arXiv:1005.4379v1 [cs.LO] 24 May 2010

A Meta-Programming Approach to Realizing
Dependently Typed Logic Programming

Zachary Snow

Computer Science and Engineering
University of Minnesota
200 Union Street SE
Minneapolis, MN 55455

snow@cs.umn.edu

Abstract

Dependently typed-calculi such as the Logical Framework (LF)
can encode relationships between terms in types and caralatu
capture correspondences between formulas and their pi®oth
calculi can also be given a logic programming interpretatibe
Twelf system is based on such an interpretation of LF. We con-
sider here whether a conventional logic programming lagguzan
provide the benefits of a Twelf-like system for encoding tgpel
proof-and-formula dependencies. In particular, we preasimple
mapping from LF specifications to a set of formulas in the kigh
order hereditary Harrophphh) language, that relates derivations
and proof-search between the two frameworks. We then shaiwv th
this encoding can be improved by exploiting knowledge ofitié-
formedness of the original LF specifications to elide muature
dant type-checking information. The resulting logic pagrhas a
structure that closely resembles the original specificatioereby
allowing LF specifications to be viewed ashh meta-programs.
Using the Teyjus implementation ofProlog, we show that our
translation provides an efficient means for executing LFcipe
cations, complementing the ability that the Twelf systevjaes
for reasoning about them.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guage¥ Language Classifications— Constraint and logic lan-
guages; F.4.INlathematical Logic and Formal LanguageMlath-
ematical Logic— Lambda calculus and related systems, Laigit
constraint programming, Proof theory

General Terms Theory, Languages

Keywords logical frameworks, dependently typed lambda calculi,
higher-order logic programming, translation

1. Introduction

There is a significant, and growing interest in mechanismsgec-
ifying, prototyping and reasoning about formal systemsdina de-
scribed by syntax-directed rules. Dependently typezhlculi such
as the Logical Framework (LF) [11] provide many convenience
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from a specification perspective in this context. Such dafed
cilitate the use of a higher-order approach to describimgsyn-
tax of formal objects and they allow relationships betwesrms
to be captured in an elegant way through type dependendies. F
thermore, dependently typeédcalculi enjoy a well-known isomor-
phism between formulas and types|[12], leading to a unificabif
the concept of a proof of a formula with an inhabitant of a give
type. Thus, the search for type inhabitants can be identifi¢a
proof-search and can thereby be given a logic programmitgg-in
pretation. The Twelf system [19] that we consider here dtgplo
these possibilities relative to LF. As such, it has been \smed
cessfully in specifying and prototyping varied formal gyss, and
mechanisms have also been built into it to reason aboutfaeci
tions.

Predicate logics are also capable of encoding syntaxidulec
specifications, and provide the basis for logic programmarg
guages in the familiar tradition of Prolog. Within this framork,
the logic of higher-order hereditary Harropohh) formulas [15]
that underlies the languageProlog [16] provides a builtin abil-
ity to treat binding notions in syntax and thus has particutse-
fulness in representing formal systems. However, unlikethis
logic cannot reflect dependencies between objects intcstgpe
does not directly represent the relationship between fasnand
their proofs. While such correspondences can always bededco
by hand through auxiliary predicate definitions, it is ofeirgst
to understand if a systematic encoding is possible. A specifi
form to this question is if Twelf specifications can be tratest
into AProlog programs, allowing such specifications to be seen as
AProlog “meta-programs.” There are benefits to such a pdisgibi
the convenience of writing specifications using dependgrd can
be combined with the ability both to execute them via an efiti
AProlog implementation, and to reason about them usingdagid
systems meant for analyzirigphh descriptions![2,/7, 10, 14].

A partial answer to the question raised above has been @vid
by Felty, who described a translation of LF specification&dhh
formulas and then showed that LF derivations correspondtiyxa
to hohh derivations of the translated LF judgmelnt/[5, 6]. The focus
on matching derivations allows Felty to assume the existeric
a complete LF judgment, and, in particular, of an LF object in
her translation. However, this assumption is inapproeriatour
context, given that we are interesteddanstructingproof terms
that show particular types are inhabiteg,, in proof searchthat
plays a fundamental role in the logic programming settingg W
therefore refine the earlier mapping to remove this assamjtind
show that the resulting translation preserves derivghiiita sense
relevant to the logic programming interpretation; an int@ot part
of our proof is showing how to extract an LF object satisfying
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a type from a derivation constructed using thehh version of
the specification. Our first encoding may include redundgoé-t
checking judgments which obscure the translated speddicand
can result in poor execution behavior. We design conditimns
eliminating some of these judgments, resulting in an imedov
translation that corresponds closely to the intention efdlginal
LF specification. This part of our work relies on an analysithe
structure of LF expressions and also has relevance, for geam
to providing compact representations of proof terms. Bmnale
demonstrate that the execution of the translated form bynmet
the Teyjus implementationl[9] ofProlog [16] provides an effective
means for animating Twelf programs.

In the next two sections, we describe a relevant fragmertteof t
hohh logic and the Twelf specification language. Secfidbn 4 then
presents our first translation. In the following section, describe
and exploit a property of LF expressions and type-checkingt
fine the earlier translation, producing a more efficient aadspar-
ent version. Sectidnl 6 provides experimental data towandsart-
ing the use of this translation as a means for executing Tpvelf
grams. We conclude the paper with a discussion of relateld armt
possible future directions. This work has been developg@4i
we refer the reader to that document for complete proofs aoé m
detailed discussions.

2. A Higher-Order Predicate Logic for
Describing Computations

The logic of hohh formulas is based on an intuitionistic version
of Church’s simple theory of types! [4]. Both logics are boner

a typed form of the\-calculus. The types are constructed using
—, the infix, right associative function type constructogrsng
from a finite collection of atomic types that includesthe type of
propositions, and at least one other tfjpale assume that we are
given sets of variables and constants, each with an assddigie.
The full collection of (typed) terms is generated from thbgehe
usual abstraction and (left associative) application ajoes. Terms
that differ only in the names of their bound variables aredist
tinguished. We further assume a notion of equality betweemg
that is generated bg- andn-reduction. It is well-known that ev-
ery term has a unique normal form under these reduction epera
tions in this simply-typed setting. All terms are to be catwd into
such a form prior to their consideration in any context. Weéevr
t[s1/x1,..., sn/xx] to denote the result of simultaneously replac-
ing the variablesq, . . ., z, with the termssy, ..., s, in the term

t, renaming bound variables as needed to avoid accidentalreap
This substitution operation is defined only whenandzx; are of
the same type fot < i < n.

