Optimizing Energy and Performance for Server-Class File
System Workloads

A Thesis Presented
by

Priya Sehgal
to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Master of Science
in
Computer Science
Stony Brook University

Technical Report FSL-10-01
May 2010



Stony Brook University

The Graduate School

Priya Sehgal
We, the thesis committee for the above candidate for the
Master of Science degree, hereby recommend

acceptance of this thesis.

Dr. Erez Zadok, Thesis Advisor
Associate Professor, Computer Science

Dr. Rob Johnson, Thesis Committee Chair
Assistant Professor, Computer Science

Dr. Jennifer Wong
Assistant Professor, Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School



Abstract of the Thesis

Optimizing Energy and Performance for Server-Class File Sgtem Workloads
by
Priya Sehgal
Master of Science
in
Computer Science
Stony Brook University

2010

Recently, power has emerged as a critical factor in desipoamponents of storage systems,
especially for power-hungry data centers. While there mesoesearch into power-aware storage
stack components, there are no systematic studies evejuedch component’s impact separately.
Various factors like workloads, hardware configurations aoftware configurations impact the
performance and energy efficiency of the system. This thegtuates the file system’s impact
on energy consumption and performance. We studied sevepallgr Linux file systems, with
various mount and format options, using the FileBench vaattlgenerator to emulate four server
workloads: Web, database, mail, and file server, on two miffehardware configurations. The
file system design, implementation, and available featbes® a significant effect on CPU/disk
utilization, and hence on performance and power. We disedvthat default file system options
are often suboptimal, and even poor. In this thesis we shaivaltareful matching of expected
workloads and hardware configuration to a single softwardigaration—the file system—can
improve power-performance efficiency by a factor rangiragirl.05 to 9.4 times.



To my parents and my brother and sister.



Contents

List of Figures Vii
List of Tables viii
Acknowledgments ix
1 Introduction 1
2 Related Work 3
2.1 Filesystemstudies . . .. .. .. .. . ... e 3
2.2 Lower-level storage studies . . . . . . . . .. ... 3
2.3 Benchmarks and systematic studies. . . . . ... ... .. .. ....... 4
3 Methodology 5
3.1 Experimental Setup . . . .. .. .. . .. .. e 5
3.2 Software Tools and Benchmarks . . . . . .. .. ... ... ... .. ... 6
3.3 Workload Categories . . . . . . . . . . e e e 7
3.4 File Systemand Properties . . . . . . . .. . ... e e 8
341 Ext2andEXt3. . . . . . . ... 9
342 XFS . . e 9
3.43 Reiserfs . . . . . e 10
3.5 EnergyBreakdown . . . ... ... ... ... 10
4 Evaluation 12
4.1 OVEIVIEW . . o o s e e e e e 13
42 MachinelResults. . . . . . . . . . 14
421 WebserverWorkload . . . .. ... ... ... 4 1
4.2.2 FileServerWorkload . . . . . . ... ... o 16
423 MailServer . . . . . . 18
4.2.4 Database Server Workload (OLTP) . . . . .. .. ... ... ... 19
4.2.5 Summary and Recommendations for Machine1. .. .. .. .. .. 20
43 Machine2Results. . . . . . . . . 22
4.3.1 WebserverWorkload . . . .. ... ... ... 32
4.3.2 FileServerWorkload . . . . . ... ... 24



4.3.3 Mall Server

4.3.4 Database Server Workload (OLTP)
4.3.5 Summary and Recommendations for Machine 2

4.4 File System Feature Selection Guide

5 Conclusions
6 Future Work

Bibliography

Vi

29

30

31



List of Figures

3.1 WattsUP ProESpowermeter . . . . . . ... ... ... ........ ... 6
4.1 Webserver: Mean power consumption by four file systenifigrent load levels . 12
4.2 Average CPU utilization for the Webserver workload . .. ... ....... 13
4.3 Webserverresultson Machinel . . ... ... ... .. ... ... . ... 14
4.4 FileserverresultsonMachine1l . . . .. .. .. . . . . .. . ... i .. 16
45 VarmailresultsonMachinel . . . . . . . . .. . . . . . ... .. ... 18
46 OLTPresultsonMachinel ... .. .. .. .. . . .. . . . . ... ..iun 19
4.7 WebserverresultsonMachine?2 . . .. ... .. .. ... . . ... ... 23
4.8 FileserverresultsonMachine2 . . . . . . . . . . . . . .. i ... 24
4.9 VarmailresultsonMachine2 . . . . . . . . . . . . . . ... .. 25
4.10 OLTPresultsonMachine2 . . . . . . . . . . . . . . @ i it . 26

Vii



List of Tables

3.1 TesthedSetup . . . . . . . . . e 5
3.2 FileBench workload characteristics . . . . . . . . . . . . . .. ... .. 7

4.1 File systems’ performance and power, varying optioglgtive to the default ones

for each file system formachinel . ... ... .. ... ... ... ...... 21
4.2 Recommended File system for Machine1 . .. . .. e .. 22
4.3 File systems’ performance and power, varying optloeiatnve to the default ones

for each file system formachine2 . .. .. .. ... ... ... .. ...... 27
4.4 Recommended File system for Machine2 . .. ... ....... . .... 27

viii



Acknowledgments

My immense gratitude to my advisor, Dr. Erez Zadok, for cansguidance and motivation. |
thank Dr. Rob Johnson and Dr. Jennifer Wong for being on mgrikesf committee, and providing
valuable suggestions. | am also thankful to the anonymouENJ% FAST reviewers and the
shepherd for their valuable comments. | am thankful to emegyat the File Systems and Storage
Lab (FSL), for making it a great learning experience. | alsmiro specially thank Vasily Tarasov
and Saumitra Bhanage, for their help through the project.

This thesis was made possible in part thanks to NSF awards@B2E463 and CCF-0937854,
2008 IBM Faculty award, and 2009 NetApp gift.



Chapter 1

Introduction

Performance has a long tradition in storage research. Rgcpower consumption has become a
growing concern. Recent studies show that the energy usatkiall U.S. data centers is 1-2% of
total U.S. energy consumption [45], with more spent by offieinfrastructures outside the data
centers [47]. Storage stacks have grown more complex wéhatdition of virtualization layers
(RAID, LVM), stackable drivers and file systems, virtual rhawes, and network-based storage
and file system protocols. It is challenging today to un@dedtthe behavior of storage layers,
especially when using complex applications.

Performance and energy use have a non-trivial, poorly wholed relationship: sometimes
they are opposites (e.g., spinning a disk faster costs nmweipbut improves performance); but
at other times they go hand in hand (e.g., localizing writeés iadjacent sectors can improve
performance while reducing the energy). Worse, the growinmber of storage layers further
perturb access patterns each time applications’ requestsrée the layers, further obfuscating
these relationships.

Traditional energy-saving techniques umght-sizing These techniques adjust node’s compu-
tational power to fit the current load. Examples include sjpig disks down [12, 29, 32], reduc-
ing CPU frequencies and voltages [48], shutting down imldigi CPU cores, and putting entire
machines into lower power states [14, 34]. Less work has deae orworkload-reductiortech-
niques: better algorithms and data-structures to improveep/performance [16, 19, 25]. A few
efforts focused on energy-performance tradeoffs in pdrtsestorage stack [8, 18, 30]. However,
they were limited to one problem domain or a specific worklseénario.

Many factors affect power and performance in the storagekstaspecially workloads and
hardware configuration. Traditional file systems and 1/Oesktlhers were designed for general-
ity, which is ill-suited for today’s specialized serverstiwlong-running services (Web, database,
email). We believe that to improve performance and redu@Fggnuse, custom storage layers
are needed for specialized workloads. But before thatptigint systematic studies are needed to
recognize the features affecting power-performance usgecific workloads and hardware con-
figurations.

This thesis studies the impact of server workloads on botepand performance. We used
the FileBench [40] workload generator due to its flexibjligccuracy, and ability to scale and
stress any server. We selected FileBench’'s Web, datalbrasd, and file server workloads as they



represent most common server workloads, yet they diffenfeach other. Modern storage stacks
consist of multiple layers. Each layer independently affélce performance and power consump-
tion of a system, and together the layers make such interacdther complex. Here, we focused
on the file system layer only; to make this study a useful stepgtone towards understanding the
entire storage stack, we did not use LVM, RAID, or virtualiaa. We experimented with Linux’s
four most popular and stable local file systems: Ext2, ExtBSXand Reiserfs; and we varied
several common format- and mount-time options to evalleai impact on power/performance.

We ran many experiments on two server-class machines idifen their age, collected de-
tailed performance and power measurements, and analyeed te found that different work-
loads and hardware configurations, not too surprisinglyetalarge impact on system behavior.
No single file system worked best for all workloads. Moreowfault file system format and
mount options were often suboptimal. Some file system feathelped power/performance and
others hurt it. Our experiments revealed a strong linedetyveen the power efficiency and perfor-
mance of a file system. Overall, we found significant variaion the amount of useful work that
can be accomplished per unit time or unit energy, with padssinprovements over default con-
figurations ranging from 5% to 9:4. We conclude that long-running servers should be carefully
configured at installation time. For busy servers this cafdysignificant performance and power
savings over time. We hope this study will inspire other &sde.g., distributed file systems), and
lead to novel storage layer designs.

The rest of this thesis is organized as follows. Chapter 2esisr related work. Chapter 3
introduces our experimental methodology. The bulk of oal@ation and analysis is in Chapter 4.
We conclude in Chapter 5 and describe future directions iapBdr 6.



Chapter 2

Related Work

Past power-conservation research for storage focusedrtabe battery-operated computers [12,
26]. Recently, researchers investigated data center®9]g62. As our focus is file systems’
power and performance, we discuss three areas of relatddtivatrmainly cover both power and
performance: file system studies, lower-level storageistiédind benchmarks commonly used to
evaluate systems’ power efficiency.

2.1 File system studies

Disk-head seeks consume a large portion of hard-disk erjéigyA popular approach to opti-
mize file system power-performance is to localize on-distada incur fewer head movements.
Huang et al. replicated data on disk and picked the closefitaeto the head’s position at run-
time [19]. The Energy-Efficient File System (EEFS) groupsdilith high temporal access local-
ity [25]. Essary and Amer developed predictive data grogg@nd replication schemes to reduce
head movements [16].

Some suggested other file-system—Ievel techniques to equimeger consumption without de-
grading performance. BlueFsS is an energy-efficient distad file system for mobile devices [30].
When applications request data, BlueFS chooses a rephitddist optimizes energy and perfor-
mance. GreenFS is a stackable file system that combines deemtwork disk and a local
flash-based memory buffer to keep the local disk idling foloag as possible [20]. Kothiyal et
al. examined file compression to improve power and perfooad3].

