′,X ||2 − ||xs −mi,X ||2

D
, 1 ≤ i, i′ ≤ kx,

where
D = max

s,s′
||xs − xs′ ||2, 1 ≤ s, s′ ≤ nx

is the pointset diameter. We now use argmin
i′

γ(i,i′)(xs) for

cluster assignments so the goal is to track min
i′
γ(i,i′)(xs)

with high accuracy. The approach we take is to use the
Kreisselmeier-Steinhauser (KS) envelope function [13] given
by

KSi(xs) =
−1

ρ
ln
[ kx∑
i′=1

exp(−ργ(i,i′)(xs))
]
,

where ρ � 0. The KS function is a smooth function that
is infinitely differentiable (i.e., its first, second, 3rd, ..
derivatives exist). Using this the cluster membership indi-

cators are redefined as:

v
(xs)
i =

exp
[
ρKSi(xs)

]
∑kx
i′=1 exp

[
ρKSi′(xs)

]
=

exp(− ρ
D
||xs −mi,X ||2)∑kx

i′=1 exp(− ρ
D
||xs −mi′,X ||2)

(2)

An analogous equation holds for v
(yt)
j . The astute reader

would notice that this is really the Gaussian kernel approx-
imation with ρ/D being the width of the kernel. However,
this novel derivation helps tease out how the width must be
set in order to achieve a certain quality of approximation.
Notice that D is completely determined by the data but ρ is
a user-settable parameter, and precisely what we can tune.

3.2 Preparing contingency tables
Preparing the kx × ky contingency table (to capture the

relationships between entries in clusters across X and Y) is
now straightforward. We simply iterate over every combina-
tion of data entities from X and Y, determine whether they
have a relationship, and suitably increment the appropriate
entry in the contingency table:

wij =

nx∑
s=1

ny∑
t=1

B(s, t)v
(xs)
i v

(yt)
j , (3)

We also define

wi. =

ky∑
j=1

wij , w.j =

kx∑
i=1

wij

where wi. and w.j are the row-wise and column-wise counts
of the cells of the contingency table respectively.

We will find it useful to define the row-wise random vari-
ables αi, i = 1, . . . , kx and column-wise random variables
βj , j = 1, . . . , ky with probability distributions as follows

p(αi = j) = p(C(y) = j|C(x) = i) =
wij
wi.

, (4)

p(βj = i) = p(C(x) = i|C(y) = j) =
wij
w.j

. (5)

The row wise distributions represent the conditional distri-
butions of the clusters in dataset in X given the clusters in
Y; the column wise distributions are also interpreted analo-
gously.

3.3 Evaluating contingency tables
Now that we have a contingency table, we must evaluate it

to see if it reflects a dependent or disparate set of clusterings
(as the requirement may be). Ideally, we would like one
criterion that when minimized leads to a disparate clustering
and when maximized leads to a dependent clustering.

For this purpose, we compare the row-wise and column-
wise distributions from the contingency table entries to the
uniform distribution. (In the example from Fig. 2, there are
three row-wise distributions and three column-wise distri-
butions.) For dependent clusters, the row-wise and column-
wise distributions must be far from uniform, whereas for
disparate clusters, they must be close to uniform. We use



KL-divergences to define our unified objective function:

F =
1

kx

kx∑
i=1

DKL
(
αi||U(

1

ky
)
)

+
1

ky

ky∑
j=1

DKL
(
βj ||U(

1

kx
)
)
.

(6)

where the KL-divergence between distributions p1(x) and
p2(x) over the sample space X is given by:

DKL[p1||p2] =
∑
x∈X

p1(x) log
p1(x)

p2(x)

DKL[p1||p2] measures the inefficiency of assuming that the
distribution is p2 when the true distribution is actually p1.

Note that the row-wise distributions take values over the
columns 1, . . . , ky and the column-wise distributions take
values over the rows 1, . . . , kx. Hence the reference distribu-
tion for row-wise variables is over the columns, and vice
versa. Also, observe that the row-wise and column-wise
KL-divergences are averaged to form F . This is to miti-
gate the effect of lopsided contingency tables (kx � ky or
ky � kx) wherein it is possible to optimize F by focusing
on the “longer” dimension without really ensuring that the
other dimension’s projections are close to uniform.