We will use only a fragment of the fulkohh logic here; this
fragment still possesses the proof-theoretic propeftiasare fun-
damental to the logic programming interpretation ofiibéh logic.
The constants from which terms are constructed are diffiated
into nonlogical ones that constitute signatureand logical ones.
We do not permib to appear in the type of the arguments of non-
logical constants and variables. The logical constantsesteicted
to T of typeo, D of typeo — o — o that is written in the custom-
ary infix form and, for each type, II of type (&« — 0) — o. II
represents the universal quantifier as a function over ¥égsab-
breviatell (Az.F') by Vz.F. An atomic formula denoted byA4, is
a term of typeo of the formp t1 ... ¢, wherep is a nonlogical
constant. The logic of interest is characterized by twoemibns
of terms called>- and D-formulas that are defined mutually recur-
sively by the following syntax rules:

10ther, non-interpreted type constructors can be added reuneat dis-
cussed here for simplicity.

G T|A|D>G|Va.G
D A|GDD|Va.D

A specification or logic program is a finite collection of cboD-
formulas that are also callggogram clausesind a goal or a query
is a closed5-formula.

Computation corresponds to searching for a derivation @-a s
quent of the fornk; I' — G whereX is the initial (language) sig-
nature,I’ is a logic program and: is a goal. Figur€]l presents the
rules for constructing such a derivation. Read in a proofcsedi-
rection, thevRrule leads to an expansion of the signature in the se-
quent whose derivation is sought and thé& rule similarly causes
an addition to the logic program. The expression “t B-germ” in
the VL rule means that is a closed term all of whose nonlogical
constants are contained Y The derivation rules manifest a goal-
directed character: to find a derivation 0y I" — G, we simplify
G based onits logical structure and then usediederule to select
a formula from the logic program for solving an atomic goah-N
tice also that theleciderule initiates the consideration of a focused
sequence of rules that is similar to backchaiffirig. particular, if
the formula selected fromi has the structure

(Vz1.F1 D ... D Vzu. (Fn D A') o)
then this sequence is equivalent to the rule
I — Ff I — F),
>»I— A

which has the proviso that for sometermst., ..., t, that have
the same types as, . .., z,, respectively, it is the case thdtis
equal toA'[t1/x1, ..., tn/zs] and, forl < i < n, F; is equal to
Fi[tl/l’h ... ,ti/xi].

The logic that we have described has been given an efficient im
plementation in th@eyjussystem|[9]. It is possible also to reason
in sophisticated ways about specifications that are cartstiwis-
ing it. To begin with, the logic has strong meta-theoretiopgarties
arising from the fact that derivability in it correspondsetty to in-
tuitionistic provability. Moreover, it is possible to cdnsct logics
incorporating mechanisms such as induction to reason folyer
about what does and does not follow from a given specification
[4,18,[10/14]. In fact, systems such as Abella [7] and Tac fjeh
been constructed to provide computer support for such niago

backchain

3. Logic Programming Using the Twelf

Specification Language

There are three categories of expressions indirkds typesor type
familiesthat are classified by kinds ambjectsor termsthat are
classified by types. We assume two denumerable sets of kegjab
one for objects and the other for types. We usandy to denote
object variablesy, andv to denote type variables andto denote
either. LettingK range over kinds4 and B over types, and/ and

N over object terms, the syntax of LF expressions is given by th
following rules:

K = Type|lllx:AK
A = wu|Uz:AB|Xt:AB|AM
M = z|AmAM|MN

Expressions of any of these kinds will be denoted Bynd Q.
Here,IT and \ are operators that associate a type with a variable

2For the reader unfamiliar with such presentations, the esgion

;T =Ny’ corresponds essentially to the selection of the prograosela
D as the one to backchain on. This then leads to instantiatibusiversally
quantified variables and to the solution of the “body” godithe clause us-
ing the rulesvL andD L, culminating eventually in solving the atomic goal
by matching it with the head of the clause using iérule.
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Figure 1. Derivation rules for théiohh logic

and bind its free occurrences over the expression afterahed
Terms that differ only in the names of bound variables ara@-ide
tified. As with thehohh logic, P[N1/z1, ..., N,/z,] denotes a
simultaneous substitution with renaming to avoid variatapture.
We write A — P for IIz:A.P whenx does not appear free iR.

We abbreviatdlzi:A;. ...z, A, . P by HEZLP.

LF expressions are equipped with a notiongsfeduction de-
fined through the rulé\z:A.P) N —3 P[N/z]. All LF expres-
sions that are well-formed in the sense formalized belovwnadr
ize strongly under this reduction relation|[11]. Moreovay avell-
typed expressior? has a unique normal form up to changes in
bound variable names. We denote this normal fornPfy

The type correctness of LF expressions is assessed refative
contexts that are finite collections of assignments of tygmeskinds
to variables. Formally, contexts, denotedIfyare given by the rule

r = |Tu:K|Lz:A

Here,- denotes the empty collection. We wrifern(I") to denote
the variables with assignmentslih We are concerned with asser-
tions of the following four forms:

F I ctx I' - K kind '-A:K r-mM:A

The first assertion signifies thétis a well-formed context. The
remaining assertions mean respectively that, relative (oell-
formed) context’, K is a well-formed kind,A is a well-formed
type of kind K and M is a well-formed object of typel. Figure2
presents the rules for deriving such assertions. Noticeftaa
context to be well-formed it must not contain multiple assignts
to the same variable. To adhere to this requirement, bounable
renaming may be entailed in the use of gheind, pi-fam, abs-fam
andabs-objules. The inference rules allow for the derivation of an
assertion of the formt® - M : A only whenA is in normal form.
To verify such an assertion whehis not in normal form, we first
deriveT’ + A : Typeand then verify[' + M : A?. A similar
observation appliestb - A : K.

A variablew that appears in an LF expressidhthat is well-
formed with respect to a context has a kind or type of kind
Type associated with it through either an assignmentior a
binding operator. Moreover, the normal form of this kind ype
must have a prefix ofls. If the length of this prefix is, then an
occurrence ofw is fully appliedif it appears in a subterm of the
formw My ... M,. Further,P is canonicalwith respect td" if
it is in normal form and if every variable occurrence in it idly
applied. A well-formed context is canonical if the type or kind it
assigns to each variable is canonical relativé'ta\ well-formed
type of the formu My ... M, thatis fully applied is called base
type The LF system admits a notion gfexpansion using which
any well-formed expression can be converted into a canbfuica.

In later sections we shall consider LF derivations in which
all expressions in the end assertion are in nhormal form.ddoti
that every expression in the entire derivation must theo bésin

(Az:A.B) : (IIz:A’.K) and (A\z:A.M) : (Ilz:A’.B) it must be
the case thatl and A’ are identical. Finally, normalization need not
be considered in the use of thar-famandvar-objrules.

The following “transitivity” property for LF derivationshiat
follows easily from the results in_[11] will be useful latenere
« stands for any judgment, and substitution and normalimatio
over o and T’ corresponds to distributing these operations to the
expressions appearing in them.

Proposition 1 (Substitution) LetI'y, I'> be canonical contexts,
and A be atype in canonical form. If; - M : A has a derivation,
andT';,z : A, T2 F « has a derivation, thefr, (I'2[M/z])? +
(a[M/z])? has a derivation as well.

