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ABSTRACT
Social tagging systems have become increasingly popular for shar-
ing and organizing web resources. Tag recommendation is a com-
mon feature of social tagging systems. Social tagging by nature
is an incremental process, meaning that once a user has saveda
web page with tags, the tagging system can provide more accu-
rate predictions for the user, based on the user’s incremental be-
havior. However, existing tag prediction methods do not consider
this important factor, in which their training and test datasets are ei-
ther split by a fixed time stamp or randomly sampled from a larger
corpus. In our temporal experiments, we perform a time-sensitive
sampling on an existing public dataset, resulting in a new scenario
which is much closer to “real-world”.

In this paper, we address the problem of tag prediction by
proposing a probabilistic model for personalized tag prediction.
The model is a Bayesian approach, and integrates three factors—
an ego-centric effect, environmental effects and web page con-
tent. Two methods—both intuitive calculation and learning
optimization—are provided for parameter estimation. Puregraph-
based methods which may have significant constraints (such as ev-
ery user, every item and every tag has to occur in at leastp posts)
cannot make a prediction in most “real world” cases while our
model improves the F-measure by over 30% compared to a lead-
ing algorithm on a publicly-available real-world dataset.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.2.8 [Database Management]: Database ap-
plications—Data Mining; H.4.0 [Information Systems Applica-
tions]: General; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing; H.1.2 [Models and Principles]:
User/Machine Systems—Human Information Processing

General Terms
Algorithms, Experimentation, Measurement, Performance
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1. INTRODUCTION
Collaborative tagging systems, also known as social bookmark-

ing systems, have become increasingly popular for sharing and or-
ganizing web resources. In collaborative tagging systems,users
add metadata in the form of descriptive terms, called tags, to de-
scribe web resources. Social bookmarking has already showed its
value in many areas, such as query expansion [2], web search [1],
personalized search [17, 21], web resource classification [23] and
clustering [14]. A better understanding and prediction of tags on
web pages is quite meaningful, especially in those areas.

Tag recommenders can assist users with the tagging process by
suggesting a set of tags that users are likely to use for a web re-
source. Personalized tag recommenders which take a user’s previ-
ous tagging behaviors into account when making suggestionsusu-
ally have better performance compared with general tag recom-
menders. In short, the goal of a personalized tag recommender
is to predict tags for each user specifically and effectively, given a
web resource.

Personalized tag prediction has become a popular research topic.
The two main directions for these systems are content-basedap-
proaches and graph-based approaches. Content-based methods,
which usually model users’ preferences from textual information
(e.g., web pages, academic papers and tags), can predict tags for
new users and new web resources. Graph-based approaches, while
often having stronger assumptions than content-based ones, typi-
cally provide better performance. For example, one such assump-
tion is the COREp [9] requirement, in which every user, every item
and every tag has to occur at leastp times in the training set. How-
ever, in most cases, such an assumption is not realistic. Actually,
tag recommenders are often asked to recommend tags when the sys-
tem knows nothing about the web resource or the user. Our analysis
will show that in a real world scenario, the probability of a web re-
source being new to a tag recommender is more than 0.9. Compar-
ing both kinds of approaches, the content-based approach has the
advantage that it can predict tags for any user and any web resource,
while the overall performance is not as good as graph-based ap-
proach. Graph-based approaches which require COREp can have
significantly better performance, but can only predict tagsfor cer-
tain groups of users and web resources, preventing them frombeing
widely applicable. Thus, a better tag recommender should beable
to recommend tags for new users or new web resources, and still
have reasonably good performance. Our tag recommender has such
functionality, in part by incorporating various factors. We believe
that in the real world, when a user is tagging web pages, at least the



following three factors will affect the choice of tags whichhe will
finally use.

The ego-centric effect. A given user will have some specific
interests and will tend to bookmark similar items with similar tags
based on the user’s vocabulary. Assume for example that a user is
interested in “development” and he has already tagged many web
pages about development by using “C++”, “java”, and “tutorials”.
When he bookmarks a new web page, intuitively, this item will
be relevant to “development” with high probability. That is, the
content of this new web page is very likely to be similar to web
pages that the user tagged previously. In addition, on this web page,
the user will also tend to use similar tags which he used before. We
name this effect, which is from the user himself, the ego-centric
effect.

Environmental effects. A user may be influenced by other
users. When a user is tagging some web page, he may adopt tags
which are used frequently by other similar users. For instance, a
user may often use the tag “java” previously, but never use the tag
“tutorial”. Suppose that there is another user who is similar to this
user—say, they both frequently use tag “java”—but in addition fre-
quently uses the tag “tutorial”. In this case, when the user is trying
to bookmark an item which is similar to the items where the other
user already has tagged as “tutorial”, the probability of this user
using both “java” and “tutorial” is higher (even if this usernever
used the tag “tutorial” before). In addition, some users maydis-
cover resources within the tagging system; that is, they findinter-
esting items which other users have already tagged. In this case, the
probability of this user using the same tags will be very high(most
graph-based recommenders adopt this strategy). Another aspect is
that some current tagging systems allow users to set up relation-
ships with other users, e.g., delicious [22, 20]. This also strength-
ens the influence of neighboring users. We call all of these kinds of
effects environmental effects.

