
Symbolic Integration At Compile Time
In Finite Element Methods

Karl Rupp
Christian Doppler Laboratory for Reliability Issues in Microelectronics

at the Institute for Microelectronics, TU Wien
Gußhausstraße 27–29/E360

A-1040 Wien, Austria
rupp@iue.tuwien.ac.at

ABSTRACT
In most existing software packages for the finite element
method it is not possible to supply the weak formulation
of the problem of interest in a compact form, which was
in the early days of programming due to the low abstrac-
tion capabilities of available programming languages. With
the advent of pure object-oriented programming, abstrac-
tion was long said to be achievable only in trade-off with
run time efficiency. In this work we show that it is possible
to obtain both a high level of abstraction and good run time
efficiency by the use of template metaprogramming in C++.
We focus on a mathematical expressions engine, by which
element matrices are computed during compile time and by
which the weak formulation can be specified in a single line
of code. A comparison of system matrix assembly times
of existing finite element software shows that the template
metaprogramming approach is up to an order of magnitude
faster than traditional software designs.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Miscellaneous; G.1.4
[Numerical Analysis]: Quadrature and Numerical Dif-
ferentiation—Automatic differentiation; G.1.8 [Numerical
Analysis]: Partial Differential Equations—Finite element
methods; G.4 [Mathematical Software]: Efficiency; I.1.3
[Symbolic and Algebraic Manipulation]: Languages
and Systems—Special-purpose algebraic systems

Keywords
Template Metaprogramming, Symbolic Integration, Finite
Element Methods, C++

1. INTRODUCTION
The level of abstraction in most software packages dealing

with the finite element method (FEM) is low, mainly be-
cause for a long time programming languages could not pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2010, 25–28 July 2010, Munich, Germany.
Copyright 2010 ACM 978-1-4503-0150-3/10/0007 ...$10.00.

vide facilities for a higher level of abstraction and thus low
level programming approaches are extensively documented
in the literature. With the advent of pure object-oriented
programming, abstraction was long said to be achievable
only in trade-off with run time efficiency, which is again one
of the major aims of scientific software. In order to still
achieve a reasonably high level of abstraction and good run
time efficiency, program generators have been designed to
parse higher level descriptions and to generate the required
source code, which is then compiled into an executable form.
Examples for such an approach are freeFEM++ [6] or DOL-
PHIN [5].

The introduction of another layer in the compilation pro-
cess is in fact not very satisfactory: On the one hand, an
input file syntax needs to be specified and parsed correctly,
and on the other hand, proper source-code should generated
for all semantically valid inputs. Moreover, it gets much
harder to access or manipulate objects at source code level,
because any modifications in the higher level input file causes
another precompilation run, potentially producing entirely
different source code. Thus, it pays off to avoid any addi-
tional external precompilation, and instead provide higher-
level components directly at source code level. To the au-
thor’s knowledge, the highest level of abstraction for FEM at
source code level has so far been achieved by Sundance [10],
which heavily relies on object oriented programming to raise
the level of abstraction directly at source code level while
reducing run time penalties to a minimum.

In this work we present a compile time engine for math-
ematical expressions obtained through template metapro-
gramming [1], so that the level of abstraction at source code
level effectively meets that of the underlying mathemati-
cal description. Additionally, due to dispatches at compile
time, any penalties due to virtual dispatches at run time are
avoided. Since both the weak formulation of the underlying
mathematical problem and the test and trial functions are
available at compile time, we evaluate local element matrices
symbolically by the compiler, so any unnecessary numerical
integration at run time is avoided. Our approach only relies
on facilities provided with standard-conforming C++ com-
pilers to generate the appropriate code that finally enters
the executable, thus no further external dependencies have
to be fulfilled.

As driving example throughout this work we consider the
Poisson equation

−∆u = 1 (1)

in a domain Ω with, say, homogeneous Dirichlet boundary

conditions. However, the techniques presented in the fol-
lowing can also be applied to more general problems with
additional flux terms, a more complicated right hand side or
different types of boundary conditions. The weak formula-
tion of (1) is to find u in a suitable trial space such that

a(u, v) :=

Z

Ω

∇u∇v dx =

Z

Ω

v dx =: L(v) (2)

for all test functions v in a certain test space. After dis-
cretization, the resulting system matrix S is given by

S = (Si,j)
N
i,j=1, Si,j = a(ϕj , ψi) , (3)

where ϕj and ψi are the trial and test functions from the
trial and test spaces respectively [3,13]. S is typically sparse
due to the local support of the chosen basis functions.

