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ABSTRACT Keywords

Social tagging systems have become increasingly populahtar- social tagging, tag recommendation, personalized tagqiieal
ing and organizing web resources. Tag recommendation isna co
mon feature of social tagging systems. Social tagging byraat
is an incremental process, meaning that once a user has aaved 1. |NTRODUCTION
web page with tags, the tagging system can provide more accu-
rate predictions for the user, based on the user’s incraaheat
havior. However, existing tag prediction methods do notsader
this important factor, in which their training and test deits are ei-
ther split by a fixed time stamp or randomly sampled from adarg
corpus. In our temporal experiments, we perform a timeiteas
sampling on an existing public dataset, resulting in a neemago
which is much closer to “real-world”.

In this paper, we address the problem of tag prediction by
proposing a probabilistic model for personalized tag ptat.
The model is a Bayesian approach, and integrates thregdaeto
an ego-centric effect, environmental effects and web pame c
tent. Two methods—both intuitive calculation and learning
optimization—are provided for parameter estimation. Ryregph-
based methods which may have significant constraints (ssielt-a
ery user, every item and every tag has to occur in at leasists)
cannot make a prediction in most “real world” cases while our
model improves the F-measure by over 30% compared to a lead-
ing algorithm on a publicly-available real-world dataset.

Collaborative tagging systems, also known as social bodkma
ing systems, have become increasingly popular for shandgea
ganizing web resources. In collaborative tagging systerssrs
add metadata in the form of descriptive terms, called tamsiet
scribe web resources. Social bookmarking has already shits/e
value in many areas, such as query expansion [2], web seHch [
personalized search [17, 21], web resource classificaidhdnd
clustering [14]. A better understanding and predictionaxfst on
web pages is quite meaningful, especially in those areas.

Tag recommenders can assist users with the tagging progess b
suggesting a set of tags that users are likely to use for a eeb r
source. Personalized tag recommenders which take a usevis p
ous tagging behaviors into account when making suggestisns
ally have better performance compared with general tagmeco
menders. In short, the goal of a personalized tag recommende
is to predict tags for each user specifically and effectivgiyen a
web resource.

Personalized tag prediction has become a popular resexguich t
The two main directions for these systems are content-baped
proaches and graph-based approaches. Content-baseddsetho
which usually model users’ preferences from textual infation

Categories and Subject Descriptors (e.g., web pages, academic papers and tags), can predidiotag
H.3.3 [Information Storage and Retrieval]: Information Search ~ new users and new web resources. Graph-based approacfies, wh
and Retrieval; H.2.8 [Jatabase Managemerjt Database ap-  Often having stronger assumptions than content-based types
plications—Data Mining; H.4.0 [Information Systems Applica- cally provide better performance. For example, one suctnass
tions]: General; H.3.1 lhformation Storage and Retrievall: tion is the COREp [9] requirement, in which every user, every item
Content Analysis and Indexing; H.1.®pdels and Principleq: and every tag has to occur at lepdtmes in the training set. How-
User/Machine SystemsHuman Information Processing ever, in most cases, such an assumption is not realisticiafyt

tag recommenders are often asked to recommend tags whersthe s
tem knows nothing about the web resource or the user. Owsisal
General Terms will show t.hat in a real world scenario, thg probability of alwre-
source being new to a tag recommender is more than 0.9. Cempar
Algorithms, Experimentation, Measurement, Performance ing both kinds of approaches, the content-based approacthba
advantage that it can predict tags for any user and any wehness
while the overall performance is not as good as graph-baged a
proach. Graph-based approaches which require C@B4h have
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not made or distributed for profit or commercial advantage that copies widely applicable. Thus, a better tag recommender shoulabbe
bear this notice and the full citation on the first page. Toycoperwise, to to recommend tags for new users or new web resources, ahd stil
republish, to post on servers or to redistribute to listguires prior specific have reasonably good performance. Our tag recommendeuttas s
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following three factors will affect the choice of tags whikh will
finally use.

The ego-centric effect. A given user will have some specific
interests and will tend to bookmark similar items with sanitags
based on the user’s vocabulary. Assume for example thatrasuse
interested in “development” and he has already tagged maty w
pages about development by using “C++”, “java”, and “tuatsi.
When he bookmarks a new web page, intuitively, this item will
be relevant to “development” with high probability. That the
content of this new web page is very likely to be similar to web
pages that the user tagged previously. In addition, on teispage,
the user will also tend to use similar tags which he used beftde
name this effect, which is from the user himself, the egdroen
effect.