Finally observe that the KL-divergence of any distribution
with respect to the uniform distribution is proportional to
the negative entropy (−H) of the distribution. Thus we are
essentially aiming to minimize or maximize (for dependent
or independent clusters) the entropy of the cluster condi-
tional distributions between pairs of two datasets.

4. ALGORITHMS
Now we are ready to formally present our data mining

algorithms as optimization over the space of prototypes.

4.1 Disparate clustering
Here the goal is to minimize F , a non-linear function of

mi,X and mj,Y . For this purpose, we adopt an augmented
Lagrangian formulation with a quasi-Newton trust region
algorithm. We require a flexible formulation with equality
constraints (i.e., that mean prototypes lie on the unit hy-
persphere) and bound constraints (i.e., that the prototypes
are bounded by the max and min (componentwise) of the
data, otherwise the optimization problem has no solution).
The LANCELOT software package [6] provides just such an
implementation.

For ease of description, we “package” all the mean proto-
type vectors for clusters from both datasets (there are kx+ky
of them) into a single vector ν of length t. The problem to
solve is then:

argminF(ν) subject to hi(ν) = 0, i = 1, . . . , η,

Lj ≤ νj ≤ Uj , j = 1, . . . , t.

where ν is a t-dimensional vector and F , hi are real-valued
functions continuously differentiable in a neighborhood of
the box [L,U ]. Here the hi ensure that the mean proto-
types lie on the unit hypersphere (i.e., they are of the form
||m1,X || − 1, ||m2,X || − 1, · · · , ||m1,Y || − 1, ||m2,Y || − 1, · · · )
The bound constraints are uniformly set to [−1, 1]. The
augmented Lagrangian Φ is defined by

Φ(ν, λ, ϕ) = F(ν) +

η∑
i=1

(
λihi(ν) + ϕhi(ν)2

)
, (7)

where the λi are Lagrange multipliers and ϕ > 0 is a penalty
parameter. The augmented Lagrangian method (implemented
in LANCELOT) to solve the constrained optimization prob-
lem above is given in OptPrototypes.

Algorithm 1 OptPrototypes

1. Choose initial values ν(0) (e.g., via a k-means algo-
rithm), λ(0), set k := 0, and fix ϕ > 0.
2. For fixed λ(k), update ν(k) to ν(k+1) by using one step
of a quasi-Newton trust region algorithm for minimizing
Φ
(
ν, λ(k), ϕ

)
subject to the constraints on ν. Call Prob-

lemSetup with ν as needed to obtain F and ∇F .
3. Update λ by λ(k+1)i

= λ(k)i
+2ϕhi

(
ν(k)

)
for i = 1, . . .,

η.
4. If

(
ν(k), λ(k)

)
has converged, stop; else, set k := k + 1

and go to (2).
5. Return ν.

In Step 1 of OptPrototypes, we initialize the prototypes using
a k-means algorithm (i.e., one which separately finds clusters
in each dataset without coordination), package them into
the vector ν, and use this vector as starting points for op-
timization. For each iteration of the augmented Lagrangian
method, we require access to F and ∇F which we obtain by
invoking Algorithm ProblemSetup.

Algorithm 2 ProblemSetup

1. Unpackage ν into values for mean prototype vectors.

2. Use Eq. (2) (and its analog) to compute v
(xs)
i and v

(yt)
j .

3. Use Eq. (3) to obtain contingency table counts wij .
4. Use Eqs. (4) and (5) to define r.v.s αi and βj .
5. Use Eqn. (6) to compute F and ∇F (see [19].)
6. Return F ,∇F .

This routine goes step-by-step through the framework de-
veloped in earlier sections to link the prototypes to the ob-
jective function. There are no parameters in these stages
except for ρ which controls the accuracy of the KS approxi-
mations. It is chosen so that the KS approximation error is
commensurate with the optimization convergence tolerance.
Gradients (needed by the trust region algorithm) are math-
ematically straightforward but tedious, so are not explicitly
given here (see [19]).

