
ar
X

iv
:1

00
5.

43
79

v1
 [

cs
.L

O
]

24
 M

ay
 2

01
0

A Meta-Programming Approach to Realizing
Dependently Typed Logic Programming

Zachary Snow
Computer Science and Engineering

University of Minnesota
200 Union Street SE

Minneapolis, MN 55455
snow@cs.umn.edu

David Baelde
Computer Science and Engineering

University of Minnesota
200 Union Street SE

Minneapolis, MN 55455
dbaelde@cs.umn.edu

Gopalan Nadathur
Computer Science and Engineering

University of Minnesota
200 Union Street SE

Minneapolis, MN 55455
gopalan@cs.umn.edu

Abstract
Dependently typedλ-calculi such as the Logical Framework (LF)
can encode relationships between terms in types and can naturally
capture correspondences between formulas and their proofs. Such
calculi can also be given a logic programming interpretation: the
Twelf system is based on such an interpretation of LF. We con-
sider here whether a conventional logic programming language can
provide the benefits of a Twelf-like system for encoding typeand
proof-and-formula dependencies. In particular, we present a simple
mapping from LF specifications to a set of formulas in the higher-
order hereditary Harrop (hohh) language, that relates derivations
and proof-search between the two frameworks. We then show that
this encoding can be improved by exploiting knowledge of thewell-
formedness of the original LF specifications to elide much redun-
dant type-checking information. The resulting logic program has a
structure that closely resembles the original specification, thereby
allowing LF specifications to be viewed ashohh meta-programs.
Using the Teyjus implementation ofλProlog, we show that our
translation provides an efficient means for executing LF specifi-
cations, complementing the ability that the Twelf system provides
for reasoning about them.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications— Constraint and logic lan-
guages; F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic— Lambda calculus and related systems, Logicand
constraint programming, Proof theory

General Terms Theory, Languages

Keywords logical frameworks, dependently typed lambda calculi,
higher-order logic programming, translation

1. Introduction
There is a significant, and growing interest in mechanisms for spec-
ifying, prototyping and reasoning about formal systems that are de-
scribed by syntax-directed rules. Dependently typedλ-calculi such
as the Logical Framework (LF) [11] provide many conveniences

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’10, July 26–28, 2010, Hagenberg, Austria.
Copyright c© 2010 ACM 978-1-4503-0132-9/10/07. . . $10.00

from a specification perspective in this context. Such calculi fa-
cilitate the use of a higher-order approach to describing the syn-
tax of formal objects and they allow relationships between terms
to be captured in an elegant way through type dependencies. Fur-
thermore, dependently typedλ-calculi enjoy a well-known isomor-
phism between formulas and types [12], leading to a unification of
the concept of a proof of a formula with an inhabitant of a given
type. Thus, the search for type inhabitants can be identifiedwith
proof-search and can thereby be given a logic programming inter-
pretation. The Twelf system [19] that we consider here exploits
these possibilities relative to LF. As such, it has been usedsuc-
cessfully in specifying and prototyping varied formal systems, and
mechanisms have also been built into it to reason about specifica-
tions.

Predicate logics are also capable of encoding syntax-directed
specifications, and provide the basis for logic programminglan-
guages in the familiar tradition of Prolog. Within this framework,
the logic of higher-order hereditary Harrop (hohh) formulas [15]
that underlies the languageλProlog [16] provides a builtin abil-
ity to treat binding notions in syntax and thus has particular use-
fulness in representing formal systems. However, unlike LF, this
logic cannot reflect dependencies between objects into types and
does not directly represent the relationship between formulas and
their proofs. While such correspondences can always be encoded
by hand through auxiliary predicate definitions, it is of interest
to understand if a systematic encoding is possible. A specific
form to this question is if Twelf specifications can be translated
into λProlog programs, allowing such specifications to be seen as
λProlog “meta-programs.” There are benefits to such a possibility:
the convenience of writing specifications using dependent types can
be combined with the ability both to execute them via an efficient
λProlog implementation, and to reason about them using logics and
systems meant for analyzinghohh descriptions [2, 7, 10, 14].

A partial answer to the question raised above has been provided
by Felty, who described a translation of LF specifications tohohh
formulas and then showed that LF derivations correspond exactly
tohohh derivations of the translated LF judgment [5, 6]. The focus
on matching derivations allows Felty to assume the existence of
a complete LF judgment, and, in particular, of an LF object in
her translation. However, this assumption is inappropriate in our
context, given that we are interested inconstructingproof terms
that show particular types are inhabited,i.e., in proof searchthat
plays a fundamental role in the logic programming setting. We
therefore refine the earlier mapping to remove this assumption and
show that the resulting translation preserves derivability in a sense
relevant to the logic programming interpretation; an important part
of our proof is showing how to extract an LF object satisfying

http://arxiv.org/abs/1005.4379v1

a type from a derivation constructed using thehohh version of
the specification. Our first encoding may include redundant type-
checking judgments which obscure the translated specification and
can result in poor execution behavior. We design conditionsfor
eliminating some of these judgments, resulting in an improved
translation that corresponds closely to the intention of the orginal
LF specification. This part of our work relies on an analysis of the
structure of LF expressions and also has relevance, for example,
to providing compact representations of proof terms. Finally, we
demonstrate that the execution of the translated form by means of
the Teyjus implementation [9] ofλProlog [16] provides an effective
means for animating Twelf programs.

In the next two sections, we describe a relevant fragment of the
hohh logic and the Twelf specification language. Section 4 then
presents our first translation. In the following section, wedescribe
and exploit a property of LF expressions and type-checking to re-
fine the earlier translation, producing a more efficient and transpar-
ent version. Section 6 provides experimental data towards support-
ing the use of this translation as a means for executing Twelfpro-
grams. We conclude the paper with a discussion of related work and
possible future directions. This work has been developed in[24];
we refer the reader to that document for complete proofs and more
detailed discussions.

2. A Higher-Order Predicate Logic for
Describing Computations

The logic ofhohh formulas is based on an intuitionistic version
of Church’s simple theory of types [4]. Both logics are builtover
a typed form of theλ-calculus. The types are constructed using
→, the infix, right associative function type constructor, starting
from a finite collection of atomic types that includeso, the type of
propositions, and at least one other type.1 We assume that we are
given sets of variables and constants, each with an associated type.
The full collection of (typed) terms is generated from theseby the
usual abstraction and (left associative) application operators. Terms
that differ only in the names of their bound variables are notdis-
tinguished. We further assume a notion of equality between terms
that is generated byβ- andη-reduction. It is well-known that ev-
ery term has a unique normal form under these reduction opera-
tions in this simply-typed setting. All terms are to be converted into
such a form prior to their consideration in any context. We write
t[s1/x1, . . . , sn/xn] to denote the result of simultaneously replac-
ing the variablesx1, . . . , xn with the termss1, . . . , sn in the term
t, renaming bound variables as needed to avoid accidental capture.
This substitution operation is defined only whensi andxi are of
the same type for1 ≤ i ≤ n.

We will use only a fragment of the fullhohh logic here; this
fragment still possesses the proof-theoretic properties that are fun-
damental to the logic programming interpretation of thehohh logic.
The constants from which terms are constructed are differentiated
into nonlogical ones that constitute asignatureand logical ones.
We do not permito to appear in the type of the arguments of non-
logical constants and variables. The logical constants arerestricted
to⊤ of typeo, ⊃ of typeo → o → o that is written in the custom-
ary infix form and, for each typeα, Π of type (α → o) → o. Π
represents the universal quantifier as a function over sets.We ab-
breviateΠ (λx.F) by ∀x.F . An atomic formula, denoted byA, is
a term of typeo of the formp t1 . . . tn wherep is a nonlogical
constant. The logic of interest is characterized by two collections
of terms calledG- andD-formulas that are defined mutually recur-
sively by the following syntax rules:

1 Other, non-interpreted type constructors can be added but are not dis-
cussed here for simplicity.

G := ⊤ | A | D ⊃ G | ∀x.G
D := A | G ⊃ D | ∀x.D

A specification or logic program is a finite collection of closedD-
formulas that are also calledprogram clausesand a goal or a query
is a closedG-formula.