Environmental effects. A user may be influenced by other

users. When a user is tagging some web page, he may adopt tags

which are used frequently by other similar users. For instaa
user may often use the tag “java” previously, but never usedh
“tutorial”. Suppose that there is another user who is simdahis
user—say, they both frequently use tag “java’—but in addifre-
quently uses the tag “tutorial”. In this case, when the usérying
to bookmark an item which is similar to the items where theepth
user already has tagged as “tutorial”, the probability d$ tiser
using both “java” and “tutorial” is higher (even if this useever
used the tag “tutorial” before). In addition, some users rdisy
cover resources within the tagging system; that is, theyifitet-
esting items which other users have already tagged. Inakis, ¢he
probability of this user using the same tags will be very Higlost
graph-based recommenders adopt this strategy). Anotpectis
that some current tagging systems allow users to set upamelat
ships with other users, e.g., delicious [22, 20]. This atsength-
ens the influence of neighboring users. We call all of thesddbf
effects environmental effects.

Item content. For an item which already exists in past book-
marks, we can get some prediction hints from the tags whigk ha
already been used on this item. However, we have found that ta
prediction systems may need to face new items more than 90 per
cent of the time. Thus, strictly graph-based recommendéraot
work on these new items. When facing a new item, content aisaly
is necessary. Even if the item is not a new item, content aisly
still quite useful, because other items with similar topid pro-
vide hints for tag prediction.

Besides proposing a probabilistic model for tag predictioe
also analyze the task of tag prediction itself. In previatesature,
there are generally two kinds of approaches to evaluatalsiagj-
ging systems. One is to randomly split a dataset into trgiaimd
test sets without considering time information, and theepth to
use a fixed time point to split the whole dataset into traitasing test
sets. However, neither of the two methods well represehtvedd
scenarios. The first case is not reasonable because thegdraet
contains the posts with earlier timestamps and also postslater
timestamps. The second case is different from real systertrei
sense that a real tagging system is likely to operate in aimeonl
mode (i.e., an incremental mode). Actually, for a given pa#it
posts in the whole data with earlier timestamps can be anddho
be used as training data. So the training data is differenédch
test post. This approach also has the benefit of utilizing ashm
information as possible.

In this paper, our contributions are as follows:

e We perform time-sensitive sampling on an existing public

e We present a novel probabilistic model for personalized tag
prediction.

e \We demonstrate on public data that our method significantly
outperforms a strong existing method when performing on-
line tag prediction.

In Section 2, we briefly review some recent work on tag rec-
ommendation and related topics. Section 3 precisely defires
problem and notation. Section 4 introduces a general pilidab
tic model for tag prediction and extends it to personalizestijz-
tion. Section 5 reports online analysis. Section 6 repartsegper-
iments. Section 7 concludes and outlines future work.

2. RELATED WORK

Personalized tag recommendation, as a special case dbaolla
rative filtering, is a recent topic in recommender systente fivo
main directions for these systems are content-based agfgeand
graph-based approaches.

Content-based methods, which usually encode users’ prefer
ences from textual information (e.g., web pages, acadeapers,
tags), can predict tags for new users and new items. One state
of-the-art content-based tag recommendation system [ilZea
several tag sources including item content and user hisodoyild
both profiles for users and tags. New tags are checked agai@ist
profiles, which are rich, but imprecise sources of informratibout
user interests. The result is a set of tags related to bottetweirce
and the user. Depending on the character of processed fhistset
can be an extension of the common tag recommendation spurces
namely resource title and resource profile.

Graph-based approaches, which usually have stronger pssum
tions than content-based ones (e.g., requiring every @sery
item and every tag to occur in at legsposts), can provide bet-
ter performance. Early work like FolkRank, introduced bytito
et al. [8], is an adaptation of PageRank that can generate hig
quality recommendations which are shown empirically to be b
ter than other previous proposed collaborative filteringlets [9].
Guan et al. [6] proposed a framework based on graph Laplacian
model interrelated multi-type objects involved in the tiggsys-
tem. Tags are ranked by a graph-based ranking algorithmhwhic
takes into consideration both relevance to the documenpeefdr-
ence of the user. Recently, factorization models (alsoidensd as
graph-based approaches) show very successful evaluasots
on personalized tag recommendation problems. In [19], Syme
onidis et al. proposed a method based on Higher-Order-&ingu
Value-Decomposition (HOSVD)—which corresponds to a Tucke
Decomposition (TD) model optimized for square-loss.In[Ren-
dle et al. proposed a better learning approach for TD modgigh
is to optimize the model parameters for the AUC ranking stati
tic (area under the ROC curve). Rendle and Schmidt-Thie [1
further presented a special case of the TD model with linear r
time for both learning and prediction. In experiments on veald
datasets, they showed that the model outperforms TD laryaly
only in run-time but also can achieve better prediction iqpaNon-
personalized tag recommenders—i.e., for a given item theym-
mend to all users the same tags—have also attracted a lot of at
tention (e.g., [7, 18]). However, in [15], the authors shdvtisat
personalized tag recommendation systems empiricallyeoidpm
the theoretical upper bound for any non-personalized tagne
mender. Garg et. al[5] propose a personalized interacdiyetig-
gestion system which suggests tags based on the ones that a us

dataset, and propose a new use case of tag prediction whichentered most recently. They employ a naive Bayes classifiethw

is closer to real world cases.

is only based on tag co-occurrences.



