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ABSTRACT 
In this paper, we propose a novel multi-mode/multi-corner sparse 
regression (MSR) algorithm to build large-scale performance 
models of integrated circuits at multiple working modes and 
environmental corners. Our goal is to efficiently extract multiple 
performance models to cover different modes/corners with a small 
number of simulation samples. To this end, an efficient Bayesian 
inference with shared prior distribution (i.e., model template) is 
developed to explore the strong performance correlation among 
different modes/corners in order to achieve high modeling 
accuracy with low computational cost. Several industrial circuit 
examples demonstrate that the proposed MSR achieves up to 
185× speedup over least-squares regression [14] and 6.7× speedup 
over least-angle regression [7] without surrendering any accuracy. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Verification 

General Terms 
Algorithms 

Keywords 
Process Variations, Performance Modeling 
 
1. INTRODUCTION 

As IC technology scales to nanoscale region, process variation 
has become a critical issue that must be carefully addressed within 
today’s IC design flow [1]. Modeling, analyzing and optimizing 
process variation is now a critical task in order to guarantee high 
parametric yield for silicon chips. For this reason, various 
response surface modeling (RSM) techniques have been 
developed and used as an efficient method to analyze circuit 
variability [2]-[7]. The objective of RSM is to approximate the 
circuit performance (e.g., delay, gain, etc.) as an analytical (either 
linear or nonlinear) function of device parameters (e.g., VTH, TOX, 
etc.). Once these performance models are created, they can be 
used for many circuit analysis and optimization applications [8]-
[9], e.g., parametric yield prediction, robust circuit design, etc. 

While RSM was extensively studied in the past, several recent 
trends of advanced IC technology pose a number of new 
challenges in this area.  
• Strong nonlinearity: As process variation becomes relatively 

large, nonlinear (e.g., quadratic) models are required to 
accurately capture performance variability [2]-[7].  

• High dimensionality: As random device mismatch becomes 
dominant at sub-65nm technology node, a large number of 
random variables must be used to model device-level 
variation, rendering a high-dimensional variation space [2]-[7]. 

• Multi-mode/multi-corner operation: Today’s integrated 
circuits often operate at multiple working modes (e.g., high 
performance vs. low power) and multiple environmental 
corners (e.g., high temperature vs. low temperature) [10], [15]. 
To accurately capture performance variability, different 
modes/corners must be characterized by different performance 
models. It, in turn, results in an enormously large modeling 
problem, as a huge number of performance models must be 
created to cover all modes/corners. 
The aforementioned issues make RSM increasingly difficult. 

To accurately model and analyze performance variability of 
analog and mixed-signal integrated circuits, we have to build 
hundreds of performance models and each model contains 
thousands of unknown model coefficients. While a number of new 
RSM techniques have been recently developed [2]-[7], they 
remain ill-equipped to address the tremendous challenges that we 
face today. For instance, the least-angle regression (LAR) 
algorithm in [7] can fit a high-dimensional performance model 
with about 103 simulation samples. If more than 102 performance 
models are required to cover all working modes and 
environmental corners (as will be demonstrated by several 
industrial circuit examples in Section 4), over 105 sampling points 
must be generated by SPICE simulation to build all these models. 
This requires a huge amount of simulation time and, hence, 
suggests a need to re-think our fundamental strategy for RSM and 
develop a completely new modeling algorithm to accommodate 
such a large problem size. 

In this paper, we propose a novel multi-mode/multi-corner 
sparse regression (MSR) method to address the aforementioned 
modeling challenges. The key idea is to reduce the number of 
required simulation samples and, hence, modeling cost by 
exploring the following two unique properties observed for 
nanoscale integrated circuits. 
• Sparse model coefficients: While a large number of basis 

functions must be used to span the high-dimensional, 
strongly-nonlinear variation space, not all of them play an 
important role for a given performance of interest. In other 
words, only a small subset of model coefficients 
corresponding to the important basis functions are non-zero, 
rendering to a unique sparse structure [7]. 

• Correlated performance variability: The performance 
models associated with different modes/corners are not 
independent. Instead, since these models capture the 
performance variability of the same circuit [10], [15], they are 
strongly correlated. 
However, we do not know the location of the non-zero model 
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coefficients or the correlation value of the performance variability 
in advance. The fundamental question is how to develop an 
efficient algorithm that can accurately “extract” this information 
from a limited number of simulation samples. 

