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Abstract

In this paper we explore the ability of the human visual system to
detect inconsistencies in the illumination of objects in images. We
specifically focus on objects being lit from different angles as the
rest of the image. We present the results of three different tests, two
with synthetic objects and a third one with digitally manipulated
real images. Our results agree with previous publications exploring
the topic, but we extend them by providing quantifiable data which
in turn suggest approximate perceptual thresholds. Given that light
detection in single images is an ill-posed problem, these thresholds
can provide valid error limits to related algorithms in different con-
texts, such as compositing or augmented reality.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—3D Graphics; I.4.10 [Computing Methodologies]: Im-
age Processing and Computer Vision—Image Representation

1 Introduction

The process of perception in the human visual system (HVS) is a
complex phenomenon which starts with the formation of an image
in the retina. This image is subsequently analyzed and processed
by the HVS in order to extract significative data while disregarding
unnecessary information.

Areas such as computer graphics deal with the creation of images
by simulating the complex interactions of light and matter in its path
towards the retina. However, if we disregard the remaining part of
the perception process it is likely that most of these computations
could have been avoided. For instance, JPEG format achieves great
image compression ratios by removing frequencies which are not
easily perceived by the HVS.

Multiple technologies like augmented reality [Wang and Samaras
2002; Zhang and Yang 2001], image editing [Yu et al. 2006] or im-
age forensics [Johnson and Farid 2005; Johnson and Farid 2007]
strongly rely in the process of detecting the lighting environment
and inserting new objects relit in the same fashion as their neigh-
bors. For this, the ability to estimate the light direction in the orig-
inal scene becomes a crucial step. This can be done in controlled
environments, but when there is limited information (like in a sin-
gle image), this task becomes difficult or simply impossible. The
influence of shape, material or lighting becomes integrated into a
single pixel value and disambiguating this information is not possi-
ble without any prior information. This may be further complicated
due to uncontrolled factors in the input images such as lens distor-
tion or glare. In these uncontrolled environments, light detection
algorithms are expected to yield large errors in their estimations.
However, these errors might go completely unnoticed by users in
an image while they are easily spotted in another.

In this work we are interested in determining an error threshold be-
low which variations in the direction vector of the lights will not
be noticed by a human observer. To this end we performed a set of
psychophysical experiments where we analyze several factors in-
volved in the general light detection process, while measuring their
degree of influence for its future use in computer applications.

There are several aspects involved in the process of light detection.
For example the object material, texture frequency, the presence of
visual cues such as shadows, light positions and the level of user
training are all relevant. The most frequent scenarios to acquire a
useful measure studied in present tests have focused on different as-
pects. Work by Ostrovsky et al. [2005] studied the influence of the
light positions. They anticipated that a greater presence of shadows
(produced when the light source is behind the object) increases the
accuracy of the HVS.

Our overall goal is to obtain a valid range of values in which the
HVS is not able to distinguish lighting errors in very general sce-
narios. Scenarios we would like to consider are scenes with mul-
tiple light sources and material properties and a complete range of
light positions. It is important to notice that all our tests preclude
the presence of strong visual shadow cues in horizontal surfaces by
the objects of the scene. These scenes were excluded based on two
main reasons: (1) the subject has been studied in great depth in pre-
vious work and its influence has been clearly stated and more im-
portantly (2) it is a visual cue that might not be present in many sce-
narios in opposition to shading, materials, or self shadowing which
are ever-present features.

2 Related Work

Todd and Mingolla [1983] showed the low accuracy of the HVS
in determining the light direction by observing a lightprobe. They
stated that the presence of highlights did not help in the estimation
of the illuminant’s direction. However, their measures were limited
to cylinders (a simple geometry which varies in only one axis) and
the users were asked for the direction of light (the inverse of the
present case). In the same line, the same authors disproved the
general belief that the HVS assumes objects as diffuse by default
[Mingolla and Todd 1986].

Additionally Koenderik et al. [2004] showed how human percep-
tion is much better at azimuth estimates than at zenith estimates.
They also proved that when shadows are present, the shadow
boundaries (a first order discontinuity in shading) increased the ac-
curacy of HVS in detecting the light field direction.

