
Optimizing Energy and Performance for Server-Class File
System Workloads

A Thesis Presented
by

Priya Sehgal

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

Technical Report FSL-10-01
May 2010

Stony Brook University

The Graduate School

Priya Sehgal

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Dr. Erez Zadok, Thesis Advisor
Associate Professor, Computer Science

Dr. Rob Johnson, Thesis Committee Chair
Assistant Professor, Computer Science

Dr. Jennifer Wong
Assistant Professor, Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Thesis

Optimizing Energy and Performance for Server-Class File System Workloads

by

Priya Sehgal

Master of Science

in

Computer Science

Stony Brook University

2010

Recently, power has emerged as a critical factor in designing components of storage systems,
especially for power-hungry data centers. While there is some research into power-aware storage
stack components, there are no systematic studies evaluating each component’s impact separately.
Various factors like workloads, hardware configurations, and software configurations impact the
performance and energy efficiency of the system. This thesisevaluates the file system’s impact
on energy consumption and performance. We studied several popular Linux file systems, with
various mount and format options, using the FileBench workload generator to emulate four server
workloads: Web, database, mail, and file server, on two different hardware configurations. The
file system design, implementation, and available featureshave a significant effect on CPU/disk
utilization, and hence on performance and power. We discovered that default file system options
are often suboptimal, and even poor. In this thesis we show that a careful matching of expected
workloads and hardware configuration to a single software configuration—the file system—can
improve power-performance efficiency by a factor ranging from 1.05 to 9.4 times.

iii

To my parents and my brother and sister.

Contents

List of Figures vii

List of Tables viii

Acknowledgments ix

1 Introduction 1

2 Related Work 3
2.1 File system studies .. . 3
2.2 Lower-level storage studies 3
2.3 Benchmarks and systematic studies 4

3 Methodology 5
3.1 Experimental Setup .. . 5
3.2 Software Tools and Benchmarks 6
3.3 Workload Categories .. . 7
3.4 File System and Properties 8

3.4.1 Ext2 and Ext3 . 9
3.4.2 XFS . 9
3.4.3 Reiserfs . 10

3.5 Energy Breakdown .10

4 Evaluation 12
4.1 Overview . 13
4.2 Machine 1 Results .. 14

4.2.1 Webserver Workload . 14
4.2.2 File Server Workload .16
4.2.3 Mail Server . 18
4.2.4 Database Server Workload (OLTP) 19
4.2.5 Summary and Recommendations for Machine 1 20

4.3 Machine 2 Results .. 22
4.3.1 Webserver Workload . 23
4.3.2 File Server Workload .24

v

4.3.3 Mail Server . 25
4.3.4 Database Server Workload (OLTP) 26
4.3.5 Summary and Recommendations for Machine 2 26

4.4 File System Feature Selection Guide 28

5 Conclusions 29

6 Future Work 30

Bibliography 31

vi

List of Figures

3.1 WattsUP Pro ES power meter .. . 6

4.1 Webserver: Mean power consumption by four file system at different load levels . 12
4.2 Average CPU utilization for the Webserver workload 13
4.3 Webserver results on Machine 1 14
4.4 Fileserver results on Machine 1 16
4.5 Varmail results on Machine 1 18
4.6 OLTP results on Machine 1 .. . 19
4.7 Webserver results on Machine 2 23
4.8 Fileserver results on Machine 2 24
4.9 Varmail results on Machine 2 25
4.10 OLTP results on Machine 2 26

vii

List of Tables

3.1 Testbed Setup .5
3.2 FileBench workload characteristics 7

4.1 File systems’ performance and power, varying options, relative to the default ones
for each file system for machine 1 .. 21

4.2 Recommended File system for Machine 1 22
4.3 File systems’ performance and power, varying options, relative to the default ones

for each file system for machine 2 .. 27
4.4 Recommended File system for Machine 2 27

viii

Acknowledgments
My immense gratitude to my advisor, Dr. Erez Zadok, for constant guidance and motivation. I

thank Dr. Rob Johnson and Dr. Jennifer Wong for being on my defense committee, and providing
valuable suggestions. I am also thankful to the anonymous USENIX FAST reviewers and the
shepherd for their valuable comments. I am thankful to everyone at the File Systems and Storage
Lab (FSL), for making it a great learning experience. I also want to specially thank Vasily Tarasov
and Saumitra Bhanage, for their help through the project.

This thesis was made possible in part thanks to NSF awards CCF-0621463 and CCF-0937854,
2008 IBM Faculty award, and 2009 NetApp gift.

Chapter 1

Introduction

Performance has a long tradition in storage research. Recently, power consumption has become a
growing concern. Recent studies show that the energy used inside all U.S. data centers is 1–2% of
total U.S. energy consumption [45], with more spent by otherIT infrastructures outside the data
centers [47]. Storage stacks have grown more complex with the addition of virtualization layers
(RAID, LVM), stackable drivers and file systems, virtual machines, and network-based storage
and file system protocols. It is challenging today to understand the behavior of storage layers,
especially when using complex applications.

Performance and energy use have a non-trivial, poorly understood relationship: sometimes
they are opposites (e.g., spinning a disk faster costs more power but improves performance); but
at other times they go hand in hand (e.g., localizing writes into adjacent sectors can improve
performance while reducing the energy). Worse, the growingnumber of storage layers further
perturb access patterns each time applications’ requests traverse the layers, further obfuscating
these relationships.

Traditional energy-saving techniques useright-sizing. These techniques adjust node’s compu-
tational power to fit the current load. Examples include spinning disks down [12, 29, 32], reduc-
ing CPU frequencies and voltages [48], shutting down individual CPU cores, and putting entire
machines into lower power states [14, 34]. Less work has beendone onworkload-reductiontech-
niques: better algorithms and data-structures to improve power/performance [16, 19, 25]. A few
efforts focused on energy-performance tradeoffs in parts of the storage stack [8, 18, 30]. However,
they were limited to one problem domain or a specific workloadscenario.

Many factors affect power and performance in the storage stack, especially workloads and
hardware configuration. Traditional file systems and I/O schedulers were designed for general-
ity, which is ill-suited for today’s specialized servers with long-running services (Web, database,
email). We believe that to improve performance and reduce energy use, custom storage layers
are needed for specialized workloads. But before that, thorough systematic studies are needed to
recognize the features affecting power-performance underspecific workloads and hardware con-
figurations.

This thesis studies the impact of server workloads on both power and performance. We used
the FileBench [40] workload generator due to its flexibility, accuracy, and ability to scale and
stress any server. We selected FileBench’s Web, database, email, and file server workloads as they

1

represent most common server workloads, yet they differ from each other. Modern storage stacks
consist of multiple layers. Each layer independently affects the performance and power consump-
tion of a system, and together the layers make such interaction rather complex. Here, we focused
on the file system layer only; to make this study a useful stepping stone towards understanding the
entire storage stack, we did not use LVM, RAID, or virtualization. We experimented with Linux’s
four most popular and stable local file systems: Ext2, Ext3, XFS, and Reiserfs; and we varied
several common format- and mount-time options to evaluate their impact on power/performance.

We ran many experiments on two server-class machines differing in their age, collected de-
tailed performance and power measurements, and analyzed them. We found that different work-
loads and hardware configurations, not too surprisingly, have a large impact on system behavior.
No single file system worked best for all workloads. Moreover, default file system format and
mount options were often suboptimal. Some file system features helped power/performance and
others hurt it. Our experiments revealed a strong linearitybetween the power efficiency and perfor-
mance of a file system. Overall, we found significant variations in the amount of useful work that
can be accomplished per unit time or unit energy, with possible improvements over default con-
figurations ranging from 5% to 9.4×. We conclude that long-running servers should be carefully
configured at installation time. For busy servers this can yield significant performance and power
savings over time. We hope this study will inspire other studies (e.g., distributed file systems), and
lead to novel storage layer designs.

The rest of this thesis is organized as follows. Chapter 2 surveys related work. Chapter 3
introduces our experimental methodology. The bulk of our evaluation and analysis is in Chapter 4.
We conclude in Chapter 5 and describe future directions in Chapter 6.

2

Chapter 2

Related Work

Past power-conservation research for storage focused on portable battery-operated computers [12,
26]. Recently, researchers investigated data centers [9, 29, 46]. As our focus is file systems’
power and performance, we discuss three areas of related work that mainly cover both power and
performance: file system studies, lower-level storage studies, and benchmarks commonly used to
evaluate systems’ power efficiency.

2.1 File system studies

Disk-head seeks consume a large portion of hard-disk energy[1]. A popular approach to opti-
mize file system power-performance is to localize on-disk data to incur fewer head movements.
Huang et al. replicated data on disk and picked the closest replica to the head’s position at run-
time [19]. The Energy-Efficient File System (EEFS) groups files with high temporal access local-
ity [25]. Essary and Amer developed predictive data grouping and replication schemes to reduce
head movements [16].

Some suggested other file-system—level techniques to reduce power consumption without de-
grading performance. BlueFS is an energy-efficient distributed file system for mobile devices [30].
When applications request data, BlueFS chooses a replica that best optimizes energy and perfor-
mance. GreenFS is a stackable file system that combines a remote network disk and a local
flash-based memory buffer to keep the local disk idling for aslong as possible [20]. Kothiyal et
al. examined file compression to improve power and performance [23].

These studies propose new designs for storage software, which limit their applicability to
existing systems. Also, they often focus on narrow problem domains. We, however, focus on
servers, several common workloads, and use existing unmodified software.