Modulo the time complexity of k-means (which is used for
initializing the prototypes), the per-iteration complexity of
the various stages of our algorithm can be given as follows:

Step Time Complexity
Assigning vectors to clusters O(nxlxkx + nylyky)
Preparing contingency tables O(kxkynxny) (näıve)

O(kxky|B|) (replicated)
Evaluating contingency tables O(kykx + kxky)
Optimization O((η + 1)t2)

First, observe that this is a continuous, rather than dis-
crete, optimization algorithm, and hence the overall time
complexity depends on the number of iterations, which is
an unknown function of the requested numerical accuracy.
The step of assigning vectors to clusters takes place inde-
pendently in the two datasets, so the time complexity has
two components. For each vector, we compare it to each
mean prototype, and an inner loop over the dimensionality
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Figure 3: Degenerate contingency tables for (left)
dependent clusters and (right) disparate clusters.
These are bad solutions to be avoided because the
clusters in (a) are highly imbalanced and (b) is ob-
tained by trivially assigning all points to all clusters.

of the vectors givesO(nxlxkx+nylyky). The straightforward
way to prepare contingency tables as suggested by Eqn. 3
gives rise to a costly computation, since for each cell of the
contingency table (there are kxky of them), we will expend
O(nxny) computations. In [19] we show how we can reduce
this by an order of magnitude using a method of ‘replicat-
ing’ vectors which helps us treat the relationship matrix B
as if it were one-to-one. In this case, the per-cell complexity
will be simply be a linear function of the non-zero entries
in B, i.e., |B|. Evaluating the contingency tables requires
us to calculate KL-divergences which are dependent on the
sample space over which the distributions are compared and
the number of such comparisons. There are two terms, one
for row-wise distributions, and one for column-wise distri-
butions. Finally, the time complexity of the optimization
is O((η + 1)t2) per iteration, and the space complexity is
also O((η + 1)t2), mostly for storage of Hessian matrix ap-
proximations of F and hi. Note that t = kxlx + kyly and
η = kx+ky. In practice, to avoid sensitivity to local minima,
we perform several random restarts of our approach, with
different initializations of the prototypes.

Dependent clustering proceeds exactly as above except the
goal now is to min−F (i.e., to maximize F). Simply replac-
ing F with −F in the above algorithm conducts dependent
clustering. For ease of description later, we henceforth refer
to F as Findep and to −F as Fdep.

4.2 Regularization
Degenerate situations can arise as shown in Fig. 3. In

the dependent case, we might obtain a diagonal contingency
table but with imbalanced cluster sizes. In the independent
case, the data points are assigned with equal probability
to every cluster, resulting in a trivial solution for ensuring
that the contingency table resembles a uniform distribution.
See [19] for how to add additional terms in the objective
function to alleviate both these issues.

A final issue is the determination of the right number of
clusters, which has a direct mapping to the sufficient statis-
tics of contingency tables necessary to capture differences
between distributions. We have used the minimum dis-
crimination information (MDI) principle (discussed later)
for model selection. Due to space limitations, we are unable
to cover this aspect in detail.

5. EXPERIMENTS
We evaluate our approach using both synthetic and real

datasets. The questions we seek to answer through our ex-
periments are:

1. Can we realize classical constrained clustering and al-
ternative clustering scenarios (i.e., over a single dataset)
using our framework? (Sections 5.1 and 5.2)
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Figure 4: Realizing classical single-dataset cluster-
ing scenarios using our framework. (a) Cluster-
ing with must-link constraints. (b) Clustering with
must-not-link constraints. (c) Clustering with both
must-link and must-not-link constraints. (d) Find-
ing alternative clusterings.

2. How much does our emphasis on clustering relations
compromise locality of clusters in the respective at-
tribute spaces? (Section 5.3)

3. How does our approach (of defining an integrated ob-
jective function and locally minimizing it) scale? (Sec-
tion 5.3)

4. As the number of clusters increases, does it become
easier or more difficult to achieve dependent and dis-
parate clusterings? (Section 5.3)

5. Can we pose integrated dependent and disparate clus-
tering formulations over non-homogeneous data involv-
ing multiple datasets and relations? (Section 5.4)

6. In mining non-homogeneous datasets with multiple cri-
teria, what is the effect of varying the emphasis of dif-
ferent criteria on the clustering results? (Section 5.5)

5.1 Constrained Clustering
In constrained clustering, we are given a single dataset D

with instance level constraints such as must-link and must-
not-link constraints [7, 20]. We can model such problems
in our relational context as shown in Fig. 4 (a), (b), and
(c). We create two copies of D into D1 and D2. In the case
with only must-link (ML) constraints (Fig. 4 (a)), such as
between x1 and x3, we create a relation between the entries:
x1 of D1 and x3 of D2, and between entries: x3 of D1 and x1

of D2. In addition we include relations between the same
instances in D1 and D2. Applying the dependent clustering
criterion Fdep on this dataset will realize the constrained
clustering scenario. Conversely, as shown in Fig. 4 (b), for
must-not-link (MNL) constraints we would create relations
between the entries that should not be brought together, and
use Findep as the optimization criterion. In Fig. 4 (a), the
relations would force the clusterings to be dependent and as