Previous research has shown that the visual system assumes that
light is coming from above and slightly to the left of a shaded object
[Sun and Perona 1998; Mamassian and Goutcher 2001]. A recent
work by O’Shea et al. [2008] confirmed this light-from-above prior
and provided the quantifiable evidence that for unknown geome-
tries the angle between the viewing direction and the light direction
is assumed to be 20-30 degrees above the viewpoint. Ostrovsky et
al. [2005] show that humans can easily spot an anomalously lit ob-
ject in an array of identical objets with the same orientation and lit
exactly the same, but performance drops when altering orientations
of the equally-lit objects. In a similar manner, in this work we aim
to extend previous results [Ostrovsky et al. 2005] by providing a



a b c d e f g h
Diffuse Yes Yes Yes No No Yes No No
Textured No P(h) No CHK CHK No P(l) No

Table 1: Description of materials per object (a-h) shown in the im-
ages of the test. The top row indicates if the material is only diffuse,
otherwise it has a highly specular (Phong) reflectance. P(h) and
P(l) describe a texture obtained through Perlin’s Noise at differ-
ent spatial scales (high and low frequency respectively) and CHK
corresponds to a black and white checkerboard texture.

wider set of scenarios, adding eye tracking data and quantifying the
results. We first present an extension of the experiments made by
Lopez-Moreno et al. [2009]. Secondly, we analyze the influence of
light position adding new insights by analyzing eye tracking data.
Finally, we present two new experiments which analyze the influ-
ence of texture frequency and extrapolate our findings to real-world
images, respectively.

3 Experiment One: Overall Inaccuracy

In the first experiment our goal is to check how capable the human
visual system is of spotting illumination errors in three different
lighting situations. Images with several objects are shown (see Fig-
ure 1), all of them lit from the same angle, except for one, which
is lit with a varying degree of divergence with respect to the rest.
We limit the study to the more restrictive case of the azimuth angle,
according to previous findings [Koenderink et al. 2004].

Four of the objects have no texture, two have high-frequency and
two have low-frequency textures. Four of the objects are shiny,
while four are diffuse. Table 1 summarizes their characteristics.
The motivation of the scene and the diversity of materials is chosen
to represent a wide enough range. In particular, the shape of the
objects has been chosen to be abstract in order to avoid semanti-
cal significance and globally convex (according to global convex-
ity default assumption of the HVS [Langer and Bülthoff 2001]).
They have a relatively complex surface, but with limited variance
(to avoid the influence of geometry [Vangorp et al. 2007]) and are
arranged to avoid direct side-by-side comparisons of exactly equal
geometries.

a        b        c        d

e        f        g        h

Figure 1: Example image for our first experiment: eight abstract
objects with a main light coming from the right.

We consider the Y axis as the vertical axis of the screen plane XY
and Z as the positive XY-plane direction. In each of the 60 images,
all the objects are illuminated with an ambient light made up by
two directional sources. One is located at 45 degrees between the
axis +Z and the axis -X and the other situated on top of the axis Y.
Their intensities are four times weaker in terms of luminance than
the main light. This main light is also a directional light and is the
same for seven of the eight objects, while the eighth is lit from a

different direction. Thus, we will refer to the these as the two main
lights in the image: the ”correct” one, illuminating seven objects
and the ”wrong” one, illuminating the eighth.

The two main lights vary their angle φ along the XZ plane between
different images (top row in Figure 2). The absolute difference in φ
between the two directional lights increases from 0◦ to a maximum
difference of 90◦ in 10◦-increments (5◦ in each angular direction).
We thus obtain ten test images. To further analyze the influence of
light direction, we repeat this procedure with three different situa-
tions: First with both sources illuminating the frontal hemisphere
of the object, secondly with both sources illuminating from behind
the object and finally with one light coming from the back and the
other from the front (Figure 2).

Half the times a shiny object is incorrectly lit and the other half a
diffuse object is incorrectly lit. There are thus 60 images in total (10
increasing degrees of divergence, times three light configurations,
times two types of inconsistently lit objects), each showing eight
asymmetrical objects with different textures and degrees of shini-
ness. Each image has a resolution of 1024 pixels wide by 600 pix-
els high. The order in that images were displayed was randomized,
as well as the object that was inconsistently lit in each image. The
test was performed through a web application, where users were
asked, after an introductory explanation, to simply select the incon-
sistently lit object in each image. Although the time it takes each
participant to complete the test is measured, there is no limitation
in that regard. 55 participants took the test (ages 16-58; 33 male,
22 female), 18 of which had an artistic background.