The main contribution of this paper is to borrow a new 
Bayesian inference recently developed by statistics community 
[11] to derive an efficient numerical algorithm for MSR. This 
Bayesian framework aims to build a shared sparse model template 
for all modes/corners so that their strong correlation can be 
effectively taken into account to improve modeling accuracy 
and/or reduce modeling cost. As will be demonstrated by several 
industrial circuit examples in Section 4, the proposed MSR 
achieves up to 185× speedup over least-squares regression (LSR) 
[14] and 6.7× speedup over least-angle regression (LAR) [7] 
without surrendering any accuracy. 

The rest of this paper is organized as follows. In Section 2, the 
background on principal component analysis, response surface 
modeling, and sparse regression is reviewed. The proposed multi-
mode/multi-corner sparse regression (MSR) will then be 
described in Section 3. The efficacy of MSR will be demonstrated 
by several industrial circuit examples in Section 4, followed by 
our conclusion in Section 5. 
 
2. BACKGROUND 
2.1. Principal Component Analysis 

Given N process parameters X = [x1 x2 ... xN]T, the process 
variation �X = X–X0, where X0 denotes the mean value of X, is 
often modeled by multiple zero-mean, correlated Normal 
distributions [2]-[7]. Principal component analysis (PCA) [12] is a 
statistical method that finds a set of independent factors to 
represent the correlated Normal distributions. Assume that the 
correlation of �X is represented by a symmetric, positive semi-
definite covariance matrix R. PCA decomposes R as [12]: 
1 TUUR ⋅Σ⋅=  (1) 
where � = diag(�1, �2, ..., �N) contains the eigenvalues of R, and U 
= [U1 U2 ... UN] contains the corresponding eigenvectors that are 
orthonormal, i.e., UTU = I. (I is an identity matrix.) PCA defines a 
set of new random variables �Y = [�y1 �y2 ... �yN]T: 
2 XUY T Δ⋅⋅Σ=Δ − 5.0 . (2) 
The new random variables in �Y are called the principal 
components. It is easy to verify that all principal components in 
�Y are independent and standard Normal (i.e., zero mean and unit 
variance). More details on PCA can be found in [12]. 
 
2.2. Response Surface Modeling 

Given a circuit design, the circuit performance f (e.g., delay, 
gain, etc.) is a function of the process variation �Y defined in (2). 
RSM approximates the performance function f(�Y) as the linear 
combination of M basis functions [2]-[7]: 
3 ( ) ( )�

=

Δ⋅≈Δ
M

m
mm YgYf

1
α  (3) 

where {�m; m = 1,2,...,M} are the model coefficients, and {gm(�Y); 
m = 1,2,...,M} are the basis functions (e.g., linear, quadratic, etc.). 
The unknown model coefficients in (3) can be determined by 
solving the following linear equation at K sampling points: 
4 FG =⋅α  (4) 
where 
5 [ ]TMαααα �21=  (5) 

6 ( ) ( ) ( )[ ]TKfffF �21=  (6) 
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In (5)-(7), �Y (k) and f(k) are the values of �Y and f(�Y) at the k-th 
sampling point respectively. 

The traditional least-squares regression (LSR) [14] attempts to 
solve the least-squares solution for (4). Hence, the number of 
samples (K) must be equal to or greater than the number of 
coefficients (M). Such an LSR becomes intractable, if M is large 
(e.g., 104~106). For this reason, a number of sparse regression 
techniques [6]-[7] were recently proposed to address this 
computational cost issue. 
 
2.3. Sparse Regression 

While a large number of basis functions must be used to span 
the high-dimensional and strongly nonlinear variation space, only 
a few of them are required to approximate a specific performance 
function of interest. Sparse regression is motivated by this 
observation. It assumes that the unknown vector � in (4) contains 
a large number of zeros and, hence, is sparse. To find such a 
sparse solution, the following L1-norm regularization problem: 

8 
λα

α
α

≤
−⋅

1

2

2

subject to
minimize FG  (8) 

is solved by least-angle regression (LAR) [7]. In (8), ||•||1 and ||•||2 
denote the L1-norm and L2-norm of a vector, respectively. The 
value of λ should be optimally determined by the cross-validation 
scheme described in [7]. 