Graph-based methods are also popular in other fields ofmmlla
rative filtering. Many of the best performing models (e.41,[10]
on the Netflix Challeng®d are based on matrix factorization. Also
for related task of item prediction, factorization modele known
to outperform models like k-nearest neighbors collabeedfiiter-
ing or the Bayesian model URP [13].

Recent research also show that users are much more likedgto u
their recently used tags. Zhang et. al [24] investigate¢lcanrence
dynamics of social tagging. Time information is also impaoitto
recommend high-quality tags to users.

3. DEFINITIONS

In a social tagging system, users can bookmark web pages by

assigning tags to them. The system can also retrieve therooit

a web page which the user is bookmarking and based on content,

the system can recommend to the user some personalized tags.
task of recommending tags to users is called tag recommniendat
A similar task is tag prediction which needs to predict thgsta

which the user will use on some bookmarks. This can also be per

sonalized; that is, given a user and a set of bookmarks withgs,
the algorithm should predict which tags the user will use ache
bookmark. In order to predict or recommend tags for a spacséc
precisely, the recommender should first understand thewskr
Because different users have different preferences aecksts, for

some users, the bookmarks the user saves may tend to bersimila

or in the same topic. In addition, on similar bookmarks, tgst
which different users use may be similar. But for other usersn
if they save the same or similar web pages, they may use differ
tags because of different perspectives and different predées.
Here, we formalize the definitions. L&t be the set of all users,
I be the set of all items (they sometimes are also called abject
resources, or web pages in other literature) d@hfe the set of
all tags. For past tagging information, we have existingidey
relationsS, andS C U x I xT'. Thus, each single recofd, i, t) €
S means that user has tagged an itemwith the tagt. Here, we
also definePs as all the past distinct user-item combination:

Py = {(u,9)|3t € T': (u,i,t) € S}

Thus, when the current user is trying to add an item,, the task
is to recommend a list of tags to the potential p@st, i.), based
the past posts§, which we also call training data.

4. PROBABILISTIC MODEL

The tag prediction problem can be treated as the reverselof we
search. In web search, users submit a list of terms as a qaraty,
then the relevant web pagésvill be retrieved and the web pages
can be ranked by (i|t), the probability of the pagebeing relevant
to the queryt. Here, the list of terms can be considered as a list of
tags. Without considering personal information (non-peadized
tag prediction), the general tag prediction could be thagrga web

training data, therP(:|t) can be easily estimated by simply using
the number of occurrence @f,¢)—N; .. However, if the itemi
does not exist in the past posts, that s, a new item, it is difficult
to estimate the probability?(i|t). One possible solution is to use
the content of the item.

The content of item can be represented by a language model.
The most straightforward model is a unigram language mdaded.
item is treated as a bag of word® = {w|w appears in iteni}.
Here, if the word-independence assumption is made, theapileb
ity of item ¢ given the tag will be:

P(ilty= [[ P(wlt)

weW;

@)

According to Equation 2, we know that the probabilfyi|t) can
be broken down into the production of word-level probaigitit
[Tuew, P(w[t). P(w[t) means the likelihood of the word ap-
pearing in the item’s content, given a tag Given a itemi, the
number of occurrence ab is denoted asV,, ;. Given a tag, the
number of occurrence af is denoted asV,,,; which can be calcu-
lated as follows:

wat = Zie] Nw,i . Ni,t

To estimateP (w|t), we can assume that words obey the following
distribution:

Nw,t
Ny

P(wl|t) =
Then, maximum likelihood estimation (MLE) can be used ta@ est
mate the parametédy. To maximize the probability of the word,
we have:

Nt - Zw Nw,t

By combining Equations 1 and 2, general tag prediction can be
expressed as:

[loew, Pwlt) - P()
P(i)

P(tli) = ©)

4.1 Personalized Tag prediction

While we have shown how to perform general tag prediction,
personalized tag prediction is more preferable. In soeigying
systems, individual users may have specific interests aml tte
bookmark similar web pages by using similar tags. For differ
ent users, the prior probability of tags is often differesmtd the
language model of tags is also different. Even if two useiskbo
mark the same item, the tags they use can also be differeatibec
of their various interests, perspectives and preferenkesndel et
al. [15] show that personalized tag prediction systems eoglly
outperform the theoretical upper bound for any non-petstath
tag recommender. In our probabilistic model, the genempta-
diction can be simply extended to personalized predictiprinb
volving the ego-centric effect. Given a userthe personalized tag

pagei, retrieve a list of potential tags. The tags can be ranked by Prediction can be:

P(t|7). According to Bayesian theory, we have

P(ilt) - P(t)
P(i)