These studies propose new designs for storage softwarehviimit their applicability to
existing systems. Also, they often focus on narrow problemains. We, however, focus on
servers, several common workloads, and use existing urfireodioftware.

2.2 Lower-level storage studies

A disk drive’s platters usually keep spinning even if there mo incoming 1/O requests. Turning
the spindle motor off during idle periods can reduce diskrgnese by 60% [29]. Several stud-
ies suggest ways to predict or prolong idle periods and s$teutlisk down appropriately [10, 12].
Unlike laptop and desktop systems, idle periods in servekiads are commonly too short,



making such approaches ineffective. This was addressad U§) off-loading [29], power-aware
(sometimes flash-based) caches [5,51], prefetching [37 &% a combination of these tech-
niques [11, 46]. Massive Array of Idle Disks (MAID) augmeR&ID technology with automatic
shut down of idle disks [9]. Pinheiro and Bianchini used thet that regularly only a small subset
of data is accessed by a system, and migrated frequentigseateata to a small number of active
disks, keeping the remaining disks off [33]. Other appresctlynamically control the platters’
rotation speed [37] or combine low- and high-speed disks$&hilarscale-dowrtechniques have
been applied to distributed processing frameworks likeddad24].

There have been a few studies that focus on improving thegewedficiency of the sys-
tem through the use of low-powered hardware, without deggag@erformance. For example,
FAWN [3] is a low-powered cluster architecture targeted dodg data-intensive workloads. The
FAWN architecture consists of low-powered embedded CPUWpled with local flash storage,
which is accessed through a log-structured data store. Béleynce computation and 1/0O capabil-
ities for efficient, massively parallel access to data.

Few of these approaches depend primarily on having or pgaohgridle periods, which is less
likely on busy servers. For those, aggressive use of shutdsiawdown, or spin-down techniques
can have adverse effects on performance and energy usedielgspin-up is slow and costs en-
ergy); such aggressive techniques can also hurt hardwlabiliey. Whereas idle-time techniques
are complementary to our study, we examine file systemsufeatthat increase performance and
reduce energy use mctivesystems.

2.3 Benchmarks and systematic studies

Researchers use a wide range of benchmarks to evaluatertheymnce of computer systems [41,
44] and file systems specifically [7, 22,40, 43]. Far fewerdmmarks exist to determine sys-
tem power efficiency. The Standard Performance Evaluatiorp&@ation (SPEC) proposed the
SPECpowesssj benchmark to evaluate the energy efficiency of syster@g [8PECpowessj
stresses a Java server with standardized workload atelitféwad levels. It combines results and
reports the number of Java operations per second per watiir®et al. used a large sorting prob-
lem (guaranteed to exceed main memory) to evaluate a syspawer efficiency [36]; they report
the number of sorted records per joule. We use similar ngthat applied for file systems.

Our goal was to conduct a systematic power-performancey sififile systems. Gurumurthi
et al. carried out a similar study for various RAID configuwat [18], but focused on database
workloads alone. They noted that tuning RAID parametemscédid power and performance more
than many traditional optimization techniques. We obsgisienilar trends, but for file systems.
In 2002, Bryant et al. evaluated Linux file system perforneaft], focusing on scalability and
concurrency. However, that study was conducted on an olderxL2.4 system. As hardware
and software change so rapidly, it is difficult to extrapel&tom such older studies—another
motivation for our study here.



Chapter 3

Methodology

This chapter details the experimental hardware and soéteetup for our evaluations. We describe
our testbed in Section 3.1. In Section 3.2 we describe owtoaarks and tools used. Sections 3.3
and 3.4 motivate our selection of workloads and file systaespectively. Section 3.5 explains
energy-related concepts and assumptions we made in thef testthesis.

3.1 Experimental Setup

L Machine type
Specification Machine 1 Machine 2
Machine age 3yrs <lyr
CPU model Intel Xeon | Intel Nehalem (E5530

CPU speed 2.8 GHz 2.4 GHz
No. of CPUs 2 dual core 1 quad core
CPU DVEFS support No Yes
L1 cache size 16K 128K
L2 cache size 2M 1M
L3 cache size No 8M
FSB speed 800 MHz 1066 MHz
RAM size (actual) 2GB 24GB
RAM type DIMM DIMM
Disk RPM 15000 7200
Disk Type SCSI SATA

Average Seek Time (ms) 3.2/3.6ms 10.5/12.5ms

Disk cache 8MB 16MB
Average ldle Power 218W 94W

Table 3.1: Hardware specification of the machines comritie testbed.

We conducted our experiments on two server class machines fifst machine was a three
year old (2007) server class machine. It was a Dell PowerE3{gg425 server consisting of 2



watts up?

[ SELECT f
" MODE g ;

Figure 3.1: WattsUP Pro ES power meter

dual-core InteR) Xeon™ CPUs at 2.8GHz, 2GB RAM, and two 73GB internal SATA disks. The
server was running the CentOS 5.3 Linux distribution withmle 2.6.18-128.1.16.¢el5.centos.plus.
All the benchmarks were executed on an external 18GB, 15K RPMAS15K 18WLS Maxtor
SCSI disk connected through Adaptec ASC-39320D Ultra328IStard.

The second machine was a more recent (2009) server macHhingasla Dell PowerEdge
R710 consisting of 1 quad-core In®lXeon™ Nehalem CPU with a maximum frequency of
2.4GHz, 24GB RAM, two 250GB internal SATA disks, and two 1TGSAS disks. We ran all
our benchmarks on a 18GB partition on one of the FUJITSU MHO® 7.2K RPM internal
SATA disk. The server was running the same 2.6.18-128.413.6entos.plus kernel and used just
2GB out of 24GB RAM. Table 3.1 summarizes the configurationwftestbed.

As one of our goals was to evaluate file systems’ impact on QRlt&k power consumption,
we connected the first machine and its external disk to twarsép WattsUP Pro ES [13] power
meters, shown in Figure 3.1. This is an in-line power metat theasures the energy drawn by a
device plugged into the meter’s receptacle. The power metes non-volatile memory to store
measurements every second. It has a 0.1 Watt-hour (1 Watt=h8,600 Joules) resolution for
energy measurements; the accuracy 1s5% of the measured value plus a constant errot-0f3
Watt-hours. We usedwat t sup Linux utility to download the recorded data from the meteeov
a USB interface to the test machine. We kept the temperatutieei server room constant. For
reasons explained in Section 3.5, we connected just onerpuoeter to the second machine and
measured the total energy drawn by the system.

3.2 Software Tools and Benchmarks

We usedFileBench[40], an application level workload generator that allowesito emulate a
large variety of workloads. It was developed by Sun Micrésys and was used for performance
analysis of Solaris operating system [28] and in other s&dii5, 17]. FileBench can emulate
different workloads thanks to its flexibM/orkload Model Languagé/VML), used to describe



Workload Avera_lge Average Number I/O sizes | Number of RN\/
file size | dir. depth | of files R/W threads | Ratio
Web Server| 32KB 3.3 20,000 | 1MB/16KB 100 10:1
File Server| 256KB 3.6 50,000 | 1MB/16KB 100 1:2
Mail Server| 16KB 0.8 50,000 | 1MB/16KB 100 11
DB Server | 0.5GB 0.3 10 2KB/2KB 200 +10 | 20:1

Table 3.2: The database workload uses 200 readers and Eosarit

a workload. A WML workload description is called personality Personalities define one or
more groups of file system operations (e.g., read, writegag@pstat), to be executed by multiple
threads. Each thread performs the group of operations tegilgaover a configurable period of
time. At the end of the run, FileBench reports the total nundigoerformed operations. WML
allows one to specify synchronization points between tiseand the amount of memory used
by each thread, to emulate real-world application more i&tely. Personalities also describe the
directory structure(s) typical for a specific workload: eage file size, directory depth, the total
number of files, and alpha parameters governing the file amttdry sizes that are based on a
gamma random distribution.

To emulate a real application accurately, one needs toat@iestem call traces of an applica-
tion and convert them to a personality. FileBench includs®ral predefined personalities—Web,
file, mail and database servers—which were created by anglyhe traces of corresponding
applications in the enterprise environment [40]. We usedélpersonalities in our study.

We used Auto-pilot [50] to drive FileBench. We built an Aytdet plug-in to communicate
with the power meter and modified FileBench to clear the twat weeters’ internal memory
before each run. After each benchmark run, Auto-Pilot ex¢réhe energy readings from both
watt-meters. FileBench reports file system performanceperations per second, which Auto-
pilot collects. We ran all tests at least five times and comghuhe 95% confidence intervals
for the mean operations per second, and disk and CPU eneagyngs using the Student/s-
distribution. Unless otherwise noted, the half widths af thtervals were less than 5% of the
mean—shown as error bars in our bar graphs. To reduce thectropthe watt-meter’s constant
error (0.3 Watt-hours) we increased FileBench'’s defauitirae from one to 10 minutes. Our test
code, configuration files, logs, and results are availablevat f sl . cs. sunysb. edu/ docs/

f sgreen- bench/.

3.3 Workload Categories

One of our main goals was to evaluate the impact of differdatsfystem workloads on perfor-
mance and power use. We selected four common server woskl¥deb server, file server, mail
server, and database server. The distinguishing workleatlifes were: file size distributions,
directory depths, read-write ratios, meta-data vs. daigiyc and access patterns (i.e., sequential
vs. random vs. append). Table 3.2 summarizes our worklgadgerties, which we detail next.



Web Server The Web server workload uses a read-write ratio of 10:1, &adis entire files
sequentially by multiple threads, as if reading Web page8.th& threads append 16KB to a
common Web log, thereby contending for that common resourais workload not only exercises
fast lookups and sequential reads of small-sized files, thalso considers concurrent data and
meta-data updates into a single, growing Web log.

File Server The file server workload emulates a server that hosts honeetdiies of multiple
users (threads). Users are assumed to access files and@gbielonging only to their respective
home directories. Each thread picks up a different set of bilesed on its thread id. Each thread
performs a sequence of create, delete, append, read, arrdestat operations, exercising both the
meta-data and data paths of the file system.

Mail Server The mail server workload (varmail) emulates an electronal server, similar to
Postmark [22], but it is multi-threaded. FileBench perfermsequence of operations to mimic
reading mails (open, read whole file, and close), composipgr{/create, append, close, and
fsync) and deleting mails. Unlike the file server and Web eseworkloads, the mail server work-
load uses a flat directory structure, with all the files in omealory. This exercises large directory
support and fast lookups. The average file size for this wardklis 16KB, which is the smallest
amongst all other workloads. This initial file size, howewows later due to appends.