2.2 Lower-level storage studies

A disk drive’s platters usually keep spinning even if there are no incoming I/O requests. Turning
the spindle motor off during idle periods can reduce disk energy use by 60% [29]. Several stud-
ies suggest ways to predict or prolong idle periods and shut the disk down appropriately [10, 12].
Unlike laptop and desktop systems, idle periods in server workloads are commonly too short,

3

making such approaches ineffective. This was addressed using I/O off-loading [29], power-aware
(sometimes flash-based) caches [5, 51], prefetching [27, 32], and a combination of these tech-
niques [11, 46]. Massive Array of Idle Disks (MAID) augmentsRAID technology with automatic
shut down of idle disks [9]. Pinheiro and Bianchini used the fact that regularly only a small subset
of data is accessed by a system, and migrated frequently accessed data to a small number of active
disks, keeping the remaining disks off [33]. Other approaches dynamically control the platters’
rotation speed [37] or combine low- and high-speed disks [8]. Similarscale-downtechniques have
been applied to distributed processing frameworks like Hadoop [24].

There have been a few studies that focus on improving the energy-efficiency of the sys-
tem through the use of low-powered hardware, without degrading performance. For example,
FAWN [3] is a low-powered cluster architecture targeted towards data-intensive workloads. The
FAWN architecture consists of low-powered embedded CPUs coupled with local flash storage,
which is accessed through a log-structured data store. Theybalance computation and I/O capabil-
ities for efficient, massively parallel access to data.

Few of these approaches depend primarily on having or prolonging idle periods, which is less
likely on busy servers. For those, aggressive use of shutdown, slowdown, or spin-down techniques
can have adverse effects on performance and energy use (e.g., disk spin-up is slow and costs en-
ergy); such aggressive techniques can also hurt hardware reliability. Whereas idle-time techniques
are complementary to our study, we examine file systems’ features that increase performance and
reduce energy use inactivesystems.

2.3 Benchmarks and systematic studies

Researchers use a wide range of benchmarks to evaluate the performance of computer systems [41,
44] and file systems specifically [7, 22, 40, 43]. Far fewer benchmarks exist to determine sys-
tem power efficiency. The Standard Performance Evaluation Corporation (SPEC) proposed the
SPECpowerssj benchmark to evaluate the energy efficiency of systems [42]. SPECpowerssj
stresses a Java server with standardized workload at different load levels. It combines results and
reports the number of Java operations per second per watt. Rivoire et al. used a large sorting prob-
lem (guaranteed to exceed main memory) to evaluate a system’s power efficiency [36]; they report
the number of sorted records per joule. We use similar metrics, but applied for file systems.

Our goal was to conduct a systematic power-performance study of file systems. Gurumurthi
et al. carried out a similar study for various RAID configurations [18], but focused on database
workloads alone. They noted that tuning RAID parameters affected power and performance more
than many traditional optimization techniques. We observed similar trends, but for file systems.
In 2002, Bryant et al. evaluated Linux file system performance [6], focusing on scalability and
concurrency. However, that study was conducted on an older Linux 2.4 system. As hardware
and software change so rapidly, it is difficult to extrapolate from such older studies—another
motivation for our study here.

4

Chapter 3

Methodology

This chapter details the experimental hardware and software setup for our evaluations. We describe
our testbed in Section 3.1. In Section 3.2 we describe our benchmarks and tools used. Sections 3.3
and 3.4 motivate our selection of workloads and file systems,respectively. Section 3.5 explains
energy-related concepts and assumptions we made in the restof the thesis.

3.1 Experimental Setup

Specification
Machine type

Machine 1 Machine 2
Machine age 3 yrs < 1 yr
CPU model Intel Xeon Intel Nehalem (E5530)
CPU speed 2.8 GHz 2.4 GHz

No. of CPUs 2 dual core 1 quad core
CPU DVFS support No Yes

L1 cache size 16K 128K
L2 cache size 2M 1M
L3 cache size No 8M

FSB speed 800 MHz 1066 MHz
RAM size (actual) 2GB 24GB

RAM type DIMM DIMM
Disk RPM 15000 7200
Disk Type SCSI SATA

Average Seek Time (ms) 3.2/3.6ms 10.5/12.5ms
Disk cache 8MB 16MB

Average Idle Power 218W 94W

Table 3.1: Hardware specification of the machines comprising the testbed.

We conducted our experiments on two server class machines. The first machine was a three
year old (2007) server class machine. It was a Dell PowerEdgeSC1425 server consisting of 2

5

Figure 3.1: WattsUP Pro ES power meter

dual-core IntelR© XeonTM CPUs at 2.8GHz, 2GB RAM, and two 73GB internal SATA disks. The
server was running the CentOS 5.3 Linux distribution with kernel 2.6.18-128.1.16.el5.centos.plus.
All the benchmarks were executed on an external 18GB, 15K RPMATLAS15K 18WLS Maxtor
SCSI disk connected through Adaptec ASC-39320D Ultra320 SCSI Card.

The second machine was a more recent (2009) server machine. It was a Dell PowerEdge
R710 consisting of 1 quad-core IntelR© XeonTM Nehalem CPU with a maximum frequency of
2.4GHz, 24GB RAM, two 250GB internal SATA disks, and two 150GB SAS disks. We ran all
our benchmarks on a 18GB partition on one of the FUJITSU MHZ2250B 7.2K RPM internal
SATA disk. The server was running the same 2.6.18-128.1.16.el5.centos.plus kernel and used just
2GB out of 24GB RAM. Table 3.1 summarizes the configuration ofour testbed.

As one of our goals was to evaluate file systems’ impact on CPU and disk power consumption,
we connected the first machine and its external disk to two separate WattsUP Pro ES [13] power
meters, shown in Figure 3.1. This is an in-line power meter that measures the energy drawn by a
device plugged into the meter’s receptacle. The power meteruses non-volatile memory to store
measurements every second. It has a 0.1 Watt-hour (1 Watt-hour = 3,600 Joules) resolution for
energy measurements; the accuracy is±1.5% of the measured value plus a constant error of±0.3

Watt-hours. We used awattsup Linux utility to download the recorded data from the meter over
a USB interface to the test machine. We kept the temperature in the server room constant. For
reasons explained in Section 3.5, we connected just one power meter to the second machine and
measured the total energy drawn by the system.

3.2 Software Tools and Benchmarks

We usedFileBench[40], an application level workload generator that allowedus to emulate a
large variety of workloads. It was developed by Sun Microsystems and was used for performance
analysis of Solaris operating system [28] and in other studies [15, 17]. FileBench can emulate
different workloads thanks to its flexibleWorkload Model Language(WML), used to describe

6

Workload
Average Average Number I/O sizes Number of R/W
file size dir. depth of files R/W threads Ratio

Web Server 32KB 3.3 20,000 1MB/16KB 100 10:1
File Server 256KB 3.6 50,000 1MB/16KB 100 1:2
Mail Server 16KB 0.8 50,000 1MB/16KB 100 1:1
DB Server 0.5GB 0.3 10 2KB/2KB 200 + 10 20:1

Table 3.2: The database workload uses 200 readers and 10 writers.

a workload. A WML workload description is called apersonality. Personalities define one or
more groups of file system operations (e.g., read, write, append, stat), to be executed by multiple
threads. Each thread performs the group of operations repeatedly, over a configurable period of
time. At the end of the run, FileBench reports the total number of performed operations. WML
allows one to specify synchronization points between threads and the amount of memory used
by each thread, to emulate real-world application more accurately. Personalities also describe the
directory structure(s) typical for a specific workload: average file size, directory depth, the total
number of files, and alpha parameters governing the file and directory sizes that are based on a
gamma random distribution.

To emulate a real application accurately, one needs to collect system call traces of an applica-
tion and convert them to a personality. FileBench includes several predefined personalities—Web,
file, mail and database servers—which were created by analyzing the traces of corresponding
applications in the enterprise environment [40]. We used these personalities in our study.

We used Auto-pilot [50] to drive FileBench. We built an Auto-pilot plug-in to communicate
with the power meter and modified FileBench to clear the two watt meters’ internal memory
before each run. After each benchmark run, Auto-Pilot extracts the energy readings from both
watt-meters. FileBench reports file system performance in operations per second, which Auto-
pilot collects. We ran all tests at least five times and computed the 95% confidence intervals
for the mean operations per second, and disk and CPU energy readings using the Student’s-t

distribution. Unless otherwise noted, the half widths of the intervals were less than 5% of the
mean—shown as error bars in our bar graphs. To reduce the impact of the watt-meter’s constant
error (0.3 Watt-hours) we increased FileBench’s default runtime from one to 10 minutes. Our test
code, configuration files, logs, and results are available atwww.fsl.cs.sunysb.edu/docs/
fsgreen-bench/.

3.3 Workload Categories

One of our main goals was to evaluate the impact of different file system workloads on perfor-
mance and power use. We selected four common server workloads: Web server, file server, mail
server, and database server. The distinguishing workload features were: file size distributions,
directory depths, read-write ratios, meta-data vs. data activity, and access patterns (i.e., sequential
vs. random vs. append). Table 3.2 summarizes our workloads’properties, which we detail next.

7

Web Server The Web server workload uses a read-write ratio of 10:1, and reads entire files
sequentially by multiple threads, as if reading Web pages. All the threads append 16KB to a
common Web log, thereby contending for that common resource. This workload not only exercises
fast lookups and sequential reads of small-sized files, but it also considers concurrent data and
meta-data updates into a single, growing Web log.

File Server The file server workload emulates a server that hosts home directories of multiple
users (threads). Users are assumed to access files and directories belonging only to their respective
home directories. Each thread picks up a different set of files based on its thread id. Each thread
performs a sequence of create, delete, append, read, write,and stat operations, exercising both the
meta-data and data paths of the file system.

Mail Server The mail server workload (varmail) emulates an electronic mail server, similar to
Postmark [22], but it is multi-threaded. FileBench performs a sequence of operations to mimic
reading mails (open, read whole file, and close), composing (open/create, append, close, and
fsync) and deleting mails. Unlike the file server and Web server workloads, the mail server work-
load uses a flat directory structure, with all the files in one directory. This exercises large directory
support and fast lookups. The average file size for this workload is 16KB, which is the smallest
amongst all other workloads. This initial file size, however, grows later due to appends.