In the following we assume that the system matrix S is
fully set up prior to solving the resulting system of linear
equations. Since typically iterative solvers are used for the
solution of the linear system, it is in principle sufficient to
provide matrix-vector multiplications and never set up the
full system matrix. Our approach is also suitable for such a
configuration, but for better comparison with other software
packages in Sec. 5 and Sec. 6 we consider the case that S is
set up explicitly.

According to (2) and (3), a generic finite element imple-
mentation must be able to evaluate bilinear forms for varying
function arguments. Moreover, since the bilinear form is to
be supplied by the user, its specification should be as easy
and as convenient as possible. Consequently, we start with
the discussion of higher-level components for the specifica-
tion of the weak formulation in Sec. 2. The specification and
manipulation of test and trial functions is outlined in Sec. 3.
In Sec. 4 the higher-level components are joined in order to
compute local element matrices at compile time. The influ-
ence on compilation times and execution times is quantified
in Sec. 5 and Sec. 6 respectively.

2. EXPRESSION ENGINE
We have implemented high level components for the com-

pile time representation of mathematical expressions in the
style of expression templates [11,12]. The concept of syntax
trees often used at run time was adapted to handle operators
and operands at compile time:

1 template <typename ScalarType ,
2 typename LHS ,
3 typename RHS ,
4 typename OP >
5 class Expression ;

ScalarType denotes the underlying integral type used for the
arithmetic operations, LHS and RHS are the left and right hand
side operands and OP encodes the type of the arithmetic op-
eration. In the following we refer to this combination of
expression templates and syntax trees as expression trees.

As we have seen in (3), the system matrix is build from
plugging trial and test functions into the bilinear form. Con-
sequently, we start with the introduction of placeholders for
functions in the weak formulation, which have to distinguish
between trial and test functions.

1 template <long num , typename diff_tag >
2 struct basisfun ;

If the template parameter num is one, the class is a place-
holder for a test function, otherwise it is a placeholder for

a trial function. The template parameter diff_tag allows to
specify derivatives of function for which basisfun is a place-
holder. The differentiation tag diff_tag can also be nested:

1 // placeholder for a test function v
2 basisfun <1>
3 basisfun <1, diff <0> > // for dv/dx
4 basisfun <1, diff <1> > // for dv/dy
5

6 // placeholder for d^2 v/dx^2
7 basisfun <1, diff <0,
8 diff <0> >
9 >

The latter allows for example to deal with PDEs of fourth
order.

A key ingredient in weak formulations are integrations
over the full domain, the full boundary or parts of the bound-
ary. Our compile time representation of integrals in the weak
formulation is driven by two tag classes [2] that indicate the
desired integration domain:

1 struct Omega {};
2

3 template <long id >
4 struct Gamma {};

The first tag refers to integration over the whole segment
and the latter to integration over (parts of) the boundary
of the segment. The free template parameter id allows to
distinguish between several (not necessarily disjoint) subre-
gions of the boundary, where for example Neumann fluxes
are prescribed.

The meta class representing integrals takes three template
arguments: The domain of integration, the integrand and
the type of integration (symbolical or numerical):

1 template <typename IntDomain ,
2 typename Integrand ,
3 typename IntTag >
4 struct IntegrationType;

IntDomain is one of the two tag classes Omega and Gamma,
Integrand is an expression that encodes the integrand, typ-
ically of type Expression, and IntTag is used to select the
desired integration method.

After suitable overloads of arithmetic operators acting on
basisfun, we are ready to specify weak formulations in mne-
monic form directly in code. Let us again consider the weak
form given in (2). Transferred to code, it reads in two spatial
dimensions

1 basisfun <1> v;
2 basisfun <1, diff <0> > v_x ;
3 basisfun <1, diff <1> > v_y ;
4 basisfun <2, diff <0> > u_x ;
5 basisfun <2, diff <1> > u_y ;
6

7 //the weak formulation:
8 integral <Omega >(u_x *v_x + u_y*v_y)
9 = integral <Omega >(v);

Since the gradient in the weak formulation has to be ad-
justed whenever the spatial dimension of the underlying sim-
ulation domain changes, a convenience class gradient was in-
troduced, which represents the mathematical object of a gra-
dient in dependence of the spatial dimension. In principle,
gradient can be generalized to act on arbitrary arguments
and not just on basis functions. Summing up, the full as-
sembly instruction for the weak formulation in (2) on a mesh

