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ABSTRACT

Users’ behaviors (actions) in a social network are influenced by var-
ious factors such as personal interests, social influence, and global
trends. However, few publications systematically study how social
actions evolve in a dynamic social network and to what extent dif-
ferent factors affect the user actions.

In this paper, we propose a Noise Tolerant Time-varying Factor
Graph Model (NTT-FGM) for modeling and predicting social ac-
tions. NTT-FGM simultaneously models social network structure,
user attributes and user action history for better prediction of the
users’ future actions. More specifically, a user’s action at time t
is generated by her latent state at t, which is influenced by her at-
tributes, her own latent state at time t− 1 and her neighbors’ states
at time t and t− 1. Based on this intuition, we formalize the social
action tracking problem using the NTT-FGM model; then present
an efficient algorithm to learn the model, by combining the ideas
from both continuous linear system and Markov random field.

Finally, we present a case study of our model on predicting fu-
ture social actions. We validate the model on three different types
of real-world data sets. Qualitatively, our model can discover inter-
esting patterns of the social dynamics. Quantitatively, experimental
results show that the proposed method outperforms several baseline
methods for social action prediction.

Categories and Subject Descriptors

H.2.8 [Database Management]: Data Mining; J.4 [Computer

Applications]: Social and Behavioral Sciences

General Terms

Algorithms, Experimentation

Keywords

Social action tracking, Time-varying factor graphs, Social influ-
ence analysis

∗This work was done when the last two authors are visiting Ts-
inghua University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

1. INTRODUCTION
With the success of many large-scale online social networks,

such as Facebook, MySpace, Ning, and Twitter, social network
analysis has become a popular research topic, attracting tremen-
dous interests from mathematics, biology, physics, computer sci-
ence, and sociology. Considerable research has focused on find-
ing the macro-level mechanisms of the social influence such as
degree distributions, diameter, clustering coefficient, communities,
and small world effect [1, 8, 21, 28]. However, these methods pro-
vide us with limited insights into the micro-level dynamics of the
social network such as how an individual user changes his behav-
iors (actions) and how a user’s action influences his friends.

It is well recognized that users’ actions in a social network are
influenced by various complex and subtle factors [11, 17]. In this
work, we address the social action tracking problem: i.e., how to
simultaneously model the social network structure, user attributes
and user actions over time?

Recently, quite a few related studies have been conducted, for
example, dynamic social network analysis [12, 16, 19, 24, 25], so-
cial influence analysis [2, 6, 7, 15, 23, 29, 20], and group behavior
analysis [3, 13, 26, 31]. The social action tracking problem ad-
dressed in this paper is very different from these works. Dynamic
social network analysis is to model how friendships drift over time
using a dynamic model [24] or to investigate how different pre-
processing decisions and different network forces such as selection
and influence affect the modeling of dynamic networks [25]. So-
cial influence analysis either aims to verify the existence of social
influence [2, 6, 7, 15, 23] or tries to quantify the strength of the
influence [10, 29]. Group behavior analysis intends to study the
patterns of user joining different communities [26], or to learn the
classification patterns based on the network structure and content
information [31], or to study the statistics of user groups [3]. In the
social action tracking problem, we try to model the various factors
that may influence users’ dynamic behaviors (actions) into a unified
model.

Motivating Examples To clearly motivate this work, we con-
duct the following analysis on three real social networks: Twit-
ter1, Flickr2, and Arnetminer3. On Twitter, we define the action as
whether a user discusses the topic “Haiti Earthquake” on his mi-
croblogs (tweets). On Flickr, we define the action as whether a
user adds a photo to his favorite list. On Arnetminer, the action
is defined as whether a researcher publishes a paper on a specific
conference (or journal). The analysis includes three aspects: (1)
social influence; (2) time-dependency of users’ actions; (3) action

1http://www.twitter.com, a microblogging system.
2http://www.flickr.com, a photo sharing system.
3http://arnetminer.org, an academic search system.
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Figure 1: Social influence. The x-axis stands for the percentage of

one’s friends who perform an action at t − 1 and the y-axis represents

the likelihood that the user also performs the action at t.
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Figure 2: Time-dependency of users’ actions. The x-axis stands

for different timestamps. “dependent” denotes the likelihood that a

user performs an action which was previously performed by herself;

“average” represents the likelihood that a user performs the action.

correlation between users. Figure 1 shows the effect of social influ-
ence. We see that with the percentage of one’s friends performing
an action increasing, the likelihood that the user also performs the
action is increased. For example, when the percentage of one’s
friends discussing “Haiti Earthquake” on their tweets increases the
likelihood that the user posts tweets about “Haiti Earthquake” is
also increased significantly. Figure 2 illustrates how a user’s action
is dependent on his historic behaviors. It can be seen that a strong
time-dependency exists for users’ actions. For instance, on Twit-
ter, averagely users who posted tweets about “Haiti Earthquake”
will have a much higher probability (+20-40%) to post tweets on
this topic than those who never discussed this topic on their blogs.
Figure 3 shows the correlation between users’ actions at the same
timestamp. An interesting phenomenon is that friends may per-
form an action at the same time. E.g., on Twitter, two friends have
a higher probability (+19.6%) to discuss “Haiti Earthquake” than
two users randomly chosen from the network.

Thus, the problem becomes how to effectively and efficiently
track the dynamic users’ actions. This problem is non-trivial and
poses a set of unique challenges.

First, the social network data (e.g., network structure and so-
cial actions) are very noisy. Users performing the same action
may not have the same preference towards that action. Likewise,
users who did not perform the action do not mean they have no
interests towards the action. Second, user behaviors are highly
time-dependent. For example, the influence of a user on another
(strongly) depends on their historic interactions. Third, users’ ac-
tions are usually correlated. In addition, as real social networks are
getting larger with thousands or millions of users. It is important to
develop the model that can scale well to real large data sets.