Additionally we will use a second property of LF derivatipns
which follows from Propositiofl1.

Proposition 2 (Renaming) Let P be a canonical type or kind,
I' = I'i,z : P, "> be a canonical context, and a canonical

judgment. Lety be a variable not bound ifi", and not occurring

in a. ThenT'y,z : P,T'> + « has a derivation if and only if
I'i,y: P,I'2ly/z] b aly/z] has one.

The logic programming interpretation of LF is based on vieyvi
types as formulas. More specifically, a specification or pogin
this setting is given by a context. This starting contex¢patalled
a signature essentially describes the vocabulary for constructing
types and asserts the existence of particular inhabitantofme of
these types. Against this backdrop, questions can be asimd a
the existence of inhabitants for certain other types. Fiyntais
amounts to asking if an assertion of the fofm M : A has
a derivation. However, the objed” is left unspecified—it is to
be extracted from a successful derivation. Thus, the sdarch
derivation of the assertion is driven by the structuredofnd the
types available from the context.

A concrete illustration of the paradigm is useful for latesodis-
siond] Consider a signature or contdXicomprising the following
assignments in sequence:

nat : Type

z:nat

s : nat — nat

list : Type

nil @ list

cons : nat — list — list

append : list — list — list — Type

appNil : 11K :list.append nil K K

appCons : 1 X mat. I L:list 1K :list. IIM :list.

3The example of appending lists has been chosen here forritisemess
and because it allows for an easy connection with more toadit forms
of logic programming. The primary application domain of Tiwis in

specifying (and reasoning about) formal systems such dsateas and
interpreters for languages, type assignment calculi aodfmystems. This

such a form. This in turn means that in judgments of the forms orientation informs the choice of benchmarks used in Sefio
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Figure 2. Rules for Inferring LF Assertions

(append L K M) —
(append (cons X L) K (cons X M))

We can ask if there is some terld such that the judgment

I' = M : append (cons z nil)
(cons (s z) nil)
(cons z (cons (s z) nil))

is derivable. Assuming that is given by the ambient environment,
such a query can be posed in Twelf simply by presenting the typ
expression. The logic programming interpreter of Twelfl fiiid
that the proof term

(appCons z nil (cons (s z) nil)
(cons (s z) nil)
(appNil (cons (s z) nil)))

inhabits this type and hence will succeed on the query. lohieg
this conclusion, the interpreter will use the types invodvippend
that are present if. Further it will do this in a way that bears
a close resemblance to the use of clauses in a Prolog-likaget
interpretingll like a universal quantifier ané> like an implication.
The simple example we have considered here will suffice to il-
lustrate most of the later ideas in this paper but it does riagb
out the richness of dependent types in specifications. We lss
demonstration to the many discussions already in the fitexaWe
also note that Twelf has many additional features like ahgal
quantification in types to be left implicit and permittingstanti-
atable variables in queries whose values are to be foundighro
unification. While these aspects are treated in our impléatiom,
to keep the theoretical discussions focused, we shall asshat
the only capability that is to be emulated is that of deteingjrthe
derivability of an assertion of the fordi - M : A in which T’
and A are in canonical form (and/ is left unspecified). This as-
sumption is easily justified: these will be “type-checkediop to
conducting a search and the Twelf system assumes equatigr un
n-conversion.

4. From Twelf Specifications to Predicate
Formulas

Felty has previously shown how to translate LF specificatiand
judgments intohohh formulas [5, 6]. Her translation proceeds in
two steps. First, she describes a coarse mapping of LF esipnss
into (simply typed)\-terms. This mapping loses information about
dependencies in types and kinds and also does not refleatrtee ¢
spondences between objects and types and types and kirelge Th
relationships are encoded later through binary predicates \-
terms.

The general structure of Felty’s translation is applicabléhe
context of interest to us. However, the details of her mappia
not quite fit our needs because of her focus damivationsin
the LF andhohh logics. One manifestation of this is that her
translation is not based exclusively on types, but assurss a
the availability of the objects they are intended to qualifpis
is not acceptable in the context of proof search where tHeisas
precisely to determine the existence of those objects: veel fae
translation that is only based on the type, and which can pkeab
to an hohh metavariable to correspond to an LF query whose
object is left unspecified as a metavariable. Second, theaoess
result only states an equivalence between LF derivabifityfavhh
derivability for known LF assertions, and does not consider, for
example, whether it is possible for non-canonical or iliried
objects to be produced in the course of searching for praofa f
the hohh specification. In contrast, our completeness result will
guarantee that after running a query with a metavariabledsig
for the (encoding of the) object, the only possible institins of
that metavariable are actual encodings of terms.

The first step towards producing a translation ihtohh that
can be used to interpret Twelf specifications is to adaptyBelt
translation in a way that makes it acceptable in logic pnogning
discussions. Our translation shall only account for judginef the
formT' = M : A since these are the only ones of interest in the
logic programming setting described in the previous sacfithe
adequacy of this restriction actually relies on an auxili@asily
verified, fact: if" - A : Typeis known to have a derivation and
the last rule in a purported derivationBf-- M : A is anabs-obj



¢(A) := If-obj when A is a base type

Pz A.P) =

(u My ... M) =

<£CM1M7L> = <M1>

{Ilz:A.B} := AM. vVx. ({A}

P(A) = ¢(P)

(M,

#(Type) := If-type

u (M) ... (My)
(Az:AM) == A*WDg (M)

)
z) > ({B} (M z))
(

{A} := A\M. hastype M (A) whereA is a base type

Figure 3. Encoding of types, objects, and simplified translation ofjuidigments tdiohh

hastype z nat
Vn. hastype n nat O hastype (s n) nat
hastype nil list

Vn. hastype n nat D V. hastype 1list O hastype (cons nl) list
Vi. hastype l list O hastype (appNil 1) (append nil 1 1)
Vx. hastype x nat D VI. hastype l list D Vk. hastype k list D VYm. hastype m list D
Va. hastype a (append ! k m) D hastype (appCons x 1 k m a) (append (cons x 1) k (cons x m))

Figure 4. Simple translation of the LF specification f@ppend

then the left premise for the latter derivation must havecafand
hence does not need to be encoded by the translation.

Our translation is presented in Figure 3. This translatiost fi
encodes LF objects and types filwhh terms by dropping a lot
of typing information; as mentioned already, this inforiroatwill
be recovered later in the encoding of LF judgments. Undes thi
translation, an object (type) of type (kin@ is represented by an
hohh term of simple typeb(P), built from the atomic typeB-type
andlf-obj. The encoding of an object or base tyQds then given

ample, the Twelf specification afppend translates into the clauses
in Figure[4. From these clauses, we can, for example, demnive t
goal hastype (cons (s z) nil) list and we could search for terms
X satisfying the goal

hastype X (append (cons z nil)
(comns (s z) nil)
(cons z (cons (s z) nil))).