In Equation 1,P(t|¢) means the probability of using tagjiven an

item+i. P(i|t) means the frequency of itefiin a set of items which

are tagged by. P(¢) is the prior probability of tag. If the tag
t appears more frequently, it will hold a higher prior prolipi

P(t]i) = @

If the item 4 exists in past posts which can be considered as the

http://www.netflixprize.com/

P(ilt,u) - P(t|u)
P(ilu)

Here, P(t|i,u) means that given a user the probability that tag

t is applied to the item. P(i|t,u) means the likelihood of item
¢ given a tagt and useru. P(t|u) is also the conditional prior
probability of tagt, given the usew. It can be easily understood
that Equation 4 is based on a set of past péststhat is, for the
specific usetic, Su, = {(uc,,t)|(uc,,t) € S}. Similar to non-
personalized tag prediction, to incorporate the conteiteafs, re-
placingP(i|t, w) in Equation 4, the personalized tag prediction will

P(t]i,u) = @



become:

HwEWT;

P(wlt,u) -
P(ilu) ®)

However, in this model, if a user has not yet used a tag, weatann
rank it. Because that if taghas not been used by userthe prior
probability P(¢t|u) = 0, and we cannot get th&(i|t, u) either.
According to Equation 5, for this new tagthe P(t|d, u) will be
always 0. Thus, the candidate tags will be constrained tséhe
of tags which the user has used before. Obviously, such datedi
tags are often quite limited.

In addition, when users are trying to bookmark some web pages
the three factors mentioned previously will affect the tagsch
the user will finally use: the ego-centric effect, enviromtad ef-
fects and item content. In Equation 5, the ego-centric effec

P(t|u)

P(t]i,u) =

modeled by the whole equation and item content is modeled by

[T.ew, P(w[t,u). To model environmental effects, we involve

the probability of neighbor effect® (ux|u), that is, given the cur-
rent useru, the probability of usemn, affecting useru. When
ur = u, thenP(u|u) represents the exact weight of the ego-centric

effect. Thus,
> Pluglu) =1
Uk

When we integrate the environmental effects into Equatiowé
get

P(tli,u) =
Mocw, S, POwlt,u) Plurh) x 3, P(thu) Pluglu)
S Pliur) Pluclu)
@

This equation enlarges the tag candidates for tag predictial
also integrates the the environmental effects. Given a wserd
an itemg, the probability of tag being used will beP (¢|i, w). Our
algorithm will rank the tags by the valuB(¢|:,u). Because the
evidenceP (i|u) is the same for all tag candidates, then

(6)

P(t|i,u)

o [ D Plwlt, ux)P(ux|u) x ZP tlur) P (uk|u)
weW,; uy
x Z logZP wlt, ug ) P(ug|u) —|—logZP t|uk) P(uk|u)
weW; U
8
We refer to Equation 8 as,
Yu,it = Z logZP (wlt, ur) P(uk|u)
weW;
©)
—HogZP (tlur) P (uk|u)

wp

Then, given a uset, and an itemi, our algorithm will rank the
tags by the valueg., ;. If we define the probability?(u|u) as«
Or pu,» and environmental effect®(ux|u) aspu, ., then split the
ego-centric effect part and environmental effects parttoaation
9 can be rewriten as

Yuie = Y 10g( Y Pugu-

P(wlt,ur) + o - P(wl|t,u))

weW; upFu
+10g( Y pupu - Pltlur) + a - P(tlu))
upFAu

(10)
whered" pu,u+a=1andd’ . pu, . canbealsocalled
the welght of environmental effects anccan be called the weight

of ego-centric effect or ego weight. To avoid zero probagifior
P(wlt, ur), we use simple Laplace smoothing in our experiments.

4.2 Parameter Estimation and Optimization

In our model, Equation 9, we have already introduced the un-
igram language model foP(w|t,ur). Another P(t|ux) can be
calculated through the number of occurrence of tagithin the
posts of user.. The hard problem is to estimate the ego-centric
effect and environmental effect3(ux|u).

4.2.1 Intuitively calculating P (uy|u)

Given a useru, to calculate the probability of another user’s
influence—P (ux|u), we consider that users can be represented in
tag space. In the set of past postseach user has a set of tags,
which describes the interests of the user. In other words) eser
has a distribution of tags. The vector of tag occurrencedbearsed
to represent to the user. For the usgr

Vuk ...nuk,tm]

= [nukﬂfov Nup,tyy - Muy,t;,

Here,n., :; means the number of times of user uses tag;. For
the useruy, the prior probability of the tag; can be calculated by

Ty, t;
m

P(tjlux) =
! i=0 Thup t;

If two users have similar interests, then they may have ammgliis-
tributions of tags and there will be a higher probability &€ating
each other. Here, for user, if we assume that the similarity of
interests between userand usetu,, is directly proportional to the
probability ofuy, affectingu—P (ux|u), then

Vi * Va,

P(ur|u) o< sim(u,ur) = Val X [Var

Wheresim(u,u) = 1, the ego weight will be always larger than
the weight of other individual users. After normalizing damity,
we can simply set the

sim(u, ug)

2, sim(u,u;)

We refer to this calculation as user-tag-user similaritg &&n also
manually cut off users by using a threshold. For experimehts
number of neighbor users can be set as runtime pararme@nly

the most similak neighbor users will be counted.