Contributions In this paper, we try to systematically investigate
the problem of social action tracking with the following contribu-
tions:

• We formally formulate the problem of social action tracking
and propose a unified model: Noise Tolerant Time-varying
Factor Graph Model (NTT-FGM).

• We present an efficient algorithm for model learning and de-
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Figure 3: Action correlation. The x-axis stands for different time

windows. “friend” denotes the likelihood that two friends perform an

action together; “random” represents the likelihood that two random

users perform the action together.

velop a distributed implementation based on MPI (Message-
Passing Interface) to scale up to real large networks.

• We present a case study on social action prediction using the
learned NTT-FGM model.

• We conduct experiments on three different data sets: Twitter,
Flickr, and Arnetminer. Experimental results show that the
proposed NTT-FGMmodel can achieve a better performance
for the action prediction than several alternative models.

The rest of the paper is organized as follows: Section 2 formally
formulates the problem; Section 3 explains the proposed model.
Section 4 presents the algorithm for learning the model. Section 5
gives experimental results that validate the effectiveness and the
computational efficiency of our methodology. Finally, Section 6
discusses related work and Section 7 concludes.

2. PROBLEM DEFINITION
In this section, we first give several necessary definitions and

then present a formal definition of the problem.
A static social network can be represented asG = (V,E), where

V is the set of |V | = N users and E ⊂ V × V is the set of
directed/undirected links between users. Given this, we can define
the user’s action as follows.

Definition 1. Action: An action y performed by user vi at time
t can be represented as a triple (y, vi, t) (or shortly yt

i ). Let Y
t be

the set of actions of all users at time t. Further we denote all users’
actions as the action history Y = {(y, vi, t)}i,t.

Without loss of generality, we first consider the binary action,
that is yt

i ∈ {0, 1}, where yt
i = 1 indicates that user vi performed

an action at time t, and yt
i = 0 indicates that the user did not per-

form the action. Such an action log can be available from many
online systems. For example, on Twitter, the action yt

i can be de-
fined as whether user vi posts a tweet (microblog) about a specific
topic (e.g., “Haiti Earthquake”) at time t. Further, we assume that
each user is associated with a number of attributes and thus have
the following definition.

Definition 2. Time-varying attribute matrix: Let Xt be an
N × d attribute matrix at time t in which every row xi corresponds
to a user, each column an attribute, and an element xij is the jth

attribute value of user vi.

The attribute matrix describes user-specific characteristics, and
can be defined in different ways. For example, on Twitter, each
attribute can be defined as a keyword and the value of an attribute
can be defined as the frequency of a keyword occurring on a user’s



posted tweets. Thus, we can define the input of our problem, a set
of attribute augmented networks.

Definition 3. Attribute augmented network: The attribute
augmented network is denoted as Gt = (V t, Et, Xt, Y t), where
V t is the set of users andEt is the set of links between users at time
t, andXt represents the attribute matrix of all users in the network
at time t, and Y t represents the set of actions of all users at time t.

Based on the above concepts, we can define the problem of so-
cial action tracking. Given a series of T time-dependent attribute
augmented networks, the goal is to learn a model that can best fit
the relationships between the various factors and the user actions.
More precisely,

Problem 1. Social action tracking. Given a series of
T time-dependent attribute augmented networks {Gt =
(V t, Et, Xt, Y t)}, where t ∈ {1, · · · , T}, the goal of social ac-
tion tracking is to learn a mapping function

f : ({G1, . . . , GT−1}, V T , ET ,XT ) → Y T

Note that in this general formulation, we allow the graph struc-
ture to evolve over time and also arbitrary dependency from the
past. To have a tractable problem to work with, we model the
time-dependency by introducing a latent state for each user. More
specifically, their actions are generated by their latent states, which
are dependent on their neighbors’ states at time t and t− 1.

Our formulation of social action tracking and prediction is quite
different from existing work on dynamic social network analysis.
Scripps et al. [25] investigate how different pre-processing deci-
sions and different network forces such as selection and influence
affect the modeling of dynamic networks. Sarkar and Moore [24]
propose a dynamic model that accounts for friendships drifting over
time. Both papers consider using user similarity and social struc-
ture to predict links between social users. Tang et al. study the
topic-level social influence and Goyal et al. [10] investigate how to
learn the influence probabilities from the history of users’ actions.
Both learned model can be used for action prediction. However, the
methods do not consider user’s own attributes and historic actions.
One’s action should be determined by his intrinsic preference to
some extent. As for social influence analysis, there are quite a lot
of publications focusing on measuring the existence of influence
qualitatively [2, 27], but most of these methods do not consider
modeling and predicting user actions.

3. NOISE TOLERANT TIME-VARYING

FACTOR GRAPHMODEL (NTT-FGM)
To summarize, for modeling and tracking social actions, we have

the following intuitions:

1. Users’ actions at time t are influenced by their friends’ his-
toric actions (time < t).

2. Users’ actions at time t are usually dependent on their previ-
ous actions.

3. Users’ actions at a same time t have a (strong) correlation.

Moreover, the discrete variable yt
i only models the user’s action

at a coarse level, but cannot describes the intention degree of the
user to perform an action. Directly modeling the social actions Y
would inevitably introduce noise to the model. Hence, a continuous
variable for modeling the action bias is favorable.

With the intuitions discussed above, we propose a noise toler-
ant time-varying factor graph model (NTT-FGM) for social action
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Figure 4: Graphical representation of the NTT-FGM model.

Each circle stands for a user’s latent action state zti at time t in the

network, which is used to characterize the intention degree of the user

to perform the action; the latent state is associated with the action yti ,

a vector of attributes xti , and depends on friends’ historic actions z
t−1
∼vi

and correlates with friends’ actions zt∼vi
at time t; g(.) denotes a factor

function to represent the friends’ influence on a user’s action; hi(.) rep-

resents a factor defined on user vi’s attributes; and hij(.) represents a

factor to capture the correlation between users’ actions.

tracking. Before explaining the model in detail, we first introduce
the definition of latent action state.