It has been demonstrated that LAR can fit a high-dimensional 
performance model with about 103 simulation samples. It, 
however, remains ill-equipped to address the multi-mode/multi-
corner modeling problem that we study in this paper. For instance, 
if more than 102 performance models are required to cover all 
modes and corners, over 105 sampling points must be generated 
by SPICE simulation to build all these models, resulting in 
unaffordable computational cost. We will develop a new sparse 
regression algorithm in this paper that is particularly tuned for 
multi-mode/multi-corner applications. 
 
3. MULTI-MODE/MULTI-CORNER 

PERFORMANCE MODELING 
Our proposed multi-mode/multi-corner sparse regression 

(MSR) is facilitated by a novel Bayesian inference that is derived 
from advanced statistical theories [11], [13]. In this section, we 
describe its mathematical formulation and highlight the novelties. 
 
3.1. Problem Definition 

The objective of MSR is to generate different performance 
models for different working modes and environmental corners. 
Today’s integrated circuits often operate at multiple 
modes/corners, e.g., high performance vs. low power, high VDD 
vs. low VDD, high temperature vs. low temperature, etc. It is 
difficult to accurately capture the performance variability at all 
these modes/corners by a unified model. Instead, multiple models 
must be generated to cover all modes/corners: 
9 

( )( ) ( ) ( ) ( )LlYgYf
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where L represents the total number of modes/corners. Similar to 
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(4)-(7), simulation samples can be generated for {f(l)(�Y); l = 
1,2,...,L} and a number of linear equations can be created to solve 
the model coefficients {�(l),m; l = 1,2,...,L; m = 1,2,...,M}: 
10 ( ) ( ) ( ) ( )LlFG lll ,,2,1 �==⋅α  (10) 

where 
11 ( ) ( ) ( ) ( )[ ]TMllll ,2,1, αααα �=  (11) 

12 ( ) ( )
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In (11)-(13), �Y(l)

(k) and f(l)(k) are the values of �Y and f(l)(�Y) at 
the k-th sampling point of the l-th performance function. 

One straightforward way to solve {�(l),m; l = 1,2,...,L; m = 
1,2,...,M} is to consider each f(l)(�Y) independently and solve all 
linear equations in (10) one by one. This simple approach, 
however, is not optimal, since it completely ignores the 
correlation among the performance functions {f(l)(�Y); l = 
1,2,...,L}. Such correlation exists, because these performance 
functions capture the performance variability of the same circuit. 
It, in turn, motivates us to develop a new multi-mode/multi-corner 
sparse regression (MSR) algorithm that explores the extra 
correlation information to improve modeling accuracy and/or 
reduce modeling cost. This goal is achieved by adapting a novel 
Bayesian inference recently developed by statistics community 
[11] to build a shared sparse model template for all 
modes/corners. In what follows, we first present the Bayesian 
framework for sparse regression, and then show how to adapt and 
apply such a Bayesian inference to multi-mode/multi-corner 
performance modeling problems. 
 
3.2. Bayesian Inference 

Given a set of simulation samples {G(l),F(l); l = 1,2,...,L}, most 
traditional regression methods [2]-[7] solve the linear equations in 
(10) and find the deterministic values of all model coefficients 
{�(l); l = 1,2,...,L}. Bayesian inference, however, takes a 
completely different strategy. It considers all unknown model 
coefficients as random variables and applies Bayes’ theorem to 
find the probability density function {pdf(�(l) | G(l),F(l)); l = 
1,2,...,L}. The distribution pdf(�(l) | G(l), F(l)) contains important 
information about �(l) that is “learned” from the simulation 
samples {G(l),F(l); l = 1,2,...,L}. It tells us: (1) the value of �(l) that 
is most likely to occur (i.e., determined by the mode of the PDF), 
and (2) the uncertainty of �(l) that corresponds to performance 
modeling error (i.e., determined by the covariance matrix of the 
PDF). 
 