Let IV be the translation of an LF contekt and o’ be the

by (Q); note that in the process we assume a reuse of (LF) variable translation of the LF judgment. These translations are based on

names with an appropriate type as part of the corresporiding
signature. As an example, the LF signature at the end of #te la
section leads to the followinfohh signature:

nat : If-type
z : If-obj
s : If-obj — If-obj
list : If-type
nil : If-obj
cons : If-obj — If-obj — If-obj
append : If-obj — If-obj — If-obj — If-type
appNil : If-obj — If-obj
appCons : If-obj — If-obj —
If-obj — If-obj — If-obj — If-obj

Further, the LF typeppend nil nil nil gets translated to the same
term in hohh, where it has typéf-type This translation behaves
well with respect to substitution angtconversion, and is injective
for objects (types) of the same type (kind). Finally, we takethe
translation of LF type assignments and judgments in thetVest
clauses in Figurgl 3. To emphasize reliance only on the simeicif
types, these clauses describe explicitly only the traiosiatf an LF
type A. Such a type is mapped into &ahh predicate denoted by
{ A} that, intuitively, codifies the property of being a tranislatof
an LF object of typeA. This translation is defined on all canonical
types and uses thkohh predicatehastype of type If-obj —
If-type — o. If A is a base type{Ilz1:B;....Ilz,:B,.A} has
typer — o wherer is If-obj — ... — If-obj — If-obj with n
negative occurrences &fobj. Once the translation of LF types is
in place, we defind M : A} derivatively to be({A} (M)).

Twelf specifications are encoded by dropping all kind assign
ments and translating each type assignment they contaigin A%-

an implicit hohh signatureX. In the case that all the free variables
in « belong todom(T"), then, in factX consists of an isomorphic

copy of the symbols inlom(I"). Henceforth, we shall assune

to be just such amhohh signature and we shall write’ — o/

as a shorthand for; I¥ — «o’. The correctness of the (simple)
translation is then the content of the following theorem.

Theorem 1. Let T" be a well-formed canonical LF context and
let A be a canonical LF type such thdt - A : Typehas a
derivation. IfT" = M : A has a derivation for a canonical object
M, then there is a derivation dfI'} — {M : A}. Conversely,
if {T} — ({A} M) has a derivation for anyrohh term M of
appropriate type, then there is a canonical LF objadt such that
M = (M')yandT + M’ : A has a derivation.

Proof outline Completeness can be proved by a simple induction
on the LF derivation, building ahohh derivation that mimics its
structure. Soundness is more involved: we proceed by ifauct
on thehohh derivation, gradually recovering the structureidf,
maintaining the derivability ol - A : Typethat allows us to
build an LF derivation even in the case thais-objwas the last
rule used. The detailed proof is presented in Appehdix A.

The simple translation presented in this section cannohbe t
basis of a practical implementation of logic programming-m
Proof search using a program it produces may involve reglyate
proving goals of the formhastype M A for (encodings of) the
same objecf\/ and typeA. This can be seen from the example in
Figure[4: at every step of deriving an instanceippend, the lists
must be checked to be well-typed, which artificially introds a
quadratic complexity. An important point to note, howevstthat
this redundancy in “type-checking” is not easily deteatafstbm
the hohh program that is generated. Rather, it must be determined,
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Figure 5. Rigidly occurring variables in types and objects

and shown to be safely eliminable, based on deeper propaftie
LF terms. It is this issue that we take up in the next section.

5.  An Improved Translation of Twelf
Specifications

In order to make the translation of LF specifications ihighh
practical from an implementation standpoint, we make twt-op
mizations.

The first, and main, optimization exploits the fact that we ar
considering derivations of the forin - M : A wherel and A
have already been type-checked. For example, we may benganti
to determine whether the LF type

append (cons z nil) nil (cons z nil)

is inhabited. Before attempting to do this, we would haveady
determined thatppend (cons z nil) nil (cons z nil) is a valid
type, which means, for instance, that we would have chedhkaid t
(cons z nil) is a valid object of typdist. Therefore, there is no
need to show again thétons z nil) has this property in the course
of searching for an inhabitant of the displayed type. Oumoiged
translation takes advantage of this kind of observationtatcally
removing some run-time checking from the translation of bt
ing. More specifically, our optimization is based on thedaling
idea. Suppose we can determine that, for a partieylarmust al-
ways appear in the typ@A[t1/z1, . . ., tn/zs])?. Then the trans-
lation of the typdlIz1:B;. ... [Ix,:B,.A does not need to include
explicit type-checking over the instantiation:of We characterize
some of these cases by using the notion & occurrence ofc;
in A that is expressed formally through the judgmafitz; ¢ A
defined by the rules in Figufd 5; the rulesr andpy, in this fig-
ure act on LF types, and the rulesT,, APR,, andABS, act on LF
objects. We shall allow type checking over instantiatiohsigid
variables to be eliminated from the simple translation. Bing so,
we shall both reap an efficiency benefit and also make thetrefsul
translation correspond more closely to the original LF type

The second optimization is more transparent, not deperating
deep properties of dependent types. The essential ohiserigthe
following. Instead of producing predicates of the form

hastype X (append L K M)

andhastype L list, we can specialize them tgppend X L K M
andlist L. This results in g&hohh program that is much clearer,
and more closely related to the original LF specificationrétwer,
this simple transformation can also lead to better perfocean a
logic programming setting because it allows for the explain of
a common optimization, namely, the indexing on a predicateen

that speeds up the determination of candidate clauses ardni
backchain.

The improved translation that uses these two ideas is pregben
on Figure[6. TheJe]{ translation is used on type assignments ap-
pearing negatively (notably context items) afw] = on positive
typing judgments (notably the conclusion of LF assertioAs)be-
fore, that translation is entirely guided by the type, anfingel
for all canonical types. We shall use the notatjad : A]~ for
([A]~ (M), and defing[I']+ as the result of applyinge]: to
each context item, dropping kind assignments. Note thaéaas
of replacing unnecessary typing judgments witlwe could sim-
ply elide them all together; we usg as a placeholder because
simplifies later proofs. This translation is illustratedits/applica-
tion to the example Twelf specification considered in Se¢§ohat
yields the clauses shown in Figlife 7. These clauses showdrbe
trasted with the ones in Figuké 4 that are produced by théegarl
naive translation.

We shall now establish the correctness of the optimizedstran
lation. We first prove a fundamental lemma concerning rigat-
curring variables, that is in fact an observation about loF ain LF
base typed, if we have derivations of

'k z1:By. ... lx,:By.A : Type
IL'F Afti/z1...tn/xn] - Type

and there is a rigid occurrence of in A, i.e,, ?; r; Tt Ahas a
derivation, the™ + ¢; : B;[t1/z1 ... ti—1/x;—1] has a derivation.
The idea of the proof is as follows. The judgmeént x; —+ A gives

a path inA that leads tac;, and this path can never be erased by the
considered substitution; following this path simultanggun the
two LF derivations, one eventually finds on one side a dedwmat
of ' + z; : B; and on the other side the expected derivation of
I+ ti : Bi[h/xh e 7ti71/$i71].