Item content. For an item which already exists in past book-
marks, we can get some prediction hints from the tags which have
already been used on this item. However, we have found that tag
prediction systems may need to face new items more than 90 per-
cent of the time. Thus, strictly graph-based recommenders will not
work on these new items. When facing a new item, content analysis
is necessary. Even if the item is not a new item, content analysis is
still quite useful, because other items with similar topicswill pro-
vide hints for tag prediction.

Besides proposing a probabilistic model for tag prediction, we
also analyze the task of tag prediction itself. In previous literature,
there are generally two kinds of approaches to evaluate social tag-
ging systems. One is to randomly split a dataset into training and
test sets without considering time information, and the other is to
use a fixed time point to split the whole dataset into trainingand test
sets. However, neither of the two methods well represent real world
scenarios. The first case is not reasonable because the training set
contains the posts with earlier timestamps and also posts with later
timestamps. The second case is different from real systems in the
sense that a real tagging system is likely to operate in an online
mode (i.e., an incremental mode). Actually, for a given post, all
posts in the whole data with earlier timestamps can be and should
be used as training data. So the training data is different for each
test post. This approach also has the benefit of utilizing as much
information as possible.

In this paper, our contributions are as follows:

• We perform time-sensitive sampling on an existing public
dataset, and propose a new use case of tag prediction which
is closer to real world cases.

• We present a novel probabilistic model for personalized tag
prediction.

• We demonstrate on public data that our method significantly
outperforms a strong existing method when performing on-
line tag prediction.

In Section 2, we briefly review some recent work on tag rec-
ommendation and related topics. Section 3 precisely definesthe
problem and notation. Section 4 introduces a general probabilis-
tic model for tag prediction and extends it to personalized predic-
tion. Section 5 reports online analysis. Section 6 reports our exper-
iments. Section 7 concludes and outlines future work.

2. RELATED WORK
Personalized tag recommendation, as a special case of collabo-

rative filtering, is a recent topic in recommender systems. The two
main directions for these systems are content-based approaches and
graph-based approaches.

Content-based methods, which usually encode users’ prefer-
ences from textual information (e.g., web pages, academic papers,
tags), can predict tags for new users and new items. One state-
of-the-art content-based tag recommendation system [12] utilized
several tag sources including item content and user historyto build
both profiles for users and tags. New tags are checked againstuser
profiles, which are rich, but imprecise sources of information about
user interests. The result is a set of tags related to both theresource
and the user. Depending on the character of processed posts,this set
can be an extension of the common tag recommendation sources,
namely resource title and resource profile.

Graph-based approaches, which usually have stronger assump-
tions than content-based ones (e.g., requiring every user,every
item and every tag to occur in at leastp posts), can provide bet-
ter performance. Early work like FolkRank, introduced by Hotho
et al. [8], is an adaptation of PageRank that can generate high
quality recommendations which are shown empirically to be bet-
ter than other previous proposed collaborative filtering models [9].
Guan et al. [6] proposed a framework based on graph Laplacianto
model interrelated multi-type objects involved in the tagging sys-
tem. Tags are ranked by a graph-based ranking algorithm which
takes into consideration both relevance to the document andprefer-
ence of the user. Recently, factorization models (also considered as
graph-based approaches) show very successful evaluation results
on personalized tag recommendation problems. In [19], Syme-
onidis et al. proposed a method based on Higher-Order-Singular-
Value-Decomposition (HOSVD)—which corresponds to a Tucker
Decomposition (TD) model optimized for square-loss.In [15], Ren-
dle et al. proposed a better learning approach for TD models,which
is to optimize the model parameters for the AUC ranking statis-
tic (area under the ROC curve). Rendle and Schmidt-Thieme [16]
further presented a special case of the TD model with linear run-
time for both learning and prediction. In experiments on real world
datasets, they showed that the model outperforms TD largelynot
only in run-time but also can achieve better prediction quality. Non-
personalized tag recommenders—i.e., for a given item they recom-
mend to all users the same tags—have also attracted a lot of at-
tention (e.g., [7, 18]). However, in [15], the authors showed that
personalized tag recommendation systems empirically outperform
the theoretical upper bound for any non-personalized tag recom-
mender. Garg et. al[5] propose a personalized interactive tag sug-
gestion system which suggests tags based on the ones that a user
entered most recently. They employ a naive Bayes classifier which
is only based on tag co-occurrences.



Graph-based methods are also popular in other fields of collabo-
rative filtering. Many of the best performing models (e.g., [11, 10]
on the Netflix Challenge1) are based on matrix factorization. Also
for related task of item prediction, factorization models are known
to outperform models like k-nearest neighbors collaborative filter-
ing or the Bayesian model URP [13].