3.1 Results

We analyze the number of correct answers (which we term hits) de-
pending on the difference between the two lights for the two mate-
rial cases: diffuse and shiny, according to the different configuration
of lights (Figure 3). We can observe that up to 20 degrees of diver-
gence the probability of detection is around chance (12.5%). In the
case that both lights are in the front this probability keeps on being
below chance up to 30 degrees. On the contrary when the lights are
at the back the probability of detection is higher at 20 degrees of
divergence. This seems to agree with previous studies [Koenderink
et al. 2004], suggesting that shaded areas and self-shadows increase
our accuracy inferring light directions from images.

Furthermore, we can observe that for any position of the light
source, the performance of HVS is slightly lower when highlights
are present. Although further analysis should be carried out to find
out why highlights have an apparently negative effect, this seems
to agree with Todd and Mingolla’s [1983] previous work, which di-
verges from some computer vision approaches which do use high-
lights as visual cues [Lagger and Fua 2006].

We found no statistical difference across genders for this partic-
ular task, as opposed to other tasks like mental rotation, which
has shown different reasoning strategies per gender [Hugdahl et al.
2006]. Our results also showed that participants with an artistic
background had significantly better results at judging light direc-
tions, achieving about 15% more correct answers on average.

Regarding the time spent per image, the average was 15.13 seconds.
For the diffuse material, as expected, times were shorter as the error
increased, meaning it was easier to spot (see Figure 4). However,
the trend is less obvious in the presence of highlights: again, high-
lights seem to play a negative role for this particular task that is
worth studying further.

Object saliency : Amongst the 60 images there are six control
images (0-degree divergence) in which all objects are illuminated



Figure 2: Top Row: 3D representation of the scenes rendered in our images. Light 2 is the global light of the scene and light number 1 is
the ”wrong” light affecting a single object. The angular divergence of the direction of the two light sources is shown in yellow for the case of
60◦-divergence, while the maximum 90◦-divergence is displayed in red for each case. Bottom Row: the correspondingly lit objects.
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Figure 3: Hit probability by quadrant for both shiny (B, pink) and diffuse (NB, blue) materials. Left: with frontal position. Middle: with
back position. Right: with front-back position.

correctly; this can help us detect potential salient objects. Figure
5 shows a bar chart with the different options that users have se-
lected for these images. Each of the three bars corresponds to the
three positions of the lights (both lights behind the object predom-
inating the shadows versus the lights, one front and one back and
two lights in the front, predominating the lights versus the shad-
ows). It is interesting to notice that there is a clear outlier, object
E, probably due to its particular geometry and white albedo patch.
In the chart of Figure 5 we can observe how its salience compared
with the remaining objects is reduced in direct relation with the in-
crease of divergence. In other words, for low or no divergence in
light direction, objectE was selected due to salient features outside
the purpose of this test. But as the degrees of divergence increase,
its saliency becomes less apparent due to the presence of a clearly
incorrectly-lit object.

Additionally, five users were shown the same series of images as in
our previous test, but in this case they were not given any specific
task and were asked just to observe the images during a limited
time, which was set to 15 seconds based on the average time per
question of the previous test. We divided each image in eight re-
gions of interest (ROI) corresponding to the eight synthetic objects
and tracked their average eye fixation time in order to analyze the

evolution of salience per object.

From the resulting heat maps (see Figure 6), we can analyze the
gradient of the salience for a incorrectly lit object. This can be done
due to the design of this test: the inconsistently lit objects alternate
between being incorrectly lit and being illuminated as the rest. For
instance, at 10 degrees of divergence F is inconsistently lit and A
is correct while for 20 degrees A is correct and F is wrong, etc.
Figure 7 shows the results, where an overall alternancy in saliency
can be observed, as expected. However, more experiments need
to be carried out to disambiguate other factors such as highlights,
texture and geometry.

4 Experiment Two: Texture Influence

In this experiment we aim to analyze the influence in the perception
process of the spatial frequency of the texture. The psychophysical
test consists of a new series of images, which has been shown to 32
users (ages 22-57; 23 male and 9 female). The test was displayed
using the same methodology as in Experiment One.

We analyze four different checkerboard textures of increasing spa-
tial frequency (which we term low, medium, medium-high and high.
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Figure 4: Time used to make decisions in our test, shown by increasing divergence and grouped by quadrant: Front (F), back (B) and
front-back(FB). Please note that the questions were randomized and this is not a trend produced by fatigue or training.
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Figure 5: Left:Chosen object in the control images, grouped by quadrant: Front (F), back (B) and front-back(FB). The users have a preference
for object E. Right: The relative salience of the object E, computed as the number of times when it is chosen while missing the right choice.
This is plotted in relation with the salience of the remaining objects.