Definition 4. Latent action state: For each user’s action yt
i , we

define a (continuous) latent state zti ∈ [0, 1], which corresponds to
a combination of the observed action yi and a possible bias, to de-
scribe the actual intention degree of the user to perform the action.

Figure 4 shows the graphical structure of the NTT-FGM model.
An action of user vi at time t, i.e., yt

i is modeled by using a (con-
tinuous) latent action state zti , which is dependent on friends’ his-
toric actions zt−1

∼vi
(where ∼ vi represents friends of user vi in

the network), users’ action correlation zt∼vi
, and users’ attributes

xti . Specifically, in the NTT-FGM model, each discrete action is
mapped into the latent state space and the action bias is modeled
using a factor function. For example, for yt

i = 1, a small value
of its corresponding zti suggests that a user vi has a low intention
to perform the action, thus a large action bias |yt

i − zti |. Next, in-
fluence between users is modeled using the latent states based on
the same assumption as in HMM [9] and Kalman Filters [14]: la-
tent states of users’ actions at time t are conditionally independent
of all the previous states given the latent states at time t − 1. Fi-
nally, actions’ correlation is also modeled in the latent state space.
A Markov random field is defined to model the dependency (cor-
relation) among the continuous latent states. Different from the
traditional Markov random field model (e.g., CRF [18], HMM [9],
Kalman Filters [14]), the NTT-MRF model uses a continuous vari-
able to describe the latent state, and utilizes a combination of mul-
tivariate Gaussian function and Markov random field to incorporate
both time-inter and time-intra dependency between users’ actions.

Now, we explain the proposed NTT-FGM model in detail.
Given a series of attribute augmented networks G = {Gt =

(V t, Et,Xt, Y t)}, t ∈ {1, · · · , T} and V = V 1 ∪ V 2 ∪ . . . ∪
V T , |V | = N , we can define the joint distribution over the actions
Y given G as

p(Y|G) =
T
∏

t=1

N
∏

i=1

f(yti |zti)f(zti |zt−1
∼vi

)f(zti |zt∼vi
, xti) (1)

where notation ∼ vi represents neighbors of vi in the social net-
work. The joint probability has three types of factor functions, cor-
responding to the intuitions we have discussed. Specifically,



• Action bias factor: f(yt
i |z

t
i) represents the posterior prob-

ability of user vi’s action yi at time t given the continuous
latent state zti ;

• Influence factor: f(zti |z
t−1
∼vi

) reflects friends’ influence on
user vi’s action at time t;

• Correlation factor: f(zti |z
t
∼vi

, xti) denotes the correlation be-
tween users’ action at time t.

The three factors can be instantiated in different ways, reflecting
our prior knowledge for different applications. In this paper, we
will give a general definition for the three factors. For the action
bias factor f(yt

i |z
t
i), we define it using a Gaussian function:

f(yti |zti) =
1√
2πσ2

exp{− (yti − zti)
2

2σ2
} (2)

where σ is a variance to control the bias and its value can be learned
using an EM-style algorithm or predefined empirically. Note that
if we only consider the binary action, the bias factor can be also
defined based on a Bernoulli distribution.

For influence factor f(zti |z
t−1
∼vi

), we first define an binaryN×N

matrix M t−1 to describe the social network at time t − 1, where
the element mt−1

ij = 1 represents that user vi and vj have a re-

lationship in the social network (i.e., eij ∈ E), and mt−1
ij = 0

indicates there is no relationship between vi and vj . Given this, we
can formally define the influence factor as:

f(zti |zt−1
∼vi

) =
1

Z1

exp{
N
∑

j=1

λjim
t−1
ji gji(z

t
i , z

t−1
j )} (3)

where gji(z
t
i , z

t−1
j ) is a function defined on the latent states of two

users zti and zt−1
j ; λji (when mt−1

ji = 1) represents the influence
degree of vj on vi. For example, given a higher influence λji, the
action of user vj is more likely to induce user vi to behave in a
similar way. Z1 is a normalization factor. When j = i, we refer
to the influence as self-influence, which actually characterizes the
dependency of the user’s action on his own previous state.

The correlation factor can be naturally modeled in a Markov ran-
dom field. Therefore, by the fundamental theorem of random fields,
we can define the correlation factor as:

f(zti |zt∼vi
, xi) =

1

Z2

exp{(
N
∑

j=1

βijm
t
ijhij(z

t
i , z

t
j)

+
d

∑

k=1

αkhk(z
t
i , x

t
ik))} (4)

where hij(z
t
i , z

t
j) is a feature function to capture the correlation

between user vi and vj at time t; hk(z
t
i , x

t
ik) is a feature function

defined on user vi and the k-th attribute xik; d is the number of
attributes; βij and αk are respectively weights of the two functions;
and Z2 is again a normalization factor.

Finally, by integrating Eqs. (2)-(4) into Eq. (1), we can obtain
the following joint probability

p(Y|G) =
1

Z
exp{

T
∑

t=1

N
∑

i=1

(yti − zti)
2

2σ2
+

T
∑

t=1

N
∑

i=1

N
∑

j=1

λijm
t−1
ji g(zti , z

t−1
j )

+
T
∑

t=1

N
∑

i=1

N
∑

j=1

βijm
t
ijhij(z

t
i , z

t
j) +

T
∑

t=1

N
∑

i=1

d
∑

k=1

αkhk(z
t
i , x

t
ik)}

(5)

where Z = (2πσ2)
N×T

2 Z1Z2.
Learning NTT-FGM is to estimate a parameter configuration

θ = ({zi}, {αk}, {βij}, {λij}) from a given historic action log
Y, that maximizes the log-likelihood objective function O(θ) =
logpθ(Y|G), i.e.,