In order to be able to use this observation in our correctaess
gument, we formulate a stronger, rather technical lemmiadiis
directly with encoded types that are the result of instaiotis of
(a priori) arbitraryhohh terms, and ensures that discovetedh
terms are in fact encodings of LF objects. These technidallde
concerning encodings are tedious but shallow, and the &misen
structure of the proof follows the lines sketched above.

it

and

Definition 1. Let? be a vector ohohh terms, andz a vector of
variables of the same length. 3 and N are LF objects, then we
write (M ~ N)[t1/z1...tn/zs] when

(M) = (N)[ts /@1 . .. tn/Tn)-

For LF typesA and B, we write(A ~ B)[t1/z1 ...tn/xn] When
the two types are equal up {®@ ~ e)[t1/xz1...t,/xx,] ON Objects
within. Finally we extend this notion to contexts of the séength

@{ pushing it down to the types bound by the context. We st o
¢ and 7 when they are obvious from the context, simply writing

P~Q.

Lemma 1. Let t be a vector ofhohh terms, 7 a vector of

variables, and§ of canonical LF types, all of same length, such
thatt; = (t}) for j < i.Letl'o =1 : B1,...,2n : Ba.

1. LetI’ and A be LF contexts)M an LF object andA a type, all
being assumed canonical. Lebedom(A). Suppose that there
are derivations ofz’;8;z; C, M andI',Tg,A + M : A
andT, A" - M’ : A, with A ~ A, M ~ M and
A" ~ A. Thent; is of the form(¢;) and there is a derivation of
I+ t; : Bi[tll/l‘h e ,t2,1/1‘7;71].

2. LetIIz: B.A be a canonical type, wherd is a base type.
Suppose thal' Tz B.A : Typeand @:z; C: A have
derivations. Further, for somel’ such thatA’ ~ A, suppose



[Mz:A.B]t = {

[[uﬁ}]ff =AM.u M m

AM.Vz. T D [B]f (M z)
AM. V. [A]™ (x) D [B]f (M z) otherwise

if T;x ¢ B

[Mz:A.B]~ := AM. Va. [A]*(x) D [B] (M z)

[[uﬁ}r =AM.u M m

Figure 6. Optimized translation of LF specifications and judgmentsdbh

nat z

Vn. nat n O nat (s n)

list nil

Vn.natn D V. list 1 D list (cons nl)
Vi. T D append (appNil 1) nil 11

Ve. TOVL. TDOVE. TDOVm. TD

Va. append a l k m D append (appCons x L k m a) (cons x 1) k (cons z m)

Figure 7. Optimized translation of the LF specification f@wpend

thatT' = A’ : Typehas a derivation. Thety = (¢;) and there
is a derivation of* + ¢} : B[t} /z1,...,ti_1/Ti—1]-

Proof. We prove part (1) by induction on the structure of the deriva-

tion of Z;d;z; C, M. In the argument below, we I&® be the
derivation of ', Ty,A = M : A, andD’ be the derivation of
LA+ M A

e In the base case ofiT,, M = z;7 wherey are distinct

bound variables frond. The derivationD must consist ofn
app-objrules and avar-objrule onzx;, whose typeB; must be

of the formILz:C.D, with A = D[/ /Z]. Note that, because
the variablegy; are distinct bound variables that are fresh with
respect toD, this substitution can be inverted, and we thus
have A[Z /%] = D. The other subderivations of the chain
of app-objapplications are instances o&r-obj establishing
yi - Ci[¢ /7], hence(y; : Ci[Y/Z]) € A for C} ~ Ci.

We next determing;. By n-equivalence we can assume that

is of the formAz; ... A\z,.u. We have

(M'y =t;7 =u[§ /7],
hence: = (M/)[Z /] = (M'[Z /7). Letw’ = M'[Z /7]
andt; = A\z:C".u/. We have
) = Azi... Aze. (M)[Z /Y]
= Az1...AZn.u =1;.

We know thatD’ derivesI', A’ + M’ : A’. From this we
obtain a derivation of

DAZ/Y) o A2/

by renaming variable¥ into 2, employing Propositiofl2. The
contextA’[Z /7] contains assignments; : C;) and the other
variables in its domain do not occurir nor A’[Z /%] (since
A" ~ A, A = D[y//7Z] and D is a subterm ofB; which
cannot contain any;). We then have

— —
I A\zC' W) (20" A2 /)
by weakening unused variables and usaf-objto introduce

the variables? . This is a typing derivation for;; we must now
show that the associated type is actually the expected one:

B; [t’l/:cl ... t;,l/:cz;l]

We haVG(A)[t1/£C1 . tn/:cn] = <A[t’1/£C1 . t;,l/:ci,1]>
and A" ~ A, from which we obtain, by injectivity of(e),
that A’ = A[ty/z}...t;_1/xi—1]. The same goes fo€;
and C;. Since B; = I1z:C.A[Z /7], and the substitutions
[t) /) ... ti_i/z;_1] and[Z /] permute, we have:

HﬁAq?/?] = Bl[tll/l’ll . .t,lb-,l/l’ifﬂ

¢ In theABs, case, we havd/ = A\y:A;.N andD ends with the

abs-objrule as follows:

F,Fo,A F A Type F,F07A7y:A1 F N: A,
F,F(),A [ ()\y:Al.N) : (Hy:A1.A2)

Then A’ ~ IIy:A;.As, and henced’ must be of the form
IIy: A} . A5 where A, ~ A;. Similarly, we obtain that\/’ is
of the form\y:A}.N" with N’ ~ N. Then,D’ must contain a
derivation of

A y: Al N2 A),
and we conclude by the inductive hypothesis.
In the APR, case, we havd/ = y N1...Np,, y & 7 and
Z:0;xi Co Nj. LetIlzi:Ch. ... Iz,:Chy.D be the type of
in (T, A). The derivatiorD starts with a chain oipp-objappli-
cations, followed byar-objon y. The premise corresponding
to N; establishes that

F,Fo,A [ Nj : CJ‘[N1/Z17. .. ,Nj71/2j71]

In (T, A"), the variabley is assigned the typgd~:C". D’ with all
C}, ~ Cx. Moreover, sinceM’ ~ (y Ni ... N,,) and sincey
is not affected by the instantiation of, it must be that/’ is of
the form(y Ny ... N,,,) with all N} ~ Nj. The derivatiorD’
must proceed in a similar fashion, namely a chairapp-obj
applications followed bwar-objon y. Therefore we have a
derivation of

F,A/ F N]l-ZC;[N{/Zl,...,Nj{,l/ijl]

We can conclude by the inductive hypothesis because
C]/[N{/Zl e N]{,l/ijl] ~ Cj[N1/Zl e Nj71/Zj71]

(which relies on the disjointness af and?).