Recent research also show that users are much more likely to use
their recently used tags. Zhang et. al [24] investigate the recurrence
dynamics of social tagging. Time information is also important to
recommend high-quality tags to users.

3. DEFINITIONS
In a social tagging system, users can bookmark web pages by

assigning tags to them. The system can also retrieve the content of
a web page which the user is bookmarking and based on content,
the system can recommend to the user some personalized tags.The
task of recommending tags to users is called tag recommendation.

A similar task is tag prediction which needs to predict the tags
which the user will use on some bookmarks. This can also be per-
sonalized; that is, given a user and a set of bookmarks without tags,
the algorithm should predict which tags the user will use on each
bookmark. In order to predict or recommend tags for a specificuser
precisely, the recommender should first understand the userwell.
Because different users have different preferences and interests, for
some users, the bookmarks the user saves may tend to be similar
or in the same topic. In addition, on similar bookmarks, the tags
which different users use may be similar. But for other users, even
if they save the same or similar web pages, they may use different
tags because of different perspectives and different preferences.

Here, we formalize the definitions. LetU be the set of all users,
I be the set of all items (they sometimes are also called objects,
resources, or web pages in other literature) andT be the set of
all tags. For past tagging information, we have existing ternary
relationsS, andS ⊆ U×I×T . Thus, each single record(u, i, t) ∈
S means that useru has tagged an itemi with the tagt. Here, we
also definePs as all the past distinct user-item combination:

Ps = {(u, i)|∃t ∈ T : (u, i, t) ∈ S}

Thus, when the current useruc is trying to add an itemic, the task
is to recommend a list of tags to the potential post(uc, ic), based
the past postsS, which we also call training data.

4. PROBABILISTIC MODEL
The tag prediction problem can be treated as the reverse of web

search. In web search, users submit a list of terms as a query,and
then the relevant web pagesi will be retrieved and the web pages
can be ranked byP (i|t), the probability of the pagei being relevant
to the queryt. Here, the list of terms can be considered as a list of
tags. Without considering personal information (non-personalized
tag prediction), the general tag prediction could be that given a web
pagei, retrieve a list of potential tags. The tags can be ranked by
P (t|i). According to Bayesian theory, we have

P (t|i) =
P (i|t) · P (t)

P (i)
(1)

In Equation 1,P (t|i) means the probability of using tagt given an
item i. P (i|t) means the frequency of itemi in a set of items which
are tagged byt. P (t) is the prior probability of tagt. If the tag
t appears more frequently, it will hold a higher prior probability.
If the item i exists in past posts which can be considered as the

1http://www.netflixprize.com/

training data, thenP (i|t) can be easily estimated by simply using
the number of occurrence of(i, t)—Ni,t. However, if the itemi
does not exist in the past posts, that is,i is a new item, it is difficult
to estimate the probabilityP (i|t). One possible solution is to use
the content of the item.

The content of itemi can be represented by a language model.
The most straightforward model is a unigram language model.The
item i is treated as a bag of wordsW = {w|w appears in itemi}.
Here, if the word-independence assumption is made, the probabil-
ity of item i given the tagt will be:

P (i|t) =
∏

w∈Wi

P (w|t) (2)

According to Equation 2, we know that the probabilityP (i|t) can
be broken down into the production of word-level probabilities
∏

w∈Wi
P (w|t). P (w|t) means the likelihood of the wordw ap-

pearing in the item’s content, given a tagt. Given a itemi, the
number of occurrence ofw is denoted asNw,i. Given a tagt, the
number of occurrence ofw is denoted asNw,t which can be calcu-
lated as follows:

Nw,t =
∑

i∈I
Nw,i ·Ni,t

To estimateP (w|t), we can assume that words obey the following
distribution:

P (w|t) =
Nw,t

Nt

Then, maximum likelihood estimation (MLE) can be used to esti-
mate the parameterN . To maximize the probability of the wordw,
we have:

Nt =
∑

w
Nw,t

By combining Equations 1 and 2, general tag prediction can be
expressed as:

P (t|i) =

∏

w∈Wi
P (w|t) · P (t)

P (i)
(3)

4.1 Personalized Tag prediction
While we have shown how to perform general tag prediction,

personalized tag prediction is more preferable. In social tagging
systems, individual users may have specific interests and tend to
bookmark similar web pages by using similar tags. For differ-
ent users, the prior probability of tags is often different,and the
language model of tags is also different. Even if two users book-
mark the same item, the tags they use can also be different because
of their various interests, perspectives and preferences.Rendel et
al. [15] show that personalized tag prediction systems empirically
outperform the theoretical upper bound for any non-personalized
tag recommender. In our probabilistic model, the general tag pre-
diction can be simply extended to personalized prediction by in-
volving the ego-centric effect. Given a useru, the personalized tag
prediction can be:

P (t|i, u) =
P (i|t, u) · P (t|u)

P (i|u)
(4)