Computation corresponds to searching for a derivation of a se-
quent of the formΣ;Γ −→ G whereΣ is the initial (language) sig-
nature,Γ is a logic program andG is a goal. Figure 1 presents the
rules for constructing such a derivation. Read in a proof search di-
rection, the∀R rule leads to an expansion of the signature in the se-
quent whose derivation is sought and the⊃R rule similarly causes
an addition to the logic program. The expression “t is aΣ-term” in
the∀L rule means thatt is a closed term all of whose nonlogical
constants are contained inΣ. The derivation rules manifest a goal-
directed character: to find a derivation forΣ; Γ −→ G, we simplify
G based on its logical structure and then use thedeciderule to select
a formula from the logic program for solving an atomic goal. No-
tice also that thedeciderule initiates the consideration of a focused
sequence of rules that is similar to backchaining.2 In particular, if
the formula selected fromΓ has the structure

(∀x1.F1 ⊃ . . . ⊃ ∀xn.(Fn ⊃ A′) . . .)

then this sequence is equivalent to the rule

Σ;Γ −→ F ′
1 . . . Σ; Γ −→ F ′

n
backchain

Σ; Γ −→ A

which has the proviso that for someΣ-termst1, . . . , tn that have
the same types asx1, . . . , xn, respectively, it is the case thatA is
equal toA′[t1/x1, . . . , tn/xn] and, for1 ≤ i ≤ n, F ′

i is equal to
Fi[t1/x1, . . . , ti/xi].

The logic that we have described has been given an efficient im-
plementation in theTeyjussystem [9]. It is possible also to reason
in sophisticated ways about specifications that are constructed us-
ing it. To begin with, the logic has strong meta-theoretic properties
arising from the fact that derivability in it corresponds exactly to in-
tuitionistic provability. Moreover, it is possible to construct logics
incorporating mechanisms such as induction to reason powerfully
about what does and does not follow from a given specification
[1, 8, 10, 14]. In fact, systems such as Abella [7] and Tac [2] have
been constructed to provide computer support for such reasoning.

3. Logic Programming Using the Twelf
Specification Language

There are three categories of expressions in LF:kinds, typesor type
families that are classified by kinds andobjectsor termsthat are
classified by types. We assume two denumerable sets of variables,
one for objects and the other for types. We usex andy to denote
object variables,u andv to denote type variables andw to denote
either. LettingK range over kinds,A andB over types, andM and
N over object terms, the syntax of LF expressions is given by the
following rules:

K := Type| Πx:A.K
A := u | Πx:A.B | λx:A.B | A M
M := x | λx:A.M | M N

Expressions of any of these kinds will be denoted byP andQ.
Here,Π andλ are operators that associate a type with a variable

2 For the reader unfamiliar with such presentations, the expression

Σ;Γ
D
−→ A corresponds essentially to the selection of the program clause

D as the one to backchain on. This then leads to instantiationsof universally
quantified variables and to the solution of the “body” goals of the clause us-
ing the rules∀L and⊃L, culminating eventually in solving the atomic goal
by matching it with the head of the clause using theinit rule.

⊤R
Σ;Γ −→ ⊤

Σ;Γ ∪ {D} −→ G
⊃R

Σ;Γ −→ D ⊃ G

c /∈ Σ Σ ∪ {c}; Γ −→ G[c/x]
∀R

Σ; Γ −→ ∀x.G

D ∈ Γ Σ; Γ
D
−→ A

decide
Σ; Γ −→ A

init
Σ;Γ

A
−→ A

t is aΣ-term Σ; Γ
D[t/x]
−→ A

∀L
Σ; Γ

∀x.D
−→ A

Σ;Γ −→ G Σ;Γ
D
−→ A

⊃L
Σ;Γ

G⊃D
−→ A

Figure 1. Derivation rules for thehohh logic

and bind its free occurrences over the expression after the period.
Terms that differ only in the names of bound variables are iden-
tified. As with thehohh logic, P [N1/x1, . . . , Nn/xn] denotes a
simultaneous substitution with renaming to avoid variablecapture.
We writeA → P for Πx:A.P whenx does not appear free inP .
We abbreviateΠx1:A1. . . .Πxn:An.P byΠ

−−→
x:A.P .

LF expressions are equipped with a notion ofβ-reduction de-
fined through the rule(λx:A.P) N →β P [N/x]. All LF expres-
sions that are well-formed in the sense formalized below normal-
ize strongly under this reduction relation [11]. Moreover any well-
typed expressionP has a unique normal form up to changes in
bound variable names. We denote this normal form byP β .

The type correctness of LF expressions is assessed relativeto
contexts that are finite collections of assignments of typesand kinds
to variables. Formally, contexts, denoted byΓ, are given by the rule

Γ := · | Γ, u : K | Γ, x : A

Here,· denotes the empty collection. We writedom(Γ) to denote
the variables with assignments inΓ. We are concerned with asser-
tions of the following four forms:

⊢ Γ ctx Γ ⊢ K kind Γ ⊢ A : K Γ ⊢ M : A

The first assertion signifies thatΓ is a well-formed context. The
remaining assertions mean respectively that, relative to a(well-
formed) contextΓ, K is a well-formed kind,A is a well-formed
type of kindK andM is a well-formed object of typeA. Figure 2
presents the rules for deriving such assertions. Notice that for a
context to be well-formed it must not contain multiple assignments
to the same variable. To adhere to this requirement, bound variable
renaming may be entailed in the use of thepi-kind, pi-fam, abs-fam
andabs-objrules. The inference rules allow for the derivation of an
assertion of the formΓ ⊢ M : A only whenA is in normal form.
To verify such an assertion whenA is not in normal form, we first
deriveΓ ⊢ A : Type and then verifyΓ ⊢ M : Aβ . A similar
observation applies toΓ ⊢ A : K.

A variablew that appears in an LF expressionP that is well-
formed with respect to a contextΓ has a kind or type of kind
Type associated with it through either an assignment inΓ or a
binding operator. Moreover, the normal form of this kind or type
must have a prefix ofΠs. If the length of this prefix isn, then an
occurrence ofw is fully applied if it appears in a subterm of the
form w M1 . . . Mn. Further,P is canonicalwith respect toΓ if
it is in normal form and if every variable occurrence in it is fully
applied. A well-formed contextΓ is canonical if the type or kind it
assigns to each variable is canonical relative toΓ. A well-formed
type of the formu M1 . . . Mn that is fully applied is called abase
type. The LF system admits a notion ofη-expansion using which
any well-formed expression can be converted into a canonical form.

In later sections we shall consider LF derivations in which
all expressions in the end assertion are in normal form. Notice
that every expression in the entire derivation must then also be in
such a form. This in turn means that in judgments of the forms

(λx:A.B) : (Πx:A′.K) and(λx:A.M) : (Πx:A′.B) it must be
the case thatA andA′ are identical. Finally, normalization need not
be considered in the use of thevar-famandvar-objrules.

The following “transitivity” property for LF derivations that
follows easily from the results in [11] will be useful later;here
α stands for any judgment, and substitution and normalization
over α andΓ corresponds to distributing these operations to the
expressions appearing in them.

Proposition 1 (Substitution). Let Γ1, Γ2 be canonical contexts,
andA be a type in canonical form. IfΓ1 ⊢ M : A has a derivation,
andΓ1, x : A,Γ2 ⊢ α has a derivation, thenΓ1, (Γ2[M/x])β ⊢
(α[M/x])β has a derivation as well.

Additionally we will use a second property of LF derivations,
which follows from Proposition 1.

Proposition 2 (Renaming). Let P be a canonical type or kind,
Γ = Γ1, x : P,Γ2 be a canonical context, andα a canonical
judgment. Lety be a variable not bound inΓ, and not occurring
in α. ThenΓ1, x : P,Γ2 ⊢ α has a derivation if and only if
Γ1, y : P,Γ2[y/x] ⊢ α[y/x] has one.

The logic programming interpretation of LF is based on viewing
types as formulas. More specifically, a specification or program in
this setting is given by a context. This starting context, also called
a signature, essentially describes the vocabulary for constructing
types and asserts the existence of particular inhabitants for some of
these types. Against this backdrop, questions can be asked about
the existence of inhabitants for certain other types. Formally, this
amounts to asking if an assertion of the formΓ ⊢ M : A has
a derivation. However, the objectM is left unspecified—it is to
be extracted from a successful derivation. Thus, the searchfor a
derivation of the assertion is driven by the structure ofA and the
types available from the context.

A concrete illustration of the paradigm is useful for later discus-
sions.3 Consider a signature or contextΓ comprising the following
assignments in sequence:

nat : Type
z : nat
s : nat → nat
list : Type
nil : list
cons : nat → list → list
append : list → list → list → Type
appNil : ΠK:list.append nil K K
appCons : ΠX:nat.ΠL:list.ΠK:list.ΠM :list.