P(uglu) = (11)

4.2.2 Learning algorithm

Our intuitive estimation is only a rough method of estimgtin
P(ug|u). In some cases, it may not be precise. For example, user
ur may use the same tags that useused on iteny, to tag an-
other itemiy, while the conteni andi, are completely different.
Thus, different users may use the same tags with differéabia
or perspectives for tagging web pages. Our previous methibd w
over-estimate the probability (ux|u) in this situation. To solve
this problem, we design a learning algorithm to calcula{e |u)
iteratively. For a postu, 1), the algorithm ranks tags hy, ;... We
use the similar objective function as in [15], which uses"{est-
based ranking interpretation” and maximizes the rankiagjstic
AUC (area under the ROC-curve).

AUC(0,u,i) =

ﬁ Z Z Ho.5(Yu,i,0+

| u,i” u,t t+€Tu+,i t’ET;’i

- yu,i,tf) (12)



where

0, <0
Hz=<p3, =0 (13)
1, z>1

T+ is the set of tags which the useradds on the iterawhile 7',

is the set of tags which the userdoes not add on the item The
overall optimization task with respect to the ranking stiatiAUC
and the observed data is then:

arg max Z AUC(0,u,i) (14)
(u,i) € Ps
Then, we use the continuous sigmoid function to repldce
s(@) = —— (15)
T l4ew

Then using gradient descent, AUC has to be differentiatell net
spect to all model parameters and for each gast) € Ps the
model parameter® (ux|u) are updated and renormalized.

o o
AUC(0,u,i
e (0, u, 1)
0
a Z Z yu it T yu,i,t*)
Dy, u | " | cert
€T, t— €T,
=z Z Z Wit - 57— Yuipt — Yuyi—)

'“‘k:
trert t—eT, ’

with:
Wit 1~ = s(yu,i,t+ —yu,z‘,r)(l—s(yu,i,ﬁ —yu,z‘,r))
z = |T5IT.
Yuiir = Yuin- = (Y logZP wlt™, wr) P(u|u)
weW;
+1ogZPt g ) P (ug|u))
Z logZP (w|t™, ur) Puk|u)
weW;
+log Y P( t*|uk)P(uk|u))
Ug
And
7]
m(yu,i,ﬁ — Yuyip—) =
v o Pt P
wei, 2wy, P un) Pluklu)) 32, Pt uw) Pluk|u)
-3 P(w[t™, uk) B Pt |uk)
e, 2wy PO ) Plurlu)) - 32, P |uk) P(ur|u)

Then, the derivation gf., . iS

E E Wit = Yot -

T
treT t=eT,

DAUC
OPuy u

Table 1: Offline Statistics

Training Data Test Data
Total Posts 262,33¢ Total Posts 668
Total Records 914,162 Total Records 2,307
Total Users 2,677 | New/Total Users 2/169
Total Items 234,764 New/Total Items 564/668
Total Tags 56,370 New/Total Tags 54/1,224
where
W+ t— S(yu,i,t+ - yu,z‘,r)(l - S(yu,i,t+ - yu,z‘,r))
z = T IT
Yiv :m = m(yu,i,ﬁ ~ Yuip—)

Thus, for each posiu, i) € Ps the model paramete3(us|u) are
updated as follow.

2AUC
N Puju +7- Bpuy,u
puk,u D e —
n
wherer) is a normalization facton = 37, (Bu,.u + 7 - gpAUC)

and~ is a learn rate.

4.3 Processing New Users

Our model is designed for personalized tag prediction,@afbe
for existing users. However, in the real world, we still maygd
users who have not been seen by the tagging system previdusly
simple method to predict tags for new users is to just useghemgl
model Equation 3.

A better option is that instead of using the general model, we
can build a language model for the new usgr,, from the item;.
Given a new user and an itef@,,.,, i), even if we do not know the
past information of the user, we can still get some implarafrom
the content of item. For existing users, a similar language model
is extracted from the items which the users tagged prewiotisien
the language models are used to represent users’ intefestsser
Uk,

W, =

Here,n., ., means the number of times of user has used the
word w;. Similarly,

[nuk sWO nukvwl ’ nuk yWi "'nuk 7'“)771]

Wunew 'Wuk

P(urlunew) o sim(unew, k) = [t

Wheresim(tunew, Unew) = 0, for new users, there will be no ego
effect. All the information should be from environmentaleets
and item content. After normalizing similarity, we can signpet
the

$im(Unew, Uk )
Zui $im(Unew, Ui)

We refer to this calculation as user-lan-user similarityr Rew
users, we cannot use learning algorithm to reft{e |unew ).