Iris dataset: 200 random constraints

# of clusters

2 3 4 5 6 7 8 9 10

# 
o

f 
co

n
st

ra
in

ts
 v

io
la

te
d

0

20

40

60

80

100

120

k-means 
MPCK-M EANS 
PCK-M EANS

Our framework

Iris dataset: 200 random constraints

# of clusters

2 3 4 5 6 7 8 9 10

O
b

je
ct

iv
e 

F
u

n
ct

io
n

0

20

40

60

80

100

120

140

160

k-means 
MPCK-M EANS 
PCK-M EANS

Our framework 

Iris dataset: 200 random constraints

# of clusters

2 3 4 5 6 7 8 9 10

N
o

rm
al

iz
ed

 m
u

tu
al

 in
fo

rm
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

k-means 
MPCK-M EANS 
PCK-M EANS

Our framework

Figure 5: Comparison of our approach with unconstrained k-means and two other constrained clustering
formulations. We cluster the Iris dataset with randomly generated 100 ML and 100 MNL constraints.
Results are averaged over 20 runs each. (left) Number of constraints violated. (middle) Objective function.
(right) Normalized mutual information.

a result, either clustering would respect the ML constraints.
In Fig. 4 (b), the Findep objective will force the clusterings
to violate the relations (which are really MNL constraints).

Going further, we can combine the above modeling ap-
proaches in Fig. 4 (c) which has both ML and MNL con-
straints. For this scenario, the optimization criterion is es-
sentially a convex combination of both Fdep and Findep. As
we vary α smoothly from 0 to 1, we increase our emphasis
from satisfying the ML constraints to satisfying the MNL
constraints. Here we set α to 0.5 (and explore other settings
in future sections). We compare our constrained cluster-
ing framework with simple unconstrained k-means and two
constrained k-means algorihtms (MPCK-MEANS and PCK-
MEANS) from [4]. In overall, the number of constraint viola-
tions from our approach (Fig. 5 (left)) is worse than that of
either MPCK-MEANS and PCK-MEANS, except for a small
number of clusters. This is to be expected since our method
does not take a strict (boolean) view of constraint satisfac-
tions. Conversely, the objective function in our approach
is the best possible value (Fig. 5 (middle)) when compared
with the solutions obtained by the other three algorithms.
Finally, as shown in Fig. 5 (right), the normalized mutual
information score (between the cluster assignments and the
class labels) is best for our approach than for the other three
algorithms. This shows that taking a soft view of constraints
does not compromise the locality of the mined clusters.

5.2 Finding Alternative Clusterings
We investigate alternative clustering using the Portait dataset

as studied in [11]. This dataset comprises 324 images of
three people each in three different poses and 36 illumina-
tions. Pre-processing involves dimensionality reduction to a
grid of 64 × 49 pixels. The goal of finding two alternative
clusterings is to assess whether the natural clustering of the

Table 1: Contingency tables in analysis of the Por-
trait dataset. (a) After k-means with random ini-
tializations. (b) after disparate clustering.

(a) (b)
C1 C2 C3 C1 C2 C3

C1 0 0 72 C1 36 36 36
C2 63 64 0 C2 36 36 36
C3 3 8 114 C3 36 36 36

Table 2: Accuracy on the Portrait dataset.
Method Person Pose
k -means 0.65 0.55
Conv-EM [11] 0.69 0.72
Dec-kmeans [11] 0.84 0.78
Our framework (disparate) 0.93 0.79

images (by person and by pose) can be recovered. We utilize
the same 300 features as used in [11] and setup our frame-
work as shown in Fig. 4 (d). Two copies of the dataset are
created with one-to-one relationships and we aim to cluster
the dataset in a disparate manner.

Table 1 shows the two contingency tables in the analysis of
the Portrait dataset and table 2 depicts the achieved accura-
cies using simple k-means, convolutional-EM [11], decorrelated-
kmeans [11] and our framework for disparate clustering. Our
algorithm performs better than all other tested algorithms
according to both person and pose clusterings.