Database Server This workload targets a specific class of systems, calledonline transaction
processing(OLTP). OLTP databases handle real-time transaction-oriented applications (e.g., e-
commerce). The database emulator performs random asynchronous writes, random synchronous
reads, and moderate (256KB) synchronous writes to the log file. It launches 200 reader processes,
10 asynchronous writers, and a single log writer. This workload exercises large file management,
extensive concurrency, and random reads/writes. This leads to frequent cache misses and on-disk
file access, thereby exploring the storage stack’s efficiency for caching, paging, and I/O.

3.4 File System and Properties

We ran our workloads on four different file systems: Ext2, Ext3, Reiserfs, and XFS. We evaluated
both the default and variants of mount and format options foreach file system. We selected
these file systems for their widespread use on Linux servers and the variation in their features.
Distinguishing file system features were:

• B+/S+ Tree vs. linear fixed sized data structures

• Fixed block size vs. variable-sized extent

• Different allocation strategies

• Different journal modes

• Other specialized features (e.g., tail packing)

8

For each file system, we tested the impact of various format and mount options that are be-
lieved to affect performance. We considered two common format options: block size and inode
size. Large block sizes improve I/O performance of applications using large files due to fewer
number of indirections, but they increase fragmentation for small files. We tested block sizes of
1KB, 2KB, and 4KB. We excluded 8KB block sizes due to lack of full support [31, 49]. Larger
inodes can improve data locality by embedding as much data aspossible inside the inode. For
example, large enough inodes can hold small directory entries and small files directly, avoiding
the need for disk block indirections. Moreover, larger inodes help storing the extent file maps. We
tested the default (256B and 128B for XFS and Ext2/Ext3, respectively) and 1KB inode size for
all file systems except Reiserfs, as it does not explicitly have an inode object.

We evaluated various mount options:noatime, journal vs. no journal, and different jour-
nalling modes. Thenoatime option improves performance in read-intensive workloads,as it
skips updating an inode’s last access time. Journalling provides reliability, but incurs an extra
cost in logging information. Some file systems support different journalling modes: data, ordered,
and writeback. The data journalling mode logs both data and meta-data. This is the safest but
slowest mode. Ordered mode (default in Ext3 and Reiserfs) logs only meta-data, but ensures that
data blocks are written before meta-data. The writeback mode logs meta-data without ordering
data/meta-data writes. Ext3 and Reiserfs support all threemodes, whereas XFS supports only the
writeback mode. We also assessed a few file-system specific mount and format options, described
next.

3.4.1 Ext2 and Ext3

Ext2 [4] and Ext3 [49] have been the default file systems on most Linux distributions for years.
Ext2 divides the disk partition into fixed sized blocks, which are further grouped into similar-sized
block groups. Each block group manages its own set of inodes, a free data block bitmap, and the
actual files’ data. The block groups can reduce file fragmentation and increase reference locality
by keeping files in the same parent directory and their data inthe same block group. The maximum
block group size is constrained by the block size. Ext3 has anidentical on-disk structure as Ext2,
but adds journalling. Whereas journalling might degrade performance due to extra writes, we
found certain cases where Ext3 outperforms Ext2. One of Ext2and Ext3’s major limitations is
their poor scalability to large files and file systems becauseof the fixed number of inodes, fixed
block sizes, and their simple array-indexing mechanism [6].

3.4.2 XFS

XFS [39] was designed for scalability: supporting terabytesized files on 64-bit systems, an unlim-
ited number of files, and large directories. XFS employs B+ trees to manage dynamic allocation
of inodes, free space, and to map the data and meta-data of files/directories. XFS stores all data
and meta-data in variable sized, contiguousextents. Further, XFS’s partition is divided into fixed-
sized regions calledallocation groups(AGs), which are similar to block groups in Ext2/3, but are
designed for scalability and parallelism. Each AG manages the free space and inodes of its group
independently; increasing the number of allocation groupsscales up the number of parallel file
system requests, but too many AGs also increases fragmentation. The default AG count value is

9

16. XFS creates a cluster of inodes in an AG as needed, thus notlimiting the maximum num-
ber of files. XFS uses a delayed allocation policy that helps in getting large contiguous extents,
and increases the performance of applications using large-sized files (e.g., databases). However,
this increases memory utilization. XFS tracks AG free spaceusing two B+ trees: the first B+
tree tracks free space by block number and the second tracks by the size of the free space block.
XFS supports only meta-data journalling (writeback). Although XFS was designed for scalability,
we evaluate all file systems using different file sizes and directory depths. Apart from evaluating
XFS’s common format and mount options, we also varied its AG count.

3.4.3 Reiserfs

The Reiserfs partition is divided into blocks of fixed size. Reiserfs uses abalanced S+ tree[35] to
optimize lookups, reference locality, and space-efficientpacking. The S+ tree consists of internal
nodes, formatted leaf nodes, and unformatted nodes. Each internal node consists of key-pointer
pairs to its children. The formatted nodes pack objects tightly, calleditems; each item is referenced
through a unique key (akin to an inode number). These items include: stat items(file meta-data),
directory items(directory entries),indirect items(similar to inode block lists), anddirect items
(tails of files less than 4K). A formatted node accommodates items of different files and directories.
Unformatted nodes contain raw data and do not assist in tree lookup. The direct items and the
pointers inside indirect items point to these unformatted nodes. The internal and formatted nodes
are sorted according to their keys. As a file’s meta-data and data is searched through the combined
S+ tree using keys, Reiserfs scales well for a large and deep file system hierarchy. Reiserfs has
a unique feature we evaluated calledtail packing, intended to reduce internal fragmentation and
optimize the I/O performance of small sized files (less than 4K). Tail-packing support is enabled
by default, and groups different files in the same node. Theseare referenced using direct pointers,
called the tail of the file. Although the tail option looks attractive in terms of space efficiency
and performance, it incurs an extra cost during reads if the tail is spread across different nodes.
Similarly, additional appends to existing tail objects lead to unnecessary copy and movement of
the tail data, hurting performance. We evaluated all three journalling modes of Reiserfs.

3.5 Energy Breakdown

Active vs. passive energy Even when a server does not perform any work, it consumes some
energy. We call this energyidle or passive. The file system selection alone cannot reduce idle
power, but combined with right-sizing techniques, it can improve power efficiency by prolonging
idle periods. Theactive power of a node is an additional power drawn by the system whenit
performs useful work. Different file systems exercise the system’s resources differently, directly
affecting active power. Although file systems affect activeenergy only, users often care about total
energy used. Therefore, we report only total power used.

Hard disk vs. node power On machine 1, we collected power consumption readings for the
external disk drive and the test node separately. We measured our hard disk’s idle power to be 7
watts, matching its specification. We wrote a tool that constantly performs direct I/O to distant

10

disk tracks to maximize its power consumption, and measureda maximum power of 22 watts.
However, the average disk power consumed for our experiments was only 14 watts with little
variations. This is because the workloads exhibited high locality, heavy CPU/memory use, and
many I/O requests were satisfied from caches. Whenever the workloads did exercise the disk, its
power consumption was still small relative to the total power. Therefore, on machine 2 we only
collected total energy consumed by the system and did not segregate the energy consumed by the
disk. For the rest of this thesis, we report only total systempower consumption (disk included).

A node’s power consumption consists of its components’ power. The idle-to-peak power for
machine 1 was 214–279W. The CPU tends to be a major contributor, in our case from 86–165W
(i.e., Intel’s SpeedStep technology). However, the behavior of power consumption within a com-
puter is complex due to thermal effects and feedback loops. For example, our CPU’s core power
use can drop to a mere 27W if its temperature is cooled to50 ◦C, whereas it consumes 165W at a
normal temperature of76 ◦C. Motherboards today include dynamic system and CPU fans which
turn on/off or change their speeds; while they reduce power elsewhere, the fans consume some
power themselves. For simplicity, our thesis reports only total system power consumption.

FS vs. other software power consumption It is reasonable to question how much energy does a
file system consume compared to other software components. According to Almeida et al., a Web
server saturated by client requests spends 90% of the time inkernel space, invoking mostly file
system related system calls [2]. In general, if a user-spaceprogram is not computationally inten-
sive, it frequently invokes system calls and spends a lot of time in kernel space. Therefore, it makes
sense to focus the efforts on analyzing energy efficiency of file systems. Moreover, our results in
Chapter 4 support this fact: changing only the file system type can increase power/performance
numbers up to a factor of 9.

11

Chapter 4

Evaluation

In this chapter, we detail our results and analysis. We abbreviated the terms Ext2, Ext3, Reis-
erfs, and XFS ase2, e3, r, andx, respectively. File systems formatted with block size of 1K
and 2K are denotedblk1k andblk2k, respectively;isz1k denotes 1K inode sizes;bg16k
denotes 16K block group sizes;dtlg andwrbck denote data and writeback journal modes, re-
spectively;nolog denotes Reiserfs’s no-logging feature; allocation group count is abbreviated as
agc followed by number of groups (8, 32, etc.), no-atime is denoted asnoatm.

Section 4.1 provides and overview of our metrics and terms. We provide details about the
Web, File, Mail, and DB workload results on machine 1 and 2 in Sections 4.2 and 4.3, respec-
tively. Section 4.4 provides recommendations for selecting file system features that best suit the
workloads.

 220

 240

 260

 280

 300

 320

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

Load (1000 ops/sec)

Ext2
Ext3
XFS

Reiserfs

Figure 4.1: Webserver: Mean power consumption by Ext2, Ext3, Reiserfs, and XFS at different
load levels on machine 1. They-axis scale starts at 220 Watts. Ext2 does not scale above 10,000
ops/sec.

12

4.1 Overview

In all our tests, we collected two raw metrics: performance (from FileBench), and the average
power of the machine and disk (from watt-meters). FileBenchreports file system performance
under different workloads in units ofoperations per second(ops/sec). As each workload targets
a different application domain, this metric is not comparable across workloads: A Web server’s
ops/sec are not the same as, say, the database server’s. Their magnitude also varies: the Web
server’s rates numbers are two orders of magnitude larger than other workloads. Therefore, we
report Web server performance in 1,000 ops/sec, and just ops/sec for the rest.