The proof of (2) follows a similar pattern. First, by a stiatig
forward inspection of the first rules of the derivation of

Ik zB.A: Type

we extract a derivation df,I'o - A : Type Then, sinced is a
base type, it must be (by rukeer) that x; rigidly occurs in one
of its arguments\/. Note thatA and A’ have the same structure
on the path leading td/, since no object is involved there. Hence,
a simultaneous inspection of the first rules of the derivetiof
ILTp - A : TypeandI' ~ A’ : Typeyields derivations of
I,l'o w M:Tandl' - M': T’ for M’ ~ M andT’ ~ T. We
can conclude using part (1). |

The definition of rigidity described above might seem restri
tive. In particular, one might want to allow

T;0;2 Co :cﬁ

in INIT,. However, with such a rule the rigidity lemma described
above is no longer true. For example, in a signaftiontaining
num : nat — Typeandnumy, : IIn:nat.(num n), the object

t = num, provides a counter-example to Lemina 1, part (1):
we havel',z : (nat — num 2) F (z z) : (num z) and

' - (tz): (num z) butnotl’ F ¢ : nat — num z. This
example highlights a crucial aspect of our definition: theliap-
tions allowed inNIT, should always induciewvertible substitutions.
As in higher-order pattern unification |13,/ 18], we achielis by
restricting to applications involving a simple form Bfreductions
called5y-reductionsthat are similar to renaming.

and
I+ t} : Bj[tll/:cl, ce ,t;,l/:cjfl].
o \We first treat the case whefeé = T, i.e,, there is a derivation
of Z;z; C; A’. We assumed that - A : Type and sincd®

is valid we also have a derivation &f - Ilz:B.A" : Type
We can thus apply Lemnid 1, to obtath and a derivation
of ' + ¢ : Bi[th/z1,...,t;_1/xi—1], and we conclude by
Theoreni 1.

WhenF; # T, we can see that within the derivation of

I'F zB.A : Type
there is a derivation of
F,IE1:B1,.. : Bi1 }—Bi:Type

By substituting (Propositiof] 1) the derivations providgdthe
inner inductive hypothesis on this formula we constructrivde
tion of

ey Li—1

I+ Bi[tll/mh ey t;,l/m,l] : Type
We can now apply the outer inductive hypothesis i6n to
conclude thaT'} — ({Bi[ty/z1,...,ti_1/xi—1]} ;) has
a derivation. By Theorein] 1, we finally obtain thatis of the
form (t;).
We compose all derivations

ITY — {B;[th/z1,.. . ti 1 /zic1]} ti

We now use Lemmid 1 to prove the correctness of the optimized py packchairon the encoding ofy : Hﬁfy) € T, obtaining the

translation.

Theorem 2. LetI" be an LF context4 an LF type, both canonical,
such that+ T ctxandI’ - A : Typeare derivable. Then wheh/
is an arbitrary hohh term,{T'} — { A} (M) has a derivation if
and only if[[']t — [A]~ (M) has a derivation.

Proof. We establish the soundness direction by induction on the
derivation of the optimized translation, maintaining theswamp-
tions abouf” and A.

If Ais of the formIlz:B.A’ our derivation ends as follows:
[T,z: B]t — [A] (M )
[T]T — [z:B.A’] (M)
First, ' - B: Type + (I',z : B) ctxandl',z : B + A’ : Type
must have derivations sindeand A are well-formed. We can thus
apply the inductive hypothesis, obtaining that
{I,z: B} — {A}M z)

has a derivation. BYRandD R, {T'} — {IIx:B.A"}(M) has
one as well.

VR,OR

If A is a base type, then our derivation starts with a backchginin
on the encoding of som(g : H:@.A’) erl,ie,on

V1. ([[Bl}]f(ml) D...D
Vn. ([Ba] ™ (2n) O (u (y T) IV))).

In particular, this rule application has the form

[m]+ — A [m]+ —r f backchain
[T — (u(y@)(N)[t/a]

where F; is either ([B;] ™ (z:))[t1/z1, . .., ti/x;] or T. We per-
form an inner induction on < n, showing that for allj < i,
t; = (t;) for some LF object’;, and that we have derivations of

{r} — B[t /x1, .. t5_1/zia]} t)

expected derivation of

— —
(T} — hastype (y ) (u (NV)[t/a]
Completeness is proved by an induction on the derivation of
the simple translation. This direction is rather straightfard as
it consists only of dropping information. Details can berfdun
AppendiXA. O

Therefore, by Theoreni$ 1 ald 2, intuitionistic provabilinder
the optimized translation is equivalent to provability iR,land the
following is a theorem.

Theorem 3 (Optimized translation correctness)etT" be an LF
specification such that T' ctx has a derivation,A an LF type
such thatl’ - A : Typehas a derivation. Then, for any LF object
M such thatl' = M : A has a derivation[I']" — [M : A]™

is derivable. Moreover, ifT]" — [A] (M) for an arbitrary
hohh term M, then it must be that/ = (M) for some canonical
LF object such thal’ - M’ : A has a derivation.

6. Performance Comparisons

We have claimed two properties for our translation: thatdtices
an hohh program which corresponds closely to the original LF
specification, and that this program provides an effectieams for
executing the specification. Evidence for the first claimris/jgled

by the translation of theppend specification presented in Figlide 7,
especially when one uses the easily applied simplificatiba o
formula of the formT > F to F. Notice also the correspondence
of the definition of thexppend predicate to the one that one might
in, e.g, Prolog, if one drops the first “proof term” argument of the
predicate. To fully appreciate this benefit, it is necessappnsider
larger examples that space does not allow us to do in thisrpape
However, such examples are available with the implemeantati
[23]. We suggest that the reader look especially at the elanfp
the evaluator for Mini-ML with terms that are not indexed bgir
type that is described below in the collection of benchmaitiks



Example Twelf  Simple  Optimized Typed Optimized Indexing
reverse(10) 1.0 0.40 0.14 0.07 0.08
reverse(20) 1.0 0.57 0.19 0.12 0.11
reverse(30) 1.0 0.63 0.20 0.14 0.11
reverse(40) 1.0 0.41 0.13 0.10 0.07
reverse(50) 1.0 0.46 0.15 0.10 0.08
miniml(50) 1.0 0.74 0.25 0.18 0.08
miniml(100) 1.0 1.25 0.44 0.30 0.17
miniml(150) 1.0 1.75 0.56 0.41 0.25
miniml(200) 1.0 2.89 0.83 0.62 0.41
typed miniml(50) 1.0 2.27 1.07 0.57 0.48
typed miniml(100) 1.0 2.22 0.76 0.49 0.38
typed miniml(150) 1.0 3.49 1.44 0.67 0.55
typed miniml(200) 1.0 3.70 0.92 0.67 0.55
perm(10) 1.0 overflow 3.13 0.94 0.72
perm(20) 1.0 overflow 1.75 0.78 0.44
perm(30) 1.0 overflow 3.05 1.52 0.81
perm(40) 1.0 overflow 3.95 2.15 1.14
perm(50) 1.0 overflow 5.05 2.88 1.59
num(64) 1.0 158.19 0.25 0.23 0.21
num(128) 1.0 00 0.10 0.10 0.07
num(256) 1.0 00 0.15 0.14 0.13
num(512) 1.0 00 0.003 0.003 0.003

Figure 8. Performance comparison results

translation results in aliohh program that is what one might write
in hohh directly.