−

x x x42

23

× ×

+

Figure 1: Compile time expression tree for the poly-
nomial x2 + 42x − 23.

object segment for a matrix matrix and a load vector rhs can
now be written in a single statement in the mnemonic form

1 basisfun <1> v;
2 gradient <1, dim > grad_v ;
3 gradient <2, dim > grad_u ;
4

5 assemble <FEMConfig >(segment , matrix , rhs ,
6 integral <Omega >(grad_u * grad_v) =
7 integral <Omega >(v)
8);

The template parameter FEMConfig is a container of type def-
initions and specifies all FEM related attributes such as the
spaces of trial and test functions:

1 struct FEMConfig
2 {
3 typedef ScalarTag ResultDimension;
4 typedef QuadraticBasisfunctionTag
5 TestSpace ;
6 typedef QuadraticBasisfunctionTag
7 TrialSpace ;
8

9 // further type definitions here
10 };

In this way, the specification of details of a particular fi-
nite element scheme is separated from the core of linear or
linearized finite element iteration schemes, which is to loop
over all functions from the test and trial spaces and to gen-
erate the system of linear equations from evaluations of the
weak formulation at each such function pair. The benefit of
this decoupling is that the only necessary change in the code
when switching from quadratic to, say, cubic test and trial
functions is to modify the two type definitions in FEMConfig,
all other code remains unchanged.

Another advantage of separate configuration classes such
as FEMConfig is that one could even switch between differ-
ent families of discretization schemes. For example, a finite
volume discretization could be indicated in another configua-
tion class, e.g. FVMConfig. The end-user has to change only
one line of code then, while totally different code is generated
by the compiler.

The configuration class FEMConfig does not contain any
information about the spatial dimension and other mesh-
related parameters, thus the configuration is effectively inde-
pendent of the underlying spatial dimension and fully decou-
pled from any mesh handling. By a highly flexible and clean
interface to any mesh-related manipulations we have even
managed to use the same code base for arbitrary spatial di-
mensions, but the discussion of such a domain management
is beyond the scope of this paper.

3. POLYNOMIALS AT COMPILE TIME
With the specification of the weak formulation in the pre-

vious section, we now proceed with the discussion of test
and trial spaces. Typically, these spaces consist of piecewise
polynomials defined on a reference element and transformed
to the physical elements in space. Therefore, we have im-
plemented compile time representations of polynomials by
reusing the Expression class defined in the previous section.
A placeholder class var for variables like x or y was intro-
duced, taking one integer parameter specifying the index
of the unknown the placeholder represents. With suitable
overloads of arithmetic and evaluation operators, polynomi-
als can finally be defined and evaluated as

1 double result ;
2 var <0> x;
3

4 //the polynomial x^2 + 42 x - 23
5 // evaluated at 0.5:
6 result = (x * x + 42 * x - 23) (0.5) ;
7

8 var <1> y;
9

10 //the polynomial x^2 - xy + y
11 // evaluated at (4.2 , 1.3):
12 result = (x * x - x * y + y)(4.2, 1.3);

If polynomials are to be evaluated at real-valued arguments,
the above code is the best one can get: The polynomials
are encoded via template classes at compile time, while the
evaluation is carried out at run time. This restriction to
evaluation at run time is due to the fact that the present
C++ standard does not allow floating point template param-
eters [8]. However, if the evaluation arguments are known
to be integers (and also known at compile time), polynomi-
als can directly be evaluated at compile time using template
metaprogramming:

1 template <long arg , typename P>
2 double evaluate (P const & polynomial)
3 {
4 return typename EVAL_POLYNOMIAL <P, arg >::

ResultType ()();
5 }
6

7 void main()
8 {
9 double result ;

10 var <0> x;
11

12 // the polynomial x^2 + 42 x - 23
13 // evaluated at 1:
14 result = evaluate <1>(x*x + 42* x - 23);
15 }

In contrast to the first code snippet, the expression tree of
the polynomial is evaluated by the compiler in the meta-
function EVAL_POLYNOMIAL. All occurrences of the tag class
var<0> represented by x in the compile time expression tree
are replaced with a wrapper for the scalar value 1, then the
resulting expression tree is simplified by removing trivial op-
erations, performing integer operations and the like. In the
end, the return statement in the function evaluate is opti-
mized by the compiler to return 20.0;.