Figure 4.2: Average CPU utilization for the Webserver workload

Electrical power, measured in Watts, is defined as the rate atwhich electrical energy is trans-
ferred by a circuit. Instead of reporting the raw power numbers, we selected a derived metric
calledoperations per joule(ops/joule), which better explains power efficiency. This is defined as
the amount of work a file system can accomplish in 1 Joule of energy (1Joule = 1watt × 1sec).
The higher the value, the more power-efficient the system is.This metric is similar to SPEC’s
(ssj ops

watt
) metric, used by SPECPowerssj2008 [42]. Note that we report the Web server’s power

efficiency in ops/joule, and use ops/kilojoule for the rest.
A system’s active power consumption depends on how much it isbeing utilized by software,

in our case a file system. We measured that the higher the system/CPU utilization, the greater
the power consumption. We therefore ran experiments to measure the power consumption of a
workload at different load levels (i.e., ops/sec), for all four file systems, with default format and
mount options. Figure 4.1 shows the average power consumed (in Watts) by each file system,
increasing Web server loads from 3,000 to 70,000 ops/sec, onmachine 1. We found that all file
systems consumed almost the same amount of energy at a certain performance levels, but only a
few could withstand more load than the others. For example, Ext2 had a maximum of only 8,160
Web ops/sec with an average power consumption of 239W, whileXFS peaked at 70,992 ops/sec,
with only 29% more power consumption. Figure 4.2 shows the percentages of CPU utilization,
I/O wait, and idle time for each file system at its maximum loadon machine 1. Ext2 and Reiserfs
spend more time waiting for I/O than any other file system, thereby performing less useful work,
as per Figure 4.1. XFS consumes almost the same amount of energy as the other three file systems
at lower load levels, but it handles much higher Web server loads, winning over others in both
power efficiency and performance. We observed similar trends for other workloads: only one file
system outperformed the rest in terms of both power and performance, at all load levels. Thus, in

13

the rest of this thesis we report only peak performance figures.

4.2 Machine 1 Results

This section details the results on machine 1, which is a three year old machine as described
in Table 3.1. We first analyze the results for the Web, File, Mail and Database servers in Sec-
tions 4.2.1–4.2.4. Section 4.2.5 provides recommendations for selecting the optimal file system
for machines that match the configuration of machine 1.

4.2.1 Webserver Workload

 0

 20

 40

 60

 80

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

P
e

rf
o

rm
a

n
c
e

 (
1

0
0

0
 o

p
s
/s

e
c
)

8.2

58.4

29.6

71.0

2.9 2.9

38.7
51.5

8.1
14.4

69.5 70.8

5.4

58.3

76.8

13.1

57.1

71.2 71.4 71.8 71.8

5.2

60.8

71.0 73.8
67.6

30.1 27.6
20.1

21.9

42.7

(a) File system Webserver workload performance (in 1000 ops/sec)

 0

 50

 100

 150

 200

 250

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

o
p

s
/j
o

u
le

)

32

196

109

229

11 11

137
174

33
58

223 227

21

191

242

49

190

230 230 232 231

21

205
230 239

215

111 102
78

83

151

(b) File system energy efficiency for Webserver workload (inops/joule)

Figure 4.3:Webserver results on Machine 1

As we see in Figures 4.3(a) and 4.3(b), XFS proved to be the most power- and performance-
efficient file system. XFS performed 9 times better than Ext2,as well as 2 times better than
Reiserfs, in terms of both power and performance. Ext3 lagged behind XFS by 22%. XFS wins
over all the other file systems as it handles concurrent updates to a single file efficiently, without
incurring a lot of I/O wait (Figure 4.2), thanks to its journal design. XFS maintains an active item
list, which it uses to prevent meta-data buffers from being written multiple times if they belong to
multiple transactions. XFS pins a meta-data buffer to prevent it from being written to the disk until
the log is committed. As XFS batches multiple updates to a common inode together, it utilizes the
CPU better. We observed a linear relationship between power-efficiency and performance for the
Web server workload, so we report below on the basis of performance alone.

Ext2 performed the worst and exhibited inconsistent behavior. Its standard deviation was as
high as 80%, even after 30 runs. We plotted the performance values on a histogram and ob-

14

served that Ext2 had a non-Gaussian (long-tailed) distribution. Out of 30 runs, 21 runs (70%)
consumed less than 25% of the CPU, while the remaining ones used up to 50%, 75%, and 100%
of the CPU (three runs in each bucket). We wrote a micro-benchmark which ran for a fixed time
period and appended to 3 common files shared between 100 threads. We found that Ext3 per-
formed 13% fewer appends than XFS, while Ext2 was 2.5 times slower than XFS. We then ran a
modified Web server workload withonly reads and no log appends. In this case, Ext2 and Ext3
performed the same, with XFS lagging behind by 11%. This is because XFS’slookup operation
takes more time than other file systems for deeper hierarchy (see Section 4.2.2). As XFS handles
concurrent writes better than the others, it overcomes the performance degradation due to slow
lookups and outperforms in the Web server workload. OSprof results [21] revealed that the aver-
age latency ofwrite super for Ext2 was 6 times larger than Ext3. Analyzing the file systems’
source code helped explain this inconsistency. First, as Ext2 does not have a journal, it com-
mits superblock and inode changes to the on-disk image immediately, without batching changes.
Second, Ext2 takes the global kernel lock (aka BKL) while calling ext2 write super and
ext2 write inode, which further reduce parallelism: all processes using Ext2 which try to
sync an inode or the superblock to disk will contend with eachother, increasing wait times signif-
icantly. On the contrary, Ext3 batches all updates to the inodes in the journal and only when the
JBD layer callsjournal commit transaction are all the metadata updates actually synced
to the disk (after committing the data). Although journalling was designed primarily for reliability
reasons, we conclude that a careful journal design can help some concurrent-write workloads akin
to LFS [38].

Reiserfs exhibits poor performance for different reasons than Ext2 and Ext3. As Figures 4.3(a)
and 4.3(b) show, Reiserfs (default) performed worse than both XFS and Ext3, but Reiserfs with
thenotailmount option outperformed Ext3 by 15% and the default Reiserfs by 2.25 times. The
reason is that by default thetail option is enabled in Reiserfs, which tries to pack all files less
than 4KB in one block. As the Web server has an average file sizeof just 32KB, it has many files
smaller than 4KB. We confirmed this by runningdebugreiserfs on the Reiserfs partition:
it showed that many small files had their data spread across the different blocks (packed along
with other files’ data). This resulted in more than one data block access for each file read, thereby
increasing I/O, as seen in Figure 4.2. We concluded that unlike Ext2 and Ext3, the default Reiserfs
experienced a performance hit due to its small file read design, rather than concurrent appends.
This demonstrates that even simple Web server workload can still exercise different parts of file
systems’ code.

An interesting observation was that thenoatimemount option improved the performance of
Reiserfs by a factor of 2.5 times. In other file systems, this option did not have such a significant
impact. The reason is that thereiserfs dirty inode function, which updates the access
time field, acquires the BKL and then searches for the stat item corresponding to the inode in its
S+ tree to update theatime. As the BKL is held while updating each inode’s access time ina
path, it hurts parallelism and reduces performance significantly. Also,noatime boosts Reiserfs’s
performance by this muchonly in the read-intensive Web server workload.

Reducing the block-size during format generally hurt performance, except in XFS. XFS was
unaffected thanks to its delayed allocation policy that allocates a large contiguous extent, irre-
spective of the block size; this suggests that modern file systems should try to pre-allocate large
contiguous extents in anticipation of files’ growth. Reiserfs observed a drastic degradation of 2–

15

3× after decreasing the block size from 4KB (default) to 2KB and1KB, respectively. We found
from debugreiserfs that this led to an increase in the number of internal and formatted nodes
used to manage the file system namespace and objects. Also, the height of the S+ tree grew from 4
to 5, in case of 1KB. As the internal and formatted nodes depend on the block size, a smaller block
size reduces the number of entries packed inside each of these nodes, thereby increasing the num-
ber of nodes, and increasing I/O times to fetch these nodes from the disk during lookup. Ext2 and
Ext3 saw a degradation of 2× and 12%, respectively, because of the extra indirections needed to
reference a single file. Note that Ext2’s 2× degradation was coupled with a high standard variation
of 20–49%, for the same reasons explained above.

Quadrupling the XFS inode size from 256B to 1KB improved performance by only 8%. We
found usingxfs db that a large inode allowed XFS to embed more extent information and direc-
tory entries inside the inode itself, speeding lookups. As expected, the data journalling mode hurt
performance for both Reiserfs and Ext3 by 32% and 27%, respectively. The writeback journalling
mode of Ext3 and Reiserfs degraded performance by 2× and 7%, respectively, compared to their
default ordered journalling mode. Increasing the block group count of Ext3 and the allocation
group count of XFS had a negligible impact. The reason is thatthe Web server is a read-intensive
workload, and does not need to update the different group’s metadata as frequently as a write-
intensive workload would.

4.2.2 File Server Workload

 0

 100

 200

 300

 400

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

P
e

rf
o

rm
a

n
c
e

 (
o

p
s
/s

e
c
)

325 310

443

232 215

298

225

301

115

242
275 269

321 320

227

332 307

222 234

285 298
321 311

233

445 443 442 423

254
285 279

(a) Performance of file systems for the file server workload (in ops/sec)

 0

 500

 1000

 1500

 2000

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

o
p

s
/k

ilo
jo

u
le

)

1314 1235

1846

938 853

1202

894

1207

482

1019
1100 1078

1297 1259

937

1329
1223

890 951

1173
1005

1297 1241

937

1819 1850 1848
1711

1064 1126 1169

(b) Energy efficiency of file systems for the file server workload (in ops/kilojoule)

Figure 4.4:Fileserver results on Machine 1

Figures 4.4(a) and 4.4(b) show that Reiserfs outperformed Ext2, Ext3, XFS by 37%, 43%,
and 91%, respectively. Compared to the Web server workload,Reiserfs performed better than all
others, even with thetail option on. This is because the file server workload has an average
file size of 256KB (8 times larger than the Web server workload): it does not have many small

16

files spread across different nodes, thereby showing no difference between Reiserfs’s (tail) and
no-tail options.