3 The example of appending lists has been chosen here for its conciseness
and because it allows for an easy connection with more traditional forms
of logic programming. The primary application domain of Twelf is in
specifying (and reasoning about) formal systems such as evaluators and
interpreters for languages, type assignment calculi and proof systems. This
orientation informs the choice of benchmarks used in Section 6.

null-ctx
⊢ · ctx

Γ ⊢ K kind ⊢ Γ ctx u /∈ dom(Γ)
kind-ctx

⊢ Γ, u : K ctx

Γ ⊢ A : Type ⊢ Γ ctx x /∈ dom(Γ)
type-ctx

⊢ Γ, x : A ctx

⊢ Γ ctx type-kind
Γ ⊢ Type kind

Γ ⊢ A : Type Γ, x : A ⊢ K kind
pi-kind

Γ ⊢ Πx:A.K kind

⊢ Γ ctx u : K ∈ Γ
var-fam

Γ ⊢ u : Kβ

⊢ Γ ctx x : A ∈ Γ var-obj
Γ ⊢ x : Aβ

Γ ⊢ A : Type Γ, x : A ⊢ B : Type
pi-fam

Γ ⊢ (Πx:A.B) : Type

Γ ⊢ A : Type Γ, x : A ⊢ B : K
abs-fam

Γ ⊢ (λx:A.B) : (Πx:Aβ.K)

Γ ⊢ A : Πx:B.K Γ ⊢ M : B app-fam
Γ ⊢ (AM) : (K[M/x])β

Γ ⊢ A : Type Γ, x : A ⊢ M : B
abs-obj

Γ ⊢ (λx:A.M) : (Πx:Aβ.B)

Γ ⊢ M : Πx:A.B Γ ⊢ N : A app-obj
Γ ⊢ (M N) : (B[N/x])β

Figure 2. Rules for Inferring LF Assertions

(append L K M) →
(append (cons X L) K (cons X M))

We can ask if there is some termM such that the judgment

Γ ⊢ M : append (cons z nil)
(cons (s z) nil)
(cons z (cons (s z) nil))

is derivable. Assuming thatΓ is given by the ambient environment,
such a query can be posed in Twelf simply by presenting the type
expression. The logic programming interpreter of Twelf will find
that the proof term

(appCons z nil (cons (s z) nil)
(cons (s z) nil)
(appNil (cons (s z) nil)))

inhabits this type and hence will succeed on the query. In reaching
this conclusion, the interpreter will use the types involvingappend
that are present inΓ. Further it will do this in a way that bears
a close resemblance to the use of clauses in a Prolog-like setting,
interpretingΠ like a universal quantifier and→ like an implication.

The simple example we have considered here will suffice to il-
lustrate most of the later ideas in this paper but it does not bring
out the richness of dependent types in specifications. We leave this
demonstration to the many discussions already in the literature. We
also note that Twelf has many additional features like allowing Π
quantification in types to be left implicit and permitting instanti-
atable variables in queries whose values are to be found through
unification. While these aspects are treated in our implementation,
to keep the theoretical discussions focused, we shall assume that
the only capability that is to be emulated is that of determining the
derivability of an assertion of the formΓ ⊢ M : A in which Γ
andA are in canonical form (andM is left unspecified). This as-
sumption is easily justified: these will be “type-checked” prior to
conducting a search and the Twelf system assumes equality under
η-conversion.

4. From Twelf Specifications to Predicate
Formulas

Felty has previously shown how to translate LF specifications and
judgments intohohh formulas [5, 6]. Her translation proceeds in
two steps. First, she describes a coarse mapping of LF expressions
into (simply typed)λ-terms. This mapping loses information about
dependencies in types and kinds and also does not reflect the corre-
spondences between objects and types and types and kinds. These
relationships are encoded later through binary predicatesover λ-
terms.

The general structure of Felty’s translation is applicablein the
context of interest to us. However, the details of her mapping do
not quite fit our needs because of her focus onderivations in
the LF andhohh logics. One manifestation of this is that her
translation is not based exclusively on types, but assumes also
the availability of the objects they are intended to qualify. This
is not acceptable in the context of proof search where the task is
precisely to determine the existence of those objects: we need a
translation that is only based on the type, and which can be applied
to an hohh metavariable to correspond to an LF query whose
object is left unspecified as a metavariable. Second, the correctness
result only states an equivalence between LF derivability andhohh
derivability for known LF assertions, and does not consider, for
example, whether it is possible for non-canonical or ill-formed
objects to be produced in the course of searching for proofs from
the hohh specification. In contrast, our completeness result will
guarantee that after running a query with a metavariable standing
for the (encoding of the) object, the only possible instantiations of
that metavariable are actual encodings of terms.

The first step towards producing a translation intohohh that
can be used to interpret Twelf specifications is to adapt Felty’s
translation in a way that makes it acceptable in logic programming
discussions. Our translation shall only account for judgments of the
form Γ ⊢ M : A since these are the only ones of interest in the
logic programming setting described in the previous section. The
adequacy of this restriction actually relies on an auxiliary, easily
verified, fact: ifΓ ⊢ A : Type is known to have a derivation and
the last rule in a purported derivation ofΓ ⊢ M : A is anabs-obj,

φ(A) := lf-obj whenA is a base type
φ(Πx:A.P) := φ(A) → φ(P) φ(Type) := lf-type

〈u M1 . . .Mn〉 := u 〈M1〉 . . . 〈Mn〉

〈x M1 . . .Mn〉 := x 〈M1〉 . . . 〈Mn〉 〈λx:A.M〉 := λφ(A)x.〈M〉

{{Πx:A.B}} := λM. ∀x. ({{A}} x) ⊃ ({{B}} (M x))

{{A}} := λM. hastype M 〈A〉 whereA is a base type

Figure 3. Encoding of types, objects, and simplified translation of LFjudgments tohohh

hastype z nat
∀n. hastype n nat ⊃ hastype (s n) nat
hastype nil list
∀n. hastype n nat ⊃ ∀l. hastype l list ⊃ hastype (cons n l) list
∀l. hastype l list ⊃ hastype (appNil l) (append nil l l)
∀x. hastype x nat ⊃ ∀l. hastype l list ⊃ ∀k. hastype k list ⊃ ∀m. hastype m list ⊃

∀a. hastype a (append l k m) ⊃ hastype (appCons x l k m a) (append (cons x l) k (cons x m))

Figure 4. Simple translation of the LF specification forappend

then the left premise for the latter derivation must have a proof and
hence does not need to be encoded by the translation.

Our translation is presented in Figure 3. This translation first
encodes LF objects and types inhohh terms by dropping a lot
of typing information; as mentioned already, this information will
be recovered later in the encoding of LF judgments. Under this
translation, an object (type) of type (kind)P is represented by an
hohh term of simple typeφ(P), built from the atomic typeslf-type
andlf-obj. The encoding of an object or base typeQ is then given
by 〈Q〉; note that in the process we assume a reuse of (LF) variable
names with an appropriate type as part of the correspondinghohh
signature. As an example, the LF signature at the end of the last
section leads to the followinghohh signature:

nat : lf-type
z : lf-obj
s : lf-obj → lf-obj
list : lf-type
nil : lf-obj
cons : lf-obj → lf-obj → lf-obj
append : lf-obj → lf-obj → lf-obj → lf-type
appNil : lf-obj → lf-obj
appCons : lf-obj → lf-obj →

lf-obj → lf-obj → lf-obj → lf-obj

Further, the LF typeappend nil nil nil gets translated to the same
term inhohh, where it has typelf-type. This translation behaves
well with respect to substitution andβ-conversion, and is injective
for objects (types) of the same type (kind). Finally, we takeup the
translation of LF type assignments and judgments in the lasttwo
clauses in Figure 3. To emphasize reliance only on the structure of
types, these clauses describe explicitly only the translation of an LF
typeA. Such a type is mapped into anhohh predicate denoted by
{{A}} that, intuitively, codifies the property of being a translation of
an LF object of typeA. This translation is defined on all canonical
types and uses thehohh predicatehastype of type lf-obj →
lf-type → o. If A is a base type,{{Πx1:B1. . . .Πxn:Bn.A}} has
type τ → o whereτ is lf-obj → . . . → lf-obj → lf-obj with n
negative occurrences oflf-obj. Once the translation of LF types is
in place, we define{{M : A}} derivatively to be({{A}} 〈M〉).

Twelf specifications are encoded by dropping all kind assign-
ments and translating each type assignment they contain. Asan ex-

ample, the Twelf specification ofappend translates into the clauses
in Figure 4. From these clauses, we can, for example, derive the
goalhastype (cons (s z) nil) list and we could search for terms
X satisfying the goal

hastype X (append (cons z nil)
(cons (s z) nil)
(cons z (cons (s z) nil))).

Let Γ′ be the translation of an LF contextΓ and α′ be the
translation of the LF judgmentα. These translations are based on
an implicithohh signatureΣ. In the case that all the free variables
in α belong todom(Γ), then, in fact,Σ consists of an isomorphic
copy of the symbols indom(Γ). Henceforth, we shall assumeΣ
to be just such anhohh signature and we shall writeΓ′ −→ α′

as a shorthand forΣ; Γ′ −→ α′. The correctness of the (simple)
translation is then the content of the following theorem.