Figure 6: Example of heat maps representing average fixation time
at two images for one user.

Each one has a tile size two times smaller than the previous one. We
do not aim to explore the luminance frequency, instead we fix the
luminance ratio between the two albedos so that shading cue is al-
ways perceivable. With this configuration [Adelson and Pentland
1996], the luminance of a clear tile in shadows is similar to the lu-
minance of a dark tile in a lit area (See Figure 8). The shininess
of the material is set to a 50% of the value used for shiny objects
in the previous test. This is done in order to analyze the results.
The shape of the curve should fit between the curves for diffuse and
shiny objects of the previous test.

Each user observes a series of 40 images (4 textures x 10 diver-
gence values) with lights being modified in the same fashion as in
our previous test. In order to reduce dimensionality, we limit the
movement of the lights to the front-back quadrant. For each image,

Figure 8: An example of an image used in our test. Four different
texture patterns are assigned to eight random objects.

a random object is selected to be inconsistently lit (with a certain
texture) and for the remaining objects both the textures and the ge-
ometries are randomly set.

4.1 Results

In Figure 9 we can observe a similar curve as in the first experiment,
with some differences for the four textures. From the data collected,
it seems that higher frequencies do mask lighting inaccuracies up to
the detection threshold of 20-30 degrees, making the detection task
more difficult. For divergence angles above 40 degrees we found
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Figure 7: Gradient of the ratio between time spent watching the reiluminated object and the average time spent watching the rest of objects.
At each graph, object A is represented in red (inconsistently lit at 20, 40, 60 and 80) and object F is represented in blue (inconsistently lit at
10, 30, 40, 50, 70 and 90).

no significant difference (p > 0.05) in the results. This shows that,
at least for the pattern shown and the frequencies used, no amount
of high frequency texture information can mask large inaccuracies
in low frequency lighting information. This seems to coincide with
the results of Khang et al. [2006] which suggest that the visual sys-
tem may not take intensity variations due to the surface material or
the light field into account when estimating the direction of illumi-
nation. We find an interesting line of future work in analyzing the
transition area from masking to non-masking effects of the texture
and the interplay between high and low frequency information in
an image.
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Figure 9: Statistics of the responses provided by users in the test,
shown by texture frequency.

5 Experiment Three: Real World Images

In order to explore how well our findings carry over into real im-
ages, we have run two additional experiments with modified pho-
tographs as stimulus. The display methodology was based on the
same web test as in previous experiments.

Experiment 3.1 : The first test consists of a simple scene con-
taining a set of eight real objects (see Figure 10). The scene was
photographed three times: the original scene, plus two more with
the angle of the main light source varying 20 and 30 degrees respec-
tively. Two objects from the original image were replaced by their
counterparts from the two images with varying light sources. They
were composited on top of the original image: the ceramic purple
doll and the Venus figurine, both having diffuse and specular com-
ponents and near-constant albedos. We thus create two ”real world”

equivalents of objects inconsistently lit, as in our first two experi-
ments: one image with two objects incorrectly lit at 20 degrees and
a second one at 30 degrees.

Figure 10: Image used in our test, in which the doll and the statue
of Venus have been reiluminated. Top: The divergence between the
lights of the objects reilluminated and the rest is 20◦. Bottom:The
divergence between the lights of the objects reiluminated and the
rest is 30◦.

Each image was shown to 25 users (ages 17-62, 14 male and 11
female) which were asked the following question: In the following
image one or two objects have been inserted and they have a differ-
ent illumination than the rest of the scene. Could you point it/them
out?

28% of the users succeeded in spotting one object for the 20-degree



image (see Figure 11) whereas, as expected, for 30 degrees of diver-
gence this amount increased up to 36%. Both cases however, are
below chance (40, 625%, considering the number of participants
that chose one object and the number of participants that chose
two). Only one person out of 25 was able to spot both objects,
which is slightly above the chance value (3, 125%).
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Figure 11: Hit ratio by angle of divergence, grouped by users who
spotted correctly one (left) and two objects (right) for both 20 and
30 degrees.

Experiment 3.2 : The test 3.1 was not intended to be exhaustive,
but it was designed to give some insight on how conservative a 20-
30-degree threshold may be in a real-world scenario (in the absence
of tell-tale shadows). Our results suggest that it may indeed be
overconservative for real images. Our next test aims at generalizing
a bit more those findings and it includes objects covering additional
materials, textures and shapes; additionally, we extend the range of
divergence up to 40 degrees.