Analyzing using OSprof revealed that XFS consumed 14% and 12% more time inlookup
andcreate, respectively, than Reiserfs. Ext2 and Ext3 spent 6% more time in bothlookup and
create than Reiserfs. To exercise only the lookup path, we executeda simple micro-benchmark
that only performed open and close operations on 50,000 filesby 100 threads, and we used the
same fileset parameters as that of the file server workload (see Table 3.2). We found that XFS
performed 5% fewer operations than Reiserfs, while Ext2 andExt3 performed close to Reiserfs.
As Reiserfs packs data and meta-data all in one node and maintains a balanced tree, it has faster
lookups thanks to improved spatial locality. Moreover, Reiserfs stores objects by sorted keys,
further speeding lookup times. Although XFS uses B+ trees tomaintain its file system objects,
its spatial locality is worse than that of Reiserfs, as XFS has to perform more hops between tree
nodes.

Unlike the Web server results, Ext2 performed better than Ext3, and did not show high standard
deviations. This was because in a file server workload, each thread works on an independent set
of files, with little contention to update a common inode.

We discovered an interesting result when varying XFS’s allocation group (AG) count from 8
to 128, in powers of two (default is 16). XFS’s performance increased from 4% to 34% (compared
to AG of 8). But, XFS’s power efficiency increased linearly only until the AG count hit 64, after
which the ops/kilojoule count dropped by 14% (for AG count of128). Therefore, XFS’ AG count
exhibited anon-linearrelationship between power-efficiency and performance. Asthe number of
AGs increases, XFS’s parallelism improves too, boosting performance even when dirtying each
AG at a faster rate. However, all AGs share a common journal: as the number of AGs increases,
updating the AG descriptors in the log becomes a bottleneck;we see diminishing returns beyond
AG count of 64. Another interesting observation is that AG count increases had a negligible effect
of only 1% improvement for the Web server, but a significant impact in file server workload. This
is because the file server has a greater number of meta-data activities and writes than the Web
server (see Chapter 3), thereby accessing/modifying the AGdescriptors frequently. We conclude
that the AG count is sensitive to the workload, especially read-write and meta-data update ratios.
Lastly, the block group count increase in Ext2 and Ext3 had a small impact of less than 1%.

Reducing the block size from 4KB to 2KB improved the performance of XFS by 16%, while
a further reduction to 1KB improved the performance by 18%. Ext2, Ext3, and Reiserfs saw
a drop in performance, for the reasons explained in Section 4.2.1. Ext2 and Ext3 experienced
a performance drop of 8% and 3%, respectively, when going from 4KB to 2KB; reducing the
block size from 2KB to 1KB degraded their performance further by 34% and 27%, respectively.
Reiserfs’s performance declined by a 45% and 75% when we reduced the block size to 2KB and
1KB, respectively. This is due to the increased number of internal node lookups, which increase
disk I/O as discussed in Section 4.2.1.

The no-atime options did not affect performance or power efficiency of anyfile system
because this workload is not read-intensive and had a ratio of two writes for each read. Changing
the inode size did not have an effect on Ext2, Ext3, or XFS. As expected, data journalling reduced
the performance of Ext3 and Reiserfs by 10% and 43%, respectively. Writeback-mode journalling
also showed a performance reduction by 8% and 4% for Ext3 and Reiserfs, respectively.

17

 0

 500

 1000

 1500

 2000

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

P
e

rf
o

rm
a

n
c
e

 (
o

p
s
/s

e
c
)

946

1350
1446

319

554

781
638

940

597

1223

406 377

971

1462

307

1002

1300

326 328 326 329

966

1360

312

1518

1858

1326
1448

1157
1274

1384

(a) Performance of file systems under the varmail workload (in ops/sec)

 0

 2000

 4000

 6000

 8000

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

o
p

s
/k

ilo
jo

u
le

)

4003

5797 6047

1366

2348

3300
2699

4009

2560

5110

1725 1602

4089

6250

1312

4219

5507

1397 1397 1392 1408

3979

5813

1305

6339

7716

5573 6037

4781
5470 5722

(b) Energy efficiency of file systems under the varmail workload (in ops/kilojoule)

Figure 4.5:Varmail results on Machine 1

4.2.3 Mail Server

As seen in Figures 4.5(a) and 4.5(b), Reiserfs performed thebest amongst all, followed by Ext3
which differed by 7%. Reiserfs beats Ext2 and XFS by 43% and 4×, respectively. Although the
mail server’s personality in FileBench is similar to the fileserver’s, we observed differences in
their results, because the mail server workload callsfsync after each append, which is not in-
voked in the file server workload. Thefsync operation hurts the non-journalling version of file
systems: hurting Ext2 by 30% and Reiserfs-nolog by 8% as compared to Ext3 and default Reis-
erfs, respectively. We confirmed this by running a micro-benchmark in FileBench which created
the same directory structure as the mail server workload andperformed the following sequence
of operations: create, append, fsync, open, append, and fsync. This showed that Ext2 was 29%
slower than Ext3. When we repeated this after removing all fsync calls, Ext2 and Ext3 performed
the same. Ext2’s poor performance with fsync calls is because itsext2 sync file call ulti-
mately invokesext2 write inode, which exhibits a larger latency than thewrite inode
function of other file systems. XFS’s poor performance was due to its slowerlookup operations.

Figure 4.5(a) shows that Reiserfs withno-tail beats all the variants of mount and format
options, improving over default Reiserfs by 29%. As the average file size here was 16KB, the
no-tail option boosted the performance similar to the Web server workload.

As in the Web server workload, when the block size was reducedfrom 4KB to 1KB, the
performance of Ext2 and Ext3 dropped by 41% and 53%, respectively. Reiserfs’s performance
dropped by 59% and 15% for 1KB and 2KB, respectively. Although the performance of Reiserfs
decreased upon reducing the block size, the percentage degradation was less than seen in the Web
and file server. The flat hierarchy of the mail server attributed to this reduction in degradation; as
all files resided in one large directory, the spatial locality of the meta data of these files increases,
helping performance a bit even with smaller block sizes. Similar to the file server workload,

18

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

P
e

rf
o

rm
a

n
c
e

 (
o

p
s
/s

e
c
)

182
217 209 220

361

429
392

429

377
402

442 442

210 213 217
194 199 215 215 217 220

182
216 218 205 207 206 206

271

207 194

(a) Performance of file systems for the OLTP workload (in ops/sec)

 0

 200

 400

 600

 800

 1000

 1200

 1400

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

o
p

s
/k

ilo
jo

u
le

)

525
630 611 641

1048

1245
1138

1242

1097
1167

1279 1277

609 620 628
560 575 622 622 629 637

527
628 632 594 603 602 602

787

601 547

(b) Energy efficiency of file systems for the OLTP workload (inops/kilojoule)

Figure 4.6:OLTP results on Machine 1

reduction in block size increased the overall performance of XFS.
XFS’s allocation group (AG) count and the block group count of Ext2 and Ext3 had minimal

effect within the confidence interval. Similarly, theno-atime option and inode size did not
impact the efficiency of file server significantly. The data journalling mode decreased Reiserfs’s
performance by 20%, but had a minimal effect on Ext3. Finally, the writeback journal mode
decreased Ext3’s performance by 6%.

4.2.4 Database Server Workload (OLTP)

Figures 4.6(a) and 4.6(b) show that all four file systems perform equally well in terms of both
performance and power-efficiency with the default mount/format options, except for Ext2. It
experiences a performance degradation of about 20% as compared to XFS. As explained in Sec-
tion 4.2.1, Ext2’s lack of a journal makes its random write performance worse than any other
journalled file system, as they batch inode updates.

In contrast to other workloads, the performance ofall file systems increases by a factor of
around 2× if we decrease the block size of the file system from the default 4KB to 2KB. This
is because the 2KB block size better matches the I/O size of OLTP workload (see Table 3.2), so
every OLTP write request fits perfectly into the file system’sblock size. But, a file-system block
size of 4KB turns a 2KB write into a read-modify-write sequence, requiring an extra read per
I/O request. This proves an important point that keeping thefile system block size close to the
workload’s I/O size can impact the efficiency of the system significantly. OLTP’s performance
also increased when using a 1KB block size, but was slightly lower than that obtained by 2KB
block size, due to an increased number of I/O requests.

An interesting observation was that on decreasing the number of blocks per group from 32KB
(default) to 16KB, Ext2’s performance improved by 7%. Moreover, increasing the inode size

19

up to 1KB improved performance by 15% as compared to the default configuration. Enlarging
the inode size in Ext2 has an indirect effect on the blocks pergroup: the larger the inode size,
the fewer the number of blocks per group. A 1KB inode size resulted in 8KB blocks per group,
thereby doubling the number of block groups and increasing the performance as compared to the
e2-bg16K case. Varying the AG count had a negligible effect on XFS’s numbers. Unlike Ext2,
the inode size increase did not affect any other file system.

Interestingly, we observed that the performance of Reiserfs increased by 30% on switching
from the default ordered mode to the data journalling mode. In data journalling mode as all
the data is first written to the log, random writes become logically sequential and achieve better
performance than the other journalling modes.

In contrast to the Web server workload, theno-atime option does not have any effect on
the performance of Reiserfs, although the read-write ratiois 20:1. This is because the database
workload consists of only 10 large files and hence the meta-data of these small number of files (i.e.,
stat items) accommodate in a few formatted nodes as comparedto the Web server workload which
consists of 20,000 files with their meta-data scattered across multiple formatted nodes. Reiserfs’
no-tail option had no effect on the OLTP workload due to the large sizeof its files.

4.2.5 Summary and Recommendations for Machine 1

We now summarize the combined results of our study on machine1. We then offer advice to
server operators, as well as designers of future systems.