Database Server This workload targets a specific class of systems, caldthe transaction
processing(OLTP). OLTP databases handle real-time transactiomtmik applications (e.g., e-
commerce). The database emulator performs random asymsavrites, random synchronous
reads, and moderate (256KB) synchronous writes to the keglfilaunches 200 reader processes,
10 asynchronous writers, and a single log writer. This waakll exercises large file management,
extensive concurrency, and random reads/writes. Thisleaftequent cache misses and on-disk
file access, thereby exploring the storage stack’s effigiémccaching, paging, and 1/0.

3.4 File System and Properties

We ran our workloads on four different file systems: Ext2,EReiserfs, and XFS. We evaluated
both the default and variants of mount and format optionsefach file system. We selected
these file systems for their widespread use on Linux servedstlze variation in their features.
Distinguishing file system features were:

e B+/S+ Tree vs. linear fixed sized data structures

Fixed block size vs. variable-sized extent

Different allocation strategies

Different journal modes

Other specialized features (e.g., tail packing)



For each file system, we tested the impact of various formdtraount options that are be-
lieved to affect performance. We considered two common &raptions: block size and inode
size. Large block sizes improve 1/O performance of apglicet using large files due to fewer
number of indirections, but they increase fragmentatiansfoall files. We tested block sizes of
1KB, 2KB, and 4KB. We excluded 8KB block sizes due to lack dif Support [31, 49]. Larger
inodes can improve data locality by embedding as much dapossible inside the inode. For
example, large enough inodes can hold small directoryesaaind small files directly, avoiding
the need for disk block indirections. Moreover, larger iasdhelp storing the extent file maps. We
tested the default (256B and 128B for XFS and Ext2/Ext3,eetyely) and 1KB inode size for
all file systems except Reiserfs, as it does not explicitielran inode object.

We evaluated various mount optionspoat i e, journal vs. no journal, and different jour-
nalling modes. Theoat i me option improves performance in read-intensive workloasjt
skips updating an inode’s last access time. Journallingiges reliability, but incurs an extra
cost in logging information. Some file systems support déffe journalling modes: data, ordered,
and writeback. The data journalling mode logs both data aathfdata. This is the safest but
slowest mode. Ordered mode (default in Ext3 and Reiserfs) émly meta-data, but ensures that
data blocks are written before meta-data. The writebackenogs meta-data without ordering
data/meta-data writes. Ext3 and Reiserfs support all timeg@es, whereas XFS supports only the
writeback mode. We also assessed a few file-system specitintraad format options, described
next.

3.4.1 Ext2 and Ext3

Ext2 [4] and Ext3 [49] have been the default file systems ontrhimgix distributions for years.
Ext2 divides the disk partition into fixed sized blocks, whare further grouped into similar-sized
block groups Each block group manages its own set of inodes, a free dati bitmap, and the
actual files’ data. The block groups can reduce file fragntemtand increase reference locality
by keeping files in the same parent directory and their dataaisame block group. The maximum
block group size is constrained by the block size. Ext3 hagamtical on-disk structure as Ext2,
but adds journalling. Whereas journalling might degraddgsmance due to extra writes, we
found certain cases where Ext3 outperforms Ext2. One of BrRt2 Ext3's major limitations is
their poor scalability to large files and file systems becafdhe fixed number of inodes, fixed
block sizes, and their simple array-indexing mechanism [6]

3.4.2 XFS

XFS [39] was designed for scalability: supporting teralgized files on 64-bit systems, an unlim-
ited number of files, and large directories. XFS employs Bedrto manage dynamic allocation
of inodes, free space, and to map the data and meta-datasédlifiztories. XFS stores all data
and meta-data in variable sized, contiguextents Further, XFS'’s partition is divided into fixed-

sized regions calledllocation groupgAGs), which are similar to block groups in Ext2/3, but are
designed for scalability and parallelism. Each AG manabedree space and inodes of its group
independently; increasing the number of allocation grosgedes up the number of parallel file
system requests, but too many AGs also increases fragnoentdihe default AG count value is



16. XFS creates a cluster of inodes in an AG as needed, thugmihg the maximum num-
ber of files. XFS uses a delayed allocation policy that helpgetting large contiguous extents,
and increases the performance of applications using kirget files (e.g., databases). However,
this increases memory utilization. XFS tracks AG free spasieag two B+ trees: the first B+
tree tracks free space by block number and the second trgckelsize of the free space block.
XFS supports only meta-data journalling (writeback). Alilgh XFS was designed for scalability,
we evaluate all file systems using different file sizes andatiary depths. Apart from evaluating
XFS’s common format and mount options, we also varied its AGNE.

3.4.3 Reiserfs

The Reiserfs partition is divided into blocks of fixed sizesiserfs uses halanced S+ tre¢35] to
optimize lookups, reference locality, and space-efficpatking. The S+ tree consists of internal
nodes, formatted leaf nodes, and unformatted nodes. Etmimah node consists of key-pointer
pairs to its children. The formatted nodes pack objectsliigballeditems each item is referenced
through a unique key (akin to an inode number). These iteciade: stat itemgfile meta-data),
directory items(directory entries)jndirect items(similar to inode block lists), andirect items
(tails of files less than 4K). A formatted node accommodaéass of different files and directories.
Unformatted nodes contain raw data and do not assist in dkd@up. The direct items and the
pointers inside indirect items point to these unformattedas. The internal and formatted nodes
are sorted according to their keys. As a file's meta-data aitalid searched through the combined
S+ tree using keys, Reiserfs scales well for a large and diEepystem hierarchy. Reiserfs has
a unique feature we evaluated calli@dl packing intended to reduce internal fragmentation and
optimize the 1/0 performance of small sized files (less thigh Zail-packing support is enabled
by default, and groups different files in the same node. Theseeferenced using direct pointers,
called the tail of the file. Although the tail option looksratitive in terms of space efficiency
and performance, it incurs an extra cost during reads if éilds spread across different nodes.
Similarly, additional appends to existing tail objectsdg¢a unnecessary copy and movement of
the tail data, hurting performance. We evaluated all thoeenjalling modes of Reiserfs.

3.5 Energy Breakdown

Active vs. passive energy Even when a server does not perform any work, it consumes some
energy. We call this energylle or passive The file system selection alone cannot reduce idle
power, but combined with right-sizing techniques, it campiiove power efficiency by prolonging
idle periods. Theactive power of a node is an additional power drawn by the system vithen
performs useful work. Different file systems exercise thetaey’s resources differently, directly
affecting active power. Although file systems affect acémergy only, users often care about total
energy used. Therefore, we report only total power used.

Hard disk vs. node power On machine 1, we collected power consumption readings fr th
external disk drive and the test node separately. We medsunehard disk’s idle power to be 7
watts, matching its specification. We wrote a tool that cantsy performs direct I/O to distant

10



disk tracks to maximize its power consumption, and measaretaximum power of 22 watts.
However, the average disk power consumed for our expersneas only 14 watts with little
variations. This is because the workloads exhibited higlality, heavy CPU/memory use, and
many I/O requests were satisfied from caches. Whenever thidoads did exercise the disk, its
power consumption was still small relative to the total powiherefore, on machine 2 we only
collected total energy consumed by the system and did no¢gaig the energy consumed by the
disk. For the rest of this thesis, we report only total syspawer consumption (disk included).

A node’s power consumption consists of its components’ powke idle-to-peak power for
machine 1 was 214-279W. The CPU tends to be a major contribatour case from 86-165W
(i.e., Intel's SpeedStep technology). However, the beaitasfi power consumption within a com-
puter is complex due to thermal effects and feedback loopsekample, our CPU’s core power
use can drop to a mere 27W if its temperature is cooles) taC, whereas it consumes 165W at a
normal temperature 6f6 °C. Motherboards today include dynamic system and CPU fanstwhi
turn on/off or change their speeds; while they reduce podsawhere, the fans consume some
power themselves. For simplicity, our thesis reports oatgltsystem power consumption.

FS vs. other software power consumption Itis reasonable to question how much energy does a
file system consume compared to other software componentording to Almeida et al., a Web
server saturated by client requests spends 90% of the tirkerirel space, invoking mostly file
system related system calls [2]. In general, if a user-spasgram is not computationally inten-
sive, it frequently invokes system calls and spends a lotad tn kernel space. Therefore, it makes
sense to focus the efforts on analyzing energy efficiencyl@tfistems. Moreover, our results in
Chapter 4 support this fact: changing only the file systene ty@an increase power/performance
numbers up to a factor of 9.

11



Chapter 4

Evaluation

In this chapter, we detail our results and analysis. We afiditer] the terms Ext2, Ext3, Reis-
erfs, and XFS ag2, e3, r, andx, respectively. File systems formatted with block size of 1K
and 2K are denotedl k1k andbl k2k, respectively;i sz1k denotes 1K inode sizebgl6k
denotes 16K block group sizedt | g andwr bck denote data and writeback journal modes, re-
spectively;nol og denotes Reiserfs’s no-logging feature; allocation graaymt is abbreviated as
agc followed by number of groups (8, 32, etc.), no-atime is dedasnoat m

Section 4.1 provides and overview of our metrics and term& prdvide details about the
Web, File, Mail, and DB workload results on machine 1 and 2 aat®ns 4.2 and 4.3, respec-
tively. Section 4.4 provides recommendations for selgcfile system features that best suit the
workloads.

320
300
o
g
< 280
()
2
(o)
o
S 260 +
@
(0]
>
e
240 + Ext2 —+—
Ext3 —x—
XFS —x—
Reiserfs —&—
220 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Load (1000 ops/sec)

Figure 4.1. Webserver: Mean power consumption by Ext2, ER&serfs, and XFS at different
load levels on machine 1. Theaxis scale starts at 220 Watts. Ext2 does not scale abo08@.0,
ops/sec.

12



4.1 Overview

In all our tests, we collected two raw metrics: performaniteni FileBench), and the average
power of the machine and disk (from watt-meters). FileBeragorts file system performance
under different workloads in units afperations per seconfbps/sec). As each workload targets
a different application domain, this metric is not compégadcross workloads: A Web server's
ops/sec are not the same as, say, the database server's. nwgiitude also varies: the Web
server’s rates numbers are two orders of magnitude larger tther workloads. Therefore, we
report Web server performance in 1,000 ops/sec, and jussepfor the rest.

100 - -
iowait
util B

80

o,
60 | 21% 55% T

NN
N

40 + 73%

20

0

Ext2 Ext3 Reiserfs XFS

Figure 4.2: Average CPU utilization for the Webserver wodd

Electrical power, measured in Watts, is defined as the ratdith electrical energy is trans-
ferred by a circuit. Instead of reporting the raw power nursbeve selected a derived metric
calledoperations per jouldops/joule), which better explains power efficiency. Thsiglefined as
the amount of work a file system can accomplish in 1 Joule ofggn@ Joule = lwatt x 1sec).
The higher the value, the more power-efficient the systeniThis metric is similar to SPEC's
(%) metric, used by SPECPowssj2008 [42]. Note that we report the Web server’'s power
efficiency in ops/joule, and use ops/kilojoule for the rest.