A. Prior Definition 

To formulate a Bayesian inference, we first need to define a 
so-called prior distribution for {�(l); l = 1,2,...,L}. Intuitively, the 
prior distribution represents our prior knowledge about {�(l); l = 
1,2,...,L} without seeing any simulation samples. In general, if we 
do not have any prior information, a uniform distribution over 
(−�, +�) can be used to model the prior distribution {pdf(�(l)); l = 
1,2,...,L}, implying that each coefficient �(l),m can possibly take 
any value with equal probability. However, in our application of 
sparse regression, we know that the coefficient vector �(l) in (10) 
is sparse. Hence, we should define an appropriate prior 

distribution to carry this unique information of sparsity. 
To this end, we borrow the idea of hierarchical Bayesian 

inference described in [11]. We first model the regression error as 
a zero-mean Normal distribution. Eq. (9) is re-written as: 
14 
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where �(l) represents the regression error and its PDF is: 
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In (15), �(l),0 is the precision of the Normal distribution. It is equal 
to the inverse of the variance. In our performance modeling 
application, the precision �(l),0 represents the accuracy of the l-th 
performance model. The value of �(l),0 can be estimated by a 
maximum likelihood method, as will be discussed in detail in 
Section 3.2.C. 

Next, we define the prior distribution of each �(l),m as a 
parameterized, zero-mean Normal distribution: 
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where �(l),m is the precision of the Normal distribution. The key 
idea of the hierarchical Bayesian inference in [11] is to assign 
appropriate values to the parameters {�(l),m; m = 1,2,...,M} so that 
the coefficient vector �(l) has a sparse solution. Intuitively, if the 
precision �(l),m is large (i.e., variance is small), the corresponding 
model coefficient �(l),m is likely to be zero. Otherwise, if the 
precision �(l),m is small (i.e., variance is large), the corresponding 
�(l),m can be far away from zero. However, we only know that the 
coefficient vector �(l) is sparse, but we do not know the exact 
location of zeros. For this reason, it is not trivial to determine the 
“optimal” values of {�(l),m; m = 1,2,...,M}. In Section 3.2.C, we 
will present a maximum likelihood method to address this issue. 

To complete the definition of the prior distribution, we 
assume that the random variables �(l) and {�(l),m; m = 1,2,...,M} are 
mutually independent. Hence, the joint PDF of {�(l),�(l)} is: 

17 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
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The independence assumption we made simply implies that we do 
not know the correlation between �(l) and {�(l),m; m = 1,2,...,M} in 
advance. Such correlation information will be considered, once 
the simulation samples {G(l),F(l); l = 1,2,...,L} are available to 
calculate the posterior distribution. 
 
B. Performance Correlation 

The prior distributions defined in (15)-(17) promote a sparse 
solution of {�(l); l = 1,2,...,L}, if the values of {�(l),m; l = 1,2,...,L, 
m = 1,2,...,M} are properly selected. For our proposed multi-
mode/multi-corner sparse regression (MSR), we expect that all 
performance models corresponding to different working modes 
and environmental corners are similar and, hence, strongly 
correlated. Such correlation information should be explicitly 
explored to improve modeling accuracy and/or reduce modeling 
cost. In this sub-section, we further present a systematic 
methodology to take into account the strong correlation among all 
performance models. 

A close look at the prior distributions (15)-(17) motivates 
several additional assumptions that we can make to explore the 
“similarity” among {f(l)(�Y); l = 1,2,...,L}. First, we assume that 
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the values of {�(l),0; l = 1,2,...,L} in (15) are identical: 
18 ( ) ( ) ( ) 00,0,20,1 θθθθ ==== L� . (18) 

Eq. (18) implies that the error of all performance models follows 
the same Normal distribution with identical variance. (Note that 
even with the same prior distribution {pdf(�(l) | �0); l = 1,2,...,L}, 
the regression error �(l) can still vary for different performance 
models.) This assumption is typically valid, especially if a proper 
scaling is applied to all performance functions (e.g., dividing each 
performance function by its nominal value). 

Next, we further assume that the values of {�(l),m; l = 1,2,...,L} 
in (16) are identical: 
19 ( ) ( ) ( ) ( )MmmmLmm ,,2,1,,2,1 �� ===== θθθθ . (19) 

Remember that the values of {�(l),m; l = 1,2,...,L, m = 1,2,...,M} 
indicate the importance of the corresponding basis function gm(�Y) 
for the l-th performance function f(l)(�Y). Hence, Eq. (19) simply 
implies that a particular basis function gm(�Y) may either 
simultaneously impact all performance functions or affect no 
performance function at all. In other words, all performance 
functions share the same model template, because they represent 
the behavior of the same circuit at different modes/corners. It is 
important to note that {�(l),m; l = 1,2,...,L, m = 1,2,...,M} are not the 
unknown model coefficients {�(l),m; l = 1,2,...,L, m = 1,2,...,M} and, 
hence, Eq. (19) does not necessarily lead to identical model 
coefficients. The solution of {�(l),m; l = 1,2,...,L, m = 1,2,...,M} will 
be determined by calculating the posterior distribution of the 
proposed Bayesian inference, as will be discussed in detail in 
Section 3.2.C. 