Staying within a file system type Switching to a different file system type can be a difficult
decision, especially in enterprise environments where policies may require using specific file sys-
tems or demand extensive testing before changing one. Table4.1 compares the power efficiency
and performance numbers that can be achieved while staying within a file system; each cell is a
percentage of improvement (plus sign and bold font), or degradation (minus sign) compared to the
defaultformat and mount options for that file system. Dashes denote results that were statistically
indistinguishable from default. We compare to the default case because file systems are often
configured with default options.

Format and mount options represent different levels of optimization complexity. Remounting a
file system with new options is usually seamless, while reformatting existing file systems requires
costly data migration. Thus, we group mount and format options together.

From Table 4.1 we conclude that often there is a better selection of parameters than the default
ones. A careful choice of file system parameters cuts energy use in half and more than doubles
the performance (Reiserfs withno-tail option). On the other hand, a careless selection of
parameters may lead to serious degradations: up to 64% drop in both energy and performance
(e.g., legacy Ext2 file systems with 1K block size). Until October 1999,mkfs.ext2used 1KB block
sizes by default. File systems formatted prior to the time that Linux vendors picked up this change,
still use small block sizes: performance-power numbers of aWeb-server running on top of such a
file system are 65% lower than today’s default and over 4 timesworse than best possible.

Given Table 4.1, we feel that even moderate improvements areworth a costly file system
reformatting, because the savings accumulate for long-running servers.

20

FS
Option Webserver Fileserver Varmail Database

Type Name Perf. Pow. Perf. Pow. Perf. Pow. Perf. Pow.

Ext2

mount noatime -37%† -35% - - - - - -
format blk1k -64%† -65% -34% -35% -41% -41% +98% +100%

blk2k -65% -65% -8% -9% -17% -18% +136% +137%
isz1k -34%† -35% - - - - +15% +16%
bg16k +60% † +53% - - +6% +5% +7% +7%

Ext3

mount noatime +4% +5% - - - - - -
dtlg -27% -23% -10% -5% - - -11% -13%

wrbck -63% -57% -8% -9% -6% -5% -5% -5%
format blk1k -34% -30% -27% -28% -53% -53% +81% +81%

blk2k -12% -11% - - -30% -31% +98% +97%
isz1k - - - - +8% +8% - -
bg16k - - - - -4% -5% -8% -9%

Reiser

mount noatime +149% +119% - - +5% +5% - -
notail +128% +96% - - +29% +28% - -
nolog - - - - -8% -8% - -
wrbck -7% -7% -4% -7% - - - -
dtlg -32% -29% -43% -42% -20% -21% +30% +29%

format blk1k -73% -70% -74% -74% -59% -58% +80% +80%
blk2k -51% -47% -45% -45% -15% -16% +92% +91%

XFS

mount noatime - - - - - - - -
format blk1k - - +18% +17% +27% +17% +101% +100%

blk2k - - +16% +15% +18% +17% +101% +99%
isz1k +8% +6% - - - - - -
agcnt8 - - -4% -5% - - - -
agcnt32 - - - - - - - -
agcnt64 - - +23% +25% - - - -
agcnt128 - - +29% +8% - - - -

Table 4.1: File systems’ performance and power, varying options, relative to the default ones
for each file system for machine 1:Improvements are highlighted in bold. A† denotes the results
with coefficient of variation over 40%. A dash signifies statistically indistinguishable results.

Selecting the most suitable file system When users can change to any file system, or choose
one initially, we offer Table 4.2. For each workload we present the most power-performance
efficient file system and its parameters. We also show the range of improvements in both ops/sec
and ops/joule as compared to the best and worstdefaultfile systems. From the table we conclude
that it is often possible to improve the efficiency by at least8%. For the file server workload,
where the default Reiserfs configuration performs the best,we observe a performance boost of up
to 2× as compared to the worst default file system (XFS). As seen in Figure 4.5, for mail server
workload Reiserfs withno-tail improves the efficiency by 30% over default Reiserfs (best
default), and by 5× over default XFS (worst default). For the database workload, XFS and Ext3

21

Server Recom. FS Ops/Sec Ops/Joule
Web x-isz1k 1.08–9.4× 1.06–7.5×
File r-def 1.0–1.9× 1.0–2.0×
Mail r-notail 1.3–5.8× 1.3–5.7×
DB x/e3-blk2k 2–2.4× 2–2.4×

Table 4.2:Recommended file systems for machine 1:We provide the range of performance and
power-efficiency improvements achieved compared to the best and the worst default configured
file systems.

with a block size of 2KB improved the efficiency of the system by at least two-fold. Whereas in
most cases, performance and energy improved by nearly the same factor, in XFS they did not: for
the Webserver workload, XFS with 1K inode sizes increased performance by a factor of 9.4 and
energy improved by a factor of 7.5.

Some file system parameters listed in Table 4.1 can be combined, possibly yielding cumula-
tive improvements. We analyzed several such combinations and concluded that each case requires
careful investigation. For example, Reiserfs’snotail andnoatime options, independently,
improved the Webserver’s performance by 149% and 128%, respectively; but their combined ef-
fect only improved performance by 155%. The reason for this was that both parameters affected
the same performance component—wait time—either by reducing BKL contention slightly or by
reducing I/O wait time. However, the CPU’s utilization remained high and dominated overall
performance. On the other hand, XFS’sblk2k andagcnt64 format options, which improved
performance by 18% and 23%, respectively—combined together to yield a cumulative improve-
ment of 41%. The reason here is that these were options which affected different code paths
without having other limiting factors.

4.3 Machine 2 Results

This section details the results on machine 2, which is a recent machine as described in Table 3.1.
As machine 2 was equipped with a slower RPM disk (i.e., half the speed of that of machine 1),
the performance of the disk intensive workloads like OLTP and File server degraded from 7% to
86% compared to machine 1. On the contrary, Mail server, which is a more memory-intensive
workload, experienced a performance improvement of 35% to 3x on machine 2. This is because
machine 2 had a more powerful CPU, faster FSB, larger L1/L2 caches, and more disk cache as
compared to machine 1. But, in both cases machine 2 turned outto be equally or sometimes even
more energy efficient (i.e., ops/joule) than machine 1. Thisis because the average idle power of
machine 2 is almost half that of machine 1, resulting in more energy-efficiency.

Although the CPU on machine 2 supported Dynamic Voltage and Frequency (DVFS), we
observed a linear relationship between performance and energy efficiency for all the workloads.
This is because we ran all the workloads at peak levels, whichresulted in the maximum utilization
of the CPU, thereby ignoring the power saving feature of DVFS.

We observed a few different behaviors in the workloads as compared to the results on machine
1. Some of the file system configurations which did not look appealing on machine 1, turned

22

to be a good choice for machine 2. This is because the file systems that were bottlenecked by
the slow speed/capacity of a certain hardware on machine 1, benefited on an improved hardware
configuration. We discuss a few of the interesting results inthe subsections below.

4.3.1 Webserver Workload

 0

 5

 10

 15

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

P
e

rf
o

rm
a

n
c
e

 (
1

0
0

0
 o

p
s
/s

e
c
) 15

14 14
13

14 14

13
14 14

14

13 13

15 14

13

15
14

13
13 13 14

15
14

13
14 14 14 14 14

13 13

(a) File system Webserver workload performance (in 1000 ops/sec)

 0

 50

 100

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

o
p

s
/j
o

u
le

) 122
115 116

112
116 118

108 113 114
122

111 112
121 117

113
121 116

112 114 114 116
121

116 111 115 117 116 117 116 111 112

(b) File system energy efficiency for Webserver workload (inops/joule)

Figure 4.7:Webserver results on Machine 2

As seen in Figures 4.7(a) and 4.7(b), all the default configurations of the file systems perform
equally well on machine 2. This is in contrast to the observation on machine 1, which experienced
a variation in performance ranging from 8% to as much as 9 times. This clearly shows how
modifications in the hardware can have a significant impact onthe software configuration choices.

If we compare the file system performance numbers across machine 1 and 2 (Figures 4.3(a)
and 4.7(a)), we find that machine 1 performed much better thanmachine 2 in most of the file sys-
tem configurations, ranging from 20% to as much as 5× (in different variants of XFS). Although
most of the working set of the Web server resides in memory, its append operation results in a
memory pressure leading to evicting some of the useful page cache pages, which would be refer-
enced in the near future. This results in fetching the files from the slower disk, causing a drop in
performance. The energy-efficiency of machine 1 was also better than that of machine 2 except in
a few cases: all the configuration of Ext2 and Reiserfs with a block size of 1KB and 2KB.

23

4.3.2 File Server Workload

 0

 100

 200

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

P
e

rf
o

rm
a

n
c
e

 (
o

p
s
/s

e
c
)

199 189

262
236

171

202

166
190

151

207

245 243

198
192 203 200 191

237 234 238 234

199 190

235
261 259 260

234 227

185 183

(a) Performance of file systems under the fileserver workload(in ops/sec)

 0

 500

 1000

 1500

 2000

 2500

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

o
p

s
/k

ilo
jo

u
le

)

1913 1833

2626

2215

1618

1949

1574
1831

1516

2093
2348 2323

1890
1863 2028 1924 1820

2265 2252 2297 2291

1907 1850

2252

2620 2603 2612

2294 2294

1762 1842

(b) Energy efficiency of file systems under the fileserver workload (in ops/kilojoule)

Figure 4.8:Fileserver results on Machine 2

As shown in Figures 4.8(a) and 4.8(b), the optimal default file system for the file server work-
load on machine 2 is the same as that on machine 1 (i.e., Reiserfs). The performance and energy-
efficiency trends amongst the different file systems were similar to that observed on machine 1
(see Section 4.2.2).

If we compare the file system performance numbers across machines 1 and 2 (Figures 4.4(a)
and 4.8(a)), we find that machine 1 usually outperformed machine 2 by as much as 45% for almost
all file system configurations. As the file server is a disk intensive workload, its performance was
hurt by the slow RPM of the disk on machine 2 as compared to machine 1. Still, the energy
efficiency of machine 2 was always better than that of machine1, thanks to its more energy-
efficient hardware.