A system’s active power consumption depends on how muchbigiisg utilized by software,
in our case a file system. We measured that the higher thensA@RJ utilization, the greater
the power consumption. We therefore ran experiments to mneake power consumption of a
workload at different load levels (i.e., ops/sec), for allf file systems, with default format and
mount options. Figure 4.1 shows the average power consumed/dtts) by each file system,
increasing Web server loads from 3,000 to 70,000 ops/semamhine 1. We found that all file
systems consumed almost the same amount of energy at angegtéormance levels, but only a
few could withstand more load than the others. For examptt Bad a maximum of only 8,160
Web ops/sec with an average power consumption of 239W, \#ile peaked at 70,992 ops/sec,
with only 29% more power consumption. Figure 4.2 shows thregreages of CPU utilization,
I/0 wait, and idle time for each file system at its maximum leadmachine 1. Ext2 and Reiserfs
spend more time waiting for I/O than any other file systemrehg performing less useful work,
as per Figure 4.1. XFS consumes almost the same amount gfyeasethe other three file systems
at lower load levels, but it handles much higher Web servads$o winning over others in both
power efficiency and performance. We observed similar sdodother workloads: only one file
system outperformed the rest in terms of both power and paence, at all load levels. Thus, in

13



the rest of this thesis we report only peak performance figure

4.2 Machine 1 Results

This section details the results on machine 1, which is eetlygar old machine as described
in Table 3.1. We first analyze the results for the Web, FilejlMad Database servers in Sec-
tions 4.2.1-4.2.4. Section 4.2.5 provides recommendationselecting the optimal file system
for machines that match the configuration of machine 1.

4.2.1 Webserver Workload

Q. ; A, * Q. Q. 8, Q; o A * + Q. &; +, & Q; + * * + Q. & + A A, A, A, A, Q,
D, R, G G S e O R G, G, T, T, R R Ty, Ry R Ty Ty Ty Ty R, R, Ty Ty, Ty Yy, Ty, Ty R, R
% % ¥ & Y Y Y b K K % K % b R G G O oy Yo %, b B O, % % % B, b W
% % T R e e N Y % % e s e, e Y Ty S

(a) File system Webserver workload performance (in 1000se3

e & & ko ok ok ok & & kA, A A A A

) £+

G Ny R 9 9 9 9,
L% 6 0. O, %
% % 9@ % "y

A Q Q 9, 8, A A, + + Q Q;
%, T R R % R Y G Ty, Ry, RO%
L % % a@ é@ %4 é@ Yt %, % %, %,

(b) File system energy efficiency for Webserver workloadafas/joule)

Figure 4.3:Webserver results on Machine 1

As we see in Figures 4.3(a) and 4.3(b), XFS proved to be the povger- and performance-
efficient file system. XFS performed 9 times better than ExR well as 2 times better than
Reiserfs, in terms of both power and performance. Ext3 lddgghind XFS by 22%. XFS wins
over all the other file systems as it handles concurrent esdata single file efficiently, without
incurring a lot of 1/0O wait (Figure 4.2), thanks to its joutresign. XFS maintains an active item
list, which it uses to prevent meta-data buffers from beimigt@n multiple times if they belong to
multiple transactions. XFS pins a meta-data buffer to preitdrom being written to the disk until
the log is committed. As XFS batches multiple updates to asominode together, it utilizes the
CPU better. We observed a linear relationship between peffieiency and performance for the
Web server workload, so we report below on the basis of perdoice alone.

Ext2 performed the worst and exhibited inconsistent beadravis standard deviation was as
high as 80%, even after 30 runs. We plotted the performankesan a histogram and ob-

14



served that Ext2 had a non-Gaussian (long-tailed) digtabu Out of 30 runs, 21 runs (70%)
consumed less than 25% of the CPU, while the remaining oresb ws to 50%, 75%, and 100%
of the CPU (three runs in each bucket). We wrote a micro-bmack which ran for a fixed time
period and appended to 3 common files shared between 10@shré&se found that Ext3 per-
formed 13% fewer appends than XFS, while Ext2 was 2.5 tinmsesl than XFS. We then ran a
modified Web server workload witbnly reads and no log appends. In this case, Ext2 and Ext3
performed the same, with XFS lagging behind by 11%. This tebee XFS’$ ookup operation
takes more time than other file systems for deeper hierasty $ection 4.2.2). As XFS handles
concurrent writes better than the others, it overcomes #mopnance degradation due to slow
lookups and outperforms in the Web server workload. OSmsdilts [21] revealed that the aver-
age latency ofw i t e_super for Ext2 was 6 times larger than Ext3. Analyzing the file syste
source code helped explain this inconsistency. First, 48 Baes not have a journal, it com-
mits superblock and inode changes to the on-disk image inatedyg without batching changes.
Second, Ext2 takes the global kernel lock (aka BKL) whildimglext 2_.wri t e super and
ext 2.writ e_i node, which further reduce parallelism: all processes using2BExhich try to
sync an inode or the superblock to disk will contend with eattter, increasing wait times signif-
icantly. On the contrary, Ext3 batches all updates to thdesan the journal and only when the
JBD layer call§ our nal _conmi t t ransact i on are all the metadata updates actually synced
to the disk (after committing the data). Although journadjiwas designed primarily for reliability
reasons, we conclude that a careful journal design can bele soncurrent-write workloads akin
to LFS [38].

Reiserfs exhibits poor performance for different reastiasmtExt2 and Ext3. As Figures 4.3(a)
and 4.3(b) show, Reiserfs (default) performed worse thah &S and Ext3, but Reiserfs with
thenot ai | mount option outperformed Ext3 by 15% and the default Risd®r 2.25 times. The
reason is that by default theai | option is enabled in Reiserfs, which tries to pack all filessle
than 4KB in one block. As the Web server has an average fileo$ipst 32KB, it has many files
smaller than 4KB. We confirmed this by runnidig@bugr ei ser f s on the Reiserfs partition:
it showed that many small files had their data spread acrasslifferent blocks (packed along
with other files’ data). This resulted in more than one datekbkhccess for each file read, thereby
increasing 1/O, as seen in Figure 4.2. We concluded thateiilkt2 and Ext3, the default Reiserfs
experienced a performance hit due to its small file read desaher than concurrent appends.
This demonstrates that even simple Web server workload tiaexercise different parts of file
systems’ code.

An interesting observation was that theat i me mount option improved the performance of
Reiserfs by a factor of 2.5 times. In other file systems, tpisom did not have such a significant
impact. The reason is that theei ser f s_di rt y_i node function, which updates the access
time field, acquires the BKL and then searches for the stat derresponding to the inode in its
S+ tree to update that i me. As the BKL is held while updating each inode’s access tima in
path, it hurts parallelism and reduces performance sigmiflg. Also,noat i ne boosts Reiserfs’s
performance by this muacbinly in the read-intensive Web server workload.

Reducing the block-size during format generally hurt perfance, except in XFS. XFS was
unaffected thanks to its delayed allocation policy thabadtes a large contiguous extent, irre-
spective of the block size; this suggests that modern fileesys should try to pre-allocate large
contiguous extents in anticipation of files’ growth. Refsarbserved a drastic degradation of 2—

15



3x after decreasing the block size from 4KB (default) to 2KB aKdB, respectively. We found
fromdebugr ei ser f s that this led to an increase in the number of internal and &i@a nodes
used to manage the file system namespace and objects. Aswitght of the S+ tree grew from 4
to 5, in case of 1KB. As the internal and formatted nodes deéperthe block size, a smaller block
size reduces the number of entries packed inside each @& tioekes, thereby increasing the num-
ber of nodes, and increasing 1/0O times to fetch these nodes the disk during lookup. Ext2 and
Ext3 saw a degradation of2and 12%, respectively, because of the extra indirectioeslee to
reference a single file. Note that Ext2's 2legradation was coupled with a high standard variation
of 20-49%, for the same reasons explained above.

Quadrupling the XFS inode size from 256B to 1KB improved perfance by only 8%. We
found usingxf s _db that a large inode allowed XFS to embed more extent infolmnatind direc-
tory entries inside the inode itself, speeding lookups. ¥seeted, the data journalling mode hurt
performance for both Reiserfs and Ext3 by 32% and 27%, réispsc The writeback journalling
mode of Ext3 and Reiserfs degraded performancesbyad 7%, respectively, compared to their
default ordered journalling mode. Increasing the blockugraount of Ext3 and the allocation
group count of XFS had a negligible impact. The reason istti&WWeb server is a read-intensive
workload, and does not need to update the different grougtdata as frequently as a write-
intensive workload would.

4.2.2 File Server Workload

443 45 44342 g

285 279
4

> % -kQ Jr.s -kQ Jr.@ & &t %o A4 . 4 A
b, %, Yy B, Yo %, 7 % %
% Xy % 8, X

Q +, & Q A :,
% R w2, %, o%‘ o,
% W % H 70

Q e A + Q Q 9, @, A A + + Q;

R Ty Ty RR,R, R, T T, T, R
% % & G 6 "% 4 b K K Y, % 6 % %
& % Ty Ty Ky, e % % % % ““e(% fe{é A o

(a) Performance of file systems for the file server workloadfs/sec)

2000
% 1500
1000

T 500
3

0‘9 @, f\é
% % Y 4, %
> Y % %. 3 %

+ £k
%, QR R R
% R Ty R

6 o &, N6 %6 %
Y, %
e\,{_ e\,{» % 9(6;/, 0\;@ %

hook,
4 T, Ty
%, Y, Y
% %

(b) Energy efficiency of file systems for the file server woddq(in ops/kilojoule)

Figure 4.4:Fileserver results on Machine 1
Figures 4.4(a) and 4.4(b) show that Reiserfs outperformd@, EExt3, XFS by 37%, 43%,
and 91%, respectively. Compared to the Web server worklBatserfs performed better than all

others, even with théai | option on. This is because the file server workload has arageer
file size of 256KB (8 times larger than the Web server workjoatddoes not have many small

16



files spread across different nodes, thereby showing nerdiite between Reiserfsisgi | ) and
no-tail options.