5. TIME-SENSITIVE SAMPLING
5.1 Dataset

In our experiments, we use the bookmark dataset of the ECML
PKDD 09 Challenge Workshdp The datasefS includes 2,679

2http://www.kde.cs.uni-kassel.de/ws/dc09/

P(ug|tinew) = (16)
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Figure 1: Dataset Statistics

Table 2: Online Statistics

Total Posts 668

Total Records 2307
Old/Total Users || 627/668
New/Total Users|| 41/668
Old/Total Items || 66/668
New/Total Items|| 602/668
Old/Total Tags 1,986/2,307
New/Total Tags || 321/2,307

users, 263,004 items, 56,424 tags, 262,336 posts and 10401,
records. All of the posts contain timestamps. We unifornagns
ple 668 posts along the time line as our test dataset and the
remaining posts constitute the training data&et, .

In Figure 1 we show the tag and item frequencies over the full
dataset. In the plot on the right, the large vertical gap betwthe
two leftmost points means that 93.6% items appear only onde a
only 6.4% of items appear more than once. Thus, most grapbdba
methods which require more than CORE-2 (users, tags and item
appear at least twice) cannot work on it. For tags, 49.4%gs ta
appear only once; 50.6% of tags appear more than once.

In comparison, if we ignore time information and assume a tra
ditional fixed training and test split (e.g., use the datasean “of-
fline” dataset), a test post may have occurred prior to soaneing
posts, effectively using the future to build a model to pcedhne
past. Table 1 provides statistics regarding the trainirig dad the
number of “new” items seen in the test data. We find that thexe a
only 2 new users out of 169 users and 54 new tags out of 1,224 tag
in the test dataset. However, there are 564 new items out®f 66
items even in the offline statistics. Here, “new” means thdbées
not exist in training data. While the offline analysis canegiss
some impression of the dataset, it is different from the weald,
because in the real world, we cannot use future data asrtgaitaita
to recommend tags for users.

5.2 Online Evaluation

Besides the offline test, another testing method which isnoft
used in tag prediction evaluation is that of fixing a time pein
posts whose timestamp is earlier than that time will be used a
training data while posts whose timestamps are later thatrtithe
will be used as test data. The ECML PKDD Challenge Workshop
employed this approach. There are still some problems fisr th
method. For example, if a user never tagged items befordithat
point and then tagged/ posts after that time point, in this test

\ time

=

O Train post

@ Test post

Figure 2: Online framework

mode, the allM posts of this user will be treated as the posts of a
new user to training data. Thus, there will be too many “neer us
cases” which in the real world is actually existing usersthimreal
world, after the user tagged his first item, the system shinddv
this user and be able to retrieve the list of tags which thés bas
previously used. In addition, for users who tagged itemé bet
fore and after the time point, their interests may not alvsigyg the
same and may even change frequently; in the real world, the sy
tem can again retrieve the latest tags which can represetatést
interests of this user. Such information should also beidensd

to make better prediction of tags.

We introduce a better evaluation method which is much claser
the real world and call it the “online” framework in this papEig-
ure 2 illustrates the online framework. Like online macHhie&rn-
ing [3] which has been used widely, in our online mbdae tag-
ging system operates in an incremental mode and the test aast
randomly sampled from the whole dataset along the timellne.
other words, for users and items in our test dataset, we aeyhe
training posts which have earlier timestamps than the tetspand
the available training data is different for each test posider this
setting, for items tagged early in time, fewer training datavail-
able. The online statistics (shown in Table 2) demonsttaewe
still face a new user (a user which is not in the training se6.1%
of the cases, and in 90.1% of the time users are trying to badkm
a new item. In addition, there is .139 probability that useosid
use new tags (which do not appear in the system before). Thus,
the real world, the principal difficulty is to process casesvhich

%In this paper, online mode means a incremental mode of rgal ta
ging system rather than real-time tag prediction.



existing users which try to tag new items. Overall, thisoalmode
is more like a real tag prediction system, permitting theeysto
learn user behaviors incrementally rather than existirajuation
procedures with a fixed dataset split.