The equality constraints defined by (18)-(19) offer a 
systematic approach to explore the correlation among all 
performance functions. In other words, the same prior distribution 
{pdf(�(l),�(l) | �0,…,M); l = 1,2,...,L} is now shared by all 
modes/corners, since they are defined by using the same 
parameters {�m; m = 0,1,...,M}. This unique modeling structure for 
MSR enables us to achieve superior modeling accuracy and/or 
cheap modeling cost over the traditional sparse regression 
algorithms (e.g., least-angle regression [7]), as will be 
demonstrated by several industrial circuit examples in Section 4. 

In addition, Eq. (18)-(19) also reduce the complexity of the 
proposed prior distribution. Namely, they reduce the number of 
independent parameters that define the prior distribution. In what 
follows, we will describe an efficient algorithm to determine the 
values of {�m; m = 0,1,...,M} from a limited number of simulation 
samples. Once {�m; m = 0,1,...,M} are found, the prior distribution 
in (15)-(19) is uniquely determined. 
 
C. Posterior Calculation 

A critical component of the aforementioned Bayesian 
inference is to determine the values of {�m; m = 0,1,...,M} so that 
the prior distribution of {�(l); l = 1,2,...,L} is accurate. In this sub-
section, we will first present an efficient maximum likelihood 
estimation (MLE) method to solve {�m; m = 0,1,...,M}. Next, we 
will further show a maximum posterior method (MAP) to 
determine the values of the unknown model coefficients {�(l); l = 
1,2,...,L}. 

Given a set of simulation samples {G(l), F(l); l = 1,2,...,L} 
collected for all performance functions, the key idea of MLE is to 
determine {�m; m = 0,1,...,M} for the shared prior distribution so 
that the sampling points {G(l), F(l); l = 1,2,...,L} are most likely to 
occur. Namely, we aim to maximize the following conditional 
probability: 

20 
( )( )MLFpdf

M
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0

���
θ

θθ
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If all simulation samples {G(l), F(l); l = 1,2,...,L} are created 
independently, pdf(F(1,…,L) | �0,…,M) can be represented as: 
21 
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Taking the logarithm of (21) results in the log-likelihood: 
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Since log(•) monotonically increases, maximizing the PDF in (20) 
is equivalent to maximizing the log-likelihood in (22), yielding: 
23 
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To solve (23), we need to find an efficient way to calculate the 
log-likelihood function. Towards this goal, we apply the Bayes’ 
theorem [13]: 
24 
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By simply rearranging (24), we have: 
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Eq. (25) implies that we can easily calculate pdf(F(l) | �0,…,M) if we 
know pdf(�(l) | �0,…,M), pdf(F(l) | �(l),�0,…,M) and pdf(�(l) | F(l),�0,…,M). 

First, we note that pdf(�(l) | �0,…,M) is the prior distribution for 
�(l), as defined in (16)-(17) and (19): 
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Second, pdf(F(l) | �(l),�0,…,M) is referred to as the likelihood 
function. Based on the performance model in (14)-(15), we know 
that once �(l) and {�m; m = 0,1,...,M} are fixed, pdf(F(l) | �(l),�0,…,M) 
is a Normal distribution determined by the modeling error [11], 
[13]: 
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where K is the number of simulation samples for the l-th 
performance function. Finally, pdf(�(l) | F(l),�0,…,M) is the posterior 
distribution for �(l). It models the uncertainty of �(l) after we 
observe the simulation samples {G(l), F(l)}. Given the prior 
distribution in (26) and the likelihood function in (27), the 
posterior distribution pdf(�(l) | F(l),�0,…,M) is Normal and its 
covariance Σ(l) and mean μ(l) are respectively equal to [11], [13]: 
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T
lll FG ⋅⋅Σ⋅= 0θμ  (29) 

where 
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is a diagonal matrix. 
Combining (25)-(29), it can be shown that the optimization in 

(23) is equivalent to: 
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where det(•) stands for the determinant of a matrix. Eq. (31) 
presents an analytical form of the cost function that we should 
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minimize. Given this complicated cost function, the optimization 
in (31) is not convex. An efficient greedy algorithm has been 
developed in [11] to solve {�m; m = 0,1,...,M} from (31). Even 
though global convergence is not guaranteed, the greedy 
algorithm in [11] has been demonstrated as a robust numerical 
solver for many practical problems. Due to limited space, we will 
not discuss the numerical solver here. More details on the greedy 
algorithm can be found in [11]. 