To test the second claim, we have carried out performance com
parisons between the Twelf implementation that intergrEtspec-
ifications directly via a Standard ML program and an implemen
tation obtained by translating these specifications iibh pro-
grams and then executing these using the Teyjus system.asfergr
results here over programs that have a few different cheniatits:

e First, as we are interested in logic programming in LF, the
traditional logic program for naively reversing a listidimes
is included.

marks] As described in FigurEl6, the fully optimized translation
inserts the proof term as the first argument of the predicaterg
ated. Since this term is to be determined by proof searclyrddge
cannot be taken of the capability Teyjus possesses of ingept
the first argument. The last column presents data for theveasee
we make the proof term the last argument instead. In the data p
sented, overflow indicates a heap overflow in the Teyjus sitol
and oo means that the program ran more tha®0 times longer
than Twelf.

The most optimized translation leads to better performamce
most cases, often significantly so. On the other hand, thplsim
translation yields a program that is generally slower tharlf. In

e The encoding of evaluators for various languages is a common particular, performance tends to deteriorate with largeblgms

usage of LF. We have therefore used an encoding of Mini-ML
along with an encoding of addition as another sample program
This benchmark, calleshiniml, consists of adding to 10 using

the encoding.

e Theminimlspecification does not make essential use of depen-
dent types. Théyped minimbenchmark, which consists of an
evaluator for Mini-ML in which terms are indexed by their gp
uses dependent types to ensure that terms are well-forrhed. T
Mini-ML program that was run is a typed version of the encod-
ing of addition.

e An implementation of a meta-interpreter for intuitionéstion-
commutative linear logic (INCLL) has been proposed as a test
program [21]. Thepermbenchmark tests list permutation en-
coded in INCLL and run using the meta-interpreter on lists of
lengthn.

¢ The last benchmark, referred toraam involves rewriting arith-
metic expressions into an equivalent normal form. This exam
ple again makes essential use of dependent types by agsgpciat
with each equivalence of two such terms a proof of their equiv
alence. The benchmark tests rewriting expressions ofrsize

The third through fifth columns of Figufd 8 present data com-

sizes, in keeping with the difficulty that we noted with thiarts-
lation. However, the simple translation is still compaeatd Twelf
on the first three benchmarks. On fhermbenchmark, Twelf does
quite well and even out-performs Teyjus with the optimizehs-
lation on problems of large size. We have yet to pinpoint dzson
for this—the program is large and difficult to analyze in detdut
we suspect that the linear head optimization that delaysresipe
unification computation till after simpler checks have beesde
may have something to do with this. The fact that term indgxin
causes significant improvement with Teyjus gives credeodhis
observation.

For problems of very large size with all the benchmarks, the
performance of Twelf deteriorates quite dramaticallys tisi seen,
for example, in the case efum(n)for a problem of siz&12. This
phenomenon is linked to the fact that Twelf consumes exeoessi
amounts of memory. The ultimate source of this problem ibges
the fact that Twelf is implemented in SML.: it has been argued t
realizing a logic programming language in a functional paog-
ming setting can lead to poor memory reclamation and evéyntua
to shortage of spacz|[3].

paring the simple translation, the translation with recumayp-
ing judgments removed, and the fully optimized translatigainst
the standard of Twelf with default optimizations on thesadbe

4This setting with Twelf leads to the best performance ondle@mples.



7. Conclusion and Future Work

We have considered in this paper a translation of Twelf $igaei
tions into logic programs in thkohh language. An important part

of our ideas is the recognition of certain situations in viahigpe
information is redundant in LF expressions and hence itslche
ing can be avoided. Our eventual translation produces arqmog
that corresponds closely to the original specification aedhave
argued that it can be the basis for an effective animatioraglfT
descriptions.

The specific work undertaken here can be extended in a few dif-

ferent ways. As an extension to our notion of rigidity, we htig

observe that, when applying a variable of type:B.A, we could
identify redundant type information, not only betweeBaand A,
but also between #; and a differentB;. It would also be inter-
esting to relate our work to the ideas of Reeo [22] who dessrib
a notion ofstrictnesssimilar to rigidity, used for the different pur-
pose of identifying sub-terms of LF objects that could beorec
structed if elided — in contrast, we avoid redundant typeckhe
ing but still generate a complete LF object. Such an undedgtg
might lead both to an improvement of our translation and o th
ability to shorten LF terms that are needed in applicatiarth s
that of proof-carrying-code [17]. From an implementati@ngpec-
tive, another possible optimization is to avoid constngtan LF
object explicitly when the task has been identified as thainby
determining whether a type has an inhabitant: experimentisis
direction indicate in some cases a ten-fold performanceaug
ment over the optimized translation. Techniques from tlea af
extracting programs from proofs that pertain to isolatiagtp of a
proof that do not contribute to its overall computationahtemt—
e.g,, seel[25]—are potentially useful to the application offsaa
optimization; these techniques might provide the basisfing
components of a type whose inhabitants do not participatben
term corresponding to the overall type.

We have focused here on realizing Twelf through a transiatio
to AProlog. A different approach, worthy of investigation,hst of
compiling Twelf specifications directly to bytecode for thietual
machine underlying the Teyjus system. Such an approachdwoul
make it possible to realize optimizations that have beeeldped
for the direct implementation of Twelf [20,21]. Of specialta here
are optimizations like the linear heads treatment of urtificade-
scribed by Pientka and Pfenning[21] for minimizing occureak-
ing, that could make a difference in examples such apénmpro-
gram considered in the previous section: direct compifatvould
allow us to regain opportunities for such improvements thight
be lost by translating first taProlog and then relying on its im-
plementation that is not specially optimized to treat Twgglécific
programs.

A more ambitious line of development concerns meta-reagoni
over specifications. Existing tools might be used to reasmuta
LF programs via the translation, the transparency of thestagion
becoming essential. Anecdotal evidence suggests thatrmis-
parency is not only enabling, it is also elucidating: tha gener-

atedhohh program is easier to reason about because it highlights

those types that could have logical importance, and elfutesetthat
do not.
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A. Proofs of Theorems

A.1 Correctness of the simplified encoding
(Theorem[d)

A.1.1 Completeness

We use induction on the derivation Bf - M : A to build one for
{T} — {M : A}. We proceed by case analysis on the canonical
type A.