Here,P (t|i, u) means that given a useru, the probability that tag
t is applied to the itemi. P (i|t, u) means the likelihood of item
i given a tagt and useru. P (t|u) is also the conditional prior
probability of tagt, given the useru. It can be easily understood
that Equation 4 is based on a set of past postsS—that is, for the
specific useruc, Suc = {(uc, i, t)|(uc, i, t) ∈ S}. Similar to non-
personalized tag prediction, to incorporate the content ofitems, re-
placingP (i|t, u) in Equation 4, the personalized tag prediction will



become:

P (t|i, u) =

∏

w∈Wi
P (w|t, u) · P (t|u)

P (i|u)
(5)

However, in this model, if a user has not yet used a tag, we cannot
rank it. Because that if tagt has not been used by useru, the prior
probability P (t|u) = 0, and we cannot get theP (i|t, u) either.
According to Equation 5, for this new tagt, theP (t|d, u) will be
always 0. Thus, the candidate tags will be constrained to theset
of tags which the user has used before. Obviously, such candidate
tags are often quite limited.

In addition, when users are trying to bookmark some web pages,
the three factors mentioned previously will affect the tagswhich
the user will finally use: the ego-centric effect, environmental ef-
fects and item content. In Equation 5, the ego-centric effect is
modeled by the whole equation and item content is modeled by
∏

w∈Wi
P (w|t, u). To model environmental effects, we involve

the probability of neighbor effectsP (uk|u), that is, given the cur-
rent useru, the probability of useruk affecting useru. When
uk = u, thenP (u|u) represents the exact weight of the ego-centric
effect. Thus,

∑

uk

P (uk|u) = 1 (6)

When we integrate the environmental effects into Equation 5, we
get

P (t|i, u) =
∏

w∈Wi

∑

uk
P (w|t, uk)P (uk|u) ×

∑

uk
P (t|uk)P (uk|u)

∑

uk
P (i|uk)P (uk|u)

(7)
This equation enlarges the tag candidates for tag prediction and
also integrates the the environmental effects. Given a useru and
an itemi, the probability of tagt being used will beP (t|i, u). Our
algorithm will rank the tags by the valueP (t|i, u). Because the
evidenceP (i|u) is the same for all tag candidates, then

P (t|i, u)

∝
∏

w∈Wi

∑

uk

P (w|t, uk)P (uk|u) ×
∑

uk

P (t|uk)P (uk|u)

∝
∑

w∈Wi

log
∑

uk

P (w|t, uk)P (uk|u) + log
∑

uk

P (t|uk)P (uk|u)

(8)
We refer to Equation 8 as,

yu,i,t =
∑

w∈Wi

log
∑

uk

P (w|t, uk)P (uk|u)

+ log
∑

uk

P (t|uk)P (uk|u)
(9)

Then, given a useru and an itemi, our algorithm will rank the
tags by the valueyu,i,t. If we define the probabilityP (u|u) asα
or pu,u and environmental effectsP (uk|u) aspuk,u, then split the
ego-centric effect part and environmental effects part andEquation
9 can be rewriten as

yu,i,t =
∑

w∈Wi

log(
∑

uk 6=u

puk,u · P (w|t, uk) + α · P (w|t, u))

+ log(
∑

uk 6=u

puk,u · P (t|uk) + α · P (t|u))

(10)
where

∑

uk 6=u
puk,u+α = 1 and

∑

uk 6=u
puk,u can be also called

the weight of environmental effects andα can be called the weight

of ego-centric effect or ego weight. To avoid zero probability, for
P (w|t, uk), we use simple Laplace smoothing in our experiments.

4.2 Parameter Estimation and Optimization
In our model, Equation 9, we have already introduced the un-

igram language model forP (w|t, uk). AnotherP (t|uk) can be
calculated through the number of occurrence of tagt within the
posts of useruk. The hard problem is to estimate the ego-centric
effect and environmental effectsP (uk|u).

4.2.1 Intuitively calculating P (uk|u)

Given a useru, to calculate the probability of another user’s
influence—P (uk|u), we consider that users can be represented in
tag space. In the set of past postsS, each user has a set of tags,
which describes the interests of the user. In other words, each user
has a distribution of tags. The vector of tag occurrences canbe used
to represent to the user. For the useruk,

Vuk
= [nuk,t0 , nuk,t1 , ...nuk ,ti , ...nuk,tm ]

Here,nuk,ti means the number of times of useruk uses tagti. For
the useruk, the prior probability of the tagtj can be calculated by

P (tj |uk) =
nuk,tj

∑m

i=0 nuk,ti

If two users have similar interests, then they may have similar dis-
tributions of tags and there will be a higher probability of affecting
each other. Here, for useru, if we assume that the similarity of
interests between useru and useruk is directly proportional to the
probability ofuk affectingu—P (uk|u), then

P (uk|u) ∝ sim(u, uk) =
Vu · Vuk

|Vu| × |Vuk
|

Wheresim(u, u) = 1, the ego weight will be always larger than
the weight of other individual users. After normalizing similarity,
we can simply set the

P (uk|u) =
sim(u, uk)

∑

ui
sim(u, ui)

(11)

We refer to this calculation as user-tag-user similarity. We can also
manually cut off users by using a threshold. For experiments, the
number of neighbor users can be set as runtime parameterk. Only
the most similark neighbor users will be counted.