θ⋆ = arg max O(θ) (6)

4. MODEL LEARNING
There are two challenges to solve the objective function. First,

as the network structure in the social network can be arbitrary (may
contain cycles), traditional methods such as Junction Tree [32] and
Belief Propagation [34] cannot result in an exact solution. Second,
to calculate the normalization factor Z, it is necessary to guaran-
tee that the denominator of Eq. (5), i.e., the exponential function
exp{.}, is integrable. Based on these considerations, we instantiate
the factor functions g(.) and h(.) as follows

gji(z
t
i , z

t−1
j ) = −(zti − zt−1

j )2 (7)

hij(z
t
i , z

t
j) = −(zti − ztj)

2 (8)

hk(z
t
i , x

t
ik) = −(zti − xt

ik)
2 (9)

We see that all of the factor functions are defined by quadratic
functions. This is because quadratic equation satisfies the above
two requirements: it is integrable and it offers the possibility to
design an exact solution. Moreover, by defining in this way, the in-
fluence factor and the correlation factor can be elegantly explained
with the information diffusion theory, by which the actions of users
spread in the social network along the relationships [4, 12].

Finally, the objective function O(θ) can be rewritten as

O(θ) = −logZ − {
T
∑

t=1

N
∑

i=1

(yti − zti )
2

2σ2
+

T
∑

t=1

N
∑

i=1

N
∑

j=1

λjim
t−1
ji (zti − zt−1

j )2

+
T
∑

t=1

N
∑

i=1

N
∑

j=1

βijm
t
ij(z

t
i − ztj)

2 +
T
∑

t=1

N
∑

i=1

d
∑

k=1

αk(z
t
i − xt

ik)
2}

(10)

where

Z = C

∫
y

∫
z

exp{−
T∑

t=1

N∑
i=1

(yt
i − zt

i )
2

2σ2
−

T∑
t=1

N∑
i=1

N∑
j=1

λjim
t−1

ji (zt
i − z

t−1

j )2

−

T∑
t=1

N∑
i=1

N∑
j=1

βijm
t
ij(z

t
i − z

t
j)

2 −

T∑
t=1

N∑
i=1

d∑
k=1

αk(z
t
i − x

t
ik)

2}dzdy

(11)

where C = (2πσ2)
N×T

2 is a constant.

4.1 The Learning Algorithm
The task of model learning is to estimate the parameters θ =

({zi}, {αk}, {βij}, {λij}) by solving the objective function Eq.
(10). For this purpose, we need to first solve the integration of Z.
As y is discrete, we can easily integrate out the first term in the
exp{.} function of Eq. (11). Further to guarantee that Z is inte-
grable, we must have αk > 0, βij > 0, λij > 0. It is still difficult
to solve the integration. To deal with this, our basic idea is to trans-
form the exponential function exp{.} into a multivariate Gaussian
distribution, and calculate the integration as follows: (Derivation is
given in Appendix 10.1.)

Z = Const · |A|− 1
2 exp{bTA−1b− c} (12)



Input: number of iterations I and learning rate η;
Output: learned parameters θ = ({zi}, {αk}, {βij}, {λij});
Initialize z = y;
Initialize α, β, λ;
repeat

E Step: % fix z, learn α, β, λ;
for i = 1 to I do

Compute gradient ∇logαk
,∇log βij

,∇log λij
;

Update logαk = logαk + η ×∇logαk
;

Update log βij = log βij + η ×∇log βij
;

Update log λij = log λij + η ×∇log λij
;

end

M Step: % fix α, β, λ learn z;
Solve the following linear equation:

(A+ I)z = y +Xα

until convergence;

Algorithm 1: Expectation maximization.

where c =
∑T

t=1

∑N
i=1

∑d
k=1 αkx

t
ik; Const is a constant; A is

a NT × NT block tridiagonal matrix; and b = Xα is a NT -
dimension vector and X = {X1 : X2 : · · · : XT }isNT × d matrix
by concatenating all time-varying attribute matrices together.

Given this, we can design an EM-style algorithm to maximize
O(θ), as summarized in Algorithm 1: (Details including gradients
of the parameters are given in Appendix 10.2.)

• E-step: fix z and update all α, β, and λ, using a gradient
descent method;

• M-step: fix α, β, and λ to update all z, by solving a linear
system.

4.2 Social Action Prediction
Based on the learned parameters θ, we can predict the users’

future actions. Specifically, for predicting a user’s action yT+1
i at

time T + 1, we first compute the latent state zT+1
i ; and then use

the latent state to infer the action yT+1
i . To compute the latent state

zT+1
i , we have the following formula:

zT+1
i =

∑d
k=1 αkxik +

∑N
j=1 λjim

T
jiz

T
j

∑d
k=1 αk +

∑N
j=1 λjim

T
ji

(13)

However, the above equation calculates the latent state indepen-
dently and ignore the correlation between actions. By further con-
sidering the action correlation factor, that is to compute all z to-
gether, we can solve the following linear system:

∀ i,

d
∑

k=1

αk(z
T+1
i − xik) +

N
∑

j=1

λjim
T
ji(z

T+1
i − zTj )

+
N
∑

j=1

βij(z
T+1
i − zT+1

j ) +
N
∑

j=1

βji(z
T+1
i − zT+1

j ) = 0

(14)

Then, we can predict the users’ actions y according to their cor-
responding latent states z by:

yT+1
i =

{

0 if |zT+1
i − z+| <= |zT+1

i − z−|
1 otherwise.

(15)

where z+ and z− are respectively the average state values of the
corresponding actions y = 1 and y = 0 in the training data, and
are computed by:

z− =

∑T
t=1

∑N
i=1 z

t
iI(y

t
i = 0)

∑T
t=1

∑N
i=1 I(y

t
i = 0)

(16)

z+ =

∑T
t=1

∑N
i=1 z

t
iI(y

t
i = 1)

∑T
t=1

∑N
i=1 I(y

t
i = 1)

(17)

where I is the indicator function.