6. EXPERIMENTS

In this section, we describe the details of datasets andriexpe
ments. We also compare our approach with two other algosithm

6.1 Dataset and Evaluation Method

The dataset used in our experiments has been already dasbcrib
in Section 5. All of the posts contain timestamps. We rangoml
sample 668 posts along the time line as our test datiset and
the remaining ones are the training dataset.;... We use the com-
mon evaluation scheme of F-measure in Top N lists, whére 5
is mainly used as our measurement. The precision, recalFand
measure are calculated as follows.
| Top(w, i, N) N {t|(u,i,t) € Stest }|

N

|T0p(u7 i7 N) N {t|(u7 i7 t) S Stest}'
avg ‘
(“’vi)EPStest |{t|(u7 2y t) S Stest}|

2 X PreC(Stesh N) X ReC(StESt’ N)
F1(Stest, N) =
1(Stest, N) Prec(Stest, N) 4+ Rec(Stest, N)

Prec(Stest, N)

avg
(u’i)epstest

Rec(stest7 N)

6.2 Comparison

From our analysis, in the real world, the graph-based method
cannot work on most posts. Most graph-based algorithmsrequ
that users, tags and items appear at least twice in trairéhg s
We compare our approach with Liczak’s method [12], whichkktoo
the first place in the “content-based” recommendation task
took third place in “graph-based” recommendation task itiVEC
PKDD Discovery Challenge[4]. They have two versions respec
tively for the “content-based” task and the “graph-basedkt In
this paper, we call their “content-based” versidiKM-C and their
“graph-based” versiohHKM-G, corresponding to the authors’ ini-
tials of [12]. For LHKM-C and LHKM-G, we use the same pa-
rameters as they used in the Challenge Workshop. For ourlmode
we only use the most similar 30 neighbors for each test user. |
the P(ur|u) part, we use user-tag-user similarity mode to estimate
ego-centric effect and environmental effects for existisgrs and
user-lan-user similarity mode for new users.

In Figure 3(a) and 3(b), we show the comparison between on-
line and offline tests. For each we also show the differenee be
tween performances whens recommending various numbeg®f ta
(known as Top N). We see that as expected, the results offlireeof
test are always better than the results of the online tesguse in
the offline test, more training data (even future data) candmel.
The results of LHKM-G are slightly better than the resultstod
LHKM-C, because in LHKM-G, “graph-information” is used. ©u
method outperforms both LHKM-C and LHKM-G. In offline test,
the F-measure of our model is around 11% higher than LHKM-G
and 14% higher than LHKM-C. In online test, the F-measureuof o
model is 12% higher than LHKM-C and LHKM-G. In the follow-
ing experiments, all the evaluation of F-measure in Top ¢ ligll
be based oV = 5.

6.3 Optimization Analysis

In this section, we use gradient descent to optimize paemet
which can more accurately represent the environmentadtefénd
ego-centric effects. We run the learning algorithm on thénef
test. In our optimization, although it shows some improvetos

the results, itis very time-consuming. For each user, we osé 10
training items to optimize the environmental effects of 8jhbors
and the ego-centric effecte= The learning rate is set to 1.

There are two versions: the first is opt-Alpha which onlydrie
to optimize o, the second is opt-Alpha+30N which tries to opti-
mize « and all 30 neighbors, that means, total 31 parameters will
be optimized. The initial values dP(ux|u) are the same as the
section 6.2, using user-tag-user similarity for old userd aser-
lan-user similarity for new users. Figure 3(c) shows theltef
the iterative learning algorithm. The x-axis is the numbegit-o
erations and y-axis is F-measure. As expected, both ottroiz
methods can improve the results of initial value a little3@) and
opt-Alpha+30N always outperforms opt-Alpha. This is bessau
in opt-Alpha+30N, 31 parameters can be optimized while it op
Alpha, only Alpha is optimized. From Figure 3(c), we alsoicet
that after 1 or 2 times iteration, both opt-Alpha+30N andAfgtha
get the best results and then the F-measure decreasety<digtit
converges. We hypothesize that this situation may be caged
overfitting. Another possible reason is that the learniracedure
is time consuming, and we only use 10 items to optimize the pa-
rameters. Some users tagged thousands of items, so 1Ggaini
items may not be sufficient. In addition, better objectivadiion
and optimization methods are necessary for further impnave
on both F-measure and running time.

6.4 Parameter Analysis

Compared to individual neighbors, the user’s ego weight
should be the most important part. It decides the ego weigtit a
relative impact of environmental effects. We consider timatally
user’s ego weight should be very high. Also the number oftneig
bors may affect the results of our model.

We find that the optimization process always generates highe
In this experiment, we fix the number of neighbors to 100 ane tu
the ego weight alpha, from 0 to 1. The weights of neighbor$ wil
be normalized as follow.