Fig. 6 shows how the accuracies of the person and the

Portrait dataset, Iterations=42
Accuracy person =93%, Accuracy pose =79%

(Accuracy axis is at left and the axis for objective function is at right)
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Figure 6: Monotonic improvement of objective func-
tion (finding alternative clusterings for the Portrait
dataset).
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Figure 7: Synthetic data results. (a) Comparisons of SSE measures with k-means. (b&c) Time as number
of attribute dimensions (b) or as number of clusters (c) is increased. (d) Objective criterion as a function of
the number of clusters for both dependent and disparate schemas of clustering.

pose clusterings improve over the iterations, as the objec-
tive function is being minimized. The quasi-Newton trust
region algorithm guarantees the monotonic improvement of
the objective function without directly enforcing error met-
rics over the feature space. But because the objective func-
tion captures the dissimilarity between the two clusterings,
indirectly, we notice that the accuracies w.r.t. the two al-
ternative clusterings improve with the increase in number of
iterations (though, not monotically).

5.3 Scalability and Locality Preservation
In this section, we consider two synthetic datasets with

one (possibly many-many) relationship between them. The
parameters we study are: lx, ly, the dimensions of the vectors
(varied from 4 to 20); nx, ny, the number of vectors (fixed
at 100, because as our time complexity analysis shows, they
only affect the step of assigning vectors to clusters); kx, ky,
the number of clusters sought (also varied from 4 to 20;
and |B|, the number of relationships between the datasets
(varied from a one-to-one case to about a density of 50%).
The vectors were themselves sampled from (two different)
mixture-of-Gaussians models.

Fig. 7 (a) answers the question of whether our approach
yields local clusters as the number of relationships increase
(and hence each dataset is more influenced by the other). In
this figure, we used settings of 4 and 20 clusters and used
our framework to find dependent as well as disparate clus-
ters, and also compared them with k-means (which doesn’t
use the relationship). Fig. 7 (a) shows that even though the
k-means algorithm is mining two separate datasets indepen-
dently, our algorithms achieve very closely comparable re-
sults in spite of the co-ordination (dependence or disparate)

7 6 4 11
1 3 10 2
9 10 3 8
4 9 2 11

17 3 2 2
4 18 2 3
4 3 20 3
2 0 1 16

6 5 7 5
8 7 5 5
6 6 7 4
7 8 7 7

Figure 8: Our approach helps drive a k-means clus-
ter assignment (top) toward either dependent (bot-
tom left) or disparate (bottom right) sets of clusters.

requirements. Thus, locality of clusters in their respective
attribute spaces is not compromised and unvarying with the
sparsity of the relationship matrix. At the same time, as
Fig. 8 shows (for the case of four clusters), we achieve the
specified contingency table criteria.

Fig. 7 ((b),(c)) shows the runtime for our algorithm as
a function of attribute vector dimensions (i.e., lx, ly) and
number of clusters (i.e., kx, ky). We vary one parameter,
keeping the other fixed (kx, ky fixed at 8 versus lx, ly fixed
at 12). In overall these plots track the complexity analy-
sis presented earlier except for the higher dimension/cluster
settings which show steeper increases in time. This can be
attributed to the greater number of iterations necessary for
convergence in these cases.

Finally, we explore how our results are influenced by the
number of clusters, for both dependent as well as disparate
clustering formulations. (see Fig. 7 (d)). As the number of
clusters increases, both objective criteria (Fdep and Findep)
become difficult to attain, but for different reasons (recall
that the intent of both criteria is to be minimized). In the
case of dependent clusters, although the problem gets easier
as clusters increase (every point can become its own cluster),
the objective function scores get lower due to our regular-
ization as explained in Section 4. In the case of disparate
clusters, as the number of clusters increases, the size of the
contingency table increases quadratically with the number
of samples staying constant. As a result, it becomes diffi-
cult to distribute the samples across the contingency table
entries without introducing some level of dependence (i.e.,
some entries must be zero implying dependence).

5.4 Comparing gene expression programs
across yeast, worm, and human

In this study, we focus on time series gene expression pro-
files collected over heat shock experiments done on organ-
isms of varying complexity: H: human cells (4 time points)
[17], Y: yeast (8 time points) [10], and C: C. elegans (worm;
7 time points) [16]. We also gathered many-many (top-k)
ortholog information between the three species. A typical
goal in multi-species modeling is to identify both conserved
gene expression programs as well as differentiated gene ex-
pression programs. The former is useful for studying core
metabolism and stress response processes, whereas the lat-
ter is useful for studying species-specific functions (e.g., the
yeast is more tolerant to desiccation stress, but the worm is
the more complex eukaryote).