4.3 Distributed NTT-FGM Learning
As a social network may contain millions of users and hundreds

of millions of social ties between users, it is impractical to learn a
NTT-FGM from a huge data using a single machine. Specifically,
there are two major problems in our NTT-FGM model, namely,
memory space and computing time. We use a sparse representation
to solve the first problem. To speed up the computing, we deploy
the learning task on a distributed system based on the MPI (Mes-
sage Passing Interface).

MPI is a message-passing library interface specification. In the
message-passing parallel programming model, data is moved from
the address space of one process to that of another process through
cooperative operations on each process. Based on the message
passing scheme, we employ the master-slave model. That is, mas-
ter can assign tasks to the slaves (computers), and combine the re-
sults in the master machine.

Specifically, in our learning algorithm, the time-consuming step
lies in the calculation of the gradients, ∇logαk

, ∇log βij
, ∇logαij

,
which requires computing the inverse of the matrix A. Note A is a
NT ×NT matrix, which is too large to be held in memory when
deal with a large data. Thus, we compute each column of A−1

respectively by solving the following linear equation

∀ i Axi = bi (18)

where xi represents the i column of A−1 and bi represents a NT -
dimension vector, with the ith element 1, the other elements 0.
Thus in each iteration, the master broadcasts the parameters to each
slave and assigns the tasks to solve Equation (18) to the slaves av-
eragely. All the salve computers calculate A, and send the results
back to the master. The master reduces all the distributed results,
and broadcasts the updated parameters to the slaves again for the
next iteration.

5. EXPERIMENTAL RESULTS
The proposed approach for social action prediction is very gen-

eral and can be applied to analyze different kinds of social net-
works. In this section, we present various experiments to evaluate
the effectiveness and efficiency of the proposed approach. All data
sets and codes are publicly available.4

5.1 Experimental Setup

Data Sets We perform our experiments on three different gen-
res of real-world data sets: Twitter (a microblogging data set
crawled from twitter.com), Flickr (a data set of photo sharing from
flickr.com), and Arnetminer (a publication data set arnetminer.org).

• Twitter. The data set is crawled from Twitter by starting from
the user “Carel Pedre (carelpedre)”,5 one of Haitian most
popular radio DJs, who used Twitter to inform the world
about the earthquake which ravaged his country. We extract
all followers (> 11, 704) of “carelpedre” and the users he is

4http://arnetminer.org/stnt/
5http://www.carelpedre.com/



following, and continue the process for each extracted Twit-
ter user. We further crawl all tweets posted by the users as
attributes. Finally, a data set used for action prediction con-
sists of 7,521 users, 304,275 time varying following and fol-
lowed relationships, and 730,568 tweets (blogs) posted by
the users. A larger data set consisting of millions of users is
also publicly available4.

• Flickr. The data set is collected by [5], which contains 8,721
users, 485,253 friendships between users, and 2,504,849 fa-
vorite photos .

• Arnetminer. It is collected from ArnetMiner [30] and con-
sists of 640,134 researchers, 1,554,643 coauthor relation-
ship, and 2,329,760 publication papers by the researchers.

The action in Twitter is defined as the topic (e.g., “Haiti Earth-
quake”) discussed by the user. More specifically, we selected sev-
eral very relevant keywords, e.g., “Haiti”, “earthquake”, and “res-
cue”. If a user posts a tweet containing the topic (keyword), we
say that the user performs the action. We crawled the data from
January 12nd, when the Haiti Earthquake struck, to January 26th.
In the twitter data, we view one day as a time stamp. For exam-
ple, a user called for donation for Haiti, his friends may respond by
re-tweeting it, or posting a supporting message.

While the action of the Flickr data is defined as whether a user
adds a photo to his favorite list. For example, if a user added a
photo to his favorite list, his friends may also add the photo to
their favorite. We extract the historic action log from 11/01/2006 to
03/20/2007 in the data set, dividing into 14 time stamps, 10 days a
stamp.

The action of the Arnetminer data is defined as whether a re-
searcher publishes a paper at a specific venue. For example, if a
researcher published a paper at KDD, which may influence his col-
laborators to publish papers at KDD as well. The data is split into
10 time stamps, one for each year.

On all the three data sets, the attributes X is defined as the con-
tents of tweets, information of photos, or related publication venues
of the researcher. The content of each tweet is preprocessed by (a)
removing stop-words and numbers; (b) removing words that appear
less than three times in the corpus; and (c) lowercasing the obtained
words. Then for each user, we combine all words in the remaining
words in the tweets posted by the user and create the attribute vec-
tor by taking words as features.

Comparison Methods We compare the following methods for so-
cial action tracking:

SVM: It uses users’ associated attributes as well as their neigh-
bors’ states to train a classification model and then employs the
classification model to predict users’ actions. For SVM, we em-
ploy SVM-light.6

wvRN: It employs a weighted-vote relational neighbor classifier
[20] to train a classification model by making use of network infor-
mation. In prediction, the relational classifier estimates the action
state of a user by the weighted mean of his neighbors.

NTT-FGM: it uses the proposed NTT-FGM model to train the
action tracking model and further uses the learned model for pre-
diction.

According to our preliminary experiments, the σ in the Gaussian
distribution does not significantly influence the performance. Thus,
for simplicity, we empirically set σ = 1.

Evaluation Measures To evaluate our method, we consider the
following three angles :

6http://svmlight.joachims.org/

Table 1: Performance of action prediction with different ap-

proaches (%).