Once the parameters {�m; m = 0,1,...,M} are determined, the 
posterior distribution of �(l) is Normal and its mean μ(l) and 
covariance Σ(l) are specified by (28)-(29). Since a Normal 
distribution is peaked at the mean value μ(l), the maximum 
posterior solution of �(l) (i.e., the value of �(l) that is most likely to 
occur) is exactly equal to μ(l): 
32 ( ) ( ) ( ) ( ) ( )l

T
llll FG ⋅⋅Σ⋅== 0θμα . (32) 

Eq. (32) solves the unknown model coefficients {�(l); l = 1,2,...,L} 
for our proposed multi-mode/multi-corner performance modeling 
problem. 
 
3.3. Summary 

As shown in Figure 1, the key idea of the proposed multi-
mode/multi-corner spare regression (MSR) is to apply the same 
prior distribution (i.e., model template) to all performance 
functions. Algorithm 1 summarizes the major steps of the MSR 
method. Starting from a number of random sampling points {G(l), 
F(l); l = 1,2,...,L}, Algorithm 1 first solves the parameters {�m; m = 
0,1,...,M} of the shared prior distribution by using the greedy 
algorithm described in [11]. Next, the maximum posterior solution 
of the unknown model coefficients {�(l); l = 1,2,...,L} is 
determined by Bayesian inference. Due to the shared prior 
distribution applied by MSR, the number of required simulation 
samples for each performance model can be significantly reduced, 
as will be demonstrated by industrial circuit examples in Section 4. 

Simulation
Samples G(1), F(1) G(2), F(2) G(L), F(L)

Shared Prior
Distribution pdf(�(l),�(l) | �0,�1,…,�M)

�(1) �(2) �(L)
Model

Coefficients

Model 1 Model 2 Model L

 
Figure 1.  The same prior distribution (i.e., model template) is 
shared by all performance models for multi-mode/multi-corner 
sparse regression (MSR). 

Algorithm 1: Multi-Mode/Multi-Corner Sparse Regression 
1. Randomly generate the sampling points {G(l), F(l); l = 

1,2,...,L} for L performance functions where K sampling 
points are associated with each performance function, as 
shown in (12) and (13). 

2. Define the prior distribution for the model coefficients {�(l); l 
= 1,2,...,L} and the regression errors {�(l); l = 1,2,...,L}, as 
shown in (15)-(19). 

3. Solve the optimization in (31) to determine the parameters 
{�m; m = 0,1,...,M} by using the greedy algorithm described in 
[11]. 

4. Find the posterior distribution (which is Normal) for the 
model coefficients {�(l); l = 1,2,...,L} using (28)-(29). 

5. Determine the maximum posterior solution of the model 
coefficients {�(l); l = 1,2,...,L} using (32). 

 
4. NUMERICAL EXAMPLES 

In this section, we demonstrate the efficacy of MSR using 
several industrial circuit examples. All circuits are designed in a 
commercial CMOS process. For each circuit example, there are 
multiple working modes and environmental corners. One 
performance model is extracted for each of these modes/corners. 
Towards this goal, two independent random sampling sets, called 
training set and testing set respectively, are generated. The 
training set is used for coefficient fitting (i.e., Algorithm 1), while 
the testing set is used for model validation. All numerical 
experiments are performed on a 3GHz Linux server. 
 