Analyzing using OSprof revealed that XFS consumed 14% afd tre time inl ookup
andcr eat e, respectively, than Reiserfs. Ext2 and Ext3 spent 6% more i bothl ookup and
cr eat e than Reiserfs. To exercise only the lookup path, we exeautchple micro-benchmark
that only performed open and close operations on 50,000HileB00 threads, and we used the
same fileset parameters as that of the file server workload {able 3.2). We found that XFS
performed 5% fewer operations than Reiserfs, while Ext2 BExid performed close to Reiserfs.
As Reiserfs packs data and meta-data all in one node andaimairet balanced tree, it has faster
lookups thanks to improved spatial locality. Moreover, $R€is stores objects by sorted keys,
further speeding lookup times. Although XFS uses B+ treemaintain its file system objects,
its spatial locality is worse than that of Reiserfs, as XFS toaperform more hops between tree
nodes.

Unlike the Web server results, Ext2 performed better thai3 Fand did not show high standard
deviations. This was because in a file server workload, daead works on an independent set
of files, with little contention to update a common inode.

We discovered an interesting result when varying XFS’scallimn group (AG) count from 8
to 128, in powers of two (default is 16). XFS's performancer@ased from 4% to 34% (compared
to AG of 8). But, XFS’s power efficiency increased linearlylyoantil the AG count hit 64, after
which the ops/kilojoule count dropped by 14% (for AG countil@B). Therefore, XFS’ AG count
exhibited anon-linearrelationship between power-efficiency and performanceth&sumber of
AGs increases, XFS's parallelism improves too, boostindopmance even when dirtying each
AG at a faster rate. However, all AGs share a common jourrsatha number of AGs increases,
updating the AG descriptors in the log becomes a bottleneweksee diminishing returns beyond
AG count of 64. Another interesting observation is that A@Gmancreases had a negligible effect
of only 1% improvement for the Web server, but a significanpatt in file server workload. This
is because the file server has a greater number of meta-datdies and writes than the Web
server (see Chapter 3), thereby accessing/modifying theléggriptors frequently. We conclude
that the AG count is sensitive to the workload, especialbdrerrite and meta-data update ratios.
Lastly, the block group count increase in Ext2 and Ext3 hahallsmpact of less than 1%.

Reducing the block size from 4KB to 2KB improved the perfonge of XFS by 16%, while
a further reduction to 1KB improved the performance by 18%t2EExt3, and Reiserfs saw
a drop in performance, for the reasons explained in Sectidri4 Ext2 and Ext3 experienced
a performance drop of 8% and 3%, respectively, when going fiKB to 2KB; reducing the
block size from 2KB to 1KB degraded their performance furthye 34% and 27%, respectively.
Reiserfs’s performance declined by a 45% and 75% when weceeldiine block size to 2KB and
1KB, respectively. This is due to the increased number @efriratl node lookups, which increase
disk 1/0O as discussed in Section 4.2.1.

The no- at i me options did not affect performance or power efficiency of ditg system
because this workload is not read-intensive and had a ratigoowrites for each read. Changing
the inode size did not have an effect on Ext2, Ext3, or XFS.#4ueeted, data journalling reduced
the performance of Ext3 and Reiserfs by 10% and 43%, respéctWriteback-mode journalling
also showed a performance reduction by 8% and 4% for Ext3 &gERS, respectively.

17



2000

1500

(ops/sec)

1000

t 500 406 377 326 38 326 329

& & A, ko 8 O & 8 A A £, kG 8 k.
R R Ty Ty R R, R, G, G, T, T, R R, Ty
% % & & 6, "% b 4 % % % 6. Y. &
Ty Ry g e % % % ”“*14_ “"eq_ %

%0, %, W, %, %, e, B B ", 5
U %y R T % %, T Y e e T b

(a) Performance of file systems under the varmail workloaafis/sec)

8000

6000

ncy (ops/kilojoule)

4000

2000

Energy Efficiel

& ke & G ok A ok & S kA A A A A, G 6
/&ﬁ) %, Q‘?o ?90 ?‘70 690 ‘?90 vz/)a u)\"o /’o& %, %, /;% % %,
% 162 JG{_ e TR TG, J‘J& @,//) % D T W o %

Q Q Q. Q. A A + + Q.
% R R O R G G T, Y, R R
Y Y Y Y K, H, K, Ky G %
4 {-’4 494- 474- /4"4’- KA e"/— e"%

(b) Energy efficiency of file systems under the varmail woakldin ops/kilojoule)

Figure 4.5:Varmail results on Machine 1

4.2.3 Mail Server

As seen in Figures 4.5(a) and 4.5(b), Reiserfs performedbéise amongst all, followed by Ext3
which differed by 7%. Reiserfs beats Ext2 and XFS by 43% andréspectively. Although the
mail server’s personality in FileBench is similar to the fderver’s, we observed differences in
their results, because the mail server workload daflgnc after each append, which is not in-
voked in the file server workload. THesync operation hurts the non-journalling version of file
systems: hurting Ext2 by 30% and Reiserfs-nolog by 8% as eostpto Ext3 and default Reis-
erfs, respectively. We confirmed this by running a microdsenark in FileBench which created
the same directory structure as the mail server workloadpamtbrmed the following sequence
of operations: create, append, fsync, open, append, and.fShis showed that Ext2 was 29%
slower than Ext3. When we repeated this after removing watlidsalls, Ext2 and Ext3 performed
the same. Ext2’s poor performance with fsync calls is besdisext 2_sync_fi | e call ulti-
mately invokesext 2_.wri t e_i node, which exhibits a larger latency than tkei t e_i node
function of other file systems. XFS’s poor performance wasstduts slowel ookup operations.

Figure 4.5(a) shows that Reiserfs witlo- t ai | beats all the variants of mount and format
options, improving over default Reiserfs by 29%. As the agerfile size here was 16KB, the
no-t ai | option boosted the performance similar to the Web servekivad.

As in the Web server workload, when the block size was reddomd 4KB to 1KB, the
performance of Ext2 and Ext3 dropped by 41% and 53%, res@dgti Reiserfs’s performance
dropped by 59% and 15% for 1KB and 2KB, respectively. AltHotlye performance of Reiserfs
decreased upon reducing the block size, the percentagadigimgmn was less than seen in the Web
and file server. The flat hierarchy of the mail server attebuto this reduction in degradation; as
all files resided in one large directory, the spatial logatif the meta data of these files increases,
helping performance a bit even with smaller block sizes. ildamo the file server workload,

18



450
400
350
& 300
250
200
150
100

50

LR 1&0 %o 400 4,}0/ 4% %
% v % %

& & K & & K Kk *

R K b S % % % 9 Y

G G R % Y 0 G, Y %,
A A A TR

/:0
0,

0,
G W o

Q + Q Q Q Q. A, A + +

< % S Sw O 9, Y, G, T, T
% S % 9, Y Y Y % h %, %
% Y % % % % e

@%
>

(a) Performance of file systems for the OLTP workload (in sps)

T 1400
£ 1200
3 1000

g

3 80

g 600

g 400

5 200

é’o \ R R \
& 8 A, k, & 8 8 8§ A A e e & & k. & 8 ko ok ok k& & kA A A A A, & 6
R, &, % Tg R R R R Y TG Ty, T, R R TR R R Ty, Ty, Ty, Ty, R, R, T M 'y, Cg 2, %
% % & & G Y Y G K K U, U e 6 %, T4 %, . O Y. n n oy By, o by . % S, Ty
o % , 4?4 @ /@ /4& b % Ty % Y, % % % o\,@{_ Gy %y, g, o,\s& %, %, %, N »604 %

(b) Energy efficiency of file systems for the OLTP workload ¢jps/kilojoule)

Figure 4.6:0LTP results on Machine 1

reduction in block size increased the overall performarfoérs.

XFS's allocation group (AG) count and the block group counExt2 and Ext3 had minimal
effect within the confidence interval. Similarly, tlm- at i me option and inode size did not
impact the efficiency of file server significantly. The datarjmalling mode decreased Reiserfs’s
performance by 20%, but had a minimal effect on Ext3. Findle writeback journal mode
decreased Ext3's performance by 6%.

4.2.4 Database Server Workload (OLTP)

Figures 4.6(a) and 4.6(b) show that all four file systemsquarfequally well in terms of both
performance and power-efficiency with the default mountifat options, except for Ext2. It
experiences a performance degradation of about 20% as cechjfmaXFS. As explained in Sec-
tion 4.2.1, Ext2’s lack of a journal makes its random writefpenance worse than any other
journalled file system, as they batch inode updates.

In contrast to other workloads, the performanceatiffile systems increases by a factor of
around X if we decrease the block size of the file system from the de#B to 2KB. This
is because the 2KB block size better matches the 1/0 size ®PQiorkload (see Table 3.2), so
every OLTP write request fits perfectly into the file systeivlsck size. But, a file-system block
size of 4KB turns a 2KB write into a read-modify-write seqoenrequiring an extra read per
I/0 request. This proves an important point that keepingfiteesystem block size close to the
workload’s 1/O size can impact the efficiency of the systegngicantly. OLTP’s performance
also increased when using a 1KB block size, but was slighthet than that obtained by 2KB
block size, due to an increased number of I/O requests.

An interesting observation was that on decreasing the nuofli®ocks per group from 32KB
(default) to 16KB, Ext2's performance improved by 7%. Maren increasing the inode size

19



up to 1KB improved performance by 15% as compared to the Hefaofiguration. Enlarging
the inode size in Ext2 has an indirect effect on the blocksgoeup: the larger the inode size,
the fewer the number of blocks per group. A 1KB inode sizeltedun 8KB blocks per group,
thereby doubling the number of block groups and increasiegoerformance as compared to the
e2- bgl6K case. Varying the AG count had a negligible effect on XFSisbars. Unlike Ext2,
the inode size increase did not affect any other file system.

Interestingly, we observed that the performance of Reisadreased by 30% on switching
from the default ordered mode to the data journalling mode.ddta journalling mode as all
the data is first written to the log, random writes becomedally sequential and achieve better
performance than the other journalling modes.

In contrast to the Web server workload, the- at i me option does not have any effect on
the performance of Reiserfs, although the read-write 1igti20:1. This is because the database
workload consists of only 10 large files and hence the meta-afahese small number of files (i.e.,
stat items) accommodate in a few formatted nodes as comfiatied \Web server workload which
consists of 20,000 files with their meta-data scatteredsacnaultiple formatted nodes. Reiserfs’
no-t ai | option had no effect on the OLTP workload due to the large aizts files.

4.2.5 Summary and Recommendations for Machine 1

We now summarize the combined results of our study on maching/e then offer advice to
server operators, as well as designers of future systems.

Staying within a file system type Switching to a different file system type can be a difficult
decision, especially in enterprise environments wher&igsl may require using specific file sys-
tems or demand extensive testing before changing one. #ableompares the power efficiency
and performance numbers that can be achieved while stayithghva file system; each cell is a
percentage of improvement (plus sign and bold font), oragation (minus sign) compared to the
defaultformat and mount options for that file system. Dashes demstdts that were statistically
indistinguishable from default. We compare to the defaakecbecause file systems are often
configured with default options.