First we study a 3-way clustering setup with only two
constraints, namely that clusters in H and W must be de-



pendent, denoted by H =W, and that clusters in W and Y
must be disparate, denoted by W <> Y (See Fig. 9 (top)).
As the balance between these criteria is varied from one ex-
treme to another (via the convex combination formulation),
this curve traces out the objective function values. The top
left corner is the point where complete emphasis is placed on
achieving the H = W criterion (conversely for the bottom
right corner). As we seek to improve the other criteria, note
that we might (and will) sacrifice the already achieved crite-
rion. The point of maximum curvature on this plot gives a
‘sweet spot’ so that any movement away from the sweet spot
would cause a dramatic change in the objective function val-

Figure 9: Balancing objectives in multi-criteria clus-
tering optimization. Points of maximum curvature
on these plots reveals a balancing point between the
conflicting criteria.

ues. A qualitatively different type of plot is shown in Fig. 9
(middle) (for the case study described in the next section)
but here again the point of maximum curvature reveals a
balancing threshold of the two criteria. A 3-way clustering
setup with three constraints is described in Fig. 10 and its
corresponding tradeoff plot is in Fig. 9 (bottom). Here there
are likely multiple points of interest depending on which cri-
teria are sacrificed in favor of others.

5.5 Multi-organismal and multi-stress model-
ing

Finally, we present a case study that has a diversity of
both organisms and stresses. To capture process-level simi-
larities and differences, the data vectors we cluster here cor-
respond to Gene Ontology categories rather than individual
gene expression profiles. We used three time series datasets:
CA–C.elegans aging (7 time points), DA–D. melanogaster
aging (7 time points) and DR–D. melanogaster caloric re-
striction (9 time pints). Observe that the first two datasets
share a similarity of process whereas the latter two share a
similarity of organism. In a sense, the D. melanogaster aging
dataset is squarely in the “middle” of the other two datasets.
When subjected to clustering together, the inherent tradeoff
is what we seek to capture.

For this evaluation, we studied the enrichment of clusters
obtained from our framework vis-a-vis k-means clustering.
We set the number of clusters at 7 and evaluated GO terms
for an FDR-corrected q-value of 0.05. First, we study the
clustering setup so that DA=DR AND CA=DA, for a set-
ting of α = 0 (so that more emphasis is placed on achieving
the dependent clustering DA=DR). Here, we observed 75
GO terms enriched (versus 37 for k-means). Similar im-
provements were seen for α = 0.5 (55 versus 20) and for
α = 1 (89 versus 35). Observe the greater numbers of terms
enriched in general for the extremalities (which is to be ex-
pected). In terms of process-level similarities, the GO terms
common across the aging datasets but which do not appear
when we emphasize organism-level similarities are:

neuron recognition, embryonic pattern specifica-
tion, aromatic compound catabolic process, so-
matic sex determination, sulfur compound biosyn-
thetic process.

Conversely, the organism-level similarities are captured in:

chemosensory behavior, peptide metabolic pro-
cess, regulation of cell proliferation, anatomical
structure formation, cell redox homeostasis, neg-
ative regulation of growth.

These results show that process-level similarities involve higher
order functions whereas organism-level similarities involve
growth and metabolism processes. The careful interplay be-
tween aging and caloric restriction, both at the organismal
and at the inter-organismal level, is an interesting conclusion
from this study.

6. RELATED WORK
MDI: The objective functions defined here have connec-

tions to the principle of minimum discrimination informa-
tion (MDI), introduced by Kullback for the analysis of con-
tingency tables [14] (the minimum Bregman information
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Figure 10: Clustering three datasets with three constraints between them. Two sets of clusters (between
human/worm and between worm/yeast) are constrained to be similar whereas the third set (between hu-
man/yeast) is constrained to be dissimilar. Observe how the top two contingency tables are driven toward
diagonal dominance whereas the bottom contingency table is driven toward a uniform distribution.

(MBI) in [3] can be seen as a generalization of this prin-
ciple). The MDI principle states that if q is the assumed
or true distribution, the estimated distribution p must be
chosen such that DKL(p||q) is minimized. In our objective
functions the estimated distribution p is obtained from the
contingency table counts. The true distribution q is always
assumed to be the uniform distribution. We maximize or
minimze the KL-divergence from this true distribution as
required. Space restrictions prevent us from describing the
connection to MDI in further detail.