4.2.2 Learning algorithm
Our intuitive estimation is only a rough method of estimating

P (uk|u). In some cases, it may not be precise. For example, user
uk may use the same tags that useru used on itemi, to tag an-
other itemik, while the contenti andik are completely different.
Thus, different users may use the same tags with different intents
or perspectives for tagging web pages. Our previous method will
over-estimate the probabilityP (uk|u) in this situation. To solve
this problem, we design a learning algorithm to calculateP (uk|u)
iteratively. For a post(u, i), the algorithm ranks tags byyu,i,t. We
use the similar objective function as in [15], which uses the“post-
based ranking interpretation” and maximizes the ranking statistic
AUC (area under the ROC-curve).

AUC(θ̂, u, i) =

1

|T+
u,i||T

−
u,i|

∑

t+∈T
+

u,i

∑

t−∈T
−

u,i

H0.5(yu,i,t+ − yu,i,t−) (12)



where

Hβ =











0, x < 0

β, x = 0

1, x > 1

(13)

T+
u,i is the set of tags which the useru adds on the itemi whileT−

u,i

is the set of tags which the useru does not add on the itemi. The
overall optimization task with respect to the ranking statistic AUC
and the observed data is then:

argmax
θ̂

∑

(u,i)∈Ps

AUC(θ̂, u, i) (14)

Then, we use the continuous sigmoid function to replaceH :

s(x) =
1

1 + e−x
(15)

Then using gradient descent, AUC has to be differentiated with re-
spect to all model parameters and for each post(u, i) ∈ Ps the
model parametersP (uk|u) are updated and renormalized.

∂

∂puk,u

AUC(θ̂, u, i)

=
∂

∂puk,u

1

|T+
u,i||T

−
u,i|

∑

t+∈T
+

u,i

∑

t−∈T
−

u,i

s(yu,i,t+ − yu,i,t−)

= z
∑

t+∈T
+

u,i

∑

t−∈T
−

u,i

wt+,t−
∂

∂puk,u

(yu,i,t+ − yu,i,t−)

with:

wt+,t− = s(yu,i,t+ − yu,i,t−)(1− s(yu,i,t+ − yu,i,t−))

z = |T+
u,i||T

−
u,i|

yu,i,t+ − yu,i,t− = (
∑

w∈Wi

log
∑

uk

P (w|t+, uk)P (uk|u)

+ log
∑

uk

P (t+|uk)P (uk|u))

−(
∑

w∈Wi

log
∑

uk

P (w|t−, uk)P (uk|u)

+ log
∑

uk

P (t−|uk)P (uk|u))

And

∂

∂puk,u

(yu,i,t+ − yu,i,t−) =

∑

w∈Wi

P (w|t+, uk)
∑

uk
P (t+|uk)P (uk|u))

+
P (t+|uk)

∑

uk
P (t+|uk)P (uk|u)

−
∑

w∈Wi

P (w|t−, uk)
∑

uk
P (t−|uk)P (uk|u))

−
P (t−|uk)

∑

uk
P (t−|uk)P (uk|u)

Then, the derivation ofpuk,u is

∂AUC

∂puk,u

= z
∑

t+∈T
+

u,i

∑

t−∈T
−

u,i

wt+,t−Yt+,t−

Table 1: Offline Statistics
Training Data Test Data

Total Posts 262,336 Total Posts 668
Total Records 914,162 Total Records 2,307
Total Users 2,677 New/Total Users 2/169
Total Items 234,764 New/Total Items 564/668
Total Tags 56,370 New/Total Tags 54/1,224

where

wt+,t− = s(yu,i,t+ − yu,i,t−)(1− s(yu,i,t+ − yu,i,t−))

z = |T+
u,i||T

−
u,i|

Yt+,t− =
∂

∂puk,u

(yu,i,t+ − yu,i,t−)

Thus, for each post(u, i) ∈ Ps the model parametersP (uk|u) are
updated as follow.

p̂uk,u ←
p̂uk,u + γ · ∂AUC

∂puk,u

η

whereη is a normalization factorη =
∑

uj
(p̂uj,u + γ · ∂AUC

∂puj ,u
)

andγ is a learn rate.

4.3 Processing New Users
Our model is designed for personalized tag prediction, especially

for existing users. However, in the real world, we still may face
users who have not been seen by the tagging system previously. A
simple method to predict tags for new users is to just use the general
model Equation 3.