Theorem 1. Let Γ be a well-formed canonical LF context and
let A be a canonical LF type such thatΓ ⊢ A : Type has a
derivation. IfΓ ⊢ M : A has a derivation for a canonical object
M , then there is a derivation of{{Γ}} −→ {{M : A}}. Conversely,
if {{Γ}} −→ ({{A}} M) has a derivation for anyhohh termM of
appropriate type, then there is a canonical LF objectM ′ such that
M = 〈M ′〉 andΓ ⊢ M ′ : A has a derivation.

Proof outline Completeness can be proved by a simple induction
on the LF derivation, building anhohh derivation that mimics its
structure. Soundness is more involved: we proceed by induction
on thehohh derivation, gradually recovering the structure ofM ′,
maintaining the derivability ofΓ ⊢ A : Type that allows us to
build an LF derivation even in the case thatabs-objwas the last
rule used. The detailed proof is presented in Appendix A.

The simple translation presented in this section cannot be the
basis of a practical implementation of logic programming inLF.
Proof search using a program it produces may involve repeatedly
proving goals of the formhastype M A for (encodings of) the
same objectM and typeA. This can be seen from the example in
Figure 4: at every step of deriving an instance ofappend, the lists
must be checked to be well-typed, which artificially introduces a
quadratic complexity. An important point to note, however,is that
this redundancy in “type-checking” is not easily detectable from
thehohh program that is generated. Rather, it must be determined,

Γ; ·; x ⊏o Ai for someAi
APPt

Γ; x ⊏t c
−→
A

yi ∈ δ for eachyi yi distinct
INITo

Γ; δ;x ⊏o x −→y

Γ, y;x ⊏t B
PIt

Γ;x ⊏t Πy:A.B

y /∈ Γ andΓ; δ;x ⊏o Mi for somei
APPo

Γ; δ;x ⊏o y
−→
M

Γ; δ, y;x ⊏o M
ABSo

Γ; δ;x ⊏o λy:A.M

Figure 5. Rigidly occurring variables in types and objects

and shown to be safely eliminable, based on deeper properties of
LF terms. It is this issue that we take up in the next section.

5. An Improved Translation of Twelf
Specifications

In order to make the translation of LF specifications intohohh
practical from an implementation standpoint, we make two opti-
mizations.

The first, and main, optimization exploits the fact that we are
considering derivations of the formΓ ⊢ M : A whereΓ andA
have already been type-checked. For example, we may be wanting
to determine whether the LF type

append (cons z nil) nil (cons z nil)

is inhabited. Before attempting to do this, we would have already
determined thatappend (cons z nil) nil (cons z nil) is a valid
type, which means, for instance, that we would have checked that
(cons z nil) is a valid object of typelist. Therefore, there is no
need to show again that(cons z nil) has this property in the course
of searching for an inhabitant of the displayed type. Our optimized
translation takes advantage of this kind of observation by statically
removing some run-time checking from the translation of LF typ-
ing. More specifically, our optimization is based on the following
idea. Suppose we can determine that, for a particulari, ti must al-
ways appear in the type(A[t1/x1, . . . , tn/xn])

β . Then the trans-
lation of the typeΠx1:B1. . . .Πxn:Bn.A does not need to include
explicit type-checking over the instantiation ofxi. We characterize
some of these cases by using the notion of arigid occurrence ofxi

in A that is expressed formally through the judgment−→x ; xi ⊏t A
defined by the rules in Figure 5; the rulesAPPt andPIt in this fig-
ure act on LF types, and the rulesINITo, APPo, andABSo act on LF
objects. We shall allow type checking over instantiations of rigid
variables to be eliminated from the simple translation. By doing so,
we shall both reap an efficiency benefit and also make the result of
translation correspond more closely to the original LF type.

The second optimization is more transparent, not dependingon
deep properties of dependent types. The essential observation is the
following. Instead of producing predicates of the form

hastype X (append L K M)

andhastype L list, we can specialize them toappend X L K M
and list L. This results in ahohh program that is much clearer,
and more closely related to the original LF specification. Moreover,
this simple transformation can also lead to better performance in a
logic programming setting because it allows for the exploitation of
a common optimization, namely, the indexing on a predicate name

that speeds up the determination of candidate clauses on which to
backchain.

The improved translation that uses these two ideas is presented
on Figure 6. TheJ•K+Γ translation is used on type assignments ap-
pearing negatively (notably context items) andJ•K− on positive
typing judgments (notably the conclusion of LF assertions). As be-
fore, that translation is entirely guided by the type, and defined
for all canonical types. We shall use the notationJM : AK− for
(JAK−〈M〉), and defineJΓK+ as the result of applyingJ•K+· to
each context item, dropping kind assignments. Note that instead
of replacing unnecessary typing judgments with⊤ we could sim-
ply elide them all together; we use⊤ as a placeholder because it
simplifies later proofs. This translation is illustrated byits applica-
tion to the example Twelf specification considered in Section 3 that
yields the clauses shown in Figure 7. These clauses should becon-
trasted with the ones in Figure 4 that are produced by the earlier,
naive translation.

We shall now establish the correctness of the optimized trans-
lation. We first prove a fundamental lemma concerning rigidly oc-
curring variables, that is in fact an observation about LF: for an LF
base typeA, if we have derivations of

Γ ⊢ Πx1:B1. . . .Πxn:Bn.A : Type and
Γ ⊢ A[t1/x1 . . . tn/xn] : Type

and there is a rigid occurrence ofxi in A, i.e., −→x ;xi ⊏t A has a
derivation, thenΓ ⊢ ti : Bi[t1/x1 . . . ti−1/xi−1] has a derivation.
The idea of the proof is as follows. The judgment−→x ; xi ⊏t A gives
a path inA that leads toxi, and this path can never be erased by the
considered substitution; following this path simultaneously in the
two LF derivations, one eventually finds on one side a derivation
of Γ ⊢ xi : Bi and on the other side the expected derivation of
Γ ⊢ ti : Bi[t1/x1, . . . , ti−1/xi−1].

In order to be able to use this observation in our correctnessar-
gument, we formulate a stronger, rather technical lemma that deals
directly with encoded types that are the result of instantiations of
(a priori) arbitraryhohh terms, and ensures that discoveredhohh
terms are in fact encodings of LF objects. These technical details
concerning encodings are tedious but shallow, and the essential
structure of the proof follows the lines sketched above.

Definition 1. Let
−→
t be a vector ofhohh terms, and−→x a vector of

variables of the same length. IfM andN are LF objects, then we
write (M ∼ N)[t1/x1 . . . tn/xn] when

〈M〉 = 〈N〉[t1/x1 . . . tn/xn].

For LF typesA andB, we write(A ∼ B)[t1/x1 . . . tn/xn] when
the two types are equal up to(• ∼ •)[t1/x1 . . . tn/xn] on objects
within. Finally we extend this notion to contexts of the samelength
by pushing it down to the types bound by the context. We shall omit
−→
t and−→x when they are obvious from the context, simply writing
P ∼ Q.

Lemma 1. Let
−→
t be a vector ofhohh terms,−→x a vector of

variables, and
−→
B of canonical LF types, all of same length, such

that tj = 〈t′j〉 for j < i. LetΓ0 = x1 : B1, . . . , xn : Bn.

1. LetΓ and∆ be LF contexts,M an LF object andA a type, all
being assumed canonical. Letδ bedom(∆). Suppose that there
are derivations of−→x ; δ;xi ⊏o M and Γ,Γ0,∆ ⊢ M : A
and Γ,∆′ ⊢ M ′ : A′, with A′ ∼ A, M ′ ∼ M and
∆′ ∼ ∆. Thenti is of the form〈t′i〉 and there is a derivation of
Γ ⊢ t′i : Bi[t

′
1/x1, . . . , t

′
i−1/xi−1].

2. Let Π
−−→
x:B.A be a canonical type, whereA is a base type.

Suppose thatΓ ⊢ Π
−−→
x:B.A : Type and −→x ;xi ⊏t A have

derivations. Further, for someA′ such thatA′ ∼ A, suppose

JΠx:A.BK+Γ :=

{

λM. ∀x.⊤ ⊃ JBK+Γ,x(M x) if Γ;x ⊏t B

λM. ∀x. JAK−(x) ⊃ JBK+Γ,x(M x) otherwise

Ju
−→
N K+Γ := λM. u M

−−→
〈N〉

JΠx:A.BK− := λM. ∀x. JAK+· (x) ⊃ JBK−(M x)

Ju
−→
N K− := λM. u M

−−→
〈N〉

Figure 6. Optimized translation of LF specifications and judgments tohohh

nat z
∀n. nat n ⊃ nat (s n)
list nil
∀n. nat n ⊃ ∀l. list l ⊃ list (cons n l)
∀l. ⊤ ⊃ append (appNil l) nil l l
∀x.⊤ ⊃ ∀l. ⊤ ⊃ ∀k. ⊤ ⊃ ∀m.⊤ ⊃

∀a. append a l k m ⊃ append (appCons x l k m a) (cons x l) k (cons x m)

Figure 7. Optimized translation of the LF specification forappend

thatΓ ⊢ A′ : Typehas a derivation. Thenti = 〈t′i〉 and there
is a derivation ofΓ ⊢ t′i : Bi[t

′
1/x1, . . . , t

′
i−1/xi−1].