24

4.3.3 Mail Server

 0

 500

 1000

 1500

 2000

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

P
e

rf
o

rm
a

n
c
e

 (
o

p
s
/s

e
c
)

1788 1825

1248 1246

676

1101

675

1088

675

1151

738

1034

1853
1680

832

1805
1856

1230 1182 1114 1118

1817 1887

1245 1217

1624

1215 1294

969

1671 1670

(a) Performance of file systems under the varmail workload (in ops/sec)

 0

 4000

 8000

 12000

 16000

 20000

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

o
p

s
/k

ilo
jo

u
le

)

17453
18458

12608 12301

6714

10936

6795

11016

6819

11623

7406

10282

18098
17005

8317

17647
18786

12160 11687 11045 11044

17764
19064

12307 12315

16408

12271 13067

9766

16878 16603

(b) Energy efficiency of file systems under the varmail workload (in ops/kilojoule)

Figure 4.9:Varmail results on Machine 2

Figures 4.9(a) and 4.9(b) show the performance and energy efficiency of the mail server work-
load when executed on machine 2. Contrary to the Web and file server, if we compare the perfor-
mance of the mail server on machines 1 and 2 (Figures 4.9(a) and 4.9(a)), then we observe that
machine 2 performed usually better than machine 1, ranging from 35% to 3×. This is because the
mail server workload is a more memory intensive workload with a few synchronous disk requests
(e.g.,fsync calls). As machine 2 has a more powerful CPU, faster memory speed, larger size of
caches and 3 levels of cache, compared to machine 1, it is benefited in terms of both performance
and energy efficiency. Furthermore, thefsync call, although synchronous, returns as soon as the
data is written to the disk cache, thereby not being affectedby the slower disk speed. Interest-
ingly, the performance offsync is boosted because of a larger (double) disk cache as compared
to machine 1, as seen in case of Ext2 (described below).

Optimal default file system trends on machine 2 varied as compared to machine 1. On machine
2, we observed that Ext2 and Ext3 performed the best amongst the four default file systems by
30%. This is in contrast to the observation on machine 1, where Ext2 experienced a performance
degradation of almost 43% as compared to Reiserfs (optimal file system on machine 1). As dis-
cussed in Section 4.2.3, Ext2 performed sub-optimally on machine 1 because it was bottlenecked
by thefsync call, whereas on machine 2 Ext2 overcomes this bottleneck because of a larger disk
cache as compared to machine 1, as discussed above.

As we observed trends similar to machine 1, on most of the non-default file systems configu-
rations, we do not discuss them here.

25

 0

 50

 100

 150

 200

 250

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

P
e

rf
o

rm
a

n
c
e

 (
o

p
s
/s

e
c
)

120
144 146 144

229
246 234 238

229
247 233 238

120
144 145

120
144 146 147 150 151

120
145 144 147 148 146 146 130 144 144

(a) Performance of file systems under the OLTP workload (in ops/sec)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def

r-def
e3-def

e2-def

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

o
p

s
/k

ilo
jo

u
le

)

734
883

934
883

1406
1506 1434 1455

1406
1508 1434 1455

734
882 886

734
882 892 898 921 924

734
885 884

944 962 941 938
796 882 882

(b) Energy efficiency of file systems under the OLTP workload (in ops/kilojoule)

Figure 4.10:OLTP results on Machine 2

4.3.4 Database Server Workload (OLTP)

Machine 2 observed trends similar to machine 1 for OLTP as seen in Figures 4.10(a) and 4.10(b).
For reasons explained in Section 4.2.4, the 2KB block size format option outperformed all the
other configurations of the corresponding file systems, ranging from 65% to 105%. Similar to the
other disk-intensive workloads, machine 2 experienced a performance degradation as compared to
machine 1 for all the file system configurations, ranging from35–86%.

4.3.5 Summary and Recommendations for Machine 2

Table 4.3 provides the percentage of improvement or degradation achieved when we stay within
a file system but just modify the format or mount options, on machine 2. Unlike machine 1, we
observed that the default file system configuration was usually the optimal choice for all the work-
loads, with a few exceptions. In case of OLTP, we found that the 2KB block size format option
always outperformed the corresponding default file system configuration. Mail server observed
a performance improvement of 30%, when we switched from default Reiserfs to itsno-tail
mount option.

Table 4.4 shows the range of improvement possible when one shifts to a completely different
file system as compared to the best and worstdefaultfile systems. Similar to machine 1, we found
that no single file system was universally the best for all workloads. On switching to the optimal
file system, we obtained a performance and energy-efficiencyimprovement of 1.0–2.8×.

26

FS
Option Webserver Fileserver Varmail Database

Type Name Perf. Pow. Perf. Pow. Perf. Pow. Perf. Pow.

Ext2

mount noatime - - - - - - - -
format blk1k -7% -5% -14% -15% -62% -62% +91% +92%

blk2k -7% -5% - - -38% -37% +105% +105%
isz1k - - - - - - - -
bg16k - - - - - - - -

Ext3

mount noatime - - - - - - - -
dtlg -7% - - - -9% -10% - -

wrbck -7% - - - -8% -9% - -
format blk1k -7% -6% -12% -14% -63% -63% +63% +62%

blk2k - - - - -40% -40% +65% +63%
isz1k - - - - -8% -8% - -
bg16k - - - - - - - -

Reiserfs

mount noatime - - - - - - - -
notail - - - - +30% +30% - -
nolog - - - - - - - -
wrbck - - -11% -13% - - - -
dtlg - - -13% -13% -22% -23% -11% -15%

format blk1k - - -42% -42% -46% -46% +57% +51%
blk2k - - -21% -20% -8% -8% +69% +61%

XFS

mount noatime - - - - - - - -
format blk1k - - +6% +6% -40% -40% +62% +62%

blk2k - - - - -17% -16% +65% +65%
isz1k - - -14% -8% -33% -32% - -
agcnt8 - - - - - - - -
agcnt32 - - - - - - - -
agcnt64 - - - - -11% -10% - -
agcnt128 - - - - -10% -10% +5% +5%

Table 4.3:File systems’ performance and power, varying options, relative to the default ones for
each file system for machine 2

Server Recom. FS Ops/Sec Ops/Joule
Web All def 1.0–1.1× 1.0–1.1×
File r-def 1.0–1.7× 1.0–1.7×
Mail e3-def/e3-noatime1.0–2.8× 1.0–2.8×
DB All blk2k 1.5–2.0× 1.5–2.0×

Table 4.4:Recommended file systems for machine 2:We provide the range of performance and
power-efficiency improvements achieved compared to the best and the worst default configured
file systems.

27

4.4 File System Feature Selection Guide

We offer recommendations to assist in selecting the best filesystem feature(s) for specific work-
loads. These guideline can also help future file system designers. Some of the workload features
that can help decide the file system are:

• File size: If the workload generates or uses files with an average file size of a few 100KB,
we recommend to use fixed sized data blocks, addressed by a balanced tree (e.g., Reiserfs).
Large sized files (GB, TB) would benefit from extent-based balanced trees with delayed al-
location (e.g., XFS). Packing small files together in one block (e.g., Reiserfs’s tail-packing)
is not recommended, as it often degrades performance.

• Directory depth: Workloads using a deep directory structure should focus on faster lookups
using intelligent data structures and mechanisms. One recommendation is to localize as
much data together with inodes and directories, embedding data into large inodes (XFS).
Another is to sort all inodes/names and provide efficient balanced trees (e.g., XFS or Reis-
erfs).

• Access pattern and parallelism: If the workload has a mix of read, write, and metadata
operations, it is recommended to use at least 64 allocation groups, each managing their
own group and free data allocation independently, to increase parallelism (e.g., XFS). For
workloads having multiple concurrent writes to the same file(s), we recommend to switch
on journalling, so that updates to the same file system objects can be batched together. We
recommend turning offatime updates for read-intensive operations, if the workload does
not care about access-times.

• I/O size: If the file system’s block size matches the workload’s I/O size, it improves the
performance significantly. Thus, we recommend to format thefile system with a block size
keeping in mind the I/O size of the workload.

28

Chapter 5

Conclusions

Proper benchmarking and analysis are tedious, time-consuming tasks. Yet their results can be
invaluable for years to come. We conducted a comprehensive study of file systems on modern
systems, evaluated popular server workloads, and varied many parameters. We collected and
analyzed performance and power metrics on two different server class machines.

We discovered and explained significant variations in both performance and energy use. We
found that there are no universally good configurations for all workloads, and we explained com-
plex behavior that go against common conventions. We concluded that both hardware configura-
tion and file system configuration impact system performanceand overall energy efficiency. We
concluded that the default file system types and options are often suboptimal. On machine 1, we
found that simple changes within a file system, like mount options, can improve power/performance
from 5% to 149%; and changing format options can boost the efficiency from 6% to 136%.
Switching to a different file system can result in improvements ranging from 2 to 9 times. Chang-
ing the hardware to a more advanced and powerful one, with thecombination of a slower disk,
yielded different results. With the improvement in the hardware, the bottlenecks observed by a file
system under a certain workload either disappeared or shifted to another hardware/software com-
ponent. On machine 2, we found that the default file system configuration was optimal for almost
all the workloads with a few exceptions. No single file systembest suited all the workloads; we
achieved an improvement ranging from 1.0–2.8× when we switched to a different file system.

We recommend that servers be reconfigured, tested and optimized for expected workloads
before used in production. Energy technologies lag far behind computing speed improvements.
Given the long-running nature of busy Internet servers, software-based optimization and optimal
reconfiguration techniques can have significant, cumulative long-term benefits.