A better option is that instead of using the general model, we
can build a language model for the new userunew from the itemi.
Given a new user and an item(unew , i), even if we do not know the
past information of the user, we can still get some implication from
the content of itemi. For existing users, a similar language model
is extracted from the items which the users tagged previously. Then
the language models are used to represent users’ interests.For user
uk,

Wuk
= [nuk,w0

, nuk,w1
, ...nuk ,wi

, ...nuk ,wm ]

Here,nuk,wi
means the number of times of useruk has used the

wordwi. Similarly,

P (uk|unew) ∝ sim(unew, uk) =
Wunew ·Wuk

|Wunew |×|Wuk
|

Wheresim(unew , unew) = 0, for new users, there will be no ego
effect. All the information should be from environmental effects
and item content. After normalizing similarity, we can simply set
the

P (uk|unew) =
sim(unew , uk)

∑

ui
sim(unew, ui)

(16)

We refer to this calculation as user-lan-user similarity. For new
users, we cannot use learning algorithm to refineP (uk|unew).

5. TIME-SENSITIVE SAMPLING

5.1 Dataset
In our experiments, we use the bookmark dataset of the ECML

PKDD 09 Challenge Workshop2. The datasetS includes 2,679
2http://www.kde.cs.uni-kassel.de/ws/dc09/
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Figure 1: Dataset Statistics

Table 2: Online Statistics
Total Posts 668
Total Records 2307
Old/Total Users 627/668
New/Total Users 41/668
Old/Total Items 66/668
New/Total Items 602/668
Old/Total Tags 1,986/2,307
New/Total Tags 321/2,307

users, 263,004 items, 56,424 tags, 262,336 posts and 1,401,104
records. All of the posts contain timestamps. We uniformly sam-
ple 668 posts along the time line as our test datasetStest and the
remaining posts constitute the training datasetStrain.

In Figure 1 we show the tag and item frequencies over the full
dataset. In the plot on the right, the large vertical gap between the
two leftmost points means that 93.6% items appear only once and
only 6.4% of items appear more than once. Thus, most graph-based
methods which require more than CORE-2 (users, tags and items
appear at least twice) cannot work on it. For tags, 49.4% of tags
appear only once; 50.6% of tags appear more than once.

In comparison, if we ignore time information and assume a tra-
ditional fixed training and test split (e.g., use the datasetas an “of-
fline” dataset), a test post may have occurred prior to some training
posts, effectively using the future to build a model to predict the
past. Table 1 provides statistics regarding the training data and the
number of “new” items seen in the test data. We find that there are
only 2 new users out of 169 users and 54 new tags out of 1,224 tags
in the test dataset. However, there are 564 new items out of 668
items even in the offline statistics. Here, “new” means that it does
not exist in training data. While the offline analysis can give us
some impression of the dataset, it is different from the realworld,
because in the real world, we cannot use future data as training data
to recommend tags for users.

5.2 Online Evaluation
Besides the offline test, another testing method which is often

used in tag prediction evaluation is that of fixing a time point—
posts whose timestamp is earlier than that time will be used as
training data while posts whose timestamps are later than that time
will be used as test data. The ECML PKDD Challenge Workshop
employed this approach. There are still some problems for this
method. For example, if a user never tagged items before thattime
point and then taggedM posts after that time point, in this test

Figure 2: Online framework

mode, the allM posts of this user will be treated as the posts of a
new user to training data. Thus, there will be too many “new user
cases” which in the real world is actually existing users. Inthe real
world, after the user tagged his first item, the system shouldknow
this user and be able to retrieve the list of tags which this user has
previously used. In addition, for users who tagged items both be-
fore and after the time point, their interests may not alwaysstay the
same and may even change frequently; in the real world, the sys-
tem can again retrieve the latest tags which can represent the latest
interests of this user. Such information should also be considered
to make better prediction of tags.

We introduce a better evaluation method which is much closerto
the real world and call it the “online” framework in this paper. Fig-
ure 2 illustrates the online framework. Like online machinelearn-
ing [3] which has been used widely, in our online mode3, the tag-
ging system operates in an incremental mode and the test posts are
randomly sampled from the whole dataset along the timeline.In
other words, for users and items in our test dataset, we only use the
training posts which have earlier timestamps than the test posts, and
the available training data is different for each test post.Under this
setting, for items tagged early in time, fewer training datais avail-
able. The online statistics (shown in Table 2) demonstrate that we
still face a new user (a user which is not in the training set) in 6.1%
of the cases, and in 90.1% of the time users are trying to bookmark
a new item. In addition, there is .139 probability that userswould
use new tags (which do not appear in the system before). Thus,in
the real world, the principal difficulty is to process cases in which

3In this paper, online mode means a incremental mode of real tag-
ging system rather than real-time tag prediction.



existing users which try to tag new items. Overall, this online mode
is more like a real tag prediction system, permitting the system to
learn user behaviors incrementally rather than existing evaluation
procedures with a fixed dataset split.

6. EXPERIMENTS
In this section, we describe the details of datasets and experi-

ments. We also compare our approach with two other algorithms.

6.1 Dataset and Evaluation Method
The dataset used in our experiments has been already described

in Section 5. All of the posts contain timestamps. We randomly
sample 668 posts along the time line as our test datasetStest and
the remaining ones are the training datasetStrain. We use the com-
mon evaluation scheme of F-measure in Top N lists, whereN = 5
is mainly used as our measurement. The precision, recall andF-
measure are calculated as follows.