Proof. We prove part (1) by induction on the structure of the deriva-
tion of −→x ; δ;xi ⊏o M . In the argument below, we letD be the
derivation ofΓ,Γ0,∆ ⊢ M : A, andD′ be the derivation of
Γ,∆′ ⊢ M ′ : A′.

• In the base case ofINITo, M = xi
−→y where−→y are distinct

bound variables fromδ. The derivationD must consist ofn
app-objrules and avar-obj rule onxi, whose typeBi must be
of the formΠ

−−→
z:C.D, with A = D[−→y /−→z]. Note that, because

the variablesyi are distinct bound variables that are fresh with
respect toD, this substitution can be inverted, and we thus
haveA[−→z /−→y] = D. The other subderivations of the chain
of app-obj applications are instances ofvar-obj establishing
yi : Ci[

−→y /−→z], hence(yi : C′
i[
−→y /−→z]) ∈ ∆′ for C′

i ∼ Ci.
We next determinet′i. By η-equivalence we can assume thatti
is of the formλz1 . . . λzn.u. We have

〈M ′〉 = ti
−→y = u[−→y /−→z],

henceu = 〈M ′〉[−→z /−→y] = 〈M ′[−→z /−→y]〉. Letu′ = M ′[−→z /−→y]

andt′i = λ
−−→
z:C′.u′. We have

〈t′i〉 = λz1 . . . λzn. 〈M
′〉[−→z /−→y]

= λz1 . . . λzn. u = ti.

We know thatD′ derivesΓ,∆′ ⊢ M ′ : A′. From this we
obtain a derivation of

Γ,∆′[−→z /−→y] ⊢ u′ : A′[−→z /−→y]

by renaming variables−→y into−→z , employing Proposition 2. The
context∆′[−→z /−→y] contains assignments(zi : C′

i) and the other
variables in its domain do not occur inu′ norA′[−→z /−→y] (since
A′ ∼ A, A = D[−→y /−→z] andD is a subterm ofBi which
cannot contain anyyi). We then have

Γ ⊢ (λ
−−→
z:C′.u′) : (Π

−−→
z:C′.A′[−→z /−→y])

by weakening unused variables and usingabs-objto introduce
the variables−→z . This is a typing derivation fort′i; we must now
show that the associated type is actually the expected one:

Bi[t
′

1/x1 . . . t
′

i−1/xi−1]

We have〈A〉[t1/x1 . . . tn/xn] = 〈A[t′1/x1 . . . t
′
i−1/xi−1]〉

and A′ ∼ A, from which we obtain, by injectivity of〈•〉,
that A′ = A[t′1/x

′
1 . . . t

′
i−1/xi−1]. The same goes forC′

i

and Ci. SinceBi = Π
−−→
z:C.A[−→z /−→y], and the substitutions

[t′1/x
′
1 . . . t

′
i−1/xi−1] and[−→z /−→y] permute, we have:

Π
−−→
z:C′.A′[−→z /−→y] = Bi[t

′

1/x
′

1 . . . t
′

i−1/xi−1]

• In theABSo case, we haveM = λy:A1.N andD ends with the
abs-objrule as follows:

Γ,Γ0,∆ ⊢ A1 : Type Γ,Γ0,∆, y : A1 ⊢ N : A2

Γ,Γ0,∆ ⊢ (λy:A1.N) : (Πy:A1.A2)

ThenA′ ∼ Πy:A1.A2, and henceA′ must be of the form
Πy:A′

1.A
′
2 whereA′

i ∼ Ai. Similarly, we obtain thatM ′ is
of the formλy:A′

1.N
′ with N ′ ∼ N . Then,D′ must contain a

derivation of

Γ,∆′, y : A′

1 ⊢ N ′ : A′

2,

and we conclude by the inductive hypothesis.
• In the APPo case, we haveM = y N1 . . . Nm, y 6∈ −→x and
−→x ; δ;xi ⊏o Nj . LetΠz1:C1. . . .Πzm:Cm.D be the type ofy
in (Γ,∆). The derivationD starts with a chain ofapp-objappli-
cations, followed byvar-obj on y. The premise corresponding
toNj establishes that

Γ,Γ0,∆ ⊢ Nj : Cj [N1/z1, . . . , Nj−1/zj−1]

In (Γ,∆′), the variabley is assigned the typeΠ
−−→
z:C′.D′ with all

C′
k ∼ Ck. Moreover, sinceM ′ ∼ (y N1 . . . Nm) and sincey

is not affected by the instantiation of−→x , it must be thatM ′ is of
the form(y N ′

1 . . . N
′
m) with all N ′

j ∼ Nj . The derivationD′

must proceed in a similar fashion, namely a chain ofapp-obj
applications followed byvar-obj on y. Therefore we have a
derivation of

Γ,∆′ ⊢ N ′

j : C′

j [N
′

1/z1, . . . , N
′

j−1/zj−1]

We can conclude by the inductive hypothesis because

C′

j [N
′

1/z1 . . . N
′

j−1/zj−1] ∼ Cj [N1/z1 . . . Nj−1/zj−1]

(which relies on the disjointness of−→x and−→z).

The proof of (2) follows a similar pattern. First, by a straight-
forward inspection of the first rules of the derivation of

Γ ⊢ Π
−−→
x:B.A : Type

we extract a derivation ofΓ,Γ0 ⊢ A : Type. Then, sinceA is a
base type, it must be (by ruleAPPt) that xi rigidly occurs in one
of its argumentsM . Note thatA andA′ have the same structure
on the path leading toM , since no object is involved there. Hence,
a simultaneous inspection of the first rules of the derivations of
Γ,Γ0 ⊢ A : Type andΓ ⊢ A′ : Type yields derivations of
Γ,Γ0 ⊢ M : T andΓ ⊢ M ′ : T ′ for M ′ ∼ M andT ′ ∼ T . We
can conclude using part (1).

The definition of rigidity described above might seem restric-
tive. In particular, one might want to allow

Γ; δ;x ⊏o x
−→
N

in INITo. However, with such a rule the rigidity lemma described
above is no longer true. For example, in a signatureΓ containing
num : nat → Type andnumn : Πn:nat.(num n), the object
t = numn provides a counter-example to Lemma 1, part (1):
we haveΓ, x : (nat → num z) ⊢ (x z) : (num z) and
Γ ⊢ (t z) : (num z) but notΓ ⊢ t : nat → num z. This
example highlights a crucial aspect of our definition: the applica-
tions allowed inINITo should always induceinvertiblesubstitutions.
As in higher-order pattern unification [13, 18], we achieve this by
restricting to applications involving a simple form ofβ-reductions
calledβ0-reductionsthat are similar to renaming.

We now use Lemma 1 to prove the correctness of the optimized
translation.

Theorem 2. LetΓ be an LF context,A an LF type, both canonical,
such that⊢ Γ ctx andΓ ⊢ A : Typeare derivable. Then whenM
is an arbitraryhohh term,{{Γ}} −→ {{A}}(M) has a derivation if
and only ifJΓK+ −→ JAK−(M) has a derivation.

Proof. We establish the soundness direction by induction on the
derivation of the optimized translation, maintaining the assump-
tions aboutΓ andA.

If A is of the formΠx:B.A′ our derivation ends as follows:

JΓ, x : BK+ −→ JA′K−(M x)
∀R, ⊃R

JΓK+ −→ JΠx:B.A′K−(M)

First,Γ ⊢ B : Type, ⊢ (Γ, x : B) ctx andΓ, x : B ⊢ A′ : Type
must have derivations sinceΓ andA are well-formed. We can thus
apply the inductive hypothesis, obtaining that

{{Γ, x : B}} −→ {{A′}}(M x)

has a derivation. By∀R and⊃R, {{Γ}} −→ {{Πx:B.A′}}(M) has
one as well.

If A is a base type, then our derivation starts with a backchaining
on the encoding of some(y : Π

−−→
x:B.A′) ∈ Γ, i.e., on

∀x1. (JB1K
−(x1) ⊃ . . . ⊃

∀xn. (JBnK−(xn) ⊃ (u (y −→x)
−−→
〈N〉))).