Format and mount options represent different levels ofwijatition complexity. Remounting a
file system with new options is usually seamless, while rafiiting existing file systems requires
costly data migration. Thus, we group mount and format ostimgether.

From Table 4.1 we conclude that often there is a better seteof parameters than the default
ones. A careful choice of file system parameters cuts enesgyiruhalf and more than doubles
the performance (Reiserfs witho-t ai | option). On the other hand, a careless selection of
parameters may lead to serious degradations: up to 64% drbpth energy and performance
(e.g., legacy Ext2 file systems with 1K block size). Until Gmr 1999 mkfs.ext2ised 1KB block
sizes by default. File systems formatted prior to the tina Liinux vendors picked up this change,
still use small block sizes: performance-power numbers\&ea-server running on top of such a
file system are 65% lower than today’s default and over 4 twase than best possible.

Given Table 4.1, we feel that even moderate improvementsvaréh a costly file system
reformatting, because the savings accumulate for longingnservers.

20



Option Webserver Fileserver Varmail Database

FS Type | Name | Perf. Pow. | Perf. | Pow.| Perf. | Pow.| Perf. | Pow.
mount | noatime| -37%7 | -35% - - - - - -
format | blklk | -64%7 | -65% | -34% | -35%| -41% |-41%| +98% |+100%

Ext2 blk2k | -65% | -65% | -8% | -9% | -17% |-18%| +136% |+13%%

iszlk | -34%7 | -35% - - - - +15% | +16%
bgl6k | +60% 1 | +53% - - +6% | +5% | +7% | +7%

mount | noatime, +4% +5% - - - - - -
dtlg 27% | -23% | -10% | -5% - - -11% | -13%
wrbck | -63% | -57% | -8% | -9% | -6% | -5% | -5% -5%
Ext3 | format | blklk -34% | -30% | -27% | -28%| -53% |-53%| +81% | +81%

blk2k -12% | -11% - - -30% |-31%| +98% | +97%
isz1k - - - - +8% | +8% - -
bgl16k - - - - 4% | -5% | -8% -9%
mount | noatime, +14%6 |+11%% - - +5% | +5% - -
notail | +128% | +96% - - +2%% | +28% - -
nolog - - - - -8% | -8% - -
Reiser wrbck -T1% -T1% -4% | -7T%

dtlg -32% | -29% | -43% |-42%| -20% |-21%| +30% | +2%
format | blklk -73% | -70% | -74% |-74%| -59% |-58%| +80% | +80%
blk2k -51% | -47% | -45% |-45%| -15% |-16%| +92% | +91%
mount | noatime, - - - - - - - -

format | blk1lk - - +18% [+17%%| +27% |[+17% | +101% |+100%
blk2k - - +16% |+15%| +18% |+17%| +101% | +99%
isz1k +8% +6% - - - - - -
XFS agcent8 - - -4% | -5% - - - -
agcnt32 - - - - - - - -
agcente4 - - +23% |+25% - - - -
agent128 - - +29% | +8% - - - -

Table 4.1: File systems’ performance and power, varying options, téla to the default ones
for each file system for machine IImprovements are highlighted in bold.jAlenotes the results
with coefficient of variation over 40%. A dash signifies statally indistinguishable results.

Selecting the most suitable file system When users can change to any file system, or choose
one initially, we offer Table 4.2. For each workload we prasthe most power-performance
efficient file system and its parameters. We also show theerah@gmprovements in both ops/sec
and ops/joule as compared to the best and waefultfile systems. From the table we conclude
that it is often possible to improve the efficiency by at |e8%. For the file server workload,
where the default Reiserfs configuration performs the estbserve a performance boost of up
to 2x as compared to the worst default file system (XFS). As seengur& 4.5, for mail server
workload Reiserfs witmo-t ai | improves the efficiency by 30% over default Reiserfs (best
default), and by & over default XFS (worst default). For the database worklo¢elS and Ext3

21



Server|Recom. F§ Ops/Sec | Ops/Joule
Web x-iszlk |1.08-9.4 |1.06—7.5¢
File r-def 1.0-1.% | 1.0-2.0¢
Mail r-notail | 1.3-5.8< | 1.3-5.%
DB x/e3-blk2k| 2-2.4x 2-2.4x

Table 4.2:Recommended file systems for machine MWe provide the range of performance and
power-efficiency improvements achieved compared to thé does the worst default configured
file systems.

with a block size of 2KB improved the efficiency of the systeynal least two-fold. Whereas in
most cases, performance and energy improved by nearly the &ector, in XFS they did not: for
the Webserver workload, XFS with 1K inode sizes increasetbprance by a factor of 9.4 and
energy improved by a factor of 7.5.

Some file system parameters listed in Table 4.1 can be cobiussibly yielding cumula-
tive improvements. We analyzed several such combinatindsancluded that each case requires
careful investigation. For example, Reiserfa'st ai | andnoat i me options, independently,
improved the Webserver's performance by 149% and 128%euotisply; but their combined ef-
fect only improved performance by 155%. The reason for thds that both parameters affected
the same performance component—wait time—either by redguBKL contention slightly or by
reducing 1/O wait time. However, the CPU’s utilization remed high and dominated overall
performance. On the other hand, XF8kk2k andagcnt 64 format options, which improved
performance by 18% and 23%, respectively—combined togeéthgield a cumulative improve-
ment of 41%. The reason here is that these were options wiffiebted different code paths
without having other limiting factors.

4.3 Machine 2 Results

This section details the results on machine 2, which is antaoachine as described in Table 3.1.
As machine 2 was equipped with a slower RPM disk (i.e., hafdpeed of that of machine 1),
the performance of the disk intensive workloads like OLTH &ile server degraded from 7% to
86% compared to machine 1. On the contrary, Mail server, wiica more memory-intensive
workload, experienced a performance improvement of 35%xtorBmachine 2. This is because
machine 2 had a more powerful CPU, faster FSB, larger L1/lches, and more disk cache as
compared to machine 1. But, in both cases machine 2 turnet tet equally or sometimes even
more energy efficient (i.e., ops/joule) than machine 1. Thisecause the average idle power of
machine 2 is almost half that of machine 1, resulting in marergy-efficiency.

Although the CPU on machine 2 supported Dynamic Voltage amdjidency (DVFS), we
observed a linear relationship between performance andjgmdficiency for all the workloads.
This is because we ran all the workloads at peak levels, wihited in the maximum utilization
of the CPU, thereby ignoring the power saving feature of DVFS

We observed a few different behaviors in the workloads aspawed to the results on machine
1. Some of the file system configurations which did not lookeatipg on machine 1, turned

22



to be a good choice for machine 2. This is because the fileragstieat were bottlenecked by
the slow speed/capacity of a certain hardware on machineriefited on an improved hardware
configuration. We discuss a few of the interesting resulthénsubsections below.

4.3.1 Webserver Workload

+ + + + Q Q + A 4, A, 2, A @, @,
K K Q Y (4 Q
9 e 9, S Y . 7, . /70, %, % %p 0@ Y,
v % 60% (4

& & A, k& & 8 8 A 4 + k@
<, 9 %, < Y. T, 6,
% %, o & Y,

R, % % Y, A
%, Y, %, % e
¢ % %

111111

=
=)
3

Y &

O
A

7 &
7
7k
7 g

&

7
.
Yy @
7§

U

Y @ &

<
&
¥

N N N N N N N N I\ I\ N N N N N N N N N N

- # ~ #

N I\

o

Q’/‘?///////////////%E
Wy Nl kg

2
?Q

A

A

&K
A

&

S, S, A

I
+

el
2
0jb
2
&
&
2
2

. - %
Y Ny %

J?I/////////AE

Q. o
Y b b K H U, % %, 4
AR R % %

&

(b) File system energy efficiency for Webserver workloadafas/joule)

Figure 4.7:Webserver results on Machine 2

As seen in Figures 4.7(a) and 4.7(b), all the default condioms of the file systems perform
equally well on machine 2. This is in contrast to the obsémadn machine 1, which experienced
a variation in performance ranging from 8% to as much as 94ime€his clearly shows how
modifications in the hardware can have a significant impat¢hersoftware configuration choices.

If we compare the file system performance numbers acrossinedhand 2 (Figures 4.3(a)
and 4.7(a)), we find that machine 1 performed much betteriachine 2 in most of the file sys-
tem configurations, ranging from 20% to as much as(f different variants of XFS). Although
most of the working set of the Web server resides in memasyajitpend operation results in a
memory pressure leading to evicting some of the useful pagkecpages, which would be refer-
enced in the near future. This results in fetching the filegfthe slower disk, causing a drop in
performance. The energy-efficiency of machine 1 was aldeibian that of machine 2 except in
a few cases: all the configuration of Ext2 and Reiserfs witloaelbsize of 1KB and 2KB.

23



4.3.2 File Server Workload

& & A, ko & Q& 8 & A A he ke & & k. & & koA ok ok & & kA A 4 A A, & 8
P By G %, R Sy B % G Y Yy T R B Te R R Te T, Te Ty R T T T, T, T % %, R
%, %, & & Y Y Y Y K o K, K e b %y 6 b 0 G, G . oy By o T U %
(AN 4\74 4-# 4\74 /-V} LA % % eq_ e\,{. 4 @& 9, (6; () 0"23 06\7 01‘30 %, % @’0; @,,/} Y % % 9 %, %

2500
2000
1500
g 1000

w
3 500
g
0 I\ NN NN IN ANNNNNT RN [N
R e Ry R R % R, %, e Ry, % Ry R % Ry e Ry Ry R % N B % Y hy %%
%, % & & Y G Y Y K h U U T e %% G G Y, . %, b b O, O, % % B % 4, 9
v AR A %y Yt TR T T Y, Y M CO AR

(b) Energy efficiency of file systems under the fileserver Waakl (in ops/kilojoule)

Figure 4.8:Fileserver results on Machine 2

As shown in Figures 4.8(a) and 4.8(b), the optimal defauwtdyistem for the file server work-
load on machine 2 is the same as that on machine 1 (i.e., RgisEne performance and energy-
efficiency trends amongst the different file systems werdlainto that observed on machine 1
(see Section 4.2.2).

If we compare the file system performance numbers acrossinegch and 2 (Figures 4.4(a)
and 4.8(a)), we find that machine 1 usually outperformed machby as much as 45% for almost
all file system configurations. As the file server is a diskristee workload, its performance was
hurt by the slow RPM of the disk on machine 2 as compared to mach Still, the energy
efficiency of machine 2 was always better than that of machinthanks to its more energy-
efficient hardware.