Data set Method Recall Precision F1-Measure

Twitter

SVM 10.41 16.71 13.85

wvRN 0.45 7.89 0.86

NTT-FGM 26.40 21.14 23.47

Flickr

SVM 34.48 45.05 39.06

wvRN 60.02 48.81 53.84

NTT-FGM 56.18 45.80 50.47

ArnetMiner

SVM 10.19 21.62 13.85

wvRN 14.83 16.39 15.57

NTT-FGM 31.14 44.28 36.57

• Prediction. We evaluate the proposed model in terms of Pre-
cision, Recall, and F1-Measure, and compare with the base-
line methods to validate the effectiveness of the proposed
model.

• CPU time. It is the execution elapsed time of the model
learning. This shows the speedup of the parallel implemen-
tation.

• Case study. We use several case studies as the anecdotal evi-
dence to further demonstrate the effectiveness of our method.

The basic learning algorithm is implemented using C++ and all
experiments are performed on a server running Ubuntu 8.10 with a
AMD Phenom(tm) 9650 Quad-Core Processor (2.3GHz) and 8GB
memory. The distributed learning algorithm is implemented under
the MPI parallel programming model7. We perform the distributed
training on 5 computer nodes (20 CPU cores) with AMD proces-
sors (2.3GHz) and 40GB memory in total. We set the maximum
number of iterations as 250 and the threshold for the change of α,
β, and λ to 1e − 3.

5.2 Prediction Performance
On all the three data sets, we use the historic users’ actions to

train the action tracking model and use the learned model to predict
the users’ actions in the last time stamp.

Table 1 lists the prediction performance of the different ap-
proaches on the three data sets with the following observations:

Performance comparison Our method NTT-FGM consistently
achieves better performance comparing to the baseline methods.
In terms of F1-Measure, NTT-FGM can achieve a+10% improve-
ment compared with the (SVM). At the same time, NTT-FGMgives
robust results, while the performance of wvRN is very sensitive to
the data characteristics, with the highest F1-Measure on the Flickr
data and extremely low value in the Twitter data. This is because
on Flickr the user’s action of adding favorite photos is mainly influ-
enced by her friends’ actions and wvRN can be viewed as a simple
influence model, which makes wvRNmostly predicts “1” on Flickr,
but the Twitter network (about “Haiti earthquake”) in our experi-
ment is relatively sparse, as a result wvRN outputs all “0”. While
our approach shows robust and consistent performance on all the
data sets, which is important for the extendability of the methods.

Factor contribution analysis NTT-FGMcaptures three factors: 1)
influence, 2) correlation and 3) personal interests/attributes. Next

7http://www.mcs.anl.gov/research/projects/mpich2/
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we perform an analysis to evaluate the contribution of different fac-
tors defined in our model. In particular, we remove those factors
one by one (first influence factor function, followed by the correla-
tion factor function), and then train and evaluate the prediction per-
formance of NTT-FGM. Figure 5 shows the F1-Measure score after
ignoring the factor functions. We can observe clear drop on the pre-
diction performance, which indicates that our method works well
by integrating the different factors for action tracking (prediction)
and each defined factor in our method contributes improvement in
the performance. Also, we find that the decrease varies on differ-
ent data sets. On twitter there is a very low correlation between
users’ actions because users mainly post tweets on Twitter based
on their previous experience or friends’ tweets, and relatively act
independently at a same time t.

Latent action states The learned latent action states essentially
play a role as smoothing. Figure 6 illustrates several examples of
the learned latent action states. It can be easily seen that the learned
latent states (denoted as the red curve) is much more smoothing
than the original discrete actions (denoted as the black step line),
which indicates that latent action states can model the bias in binary
actions. This is desirable for most prediction/classification tasks
and further confirms us the advantage of the proposed NTT-FGM
model.

5.3 Efficiency Performance
We now evaluate the efficiency of our approach by comparing

the distributed learning algorithm with the basic one on the three
data sets.

Table 2 lists the CPU time required for learning the NTT-FGM
model on a single machine (Basic NTT-FGM) and by the dis-
tributed learning algorithm using 5 computer nodes (each 4 cores).
The distributed learning algorithm typically achieves a significant
reduction of the CPU time. For example, on Arnetminer, we obtain

Table 2: Efficiency performance on the three data sets (5 com-

puter nodes, each 4 cores)

Data Set Basic NTT-FGM Distributed NTT-FGM

Twitter 77.7hr 7.0hr

Flickr 9.14hr 0.68hr

Arnetminer 100min 6.2min

a speedup> 17×, and on Flickr, the distributed learning algorithm
results in a speedup> 13×.

We also evaluate the speedup of the distributed learning algo-
rithm using different numbers of computer nodes (5, 10, 15, 20
cores) to evaluate the cost of message passing. The speedup, as
shown in Figure 7 (a), is close to the perfect line in the beginning.
Although it decreases inevitably as the number of cores increases,
it scales very well with > 10× speedup using 15 threads.

We further analyze how the network structure affects the effi-
ciency of the learning algorithm. We generate a synthetic data
set for this experiments by varying the density of the network

(log |E|
|V |

). It can be seen from Figure 7 (b) and (c) that as the density

(x-axis) increases, both basic learning and the distributed learning
algorithm need more CPU time to train the NTT-FGM model, but
the speedup of the distributed algorithm is consistently high (about
14− 15× using 20 threads).

5.4 Qualitative Case Study
Now we present three case studies to demonstrate the effective-

ness of the proposed model.

“Haiti Earthquake” The Haiti Earthquake is a devastating earth-
quake, leaving the country in shambles. We use our results to an-
alyze people’s actions related to the catastrophe on Twitter. Table
3 lists several example tweets about “Haiti Earthquake”. We see
that these tweets are about a call-for-donation by the famous tennis
player “Serena Williams (serenajwilliams) ”. The call-for message
was soon retweeted by “actsofFaithblog” and “madameali” on their
own microblogs, and a bit later the Haitian radio host “carelpe-
dre” added a comment on Serena Williams’s Twitter. These Twitter
users are one of the most influential users and their actions on “Haiti
Earthquake” quickly spread on Twitter with retweet and reply. (Be-
cause of this, Carel Pedre received a special “humanitarian” award
at the second annual “Shorty Awards” in New York.) With the pro-
posed model, we can identify the most influential users, whose ac-
tions can induce a large cascade followings, and track the informa-
tion flows (via social ties with a high influence score or correlation
score). In this way, we can understand how the influence spreads
among people.