In particular, this rule application has the form

JΓK+ −→ F1 . . . JΓK+ −→ Fn
backchain

JΓK+ −→ (u(y−→x)
−−→
〈N〉)[

−→
t/x]

whereFi is either(JBiK
−(xi))[t1/x1, . . . , ti/xi] or ⊤. We per-

form an inner induction oni ≤ n, showing that for allj ≤ i,
tj = 〈t′j〉 for some LF objectt′j , and that we have derivations of

{{Γ}} −→ ({{Bj [t
′

1/x1, . . . , t
′

j−1/xj−1]}} t′j)

and

Γ ⊢ t′j : Bj [t
′

1/x1, . . . , t
′

j−1/xj−1].

• We first treat the case whereFi = ⊤, i.e., there is a derivation
of −→x ;xi ⊏t A′. We assumed thatΓ ⊢ A : Type, and sinceΓ
is valid we also have a derivation ofΓ ⊢ Π

−−→
x:B.A′ : Type.

We can thus apply Lemma 1, to obtaint′i and a derivation
of Γ ⊢ t′i : Bi[t

′
1/x1, . . . , t

′
i−1/xi−1], and we conclude by

Theorem 1.
• WhenFi 6= ⊤, we can see that within the derivation of

Γ ⊢ Π
−−→
x:B.A′ : Type

there is a derivation of

Γ, x1 : B1, . . . , xi−1 : Bi−1 ⊢ Bi : Type.

By substituting (Proposition 1) the derivations provided by the
inner inductive hypothesis on this formula we construct a deriva-
tion of

Γ ⊢ Bi[t
′

1/x1, . . . , t
′

i−1/xi−1] : Type.

We can now apply the outer inductive hypothesis onFi, to
conclude that{{Γ}} −→ ({{Bi[t

′
1/x1, . . . , t

′
i−1/xi−1]}} ti) has

a derivation. By Theorem 1, we finally obtain thatti is of the
form 〈t′i〉.

We compose all derivations

{{Γ}} −→ {{Bi[t
′

1/x1, . . . , t
′

i−1/xi−1]}} ti

by backchainon the encoding of(y : Π
−−→
x:B.A′) ∈ Γ, obtaining the

expected derivation of

{{Γ}} −→ hastype (y
−→
t) (u

−−→
〈N〉)[

−→
t/x]

Completeness is proved by an induction on the derivation of
the simple translation. This direction is rather straightforward as
it consists only of dropping information. Details can be found in
Appendix A.

Therefore, by Theorems 1 and 2, intuitionistic provabilityunder
the optimized translation is equivalent to provability in LF, and the
following is a theorem.

Theorem 3 (Optimized translation correctness). Let Γ be an LF
specification such that⊢ Γ ctx has a derivation,A an LF type
such thatΓ ⊢ A : Typehas a derivation. Then, for any LF object
M such thatΓ ⊢ M : A has a derivation,JΓK+ −→ JM : AK−

is derivable. Moreover, ifJΓK+ −→ JAK−(M) for an arbitrary
hohh termM , then it must be thatM = 〈M ′〉 for some canonical
LF object such thatΓ ⊢ M ′ : A has a derivation.

6. Performance Comparisons
We have claimed two properties for our translation: that it produces
an hohh program which corresponds closely to the original LF
specification, and that this program provides an effective means for
executing the specification. Evidence for the first claim is provided
by the translation of theappend specification presented in Figure 7,
especially when one uses the easily applied simplification of a
formula of the form⊤ ⊃ F to F . Notice also the correspondence
of the definition of theappend predicate to the one that one might
in, e.g., Prolog, if one drops the first “proof term” argument of the
predicate. To fully appreciate this benefit, it is necessaryto consider
larger examples that space does not allow us to do in this paper.
However, such examples are available with the implementation
[23]. We suggest that the reader look especially at the example of
the evaluator for Mini-ML with terms that are not indexed by their
type that is described below in the collection of benchmarks: the

Example Twelf Simple Optimized Typed Optimized Indexing
reverse(10) 1.0 0.40 0.14 0.07 0.08
reverse(20) 1.0 0.57 0.19 0.12 0.11
reverse(30) 1.0 0.63 0.20 0.14 0.11
reverse(40) 1.0 0.41 0.13 0.10 0.07
reverse(50) 1.0 0.46 0.15 0.10 0.08
miniml(50) 1.0 0.74 0.25 0.18 0.08
miniml(100) 1.0 1.25 0.44 0.30 0.17
miniml(150) 1.0 1.75 0.56 0.41 0.25
miniml(200) 1.0 2.89 0.83 0.62 0.41
typed miniml(50) 1.0 2.27 1.07 0.57 0.48
typed miniml(100) 1.0 2.22 0.76 0.49 0.38
typed miniml(150) 1.0 3.49 1.44 0.67 0.55
typed miniml(200) 1.0 3.70 0.92 0.67 0.55
perm(10) 1.0 overflow 3.13 0.94 0.72
perm(20) 1.0 overflow 1.75 0.78 0.44
perm(30) 1.0 overflow 3.05 1.52 0.81
perm(40) 1.0 overflow 3.95 2.15 1.14
perm(50) 1.0 overflow 5.05 2.88 1.59
num(64) 1.0 158.19 0.25 0.23 0.21
num(128) 1.0 ∞ 0.10 0.10 0.07
num(256) 1.0 ∞ 0.15 0.14 0.13
num(512) 1.0 ∞ 0.003 0.003 0.003

Figure 8. Performance comparison results

translation results in anhohh program that is what one might write
in hohh directly.

To test the second claim, we have carried out performance com-
parisons between the Twelf implementation that interpretsLF spec-
ifications directly via a Standard ML program and an implemen-
tation obtained by translating these specifications intohohh pro-
grams and then executing these using the Teyjus system. We present
results here over programs that have a few different characteristics:

• First, as we are interested in logic programming in LF, the
traditional logic program for naively reversing a list an times
is included.

• The encoding of evaluators for various languages is a common
usage of LF. We have therefore used an encoding of Mini-ML
along with an encoding of addition as another sample program.
This benchmark, calledminiml, consists of addingn to10 using
the encoding.

• Theminimlspecification does not make essential use of depen-
dent types. Thetyped minimlbenchmark, which consists of an
evaluator for Mini-ML in which terms are indexed by their type,
uses dependent types to ensure that terms are well-formed. The
Mini-ML program that was run is a typed version of the encod-
ing of addition.

• An implementation of a meta-interpreter for intuitionistic non-
commutative linear logic (INCLL) has been proposed as a test
program [21]. Thepermbenchmark tests list permutation en-
coded in INCLL and run using the meta-interpreter on lists of
lengthn.

• The last benchmark, referred to asnum, involves rewriting arith-
metic expressions into an equivalent normal form. This exam-
ple again makes essential use of dependent types by associating
with each equivalence of two such terms a proof of their equiv-
alence. The benchmark tests rewriting expressions of sizen.

The third through fifth columns of Figure 8 present data com-
paring the simple translation, the translation with redundant typ-
ing judgments removed, and the fully optimized translationagainst
the standard of Twelf with default optimizations on these bench-

marks.4 As described in Figure 6, the fully optimized translation
inserts the proof term as the first argument of the predicate gener-
ated. Since this term is to be determined by proof search, advantage
cannot be taken of the capability Teyjus possesses of indexing on
the first argument. The last column presents data for the casewhere
we make the proof term the last argument instead. In the data pre-
sented, overflow indicates a heap overflow in the Teyjus simulator,
and∞ means that the program ran more than1000 times longer
than Twelf.

The most optimized translation leads to better performancein
most cases, often significantly so. On the other hand, the simple
translation yields a program that is generally slower than Twelf. In
particular, performance tends to deteriorate with larger problems
sizes, in keeping with the difficulty that we noted with this trans-
lation. However, the simple translation is still comparable to Twelf
on the first three benchmarks. On thepermbenchmark, Twelf does
quite well and even out-performs Teyjus with the optimized trans-
lation on problems of large size. We have yet to pinpoint the reason
for this—the program is large and difficult to analyze in detail—but
we suspect that the linear head optimization that delays expensive
unification computation till after simpler checks have beenmade
may have something to do with this. The fact that term indexing
causes significant improvement with Teyjus gives credence to this
observation.

For problems of very large size with all the benchmarks, the
performance of Twelf deteriorates quite dramatically; this is seen,
for example, in the case ofnum(n)for a problem of size512. This
phenomenon is linked to the fact that Twelf consumes excessive
amounts of memory. The ultimate source of this problem is perhaps
the fact that Twelf is implemented in SML: it has been argued that
realizing a logic programming language in a functional program-
ming setting can lead to poor memory reclamation and eventually
to shortage of space [3].