In this experiment nine versions of a new scene were generated (See
Figure 12). Four photographs of the same scene were taken at 0,
20, 30 and 40 degrees of divergence from a reference direction.
They were combined in the same fashion as in the previous test,
but in this case three different objects were masked out and only
one object was combined at a time thus obtaining nine versions of
the same scene (three objects times three divergence degrees). The
black background was used to avoid projection of shadows on a
parallel surface and the image composition is done with Poisson-
based alpha matting. The result is almost seamless as the local
environment of the selected object in both images is very similar.

The objects selected for modification cover a wide range of mate-
rials, shapes and positions in the scene: the Santa Klaus doll (dif-
fuse material, high frequency geometry, background position), the
metallic robot (Highly specular, rightmost foreground position) and
the clown doll (multiple albedo, diffuse, leftmost background posi-
tion). In total, 60 users (ages 18-59, 38 male and 22 female) took
the test. Each user was shown three images with a random inconsis-
tently lit object at 20, 30 and 40 degrees of divergence respectively.
The same object was never shown more than once per user.

The results of the test (Figure 13) present a similar trend to those
from our synthetic experiment, but slightly more conservative:
whereas in the synthetic scenes (Experiments One and Two), the
detection threshold was somewhere between 20 and 30 degrees, the
variety of real world shapes and materials seems to increase that
threshold to the 30-40 degree range.

Figure 12: Top:Original image with all the objects consistently
lit. Bottom:Example of image used in our experiment. The Santa
Klaus doll is lit with a divergence of φ = −40 degrees from the
global light direction.
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6 Conclusions and Future Work

We have presented the results of four different tests, whose overall
goal was to quantitatively measure the accuracy of human vision
detecting lighting inconsistencies in images. We have restricted
ourselves to the case of inconsistent light direction. The results
of our experiments seem to agree with the theories exposed in pre-
vious research on illumination perception [Ostrovsky et al. 2005;
Koenderink et al. 2004; Lopez-Moreno et al. 2009], but we have
extended those to suggest a perceptual threshold for multiple con-
figurations. Additionally, we have shown how that threshold seems
to be even larger for real-world scenes. Although we do not claim
our experiments to be exhaustive, we do believe they add significant
value to the current state of the art.

We can find several possible interpretations to the fact that light-
ing inconsistencies were harder to detect in real-world images: it
may simply be that the combination of multiple visual cues (tex-
ture, shading, highlights...) which was richer than in the CG scenes,
might have complicated the detection task. But it is also interesting
to dig into the influence produced by the different range of natural-
ness of the images.



In similar contexts (3D shape perception) some authors have related
naturalness of stimuli to reduced activation in the visual cortex (V1)
[Murray et al. 2002; Georgieva et al. 2008], which is related to low-
level vision. Although the exact relationship between naturalness
and the detection process remains unclear, Scott et al.[2002] sug-
gest that under reduced activity in V1 for grouped elements, iso-
lated or novel elements may be more readily detected. There is
an apparent contradiction with our results, which might be due to
the fact that prior knowledge of 3D shape and material may re-
duce accuracy. Also, the degree of visual grouping of objects in
the synthetic scene (all objects were semantically the same) could
have been greater than in the real images (possibly due to increased
visual and semantic complexity of individual objects). This might
have augmented the tolerance to illumination differences, but in any
case it remains a fascinating problem to study.

We believe that the present work may be of value for those areas of
computer graphics and vision that depend on analyzing the light-
ing environment, including algorithms based on light detection and
methods for image synthesis (augmented reality...) analysis (digital
forgery detection) and processing (special effects). Given that light
detection in an image is an ill-posed problem, being able to work
within perceptual error thresholds can make the problem tractable.
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fluence of shape on the perception of material reflectance. ACM
Trans. Graph. 26, 3, 77.

WANG, Y., AND SAMARAS, D. 2002. Estimation of multiple di-
rectional light sources for synthesis of mixed reality images. In
Proceedings of the 10th Pacific Conference on Computer Graph-
ics and Applications, 38–47.

YU, T., WANG, H., AHUJA, N., AND CHEN, W.-C. 2006. Sparse
lumigraph relighting by illumination and reflectance estimation
from multi-view images. In Eurographics Symposium on Ren-
dering, Eurographics Association, 41–50.

ZHANG, Y., AND YANG, Y.-H. 2001. Multiple illuminant direc-
tion detection with application to image synthesis. IEEE Trans.
Pattern Anal. Mach. Intell. 23, 8, 915–920.