24



4.3.3 Mail Server

2000 1788 1825 1853 1505 1817
1500
1000

500

% e @% ﬁ% 4:?9 t"g -k% & & K
(e (& (@ (¥
ébbk o T T,

& & A, ok, & & &
R, R, % Ry, 2y
QY Y
CAC A

% W Y Ty T, Ty, R % Ty
%, & G 4 4 4 K s U, Y T b %, %
TR Ry e e % Ry R % %,

K

(a) Performance of file systems under the varmail workloaafis/sec)

20000
£ 16000
5
S 12000
3 8000
g
3 4000
g

e 4, 0 6 +
%, uLQﬁ, <%§; ‘%%2; ui%p %y
* % % %

<

T
%5, %,
u:; 6,

QG e B % e &
% %,. o,
Y 2 % ,,}

& /‘6 /‘6 ﬁé ﬁé
Y 4 b 4 % % Y, Y
% 7T o My e % % %%

(b) Energy efficiency of file systems under the varmail woakldin ops/kilojoule)

Figure 4.9:Varmail results on Machine 2

Figures 4.9(a) and 4.9(b) show the performance and enefigieaty of the mail server work-
load when executed on machine 2. Contrary to the Web and filersé we compare the perfor-
mance of the mail server on machines 1 and 2 (Figures 4.9(h} &ta)), then we observe that
machine 2 performed usually better than machine 1, rangorg 85% to 3<. This is because the
mail server workload is a more memory intensive workloadhweitfew synchronous disk requests
(e.g.,f sync calls). As machine 2 has a more powerful CPU, faster memargdparger size of
caches and 3 levels of cache, compared to machine 1, it iditeehim terms of both performance
and energy efficiency. Furthermore, theync call, although synchronous, returns as soon as the
data is written to the disk cache, thereby not being affebiethe slower disk speed. Interest-
ingly, the performance dfsync is boosted because of a larger (double) disk cache as cothpare
to machine 1, as seen in case of Ext2 (described below).

Optimal default file system trends on machine 2 varied as emegpto machine 1. On machine
2, we observed that Ext2 and Ext3 performed the best amohgdbtr default file systems by
30%. This is in contrast to the observation on machine 1, /Bait2 experienced a performance
degradation of almost 43% as compared to Reiserfs (optimeatyfstem on machine 1). As dis-
cussed in Section 4.2.3, Ext2 performed sub-optimally oohime 1 because it was bottlenecked
by thef sync call, whereas on machine 2 Ext2 overcomes this bottlenecause of a larger disk
cache as compared to machine 1, as discussed above.

As we observed trends similar to machine 1, on most of thedefault file systems configu-
rations, we do not discuss them here.

25



246 241
2 234 238 29 233 238

e 144 146 144 44 16 14 146 146 g3 144 144

+ Q. Q. +, 4, A, A, A A ©,
2, B, %Q 2, o% %, o,\/? w, %o,
R (N

Q -f:/ 99 Q.

B, %, R, hy e Ry Ty
B e % G Y G % B, B, %
o % % e Ty T

@e @'\?. 40 4‘.0/ 09 @9 Q "
0.
% W % %

R, %, %, T, e, T
% & % Y4, %, T4, "6, % % U, %
sf’f@@@/@f&%@@

(a) Performance of file systems under the OLTP workload (sis8T)

& 8 A, k, & 8 8 8 A A oy e & & k. & 8 ko ok ok k& & kA A A4 A, 8 G

R Ty Ty R RV, Y T, T, R T RR, Ty Ty e e R, T Yy Y Y, g, O, &
% o B % 6, 6, V6, %, % %, Uy h a6 %% 0 0 0 0 . % By, 0y, O %, b, %
v R T Hy T FF % R Ny % %y Y 0 TR T T Y, Y M CO AR

(b) Energy efficiency of file systems under the OLTP workloadbofps/kilojoule)

Figure 4.10:0LTP results on Machine 2

4.3.4 Database Server Workload (OLTP)

Machine 2 observed trends similar to machine 1 for OLTP as seEigures 4.10(a) and 4.10(b).
For reasons explained in Section 4.2.4, the 2KB block sizadib option outperformed all the
other configurations of the corresponding file systems,irnfyjom 65% to 105%. Similar to the
other disk-intensive workloads, machine 2 experiencedfapeance degradation as compared to
machine 1 for all the file system configurations, ranging fi@r-86%.

4.3.5 Summary and Recommendations for Machine 2

Table 4.3 provides the percentage of improvement or detjcadachieved when we stay within
a file system but just modify the format or mount options, orchiae 2. Unlike machine 1, we
observed that the default file system configuration was ystied optimal choice for all the work-
loads, with a few exceptions. In case of OLTP, we found thatZKB block size format option
always outperformed the corresponding default file systenfiguration. Mail server observed
a performance improvement of 30%, when we switched fromuleReiserfs to itsno-t ai |
mount option.

Table 4.4 shows the range of improvement possible when dfte tha completely different
file system as compared to the best and wdefaultfile systems. Similar to machine 1, we found
that no single file system was universally the best for allklaads. On switching to the optimal
file system, we obtained a performance and energy-efficianpyovement of 1.0-2.8.

26



s Option Webserver | Fileserver Varmail Database
Type | Name | Perf. | Pow.| Perf. | Pow.| Perf. | Pow.| Perf. | Pow.
mount | noatime| - - - - - - - -
format | blklk | -7% | -5% | -14% |-15%| -62% |-62%| +91% | +92%

Ext2 blk2k | -7% | -5% - - -38% | -37%| +105% |+105%

isz1k - - - - - - - -
bg16k - - - - - - - -
mount | noatime| - - - - - - - -
dtlg -7% - - - -9% |-10% - -
wrbck | -7% - - - -8% | -9% - -

Ext3 | format | blklk | -7% | -6% | -12% |-14%| -63% | -63%| +63% | +62%

blk2k - - - - -40% | -40%| +65% | +63%

isz1k - - - - -8% | -8% - -

bgl16k - - - - - - - -

mount | noatime| - - - - - - - -

notail - - - - +30%0 | +30% - -

nolog - - - - - - - -

Reiserfs wrbck - - -11% |-13% - - - -
dtlg - - | -13% |-13%]| -22% | -23%| -11% | -15%
format | blklk - - | -42% |-42%| -46% | -46%| +57% | +51%
blk2k - - | -21% |-20%| -8% | -8% | +6%% | +61%

mount | noatimeg| - - - - - - - -
format | blklk - - +6% | +6% | -40% | -40%| +62% | +62%
blk2k - - - - -17% | -16%| +65% | +65%

XFS isz1k - - | -14% | -8% | -33% |-32% - -

agent8| - - - - - - - -
agcent32 - - - - - - - -
agente4 - - - - -11% | -10% - -
agent128 - - - - | -10% | -10%| +5% | +5%

Table 4.3:File systems’ performance and power, varying options, téla to the default ones for
each file system for machine 2

Server Recom. FS | Ops/Sec| Ops/Joule
Web All def 1.0-1.x | 1.0-1.1x
File r-def 1.0-1.% | 1.0-1.%
Mail |e3-def/e3-noatimel.0-2.8< | 1.0-2.8«
DB All blk2k 1.5-2.0<| 1.5-2.0«

Table 4.4:Recommended file systems for machine 2\e provide the range of performance and
power-efficiency improvements achieved compared to the doss the worst default configured
file systems.

27



4.4 File System Feature Selection Guide

We offer recommendations to assist in selecting the bestygeem feature(s) for specific work-
loads. These guideline can also help future file system desig Some of the workload features
that can help decide the file system are:

e File size: If the workload generates or uses files with an average fike @iz few 100KB,
we recommend to use fixed sized data blocks, addressed bgrachdltree (e.g., Reiserfs).
Large sized files (GB, TB) would benefit from extent-basedbedd trees with delayed al-
location (e.g., XFS). Packing small files together in onebl@.g., Reiserfs’s tail-packing)
is not recommended, as it often degrades performance.

e Directory depth: Workloads using a deep directory structure should focusstef lookups
using intelligent data structures and mechanisms. Onememndation is to localize as
much data together with inodes and directories, embeddatg idto large inodes (XFS).
Another is to sort all inodes/names and provide efficienaibe¢d trees (e.g., XFS or Reis-
erfs).

e Access pattern and parallelism: If the workload has a mix of read, write, and metadata
operations, it is recommended to use at least 64 allocationpg, each managing their
own group and free data allocation independently, to irsegzarallelism (e.g., XFS). For
workloads having multiple concurrent writes to the saméd)lewe recommend to switch
on journalling, so that updates to the same file system abjunt be batched together. We
recommend turning ofat i me updates for read-intensive operations, if the workloadsdoe
not care about access-times.

e /O size: If the file system’s block size matches the workload’s 1/Cesiit improves the
performance significantly. Thus, we recommend to formafiteesystem with a block size
keeping in mind the 1/O size of the workload.

28



Chapter 5

Conclusions

Proper benchmarking and analysis are tedious, time-congutasks. Yet their results can be
invaluable for years to come. We conducted a comprehensivy ®f file systems on modern
systems, evaluated popular server workloads, and varied/ parameters. We collected and
analyzed performance and power metrics on two differentssariass machines.

We discovered and explained significant variations in battigpmance and energy use. We
found that there are no universally good configurations lowvarkloads, and we explained com-
plex behavior that go against common conventions. We cdedhat both hardware configura-
tion and file system configuration impact system performaarat overall energy efficiency. We
concluded that the default file system types and options e suboptimal. On machine 1, we
found that simple changes within a file system, like mouniomst can improve power/performance
from 5% to 149%; and changing format options can boost theieffty from 6% to 136%.
Switching to a different file system can result in improvetseanging from 2 to 9 times. Chang-
ing the hardware to a more advanced and powerful one, witltdhgbination of a slower disk,
yielded different results. With the improvement in the hveade, the bottlenecks observed by a file
system under a certain workload either disappeared oeshiift another hardware/software com-
ponent. On machine 2, we found that the default file systerfigumation was optimal for almost
all the workloads with a few exceptions. No single file systeest suited all the workloads; we
achieved an improvement ranging from 1.0-2 @hen we switched to a different file system.

We recommend that servers be reconfigured, tested and aptinfior expected workloads
before used in production. Energy technologies lag farrdmtlcomputing speed improvements.
Given the long-running nature of busy Internet serversvwsne-based optimization and optimal
reconfiguration techniques can have significant, cum@dting-term benefits.

29



Chapter 6

Future Work

We plan to expand our study to include less mature file sysfergs Ext4, Reiser4, and BTRFS),
as we believe they have greater optimization opportuniti#e also plan to evaluate the impact
of aging on file system performance and energy-efficiency. avéecurrently evaluating power-
performance of network-based and distributed file systans,(NFS, CIFS, and Lustre). Those
represent additional complexity: protocol design, clientserver implementations, and network
software and hardware efficiency. Early experiments compaxFSv4 client/server OS imple-
mentations revealed performance variations as high<as 3

Computer hardware changes constantly—e.g., adding moes,cnd supporting more energy-
saving features. As energy consumption outside of the dattecexceeds that inside [47], we are
continually repeating our studies on a range of computeaarspg several years of age. We also
plan to conduct a similar study on faster solid-state disks.