4 This setting with Twelf leads to the best performance on these examples.

7. Conclusion and Future Work
We have considered in this paper a translation of Twelf specifica-
tions into logic programs in thehohh language. An important part
of our ideas is the recognition of certain situations in which type
information is redundant in LF expressions and hence its check-
ing can be avoided. Our eventual translation produces a program
that corresponds closely to the original specification and we have
argued that it can be the basis for an effective animation of Twelf
descriptions.

The specific work undertaken here can be extended in a few dif-
ferent ways. As an extension to our notion of rigidity, we might
observe that, when applying a variable of typeΠ

−−→
x:B.A, we could

identify redundant type information, not only between aBi andA,
but also between aBi and a differentBj . It would also be inter-
esting to relate our work to the ideas of Reed [22] who describes
a notion ofstrictnesssimilar to rigidity, used for the different pur-
pose of identifying sub-terms of LF objects that could be recon-
structed if elided – in contrast, we avoid redundant type check-
ing but still generate a complete LF object. Such an understanding
might lead both to an improvement of our translation and to the
ability to shorten LF terms that are needed in applications such as
that of proof-carrying-code [17]. From an implementation perspec-
tive, another possible optimization is to avoid constructing an LF
object explicitly when the task has been identified as that ofonly
determining whether a type has an inhabitant: experiments in this
direction indicate in some cases a ten-fold performance improve-
ment over the optimized translation. Techniques from the area of
extracting programs from proofs that pertain to isolating parts of a
proof that do not contribute to its overall computational content—
e.g.,, see [25]—are potentially useful to the application of such an
optimization; these techniques might provide the basis fornoting
components of a type whose inhabitants do not participate inthe
term corresponding to the overall type.

We have focused here on realizing Twelf through a translation
toλProlog. A different approach, worthy of investigation, is that of
compiling Twelf specifications directly to bytecode for thevirtual
machine underlying the Teyjus system. Such an approach would
make it possible to realize optimizations that have been developed
for the direct implementation of Twelf [20, 21]. Of special note here
are optimizations like the linear heads treatment of unification de-
scribed by Pientka and Pfenning [21] for minimizing occurs check-
ing, that could make a difference in examples such as thepermpro-
gram considered in the previous section: direct compilation would
allow us to regain opportunities for such improvements thatmight
be lost by translating first toλProlog and then relying on its im-
plementation that is not specially optimized to treat Twelf-specific
programs.

A more ambitious line of development concerns meta-reasoning
over specifications. Existing tools might be used to reason about
LF programs via the translation, the transparency of the translation
becoming essential. Anecdotal evidence suggests that thistrans-
parency is not only enabling, it is also elucidating: that the gener-
atedhohh program is easier to reason about because it highlights
those types that could have logical importance, and elides those that
do not.

8. Acknowledgements
This work has been supported by the NSF grants CCR-0429572 and
CCF-0917140. Opinions, findings, and conclusions or recommen-
dations expressed in this papers are those of the authors anddo not
necessarily reflect the views of the National Science Foundation.

References
[1] D. Baelde.A linear approach to the proof-theory of least and greatest

fixed points. PhD thesis, Ecole Polytechnique, Dec. 2008. URL
http://www.lix.polytechnique.fr/~dbaelde/thesis/.

[2] D. Baelde, D. Miller, and Z. Snow. Focused inductive theorem prov-
ing. In J. Giesl and R. Haehnle, editors,IJCAR, Lecture Notes in
Computer Science. Springer-Verlag, 2010. (to appear).

[3] P. Brisset and O. Ridoux. The architecture of an implementation
of lambda-prolog: Prolog/mali. InILPS Workshop: Implementation
Techniques for Logic Programming Languages, 1994.

[4] A. Church. A formulation of the simple theory of types.J. of Symbolic
Logic, 5:56–68, 1940.

[5] A. Felty. Specifying and Implementing Theorem Provers in a Higher-
Order Logic Programming Language. PhD thesis, University of Penn-
sylvania, Aug. 1989.

[6] A. Felty and D. Miller. Encoding a dependent-typeλ-calculus in a
logic programming language. In M. Stickel, editor,Proceedings of
the 1990 Conference on Automated Deduction, volume 449 ofLNAI,
pages 221–235. Springer, 1990.

[7] A. Gacek. The Abella interactive theorem prover (systemde-
scription). In A. Armando, P. Baumgartner, and G. Dowek, edi-
tors, Fourth International Joint Conference on Automated Reason-
ing, volume 5195 ofLNCS, pages 154–161. Springer, 2008. URL
http://arxiv.org/abs/0803.2305 .

[8] A. Gacek. A Framework for Specifying, Prototyping, and Reasoning
about Computational Systems. PhD thesis, University of Minnesota,
2009.

[9] A. Gacek, S. Holte, G. Nadathur, X. Qi, and Z. Snow. The
Teyjus system – version 2, Mar. 2008. Available from
http://teyjus.cs.umn.edu/ .

[10] A. Gacek, D. Miller, and G. Nadathur. Combining genericjudgments
with recursive definitions. In F. Pfenning, editor,23th Symp. on Logic
in Computer Science, pages 33–44. IEEE Computer Society Press,
2008.

[11] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, 1993.

[12] W. A. Howard. The formulae-as-type notion of construction. In J. P.
Seldin and R. Hindley, editors,To H. B. Curry: Essays in Combinatory
Logic, Lambda Calculus, and Formalism, pages 479–490. Academic
Press, New York, 1980.

[13] D. Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification.J. of Logic and Computa-
tion, 1(4):497–536, 1991.

[14] D. Miller and A. Tiu. A proof theory for generic judgments. ACM
Trans. on Computational Logic, 6(4):749–783, Oct. 2005.

[15] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs
as a foundation for logic programming.Annals of Pure and Applied
Logic, 51:125–157, 1991.

[16] G. Nadathur and D. Miller. An Overview ofλProlog. InFifth Interna-
tional Logic Programming Conference, pages 810–827, Seattle, Aug.
1988. MIT Press.

[17] G. C. Necula. Proof-carrying code. InConference Record of the 24th
Symposium on Principles of Programming Languages 97, pages 106–
119, Paris, France, 1997. ACM Press.

[18] T. Nipkow. Functional unification of higher-order patterns. In
M. Vardi, editor, Proc. 8th IEEE Symposium on Logic in Computer
Science (LICS 1993), pages 64–74. IEEE, June 1993.

[19] F. Pfenning and C. Schürmann. System description: Twelf — A meta-
logical framework for deductive systems. In H. Ganzinger, editor, 16th
Conference on Automated Deduction (CADE), number 1632 in LNAI,
pages 202–206, Trento, 1999. Springer.

[20] B. Pientka. Eliminating redundancy in higher-order unification: A
lightweight approach. In U. Furbach and N. Shankar, editors, IJCAR,
volume 4130 ofLecture Notes in Computer Science, pages 362–376.
Springer, 2006. ISBN 3-540-37187-7.

http://www.lix.polytechnique.fr/~dbaelde/thesis/
http://arxiv.org/abs/0803.2305
http://teyjus.cs.umn.edu/

[21] B. Pientka and F. Pfenning. Optimizing higher-order pattern unifica-
tion. In19th International Conference on Automated Deduction, pages
473–487. Springer-Verlag, 2003.

[22] J. Reed. Redundancy elimination for LF.Electron. Notes Theor.
Comput. Sci., 199:89–106, 2008. ISSN 1571-0661. doi: http://dx.
doi.org/10.1016/j.entcs.2007.11.014.

[23] Z. Snow. Parinati. http://www.cs.umn.edu/~snow/parinati,
2010.

[24] Z. Snow. Realizing the dependently typedλ-calculus. Master’s thesis,
University of Minnesota, 2010.

[25] Y. Takayama. Extraction of redundancy-free programs from construc-
tive natural deduction proofs.Journal of Symbolic Computation, 12
(1):29–69, 1991.

A. Proofs of Theorems
A.1 Correctness of the simplified encoding
(Theorem 1)

A.1.1 Completeness

We use induction on the derivation ofΓ ⊢ M : A to build one for
{{Γ}} −→ {{M : A}}. We proceed by case analysis on the canonical
typeA.

If A is of the formΠx:B.A′ thenM must be of the formλx:B.M ′

and the LF derivation must end with anabs-objrule, i.e., a rule of
the form

Γ ⊢ A′ : Type Γ, x : B ⊢ M :′ A′

abs-obj
Γ ⊢ (λx:B.M ′) : (Πx:B.A′)

The induction hypothesis gives us a derivation for

{{Γ, x : B}} −→ {{M ′ : A′}}.