29

Chapter 6

Future Work

We plan to expand our study to include less mature file systems(e.g., Ext4, Reiser4, and BTRFS),
as we believe they have greater optimization opportunities. We also plan to evaluate the impact
of aging on file system performance and energy-efficiency. Weare currently evaluating power-
performance of network-based and distributed file systems (e.g., NFS, CIFS, and Lustre). Those
represent additional complexity: protocol design, clientvs. server implementations, and network
software and hardware efficiency. Early experiments comparing NFSv4 client/server OS imple-
mentations revealed performance variations as high as 3×.

Computer hardware changes constantly—e.g., adding more cores, and supporting more energy-
saving features. As energy consumption outside of the data center exceeds that inside [47], we are
continually repeating our studies on a range of computers spanning several years of age. We also
plan to conduct a similar study on faster solid-state disks.

Our long-term goals include developing custom file systems that best match a given workload
and building auto-configuration tools. The custom file systems could be beneficial because many
application designers and administrators know their data set and access patterns ahead of time,
allowing storage stacks designs with better cache behaviorand minimal I/O latencies. The auto-
configuration tool will configure the different layers in thestorage/software stack cognizant with
the workload and hardware characteristics, so as to achievethe optimal performance and energy-
efficiency.

30

Bibliography

[1] M. Allalouf, Y. Arbitman, M. Factor, R. I. Kat, K. Meth, and D. Naor. Storage Modeling for Power
Estimation. InProceedings of the Israeli Experimental Systems Conference (SYSTOR ’09), Haifa,
Israel, May 2009. ACM.

[2] J. Almeida, V. Almeida, and D. Yates. Measuring the Behavior of a World-Wide Web Server. Tech-
nical report, Boston University, Boston, MA, USA, 1996.

[3] D. G Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,L. Tan, and V. Vasudevan. FAWN: A
Fast Array of Wimpy Nodes. InProceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’2009), pages 1–14. ACM SIGOPS, October 2009.

[4] R. Appleton. A Non-Technical Look Inside the Ext2 File System.Linux Journal, August 1997.

[5] T. Bisson, S.A. Brandt, and D.D.E. Long. A Hybrid Disk-Aware Spin-Down Algorithm with I/O
Subsystem Support. InIEEE 2007 Performance, Computing, and Communications Conference, 2007.

[6] R. Bryant, R. Forester, and J. Hawkes. Filesystem Performance and Scalability in Linux 2.4.17. In
Proceedings of the Annual USENIX Technical Conference, FREENIX Track, pages 259–274, Mon-
terey, CA, June 2002. USENIX Association.

[7] D. Capps. IOzone Filesystem Benchmark.www.iozone.org/, July 2008.

[8] E. Carrera, E. Pinheiro, and R. Bianchini. Conserving Disk Energy in Network Servers. In17th
International Conference on Supercomputing, 2003.

[9] D. Colarelli and D. Grunwald. Massive Arrays of Idle Disks for Storage Archives. InProceedings of
the 2002 ACM/IEEE conference on Supercomputing, pages 1–11, 2002.

[10] M. Craven and A. Amer. Predictive Reduction of Power andLatency (PuRPLe). InProceedings of the
22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05),
pages 237–244, Washington, DC, USA, 2005. IEEE Computer Society.

[11] Y. Deng and F. Helian. EED: Energy Efficient Disk Drive Architecture.Information Sciences, 2008.

[12] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the Power-Hungry Disk. InProceedings of the
1994 Winter USENIX Conference, pages 293–306, 1994.

[13] Watts up? PRO ES Power Meter.www.wattsupmeters.com/secure/products.php.

[14] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-Efficient Server Clusters. InProceedings of
the 2nd Workshop on Power-Aware Computing Systems, pages 179–196, 2002.

[15] A. Ermolinskiy and R. Tewari. C2Cfs: A Collective Caching Architecture for Distributed File Access.
Technical Report UCB/EECS-2009-40, University of California, Berkeley, 2009.

[16] D. Essary and A. Amer. Predictive Data Grouping: Defining the Bounds of Energy and Latency
Reduction through Predictive Data Grouping and Replication. ACM Transactions on Storage (TOS),
4(1):1–23, May 2008.

[17] A. Gulati, M. Naik, and R. Tewari. Nache: Design and Implementation of a Caching Proxy for
NFSv4. InProceedings of the Fifth USENIX Conference on File and Storage Technologies (FAST
’07), pages 199–214, San Jose, CA, February 2007. USENIX Association.

31

[18] S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kandemir, H. Franke, N. Vijaykrishnan, and M. J.
Irwin. Interplay of Energy and Performance for Disk Arrays Running Transaction Processing Work-
loads. InIEEE International Symposium on Performance Analysis of Systems and Software, pages
123–132, 2003.

[19] H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data Replication in Free Disk Space for Improv-
ing Disk Performance and Energy Consumption. InProceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP ’05), pages 263–276, Brighton, UK, October 2005. ACM Press.

[20] N. Joukov and J. Sipek. GreenFS: Making Enterprise Computers Greener by Protecting Them Better.
In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008
(EuroSys 2008), Glasgow, Scotland, April 2008. ACM.

[21] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok. Operating System Profiling via Latency
Analysis. InProceedings of the 7th Symposium on Operating Systems Design and Implementation
(OSDI 2006), pages 89–102, Seattle, WA, November 2006. ACM SIGOPS.

[22] J. Katcher. PostMark: A New Filesystem Benchmark. Technical Report TR3022, Network Appliance,
1997.www.netapp.com/tech_library/3022.html.

[23] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Energyand Performance Evaluation of Lossless File
Data Compression on Server Systems. InProceedings of the Israeli Experimental Systems Conference
(ACM SYSTOR ’09), Haifa, Israel, May 2009. ACM.

[24] J. Leverich and C. Kozyrakis. On the energy (in)efficiency of hadoop clusters. InHotPower ’09:
Workshop on Power Aware Computing and Systems. ACM, 2009.

[25] D. Li. High Performance Energy Efficient File Storage System. PhD thesis, Computer Science De-
partment, University of Nebraska, Lincoln, 2006.

[26] K. Li, R. Kumpf, P. Horton, and T. Anderson. A Quantitative Analysis of Disk Drive Power Manage-
ment in Portable Computers. InProceedings of the 1994 Winter USENIX Conference, pages 279–291,
1994.

[27] A. Manzanares, K. Bellam, and X. Qin. A Prefetching Scheme for Energy Conservation in Parallel
Disk Systems. InProceedings of the IEEE International Symposium on Parallel and Distributed
Processing (IPDPS 2008), pages 1–5, April 2008.

[28] R. McDougall, J. Mauro, and B. Gregg.Solaris Performance and Tools. Prentice Hall, New Jersey,
2007.

[29] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: practical power management for
enterprise storage. InProceedings of the 6th USENIX Conference on File and StorageTechnologies
(FAST 2008), 2008.

[30] E. B. Nightingale and J. Flinn. Energy-Efficiency and Storage Flexibility in the Blue File System. In
Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI 2004),
pages 363–378, San Francisco, CA, December 2004. ACM SIGOPS.

[31] Message about XFS block size limit. http://osdir.com/ml/file-systems.xfs.
general/2002-06/msg00071.html.

[32] A. E. Papathanasiou and M. L. Scott. Increasing Disk Burstiness for Energy Efficiency. Technical
Report 792, University of Rochester, 2002.

[33] E. Pinheiro and R. Bianchini. Energy Conservation Techniques for Disk Array-Based Servers. In
Proceedings of the 18th International Conference on Supercomputing (ICS 2004), pages 68–78, 2004.

[34] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load Balancing and Unbalancing for Power and
Performance in Cluster-Based Systems. InInternational Conference on Parallel Architectures and
Compilation Techniques, Barcelona, Spain, 2001.

[35] H. Reiser. ReiserFS v.3 Whitepaper.http://web.archive.org/web/20031015041320/
http://namesys.com/.

32

[36] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. JouleSort: A Balanced Energy-Efficiency
Benchmark. InProceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), Beijing, China, June 2007.

[37] S. Gurumurthi and A. Sivasubramaniam and M. Kandemir and H. Franke. DRPM: Dynamic Speed
Control for Power Management in Server Class Disks. InProceedings of the 30th annual interna-
tional symposium on Computer architecture, pages 169–181, 2003.

[38] M. I. Seltzer. Transaction Support in a Log-StructuredFile System. InProceedings of the Ninth
International Conference on Data Engineering, pages 503–510, Vienna, Austria, April 1993.

[39] SGI. XFS Filesystem Structure.http://oss.sgi.com/projects/xfs/papers/xfs_
filesystem_structure.pdf.

[40] FileBench, July 2008.www.solarisinternals.com/wiki/index.php/FileBench.

[41] SPEC. SPECweb99.www.spec.org/web99, October 2005.

[42] SPEC. SPECpowerssj2008 v1.01.www.spec.org/power_ssj2008/, 2008.

[43] SPEC. SPECsfs2008.www.spec.org/sfs2008, July 2008.

[44] The Standard Performance Evaluation Corporation. SPEC HPC Suite. www.spec.org/
hpc2002/, August 2004.

[45] U.S. EPA. Report to Congress on Server and Data Center Energy Efficiency. Public Law 109-431,
August 2007.

[46] J. Wang, H. Zhu, and Dong Li. eRAID: Conserving Energy inConventional Disk-Based RAID
System.IEEE Transactions on Computers, 57(3):359–374, March 2008.

[47] D. Washburn. More Energy Is Consumed Outside Of The DataCenter, 2008.www.forrester.
com/Role/Research/Workbook/0,9126,47980,00.html.

[48] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU energy. InProceed-
ings of the 1st USENIX conference on Operating Systems Design and Implementation, 1994.

[49] Ext3. http://en.wikipedia.org/wiki/Ext3.

[50] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E. Zadok. Auto-pilot: A Platform for System
Software Benchmarking. InProceedings of the Annual USENIX Technical Conference, FREENIX
Track, pages 175–187, Anaheim, CA, April 2005. USENIX Association.

[51] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P. Cao. Reducing Energy Consumption
of Disk Storage Using Power-Aware Cache Management. InProceedings of the 10th International
Symposium on High-Performance Computer Architecture, pages 118–129, 2004.

33