Our long-term goals include developing custom file systdmslest match a given workload
and building auto-configuration tools. The custom file systeould be beneficial because many
application designers and administrators know their dataasd access patterns ahead of time,
allowing storage stacks designs with better cache behavidrminimal I/O latencies. The auto-
configuration tool will configure the different layers in te®rage/software stack cognizant with
the workload and hardware characteristics, so as to ackieveptimal performance and energy-
efficiency.

30



Bibliography

[1] M. Allalouf, Y. Arbitman, M. Factor, R. |. Kat, K. Meth, ahD. Naor. Storage Modeling for Power
Estimation. InProceedings of the Israeli Experimental Systems Conferé8¥ STOR '09Haifa,
Israel, May 2009. ACM.

[2] J. Almeida, V. Almeida, and D. Yates. Measuring the Bebawf a World-Wide Web Server. Tech-
nical report, Boston University, Boston, MA, USA, 1996.

[3] D. G Andersen, J. Franklin, M. Kaminsky, A. PhanishaykeeTan, and V. Vasudevan. FAWN: A
Fast Array of Wimpy Nodes. I[iProceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP '2009pages 1-14. ACM SIGOPS, October 2009.

[4] R. Appleton. A Non-Technical Look Inside the Ext2 Filessm.Linux Journa) August 1997.

[5] T. Bisson, S.A. Brandt, and D.D.E. Long. A Hybrid Disk-&ne Spin-Down Algorithm with I/O
Subsystem Support. IEEE 2007 Performance, Computing, and Communicationséente 2007.

[6] R. Bryant, R. Forester, and J. Hawkes. Filesystem Peréoice and Scalability in Linux 2.4.17. In
Proceedings of the Annual USENIX Technical Conference,HNRK Track pages 259-274, Mon-
terey, CA, June 2002. USENIX Association.

[7] D. Capps. I0zone Filesystem Benchmankwv. i ozone. or g/ , July 2008.

[8] E. Carrera, E. Pinheiro, and R. Bianchini. ConservingkDEnergy in Network Servers. h7th
International Conference on Supercomputigg03.

[9] D. Colarelliand D. Grunwald. Massive Arrays of Idle Dsfor Storage Archives. IRroceedings of
the 2002 ACM/IEEE conference on Supercompyfiages 1-11, 2002.

[10] M. Craven and A. Amer. Predictive Reduction of Power aatency (PURPLe). IRroceedings of the
22nd IEEE/13th NASA Goddard Conference on Mass StoragerSysind Technologies (MSST’05)
pages 237-244, Washington, DC, USA, 2005. IEEE Computdef§oc

[11] Y. Deng and F. Helian. EED: Energy Efficient Disk Drivecdhitecture.Information Science2008.

[12] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the Boiungry Disk. InProceedings of the
1994 Winter USENIX Conferengeages 293306, 1994.

[13] Watts up? PRO ES Power Metemwv. wat t supmnet er s. com secur e/ product s. php.

[14] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-&#nt Server Clusters. IRroceedings of
the 2nd Workshop on Power-Aware Computing Systpages 179-196, 2002.

[15] A.Ermolinskiy and R. Tewari. C2Cfs: A Collective Caalgi Architecture for Distributed File Access.
Technical Report UCB/EECS-2009-40, University of Califiar, Berkeley, 2009.

[16] D. Essary and A. Amer. Predictive Data Grouping: Definthe Bounds of Energy and Latency
Reduction through Predictive Data Grouping and Replicat’CM Transactions on Storage (TQS)
4(1):1-23, May 2008.

[17] A. Gulati, M. Naik, and R. Tewari. Nache: Design and lewplentation of a Caching Proxy for
NFSv4. InProceedings of the Fifth USENIX Conference on File and $®@reechnologies (FAST
'07), pages 199-214, San Jose, CA, February 2007. USENIX Adgntia

31



(18]

(19]

(20]

(21]

[22]

(23]

(24]
(25]

(26]

[27]

(28]

(29]

(30]

(31]
(32]
(33]

(34]

(35]

S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kandgth Franke, N. Vijaykrishnan, and M. J.
Irwin. Interplay of Energy and Performance for Disk Arraysriding Transaction Processing Work-
loads. InIEEE International Symposium on Performance Analysis sfeé®ys and Softwar@ages
123-132, 2003.

H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data Retilicain Free Disk Space for Improv-
ing Disk Performance and Energy Consumption.Pioceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP '(igges 263-276, Brighton, UK, October 2005. ACM Press.
N. Joukov and J. Sipek. GreenFS: Making Enterprise Qaerg Greener by Protecting Them Better.
In Proceedings of the 3rd ACM SIGOPS/EuroSys European Cortferen Computer Systems 2008
(EuroSys 2008)Glasgow, Scotland, April 2008. ACM.

N. Joukov, A. Traeger, R. lyer, C. P. Wright, and E. Zad@perating System Profiling via Latency
Analysis. InProceedings of the 7th Symposium on Operating SystemsrDasiylmplementation
(OSDI 2006) pages 89-102, Seattle, WA, November 2006. ACM SIGOPS.

J. Katcher. PostMark: A New Filesystem Benchmark. Tecél Report TR3022, Network Appliance,
1997.www. net app. com tech_I i brary/3022. htn .

R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Enemnyy Performance Evaluation of Lossless File
Data Compression on Server System®toceedings of the Israeli Experimental Systems Conferenc
(ACM SYSTOR '09Haifa, Israel, May 2009. ACM.

J. Leverich and C. Kozyrakis. On the energy (in)efficgf hadoop clusters. IrlotPower '09:
Workshop on Power Aware Computing and Systex@d, 2009.

D. Li. High Performance Energy Efficient File Storage Syst&hD thesis, Computer Science De-
partment, University of Nebraska, Lincoln, 2006.

K. Li, R. Kumpf, P. Horton, and T. Anderson. A QuantitegiAnalysis of Disk Drive Power Manage-
ment in Portable Computers. Rroceedings of the 1994 Winter USENIX Conferepeges 279-291,
1994.

A. Manzanares, K. Bellam, and X. Qin. A Prefetching Suledor Energy Conservation in Parallel
Disk Systems. IrProceedings of the IEEE International Symposium on Pdraltel Distributed
Processing (IPDPS 2008)ages 1-5, April 2008.

R. McDougall, J. Mauro, and B. Greg&olaris Performance and Tool®rentice Hall, New Jersey,
2007.

D. Narayanan, A. Donnelly, and A. Rowstron. Write affading: practical power management for
enterprise storage. IRAroceedings of the 6th USENIX Conference on File and Stofagknologies
(FAST 2008)2008.

E. B. Nightingale and J. Flinn. Energy-Efficiency andi@ige Flexibility in the Blue File System. In
Proceedings of the 6th Symposium on Operating SystemsrDasijlmplementation (OSDI 2004)
pages 363-378, San Francisco, CA, December 2004. ACM SIGOPS

Message about XFS block size limit. http://osdir.com m /file-systens. xfs.
gener al / 2002- 06/ nsg00071. ht m .

A. E. Papathanasiou and M. L. Scott. Increasing DisksBness for Energy Efficiency. Technical
Report 792, University of Rochester, 2002.

E. Pinheiro and R. Bianchini. Energy Conservation Teghes for Disk Array-Based Servers. In
Proceedings of the 18th International Conference on Sugmeputing (ICS 2004 pages 68—78, 2004.
E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. d &alancing and Unbalancing for Power and
Performance in Cluster-Based Systems.International Conference on Parallel Architectures and
Compilation Technique®8arcelona, Spain, 2001.

H. Reiser. ReiserFS v.3 Whitepapét.t p: / / web. ar chi ve. or g/ web/ 20031015041320/
http://nanesys. con .

32



(36]

(37]

(38]
(39]
[40]
[41]
[42]
(43]
[44]
[45]
[46]
[47]
(48]
[49]
[50]

(51]

S. Rivoire, M. A. Shah, P. Ranganathan, and C. KozyralasileSort: A Balanced Energy-Efficiency
Benchmark. IrProceedings of the ACM SIGMOD International Conference amdyement of Data
(SIGMOD) Beijing, China, June 2007.

S. Gurumurthi and A. Sivasubramaniam and M. Kandemi ldnFranke. DRPM: Dynamic Speed
Control for Power Management in Server Class DisksPtaceedings of the 30th annual interna-
tional symposium on Computer architectypages 169-181, 2003.

M. I. Seltzer. Transaction Support in a Log-Structufgéle System. InProceedings of the Ninth
International Conference on Data Engineerjqgges 503-510, Vienna, Austria, April 1993.

SGI. XFS Filesystem Structurehtt p: // 0ss. sgi . conl pr oj ect s/ xf s/ papers/ xfs_
filesystem structure. pdf.

FileBench, July 2008wwv. sol ari si nt ernal s. com wi ki /i ndex. php/ Fi | eBench.
SPEC. SPECweh99wwv. spec. or g/ web99, October 2005.

SPEC. SPECpowessj2008 v1.0lwww. spec. or g/ power _ssj 2008/ ,2008.

SPEC. SPECsfs2008mw. spec. or g/ sf s2008, July 2008.

The Standard Performance Evaluation Corporation. GREPC Suite. www. spec. or g/
hpc2002/ , August 2004.

U.S. EPA. Report to Congress on Server and Data CentergigriEfficiency. Public Law 109-431,
August 2007.

J. Wang, H. Zhu, and Dong Li. eRAID: Conserving Energydonventional Disk-Based RAID
System.IEEE Transactions on Computes/(3):359-374, March 2008.

D. Washburn. More Energy Is Consumed Outside Of The Qatater, 2008 www. f orr est er .
com Rol e/ Resear ch/ Wr kbook/ 0, 9126, 47980, 00. ht m .

M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedulr reduced CPU energy. Proceed-
ings of the 1st USENIX conference on Operating Systems iDasijimplementatiori994.
Ext3.http://en.w ki pedi a. or g/ wi ki / Ext 3.

C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and BEadok. Auto-pilot: A Platform for System
Software Benchmarking. IRroceedings of the Annual USENIX Technical Conference , BNRE
Track pages 175-187, Anaheim, CA, April 2005. USENIX Associatio

Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P.cCaReducing Energy Consumption
of Disk Storage Using Power-Aware Cache Managemen®rateedings of the 10th International
Symposium on High-Performance Computer Architectoages 118—-129, 2004.

33