4.1. High-Speed Adder 

Adder

A0~A7 B0~B7

C0 C8

S0~S7  
Figure 2.  Block diagram of an 8-bit adder 
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Figure 3.  Linear performance modeling error 

Table 1.  Linear performance modeling cost 
 LSR LAR MSR 

# Samples per Model 4200 190 30 
Simulation (Sec.) 4.94×106 2.23×105 3.52×104 

Fitting (Sec.) 1.24×104 1.04×103 3.1×101 
Total (Sec.) 4.95×106 2.24×105 3.52×104 

 
Figure 2 shows the block diagram of an 8-bit adder. In this 

example, we aim to model the path delay from the input A0 to the 
output S7. Both global variation and local mismatch are taken into 
account. After PCA based on foundry data, 3876 independent 
random variables are extracted to model the variations. In addition, 
we consider the circuit to operate at 3 different VDD corners with 7 
different input slopes at A0 and 8 different output load capacitors 
at S7, resulting in 168 different modes/corners. Such a multi-
mode/multi-corner modeling problem occurs in several practical 
applications, e.g., statistical timing library characterization [15]. 

Figure 3 shows the linear modeling error for three different 
techniques: least-squares regression (LSR) [14], least-angle 
regression (LAR) [7], and the proposed multi-mode/multi-corner 
sparse regression (MSR). Given the same number of training 
samples, MSR yields substantially better accuracy than LSR and 
LAR. This is because MSR explores the strong correlation 
between different modes/corners by applying the same prior 
distribution (i.e., model template), as shown in Algorithm 1. 

On the other hand, for a given accuracy requirement, MSR 
requires much less training samples than LSR and LAR. Studying 
Figure 3, one would notice that to achieve 5% modeling error, 
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MSR only requires 30 samples per model (168 models in total), 
while LSR and LAR require 4200 and 190 samples per model, 
respectively. Table 1 further shows the computational cost for the 
aforementioned three techniques. Note that MSR is 
computationally cheaper than LSR and LAR in both simulation 
cost (i.e., to generate simulation samples) and fitting cost (i.e., to 
solve model coefficients). In this example, MSR achieves 140× 
speedup over LSR and 6.3× speedup over LAR. 
 
4.2. Simplified SRAM Read Path 

 
Figure 4.  Simplified circuit schematic of an SRAM read path 
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Figure 5.  Linear and quadratic performance modeling error 

Table 2.  Linear performance modeling cost 
 LSR LAR MSR 

# Samples per Model 5600 200 30 
Simulation (Sec.) 2.35×106 8.40×104 1.26×104 

Fitting (Sec.) 1.52×104 8.36×102 2.50×101 
Total (Sec.) 2.36×106 8.48×104 1.26×104 

 
Shown in Figure 4 is the simplified circuit schematic of an 

SRAM read path. After PCA based on foundry data, 3345 
independent random variables are extracted to model both global 
variation and local mismatch. Similar to the previous example, we 
consider the circuit to operate at 3 different VDD corners with 7 
different word line slopes and 8 different output load capacitors, 
resulting in 168 different modes/corners. 

In this example, we first build linear performance models for 
read path delay using three different techniques: LSR [14], LAR 
[7], and MSR. Figure 5 shows the modeling error as a function of 
the number of training samples per model (168 models in total). 
To achieve 3% modeling error, MSR only requires 30 samples per 
model, while LSR and LAR require 5600 and 200 samples per 
model, respectively. Table 2 further shows the computational cost 
for these three modeling techniques. In this example, MSR 
achieves 185× speedup over LSR and 6.7× speedup over LAR, as 
shown in Table 2. 

To further improve accuracy, we select a subset of important 
process parameters corresponding to non-zero linear model 
coefficients. Next, we create quadratic performance models for 
these critical process parameters using MSR. Figure 5 also shows 
the quadratic modeling error for MSR. Compared to simple linear 
modeling, the proposed quadratic modeling scheme further 
reduces modeling error from 2% to 1% (2× reduction), if a 

sufficient number of simulation samples (more than 100 samples 
per model) are available. 
 
5. CONCLUSIONS 

In this paper, we propose a novel multi-mode/multi-corner 
spare regression (MSR) method to efficiently generate large-scale 
performance models of integrated circuits at multiple working 
modes and environmental corners. An efficient Bayesian 
inference with shared prior distribution (i.e., model template) is 
applied to explore the strong performance correlation among 
different modes/corners to improve modeling accuracy and/or 
reduce modeling cost. Several industrial circuit examples 
demonstrate that MSR achieves up to 185× speedup over least-
squares regression (LSR) [14] and 6.7× speedup over least-angle 
regression (LAR) [7] without surrendering any accuracy. The 
proposed MSR algorithm can be applied to a number of practical 
applications for both analog and digital circuits such as statistical 
timing library characterization and parametric yield estimation. 
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