By applying the rules∀R and⊃ R to this, we get a derivation for
{{Γ}} −→ ∀x. {{x : B}} ⊃ {{M ′ : A′}}. The righthand side of this
sequent is the expected goal:

{{(λx:B.M ′) : (Πx:B.A′)}} =
∀x. {{x : B}} ⊃ ({{A′}} (〈λx:B.M ′〉 x)),

and〈M ′〉 = (〈λx:B.M ′〉 x) by virtue ofη-conversion.

If A is a base type thenM must be of the formx N1 . . . Nn and
the canonical LF derivation must end with a chain ofapp-objrules
following avar-objrule that reveals that

x : Πy1:B1. . . .Πyn:Bn.A
′ ∈ Γ.

Moreover,A must beA′[N1/y1, . . . , Nn/yn] and, from looking at
the right upper premise of theapp-objrules, there must be shorter
derivations of

Γ ⊢ Ni : Bi[N1/x1, . . . , Ni−1/xi−1]

for 1 ≤ i ≤ n. By the induction hypothesis we obtain derivations
Di of {{Γ}} −→ {{Ni : Bi[N1/x1, . . . , Ni−1/xi−1]}}. Further,
{{Γ}} must contain

∀y1. ({{B1}} y1) ⊃ . . . ⊃
∀yn. ({{Bn}} yn) ⊃ hastype (x y1 . . . yn) 〈A

′〉,

i.e., the encoding ofx : Πy1:B1. . . .Πyn:Bn.A
′. By applying

backchainon that clause, choosing〈Ni〉 for yi and using the deriva-
tionsDi, we obtain a derivation of

{{Γ}} −→ hastype (x 〈N1〉 . . . 〈Nn〉)
(〈A′〉[〈N1〉/y1, . . . 〈Nn〉/yn]).

The right side of this sequent is precisely

{{(x N1 . . . Nn) : A
′[N1/y1, . . . , Nn/yn]}}.

A.1.2 Soundness

We prove the soundness direction by induction on the derivation
of {{Γ}} −→ ({{A}} M): assuming thatΓ ⊢ A : Type has a
derivation, we establish thatM = 〈M ′〉 for some canonical object
M ′ and we build a derivation ofΓ ⊢ M ′ : A. A case analysis on
the structure of the canonical typeA will guide us.
If A is of the formΠx:B.A′ then the structure of{{A}} forces the
hohh derivation to conclude as follows:

{{Γ, x : B}} −→ ({{A′}} (M x))
∀R, ⊃R

{{Γ}} −→ ∀x. ({{B}} x) ⊃ ({{A′}} (M x))

SinceA is a validTypeunderΓ, B must also be, andA′ must be
valid under(Γ, x : B). We can thus apply the inductive hypothesis,
and we obtain thatM x = 〈M ′〉 and thatΓ, x : B ⊢ M ′ : A′

is derivable for some canonical objectM ′. Sincex does not occur
free inM , we conclude that

M = (λx.〈M ′〉) = 〈λx:B.M ′〉,

and we deriveΓ ⊢ (λx:B.M ′) : (Πx:B.A′) using theabs-obj
rule and our derivation ofΓ ⊢ B : Type.

Otherwise,A is a base type, and the derivation we are considering
is that of{{Γ}} −→ hastypeM 〈A〉. This derivation must end in a
backchainrule that uses some clause in{{Γ}} of the form

∀y1. ({{B1}} y1) ⊃ . . . ⊃
∀yn. ({{Bn}} yn) ⊃ hastype (x y1 . . . yn) 〈A

′〉;

note that the variablesy1, . . . , yi−1 can appear in{{Bi}} here. Thus,
for somehohh termsN1, . . . , Nn,

〈A〉 = 〈A′〉[N1/y1, . . . , Nn/yn],

M = (x N1 . . . Nn), and, for eachi such that1 ≤ i ≤ n, there is
a shorter derivation of

{{Γ}} −→ ({{Bi}} yi)[N1/y1, . . . , Ni/yi],

i.e., of {{Γ}} −→ ({{Bi}}[N1/y1, . . . , Ni−1/yi−1] Ni). Further,
we know thatx : Πy1:B1. . . .Πyn:Bn.A

′ ∈ Γ for somex. We
now claim that, for1 ≤ i ≤ n, Ni = 〈N ′

i〉 for some canonical
LF objectN ′

i and thatΓ ⊢ N ′
i : Bi[N

′
1/y1 . . . N

′
i−1/yi−1] has

a derivation. If this claim is true, then, we can use thevar-obj rule
to deriveΓ ⊢ x : Πy1:B1. . . .Πyn:Bn.A

′ and follow this by a
sequence ofapp-objrule applications to prove

Γ ⊢ (x N ′

1 . . . N ′

n) : A
′[N ′

1/y1 . . . N
′

n/yn].

Now, evidentlyM = 〈x N ′
1 . . . N ′

n〉 and, since substitution
permutes with encoding,A = A′[N ′

1/y1, . . . , N
′
n/yn]. Thus, the

desired result would be proven.
It only remains to establish the claim. We actually strengthen it

to include also the assertion that, for1 ≤ i ≤ n,

Γ ⊢ Bi[N
′

1/y1 . . . N
′

i−1/yi−1] : Type

has a derivation. To prove it, we use an inner induction oni. Since
Γ is a well-formed context, andx : Πy1:B1. . . .Πyn:Bn.A

′ ∈ Γ,
there must be a derivation of

Γ, x1 : B1, . . . , xi−1 : Bi−1 ⊢ Bi : Type

for 1 ≤ i ≤ n. Using Proposition 1 and the induction hypothesis
we see that there must be a derivation of

Γ ⊢ Bi[N
′

1/y1 . . . N
′

i−1/yi−1] : Type.

Noting that

{{Bi}}[N1/y1, . . . , Ni−1/yi−1] = {{Bi[N1/y1, . . . , Ni−1/yi−1]}},

the outer induction hypothesis and the shorter derivation of

{{Γ}} −→ ({{Bi}}[N1/y1, . . . , Ni−1/yi−1] Ni)

http://www.cs.umn.edu/~snow/parinati

allows us to conclude thatNi = 〈N ′
i〉 for some canonical LF term

N ′
i and that there is a derivation of

Γ ⊢ N ′

i : Bi[N
′

1/y1 . . . N
′

i−1/yi−1],

thus verifying the claim.

A.2 Completeness of the optimized encoding (Theorem 2)

If {{Γ}} −→ {{A}}M has a derivation, thenJΓK+ −→ JAK−M
has a derivation as well. Note that for this direction of the proof
we are simply dropping information (subderivations) and sowe
do not rely onΓ being a valid specification orA being a valid
type. We proceed by induction on the structure of the derivation
of {{Γ}} −→ {{A}}M , followed by case analysis onA.

If A is of the formΠx:B.A′ our derivation ends as follows:

{{Γ, x : B}} −→ {{A′}} (M x)
∀R, ⊃R

{{Γ}} −→ {{Πx:B.A′}} M

By the inductive hypothesisJΓ, x : BK+ −→ JA′K− (M x) has a
derivation, and by applying∀R and⊃ R to this derivation we can
construct a derivation of

JΓK+ −→ JΠx:B.A′K− M

Otherwise,A is a base type and our derivation proceeds by backchain-
ing on some(y : Π

−−→
x:B.A′) ∈ Γ, with 〈A〉 = 〈A′〉[t1/x1 . . . tn/xn]:

{{Γ}} −→ F1 . . . {{Γ}} −→ Fn
backchain

{{Γ}} −→ {{A}} (y
−→
t)

Here,Fi = ({{Bi}} xi)[t1/x1 . . . tn/xn]. As in the completeness
proof of the simplified encoding, we obtain by an inner induction
that eachti is of the form〈t′i〉 and thus that

Fi = {{Bi[t
′

1/x1 . . . t
′

n/xn]}}(ti).

We shall build the derivation ofJΓK+ −→ JAK−(y
−→
t) by using

backchainon the optimized encoding of(y : Π
−−→
x:B.A′) ∈ Γ, by

choosing
−→
t for −→x . The resulting premises are either

JΓK+ −→ JBi[t
′

1/x1 . . . t
′

n/xn]K
− ti

whenxi does not occur rigidly inA′, and this case is provided for
by the inductive hypothesis, or⊤ otherwise, which we derive using
⊤R.

	1 Introduction
	2 A Higher-Order Predicate Logic for Describing Computations
	3 Logic Programming Using the Twelf Specification Language
	4 From Twelf Specifications to Predicate Formulas
	5 An Improved Translation of Twelf Specifications
	6 Performance Comparisons
	7 Conclusion and Future Work
	8 Acknowledgements
	A Proofs of Theorems
	A.1 Correctness of the simplified encoding (Theorem ??)
	A.1.1 Completeness
	A.1.2 Soundness

	A.2 Completeness of the optimized encoding (Theorem ??)