pu,uj

Pu,uj «— (1 - Oé) ’ Z (17)

ujFEU pu,uj

6.4.1 Ego-centric effect analysis

For P(ux|u), we use user-tag-user similarity for existing users
and user-lan-user similarity for new users. We use the nmiosies
100 users as environmental effects. Figure 3(d) shows thétse
In this figure, the straight lines are from LHKM-C and LHKM-G
for comparison. (In the online test, the F-measure of LHKN(@
LHKM-G is quite similar, so they only show a single line in the
figure.) Our results on the offline tests and on the onlines tex
highly consistent. Whea = 0, that means, all information is from
the most 100 similar neighbors, the F-measure is still gijghet-
ter the LHKM-C and LHKM-G on online test, but slightly worse
on offline test. Whenu is set to 0.05, F-measure dramatically in-
creases, and become higher than that of LHKM-C and LHKM-G in
offline test. Asa increases, the F-measure increases and achieves
the best result when the is set to 0.7. In offline test, it is around
37.8% (16% higher than LHKM-G) and in online test, it is 27.3%
(12% higher than LHKM-G). Another interesting point is tleaen
if ais set to 1, the performance of our model is still much better
than LHKM-C and LHKM-G. In online test, regardless of haw
is set, our model always outperforms Liczak’s methods. &hes
sults verify our conjecture that the users’ ego weight sthbel very
important in tag prediction.
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6.4.2 Environmental effects analysis

Then, we fixa = 0.5, and tune the number of effective neigh-
bors from 0 to unlimited—that is, we use all possible users an
in our model, for existing users, as long as user-tag-usgtssity
is non-zero, then this user will be treated as an effectiighae
bor. The results are showed in Figure 3(e). The straighs lare
also from LHKM-C and LHKM-G. From Figure 3(e), in the begin-
ning, as the number of neighbors increase, the F-measusase
When the number of neighbors is set to 100, our model achieves
the best F-measure on both offline test and online test, wdrieh
37.5% and 27.1% respectively and also much better than LHKM-
and LHKM-G. We also notice that compareddothe number of
neighbors affects the results less. Thus, the number ohbeig is
less important than the ego weightind it can be simply set to 100
to get the best performance.

6.4.3 Online experiment

Based on the manually tuned we also try to optimize the ego
weight to get the highest F-measure on the online test fomwedd
performance. In this case, the manually tuneand P (u|u) will
be used as initial values for the learning algorithm. Foheast
user, we still use 10 training items to optimize the ego weighe
learning rate is 1. The results are showed in Figure 3(fdpha is
the optimization version while the “initial value” is thersa as the
onein 6.4.1. The straight lines are also from LHKM-C and LHKM
G. From Figure 3(f) we can see that at some points, e.g,0.05,
0.1 and 0.9, opt-Alpha improves the F-measure and therelsoe a
some points where the performance of opt-Alpha and initdlle
are similar. Here, we also get the highest F-measure 27.98%eon
online test which is 13% higher than LHKM-C (an improvemeit o
more than 85%). Comparing to the results of learning algorijt
the results of manually tuned are good enough and it runs much
faster. At this moment, we suggest to manually tune

6.5 Five-Fold Cross Validation

Because our test set is relatively small, in order to showdhe
bustness of our modet-fold cross validation was used to compare
the performance of our model vs. LHKM-C and LHKM-G. kA
fold cross-validation, the original sample is randomlytjp@ned
into k£ subsamples. Of thk subsamples, a single subsample is re-
tained for testing the model and the remaining1 subsamples are
used as training data. The cross-validation process iseajglotal
of k times (the folds), with each of the subsamples used exactly
once as the test data. In our experimént= 5 and we do offline
testing. The number of neighbors is set to unlimited andalgh
setto 0.5. The parameters of LHKM-G and LHKM-C are the same
as previous experiments. For each part of test and trairditey the
training data contains around 210,000 posts, 2,400 us@@s0a0
items and 50,000 tags. and test data contains around 52¢30€) p
1,600 users, 50,000 items and 24,000 tags. Among them theere a
around 300 new users, 45,000 new items and 63,00 new tags. Thi
is also consistent with our small test set.

In Table 3, we can see that our model outperforms the LHKM-C
and LHKM-G by more than 10% on F-measure. The 5 results are
quite similar and this also demonstrates that our model earmgite
better results than LHKM-C and LHKM-G stably.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we suggest that social tagging by nature isan i
cremental process, and perform a time-sensitive samplngro
existing public dataset. Our analysis shows that in theweald,
the problem of tag prediction is dominated by the need toipted
tags for existing users when they tag new items. Most grased

Table 3: 5-Fold Cross Validation
LHKM-C LHKM-G our model

Testl 0.193 0.202 0.348
Test2 0.194 0.213 0.348
Test3 0.193 0.210 0.347
Test4 0.194 0.211 0.347
Test5 0.195 0.211 0.348

mean 0.1938 0.2094 0.3476

methods require CORE, and thus may simply not function in such
situations.

We proposed a novel probabilistic model for personalized ta
prediction. Our online experiments and 5-fold cross vaimaex-
periments indicate that our model achieves over 30% impneve
on F-measure compared to a leading method, in the “realdivorl
test scenario.

Although manually tuned parameters can achieve a high perfo
mance, all the users share the same ego weight. We believe tha
different users should have different user profiles—peaabped
weights of ego-centric effect and environmental effeatsthe fu-
ture, a probabilistic analysis on the effects of neighbprisers
may be needed to make further improvements.
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