Prec(Stest, N) = avg
(u,i)∈PStest

|Top(u, i,N) ∩ {t|(u, i, t) ∈ Stest}|

N

Rec(Stest, N) = avg
(u,i)∈PStest

|Top(u, i,N) ∩ {t|(u, i, t) ∈ Stest}|

|{t|(u, i, t) ∈ Stest}|

F1(Stest, N) =
2× Prec(Stest, N) ×Rec(Stest, N)

Prec(Stest, N) + Rec(Stest, N)

6.2 Comparison
From our analysis, in the real world, the graph-based method

cannot work on most posts. Most graph-based algorithms require
that users, tags and items appear at least twice in training set.
We compare our approach with Liczak’s method [12], which took
the first place in the “content-based” recommendation task,and
took third place in “graph-based” recommendation task in ECML
PKDD Discovery Challenge[4]. They have two versions respec-
tively for the “content-based” task and the “graph-based” task. In
this paper, we call their “content-based” versionLHKM-C and their
“graph-based” versionLHKM-G, corresponding to the authors’ ini-
tials of [12]. For LHKM-C and LHKM-G, we use the same pa-
rameters as they used in the Challenge Workshop. For our model,
we only use the most similar 30 neighbors for each test user. In
theP (uk|u) part, we use user-tag-user similarity mode to estimate
ego-centric effect and environmental effects for existingusers and
user-lan-user similarity mode for new users.

In Figure 3(a) and 3(b), we show the comparison between on-
line and offline tests. For each we also show the difference be-
tween performances whens recommending various number of tags
(known as Top N). We see that as expected, the results of the offline
test are always better than the results of the online test, because in
the offline test, more training data (even future data) can beused.
The results of LHKM-G are slightly better than the results ofthe
LHKM-C, because in LHKM-G, “graph-information” is used. Our
method outperforms both LHKM-C and LHKM-G. In offline test,
the F-measure of our model is around 11% higher than LHKM-G
and 14% higher than LHKM-C. In online test, the F-measure of our
model is 12% higher than LHKM-C and LHKM-G. In the follow-
ing experiments, all the evaluation of F-measure in Top N lists will
be based onN = 5.

6.3 Optimization Analysis
In this section, we use gradient descent to optimize parameters

which can more accurately represent the environmental effects and
ego-centric effects. We run the learning algorithm on the offline
test. In our optimization, although it shows some improvement on

the results, it is very time-consuming. For each user, we only use 10
training items to optimize the environmental effects of 30 neighbors
and the ego-centric effect—α. The learning rate is set to 1.

There are two versions: the first is opt-Alpha which only tries
to optimizeα, the second is opt-Alpha+30N which tries to opti-
mizeα and all 30 neighbors, that means, total 31 parameters will
be optimized. The initial values ofP (uk|u) are the same as the
section 6.2, using user-tag-user similarity for old users and user-
lan-user similarity for new users. Figure 3(c) shows the results of
the iterative learning algorithm. The x-axis is the number of it-
erations and y-axis is F-measure. As expected, both optimization
methods can improve the results of initial value a little (2-3%) and
opt-Alpha+30N always outperforms opt-Alpha. This is because
in opt-Alpha+30N, 31 parameters can be optimized while in opt-
Alpha, only Alpha is optimized. From Figure 3(c), we also notice
that after 1 or 2 times iteration, both opt-Alpha+30N and opt-Alpha
get the best results and then the F-measure decreases slightly and
converges. We hypothesize that this situation may be causedby
overfitting. Another possible reason is that the learning procedure
is time consuming, and we only use 10 items to optimize the pa-
rameters. Some users tagged thousands of items, so 10 training
items may not be sufficient. In addition, better objective function
and optimization methods are necessary for further improvement
on both F-measure and running time.

6.4 Parameter Analysis
Compared to individual neighbors, the user’s ego weightα

should be the most important part. It decides the ego weight and
relative impact of environmental effects. We consider thatusually
user’s ego weight should be very high. Also the number of neigh-
bors may affect the results of our model.

We find that the optimization process always generates higher α.
In this experiment, we fix the number of neighbors to 100 and tune
the ego weight alpha, from 0 to 1. The weights of neighbors will
be normalized as follow.

pu,uj
← (1− α) ·

pu,uj
∑

uj 6=u pu,uj

(17)