“Publication at KDD” We can also use the NTT-FGM model to
track and predict who will publish (or submit) papers to KDD 2010.
We train the NTT-FGM model using the Arnetminer data before
2009 and use the learned model to predict the latent action state of
each researcher, and finally obtain a list of researchers ranked by
the latent state. Table 4 lists a few representative examples selected
from the top 100 ranked researchers. We see that our approach
can not only find some famous researchers but also discover some
“newcomers” to the KDD community. The first row lists several
well-established researchers who have published a lot on KDD. The
second row shows several “new” researchers who have no paper (or
only few papers) published at KDD.

“Correlation between Researchers” Based on the learned NTT-
FGMmodel, we can generate a correlation/influence map for better
user analysis. Figure 8 shows an example correlation map between
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Figure 7: Speedup Results. In graph (a), we evaluate the speedup varied with the number of cores. The x-axis stands for the number of cores,

the y-axis represents the speedup( CPU time 1 core
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). In graph (b), we evaluate the CPU time with different network density(defined as log
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|V |

). The

x-axis is log |E|
|V |

, the y-axis is the running time in seconds. In graph(c), we evaluate the speedup with different network density.The x-axis is log |E|
|V |

,

the y-axis is the speedup.

Table 3: Action tracking on Twitter for “Haiti Earthquake”.
Date/User Tweet

6:03 PM Jan
16th by extratv

Tennis pro Roger Federer is joining forces with
Rafael Nadal & @serenajwilliams to raise money
for Haiti. http://su.pr/1E3MDU

5:23 AM Jan
17th by serena-
jwilliams

Hey. Please, check out my foundation website:
www.theswf.org to help those in Haiti!

6:48 AM
Jan 17th by
madameali

RT @SIXTWELVEMAG: RT @serenajwilliams:
Hey. Please, check out my foundation website:
www.theswf.org to help those in Haiti!

7:34 AM Jan
17th by actsof-
Faithblog

RT @serenajwilliams: Hey. Please, check out my
foundation website: www.theswf.org to help those
in Haiti!

2:50 PM Jan
17th by carelpe-
dre

@serenajwilliams Through Her 92k Mission has
set a goal to contribute donations to the victims in
#haiti. Visit www.theswf.org and donate

Table 4: Prediction on who will publish on (or submit to) KDD

2010. The examples are selected from the top 100 researchers

predicted by the NTT-FGMmodel.

Frequent

Jiawei Han Christos Faloutsos Philip S. Yu
Pedro Domingos Lise Getoor Jon M. Kleinberg

Hang Li ChengXiang Zhai Wei-Ying Ma
Lise Getoor Jure Leskovec Qiaozhu Mei
Bing Liu Jian Pei Ravi Kumar

New

Huijia Zhu Dimitrios Kotsakos Zi Yang
Noman Mohammed Caimei Lu Quanquan Gu

Zhili Guo

researchers. The strength of the link between two researchers in-
dicates the correlation score. We see some researchers have strong
correlation because they coauthored quite a few papers, e.g., Jiawei
Han and Philip Yu. While our approach also finds some researchers
have strong correlation, e.g., Ravi Kumar and Christos Faloutsos,
although they only coauthored one or two paper(s). The discov-
ered correlation can potentially benefit many applications such as
link prediction. More correlation/influence analysis results can be
found at http://arnetminer.org/stnt/.

6. RELATED WORK

Dynamic Social Network Analysis A number of models have
been proposed to analyze dynamic social network with more and
more dynamic information available in online social networks.
Sarkar et al. [24] develop a generalized model associating each en-
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tity in Euclidean latent space and use kernel functions for similarity
in latent space to model friendship drifting over time. Scripps et al.
[25] present a model to investigate how different pre-processing de-
cisions and different network forces such as selection and influence
affect the modeling of dynamic networks. They also demonstrate
the effects of attribute drifting and the importance of individual at-
tributes in forming links over time. Yang et al. [33] propose a
dynamic stochastic block model for finding communities and their
evolutions in a dynamic social network. Zheleva et al. [35] pro-
pose a generative model which captures the statistical properties of
these complex networks and the co-evolution of social and affilia-
tion networks. Existing work on dynamic social network analysis
mainly focuses on finding macro-level mechanisms of social dy-
namics, while our work tries to gain more insights into the micro-
level dynamics of the social network.

Social Influence Analysis Social influence analysis is an impor-
tant research topic in social network analysis. One branch of social
influence analysis is to verify the existence of social influence [2,
6, 7, 15, 23]. Anagnostopoulos et al. [2] focus on identifying and
understanding social influence. They apply a statistical analysis
method to identify and measure whether social influence is a source
of correlation between the actions of individuals with social ties.
Crandall et al. [6] have developed techniques for identifying and
modeling the interactions between social influence and selection
using data form online communities. Domingos and Richardson
[7] investigate social influence in the customer network. They pro-



pose a model to identify customer’s influence between each other
in the customer network. They build a probabilistic model to mine
the spread of influence for viral marketing [23]. A similar work is
to maximize the spread of influence through a social network [15].
The basic idea is to find and convince a small number of influential
users to adopt a product, and the goal is to trigger a large cascade
for further adoptions through the effect of “word of mouth” (in-
fluence) in the social network. Another trend in social influence
analysis is to quantitatively estimate the strength of the influence.
Tang et al. [29] study the difference of the social influence on dif-
ferent topics and propose Topical Affinity Propagation (TAP) to
model the topic-level social influence in social networks and de-
velop a parallel model learning algorithm based on the map-reduce
programming model. Goyal et al. [10] aims to learn the influence
probabilities from historic users’ actions. Compared with these so-
cial influence analysis works, we simultaneously model the social
network structure, user attributes, and user actions into a unified
model.