Co-clustering binary matrices, Associative cluster-
ing, and Cross-associations: Identifying clusterings over
a relation (i.e., a binary matrix) is the topic of many ef-
forts [5, 8]. The former uses information-theoretic criteria to
best approximate a joint distribution of two binary variables
and the latter uses the MDL (minimum description length)
principle to obtain a parameter-less algorithm by automat-
ically determining the number of clusters. Our work is fo-
cused on not just binary relations but also attribute-valued
vectors. The idea of comparing clustering results using con-
tingency tables was first done in [12] although our work is
the first to unify dependent and disparate clusterings in the
same framework.

Finding disparate clusterings: The idea of finding dis-
parate clusterings has been studied in [11]. Here only one
dataset is considered and two dissimilar clusterings are
sought simultaneously where the definition of dissimilarity

is in terms of orthogonality of the two sets of basis vectors.
This is an indirect way to capture dissimilarity whereas in
our paper we use contingency tables to more directly capture
the dissimilarity. Furthermore, our work enables the com-
bination of similar clusterings and disparate clusterings in a
more expressive way. For instance, given just two datasets
X and Y with two relationships R1 and R2 between them,
our work can identify clusters in X and Y that are similar
from the perspective of R1 but dissimilar from the perspec-
tive of R2: it is diffcult to specify such criteria in terms of
the basis vectors since they will be the same irrespective of
the relationship.

Clustering over relation graphs: Clustering over rela-
tion graphs is a framework by Banerjee et al. [2] that uses
the notion of Bregman divergences to unify a variety of
loss functions and applies the Bregman information princi-
ple (from [3]) to preserve various summary statistics defined
over parts of the relational schema. This framework can
handle all the types of data and relationships we study here,
since the notion of Bregman divergences is very general and
can capture both information-theoretic criteria (from our
contingency tables) as well as geometric measures (for our
locality of clusters). However, our work unifies dependent
with disparate clustering, whereas Banerjee et al. focuses
on only the dependent case. This entails several key differ-
ences. First, Banerjee et al. aim to minimize the dis-
tortion as defined through conditional expectations over
the original random variables, whereas our work is meant to



both minimize and introduce distortion as needed,
over different parts of the schema as appropriate. This leads
to tradeoffs across the schema which is unlike the tradeoffs
experienced in [2, 3] between compression and accuracy of
modeling. (see also MIB, discussed below). A second dif-
ference is that our work does not directly minimize error
metrics over the attribute-value space and uses contingency
tables (relationships between clusters) to exclusively drive
the optimization. This leads to the third difference, namely
that the distortions we seek to minimize/maximize are w.r.t.
idealized contingency tables rather than w.r.t. the original
relational data. The net result of these variations is that
relations (idealized as well as real) are given primary impor-
tance in influencing the clusterings.

Multivariate information bottleneck: Our work is rem-
iniscent of the multivariate information bottleneck (MIB) [9]
which is a framework for specifying clusterings in terms of
two conflicting criteria: compression (of vectors into clus-
ters) and preservation of mutual information (of clusters
with auxiliary variables that are related to the original vec-
tors). We share with MIB the formulation of a multi-criteria
objective function derived from a clustering schema but dif-
fer in the specifics of both the intent of the objective func-
tion and how the clustering is driven based on the objective
function. Furthermore, the MIB framework was originally
defined for discrete settings whereas we support a mixed
modality of datasets.

7. DISCUSSION
We have presented a very general and expressive frame-

work for clustering non-homogeneous datasets. We have also
shown how it subsumes many previously defined formula-
tions and that it sheds useful insights into tradeoffs under-
lying complex relationships between datasets.

Our directions for future work are two fold. Thus far, we
have used distinct relations to enforce disparate and depen-
dent clusterings. One of the first directions for future work is
to allow both types of clusterings to be captured in the same
relation. This would help capture more expressive relation-
ships between datasets, such as a banded diagonal structure
in the contingency table. Secondly, just as the theory of
functional and multi-valued dependencies (FDs and MDs)
helps model relations in and between individual tuples, we
aim to develop a theory of ‘clustering dependencies’ that can
help model relations in the aggregate, e.g., between clusters.
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