6.4.1 Ego-centric effect analysis
For P (uk|u), we use user-tag-user similarity for existing users

and user-lan-user similarity for new users. We use the most similar
100 users as environmental effects. Figure 3(d) shows the results.
In this figure, the straight lines are from LHKM-C and LHKM-G
for comparison. (In the online test, the F-measure of LHKM-Cand
LHKM-G is quite similar, so they only show a single line in the
figure.) Our results on the offline tests and on the online tests are
highly consistent. Whenα = 0, that means, all information is from
the most 100 similar neighbors, the F-measure is still slightly bet-
ter the LHKM-C and LHKM-G on online test, but slightly worse
on offline test. Whenα is set to 0.05, F-measure dramatically in-
creases, and become higher than that of LHKM-C and LHKM-G in
offline test. Asα increases, the F-measure increases and achieves
the best result when theα is set to 0.7. In offline test, it is around
37.8% (16% higher than LHKM-G) and in online test, it is 27.3%
(12% higher than LHKM-G). Another interesting point is thateven
if α is set to 1, the performance of our model is still much better
than LHKM-C and LHKM-G. In online test, regardless of howα
is set, our model always outperforms Liczak’s methods. These re-
sults verify our conjecture that the users’ ego weight should be very
important in tag prediction.
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Figure 3: Experimental Results



6.4.2 Environmental effects analysis
Then, we fixα = 0.5, and tune the number of effective neigh-

bors from 0 to unlimited—that is, we use all possible users and
in our model, for existing users, as long as user-tag-user similarity
is non-zero, then this user will be treated as an effective neigh-
bor. The results are showed in Figure 3(e). The straight lines are
also from LHKM-C and LHKM-G. From Figure 3(e), in the begin-
ning, as the number of neighbors increase, the F-measure increase.
When the number of neighbors is set to 100, our model achieves
the best F-measure on both offline test and online test, whichare
37.5% and 27.1% respectively and also much better than LHKM-C
and LHKM-G. We also notice that compared toα, the number of
neighbors affects the results less. Thus, the number of neighbors is
less important than the ego weightα and it can be simply set to 100
to get the best performance.

6.4.3 Online experiment
Based on the manually tunedα, we also try to optimize the ego

weight to get the highest F-measure on the online test for real world
performance. In this case, the manually tunedα andP (uk|u) will
be used as initial values for the learning algorithm. For each test
user, we still use 10 training items to optimize the ego weight. The
learning rate is 1. The results are showed in Figure 3(f) opt-Alpha is
the optimization version while the “initial value” is the same as the
one in 6.4.1. The straight lines are also from LHKM-C and LHKM-
G. From Figure 3(f) we can see that at some points, e.g.,α = 0.05,
0.1 and 0.9, opt-Alpha improves the F-measure and there are also
some points where the performance of opt-Alpha and initial value
are similar. Here, we also get the highest F-measure 27.9% onthe
online test which is 13% higher than LHKM-C (an improvement of
more than 85%). Comparing to the results of learning algorithm,
the results of manually tunedα are good enough and it runs much
faster. At this moment, we suggest to manually tuneα.

6.5 Five-Fold Cross Validation
Because our test set is relatively small, in order to show thero-

bustness of our model,k-fold cross validation was used to compare
the performance of our model vs. LHKM-C and LHKM-G. Ink-
fold cross-validation, the original sample is randomly partitioned
into k subsamples. Of thek subsamples, a single subsample is re-
tained for testing the model and the remainingk−1 subsamples are
used as training data. The cross-validation process is applied a total
of k times (the folds), with each of thek subsamples used exactly
once as the test data. In our experiment,k = 5 and we do offline
testing. The number of neighbors is set to unlimited and alpha is
set to 0.5. The parameters of LHKM-G and LHKM-C are the same
as previous experiments. For each part of test and training data, the
training data contains around 210,000 posts, 2,400 users, 190,000
items and 50,000 tags. and test data contains around 52,000 posts,
1,600 users, 50,000 items and 24,000 tags. Among them there are
around 300 new users, 45,000 new items and 63,00 new tags. This
is also consistent with our small test set.

In Table 3, we can see that our model outperforms the LHKM-C
and LHKM-G by more than 10% on F-measure. The 5 results are
quite similar and this also demonstrates that our model can generate
better results than LHKM-C and LHKM-G stably.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we suggest that social tagging by nature is an in-

cremental process, and perform a time-sensitive sampling on an
existing public dataset. Our analysis shows that in the realworld,
the problem of tag prediction is dominated by the need to predict
tags for existing users when they tag new items. Most graph-based

Table 3: 5-Fold Cross Validation
LHKM-C LHKM-G our model

Test 1 0.193 0.202 0.348
Test 2 0.194 0.213 0.348
Test 3 0.193 0.210 0.347
Test 4 0.194 0.211 0.347
Test 5 0.195 0.211 0.348
mean 0.1938 0.2094 0.3476

methods require COREp, and thus may simply not function in such
situations.

We proposed a novel probabilistic model for personalized tag
prediction. Our online experiments and 5-fold cross validation ex-
periments indicate that our model achieves over 30% improvement
on F-measure compared to a leading method, in the “real-world”
test scenario.

Although manually tuned parameters can achieve a high perfor-
mance, all the users share the same ego weight. We believe that
different users should have different user profiles—personalized
weights of ego-centric effect and environmental effects. In the fu-
ture, a probabilistic analysis on the effects of neighboring users
may be needed to make further improvements.
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