Group Behavior Analysis Group analysis is based on the view
that deep lasting change can occur within a carefully formed group
whose combined membership reflects the wider norms of society.
There is an interest, in group analysis, on the relationship between
the individual group member and the rest of the group resulting in
a strengthening of both, and a better integration of the individual
with his or her community, family and social network. Shi et al.
[26] study the pattern of user participation behavior, and the fea-
ture factors that influence such behavior on different forum data
sets. Tang et al. [31] employ relational learning to address the
interdependency among data instances. Backstrom et al. [3] pro-
pose a partitioning on the data that selects for active communities
of engaged individuals.

7. CONCLUSION
In this paper, we study a novel problem of social action track-

ing. We propose a noise tolerant time-varying factor graph model
(NTT-FGM) to formalize this problem in a unified model. Three
factor functions are defined to capture the intuitions discovered in
our observation and an efficient algorithm is presented to learn the
tracking model. A distributed learning algorithm has been imple-
mented under the message-passing parallel programming model.
We experiment on three different genres of data sets and further
present a case study on social action prediction using the learned
NTT-FGM model. Experimental results on three different types
of data sets demonstrate that the proposed approach can effectively
model the social actions and clearly outperforms several alternative
methods for action prediction. The distributed learning algorithm
also has a good scalability performance.

The general problem of social action tracking represents a new
and interesting research direction in social network mining. There
are many potential future directions of this work. A direct adap-
tation is to apply the NTT-FGM model for link prediction, which
is important problem in social network. To add a user as a friend
(e.g., follow somebody on Twitter) may be also influenced by social
network structure, one’s interests, and friends correlation. Another
interesting issue is to extend the NTT-FGM model so that it can
handle actions of multiple values. Another issue is to design the
approach for (semi-)supervised learning. Sometimes, it may be dif-
ficult to collect sufficient labeled training data for an action. How
to make use of the unlabeled data to help improve the prediction
performance is an interesting problem.
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10. APPENDIX

10.1 Integration of Z
In this subsection, we introduce how we obtain the integration

of Z. Equation 11 can be rewritten in the form of a multivariate
Gaussian distribution. The standard formation of the integration of
Multivariate Gaussian Distribution is as follows:

1

(2π)
m
2 |M |

∫

u

exp{−1

2
(u− µ)TM−1(u − µ)}du = 1 (19)

where u and µ is a m-dimension vector, M is a m×m matrix.
The idea here is to transform the exponential function exp{.} in

Eq. (11) into a formation of multivariate Gaussian distribution.

exp{.} ≡ exp{−1

2
(z − µ)TM−1(z− µ) − c} (20)

where c is a value independent of z. With further derivation, we
can arrive

Z = Const · |A|− 1
2 exp{bTA−1b− c} (21)

where b = Xα; c =
∑T

t=1

∑N
i=1

∑d
k=1

αkx
t
ik;A is aNT ×NT

block tridiagonal matrix, and |A| is determinant of matrix A. The
elements of A is defined as follows: (we use it to denote i + (t −
1) ∗N for simplicity.)

Ait,it =
d∑

k=1

αk +
N∑

j=1

βijm
t
ij +

N∑
j=1

βjim
t
ji +

N∑
j=1

λjim
t−1

ji +
N∑

j=1

λijm
t+1

ij

Ait,jt = Ajt,it = −βijm
t
ij − βjim

t
ji

A
it,jt−1 = A

jt,it−1 = −λjim
t−1

ji − λijm
t−1

ij

This construction matches our intuition. Ait,it represents the coef-

ficient of (zti)
2, while Ait,jt represents the correlation factor, and

Ait,jt−1 describes the influence factor.

10.2 Model Learning Algorithm
The algorithm for model learning primarily consists of two steps.

To summarize, in the first step, we fix z and update α, β, λ accord-
ing to their gradients. We need to guarantee that αk, βij , λij > 0.
Thus, conventional gradient descent cannot be directly applied to
the constrained problem. We employ a technique similar to that in
[22]. Specifically we first maximize O(θ) with respect to the log
function. As a result, we get:

∇logαk
= −αk(

T
∑

t=1

N
∑

i=1

(zti − xt
ik)

2 +
∂logZ

∂αk

)

∇log βij
= −βij(

T
∑

t=1

(zti − ztj)
2 +

∂logZ

∂βij

)

∇log λij
= −λij(

T
∑

t=1

mt−1
ji (zti − zt−1

j )2 +
∂logZ

∂λij

)

(22)

where

∂logZ

∂αk

= − 1

2|A|
∂|A|
∂αk

+
∂~bTA−1~b

∂αk

−
T
∑

t=1

N
∑

i=1

xt
ik

2

= −1

2
(A−T ) :T I : +XT

,kA
−1~b−~bTA−1A−1~b

+~bTA−1X,k −
T
∑

t=1

N
∑

i=1

xt
ik

2

∂logZ

∂βij
= − 1

2|A|
∂|A|
∂βij

+
∂~bTA−1~b

∂βij

= −1

2
(A−T ) :T

∂A

∂βij

: −~bTA−1 ∂A

∂βij

A−1~b

∂logZ

∂λij

= − 1

2|A|
∂|A|
∂λij

+
∂~bTA−1~b

∂λij

= −1

2
(A−T ) :T

∂A

∂λij

: −~bTA−1 ∂A

∂λij

A−1~b

(23)

where the notation M : with a colon denotes the long column vec-
tor formed by concatenating the columns of matrixM .

In the second step, we fix α, β, λ to update ~z, by solving a linear
system:

(A+ I)~z = ~y +X~α (24)