If Ais of the formIlz:B.A’ thenM must be of the form\z:B.M’
and the LF derivation must end with as-objrule,i.e., a rule of
the form

'-A:Type T,z: B+ M: A
'+ (Az:B.M'): IIz:B.A")

The induction hypothesis gives us a derivation for

{T,z: B} — {M': A"}
By applying the rule&/R and D Rto this, we get a derivation for
{r} — Vz. {z: B} D {M': A’}. The righthand side of this
sequent is the expected goal:

{Ox:B.M') : (Iz:B.A")} =

Vo. {z: B} D ({A'} (Mx:B.M') z)),

and(M’) = ((Az:B.M') ) by virtue ofn-conversion.
If Ais abase type thefd must be of the formx N; ... N,, and

the canonical LF derivation must end with a chairapp-objrules
following a var-objrule that reveals that

x:y1:By. ... [y,:B,. A" € T.

Moreover,A must beA’[N1 /y1, . .., N»/y»] and, from looking at
the right upper premise of thepp-objrules, there must be shorter
derivations of

I - NZ’ : Bi[N1/:E1, . ,Nifl/l’ifﬂ

for 1 < i < n. By the induction hypothesis we obtain derivations
D; of {F} — {NZ : BZ‘[N1/CC17...,Ni71/$i71]}. Further,
{T} must contain

Yyi1. ({B1} y1) D...D
Vyn. ({Bn} yn) D hastype (z y1 ... ya) (A'),

i.e, the encoding ofr : Ily::Bi....Ily,:B,.A’. By applying
backchairon that clause, choosin@V;) for y; and using the deriva-
tionsD;, we obtain a derivation of

{T'} — hastype (z </N1> o (NR))
((AD[(N1) Jyas - -
The right side of this sequent is precisely

{(m Ny ... Nn) : A’[Nl/y1, o -7Nn/yn]}-

abs-obj

(N} /yn])-

A.1.2 Soundness

We prove the soundness direction by induction on the déwivat
of {T} — ({A} M): assuming thal’ - A : Typehas a
derivation, we establish that/ = (M) for some canonical object
M’ and we build a derivation df - M’ : A. A case analysis on
the structure of the canonical typewill guide us.

If Ais of the formIlz:B.A’ then the structure of A} forces the
hohh derivation to conclude as follows:

fr,2: By — (A} (M =)
{r} — va. (B} 2) > A} (M x))

Since A is a valid TypeunderI', B must also be, angl’ must be
valid under(T", x : B). We can thus apply the inductive hypothesis,
and we obtain that/ z = (M’) and thatl',z : B = M’ : A’

is derivable for some canonical objekf’. Sincex does not occur
free in M, we conclude that

M = Mz (M')) = (\z:B.M),

and we derivel’ = (Az:B.M') : (lz:B.A’) using theabs-obj
rule and our derivation df" - B : Type

VR, DR

Otherwise,A is a base type, and the derivation we are considering
is that of {I'} — hastype M (A). This derivation must end in a
backchairrule that uses some clausefjir }} of the form

Yyi1. ({31} y1) D...D
Vyn. ({Bn} yn) D hastype (z y1 ... ya) (A');

note that the variableg, . .., y;—1 can appear if{ B; } here. Thus,

for somehohh termsNy, ..., N,,
<A> = <Al>[N1/y17 ceey Nn/yn]'
M = (z N1 ... Ny), and, for eachi such thatl < i < n, there is

a shorter derivation of

U} — B} v N1 /1, -, Nifyil,

i.e., of {F} — ({Bi}}[NMyh ey Nifl/yiq] NL) Further,

we know thatr : Ily;:B;....Ily,:B,.A" € T for somez. We

now claim that, forl < i < n, N; = (N;) for some canonical
LF objectN; and thatl' + N : B;[Ni/y1...N;_1/yi—1] has

a derivation. If this claim is true, then, we can use tae-objrule

to derivel’  z : Iy1:B1....1ly,:B,.A’ and follow this by a
sequence ofipp-objrule applications to prove

I'F(zNy...N,):A[Ni/y1... Ny /yn).

Now, evidenty M = (z Nj ... N}) and, since substitution
permutes with encodingd = A’[N7 /1, ..., N}, /yn]. Thus, the
desired result would be proven.

It only remains to establish the claim. We actually streagth
to include also the assertion that, oK i < n,

U Bi[Ni/y1...Ni_1/yi—1] : Type

has a derivation. To prove it, we use an inner induction.@ince
I' is a well-formed context, and : Ily::B;. ... Ily,:B,. A" € T,
there must be a derivation of

F,1’1 ZB1,.. Bi_1F B;: Type

for 1 < i < n. Using Propositiofi]ll and the induction hypothesis
we see that there must be a derivation of

[+ Bi[Ni/y1...Ni_1/yi-1] : Type
Noting that
{B:} N1 /v, N1 Jyi—1] = {Bi[N1/vy1, - - -, Ni—1/yi-1]},
the outer induction hypothesis and the shorter derivatfon o
{T} — (BN /g1, -, Nioa Jyioa] Ni)

ey Lj—1


http://www.cs.umn.edu/~snow/parinati

allows us to conclude tha¥; = (N;) for some canonical LF term
N/ and that there is a derivation of

[+ Nj:Bi[Ni/yi...N{_1/yi-],
thus verifying the claim.

A.2 Completeness of the optimized encoding (Theoreii 2)

If {T} — {A}M has a derivation, thefil’]" — [A]" M
has a derivation as well. Note that for this direction of tmeqgb
we are simply dropping information (subderivations) andwso
do not rely onT" being a valid specification oA being a valid
type. We proceed by induction on the structure of the dedwmat
of {I'} — {A}M, followed by case analysis of.

If Ais of the formIlx:B.A’ our derivation ends as follows:
{T,z: B} — {A'} (M x)
{r} — {lz:B.A'} M
By the inductive hypothesifl’, z : B]t — [A]~ (M z) has a

derivation, and by applyingR and D R to this derivation we can
construct a derivation of

[I]" — [[z:B.A']" M

VR, DR

Otherwise A is a base type and our derivation proceeds by backchain-
ingonsomdy : Ilz:B.A") € T, with (A) = (A")[t1/x1 ... tn /0]
{r} — A ... {T} — F,
_)
Iy — fA} wt)
Here,F; = ({B:} z:i)[t1/x1 ... tn/zn]. As in the completeness

proof of the simplified encoding, we obtain by an inner inéurct
that eacht; is of the form(¢;) and thus that

F; = {Bz[tll/im e t/n/icn]}(tb)
We shall build the derivation ofT]" — [A] ( ?) by using

backchaimon the optimized encoding dfy : Tlz:B.A’) € T, by
choosing? for 7. The resulting premises are either

[[F]]+ — [[Bb[tll/im .. .tﬁl/xn]]]f t;

whenz; does not occur rigidly imd’, and this case is provided for
by the inductive hypothesis, dr otherwise, which we derive using
TR.

backchain
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