In principle it is also possible to allow rational arguments,
but due the limited range of integers one is soon confronted
with overflows. For example, evaluation of the polynomial
x4 at the fractional 121/1000 leads to a denominator 1012

and consequently an overflow. An alternative is to emulate
floating point arithmetic at compile time, but the compiler
performance was already reported to be atrocious due to the
heavy manipulation work [9]. However, direct manipulation
of the syntax trees such as replacing all occurrences of y

with z is rather cheap, which is the key ingredient for the
remainder of this section.

3.1 Symbolic Differentiation
For the assembly of the system matrix of our model prob-

lem (3), derivatives of basis functions (polynomials) are re-
quired. In earlier days, these derivatives were computed on
the reference element by hand and the result was spread over
relevant code lines. Thanks to template metaprogramming
and the expression trees introduced in the previous section,
the compiler can now compute the required derivatives. All
that is left then is to specify the test and trial functions on
the reference element.

The differentiation of polynomials is in fact very similar
to evaluation. Instead of replacing the placeholder for the
unknown with a scalar, we replace the unknown with its
derivative, taking the basic rules of differentiation into ac-
count:

(f + g)′ = f ′ + g′ ,

(f − g)′ = f ′ − g′ ,

(fg)′ = f ′g + fg′ ,

(f/g)′ = (f ′g − fg′)/g2 ,

∂xi/∂xj = δij

as well as the fact that derivatives of scalars vanish. Thanks
to the functional paradigm of template metaprogramming,
the implementation of the metafunction for differentiation is
a direct, recursive application of these basic rules. Since the
result of the differentiation operation is again an expression
tree, we can directly apply the evaluation facilities shown
above:

1 double result ;
2 var <0> x;
3

4 // derivative of x^2 + 42 x - 23
5 // evaluated at 1 during compile time:
6 result = evaluate <1>(differentiate <0>(x*x +

42* x - 23));
7

8 var <1> y;
9

10 // derivative w.r.t. y of x^2 - xy + y
11 // evaluated at (4.2 , 1.3) during run time:
12 result = differentiate <1>(x * x - x * y + y)

(4.2, 1.3);

The template argument of differentiate denotes the vari-
able as defined by var. In the above snippet, 0 corresponds to
a differentiation with respect to x, while 1 indicates differen-
tiation with respect to y. The implementation of the function
differentiate is similar to that of evaluate: It is a conve-
nience wrapper for a call to the metafunction DIFFERENTIATE.

The application of the basic rules of differentiation at com-
pile time may introduce several trivial operations such as
multiplications by zero or unity into the compile time ex-
pression tree. For compile time evaluations, this is not an
issue, but run time evaluations suffer from reduced perfor-
mance. Consequently, every compile time manipulation is

followed by an optimization step, eliminating trivial opera-
tions.

3.2 Symbolic Integration
Similar to evaluation and differentiation, the antideriva-

tive of polynomials can also be obtained from compile time
manipulations of the underlying expression tree. For the
case that the integration bounds are integers, it is also pos-
sible to evaluate the antiderivatives at the bounds, hence we
are able to compute definite integrals with integer bounds at
compile time. Such integer bounds are typically the case for
FEM, where reference elements are usually chosen to have
corners at points with integer coordinates. For example, the
integral

Z

1

0

x2 + 42x− 23 dx (4)

can be evaluated at compile time by

1 double result ;
2 var <0> x;
3

4 result = integrate <0,1>(x*x + 42*x - 23);

The function integrate is a convenience wrapper for the
metafunction INTEGRATE_POLYNOMIAL and implemented simi-
larly to the function evaluate defined previously. Moreover,
also nested integration even in case that integral bounds de-
pend on other integration variables have been implemented,
which is needed for FEM in higher dimensions. Let us in the
following consider the integral

Z

1

0

Z

1−x

0

x(1 − x− y)2 dy dx , (5)

which naturally turns up in higher-order FEM in two spatial
dimensions if the reference element is chosen at points (0, 0),
(1, 0) and (0, 1).

Our first approach was to carry out the full iterated inte-
gration. Each integration consists of the following steps:

• Expand the integrand until it is given as a sum of prod-
ucts of monomials.

• Integrate each summand separately.

• Determine the power of the integration variable in each
summand.

• Replace the integration variable by the antiderivative.

• Subtract the term resulting from substituted upper
bounds from the term resulting from substituted lower
bounds.

Each step was implemented in a separate metafunction. The
final iterated integration routine adds these separate meta-
functions together and provides the desired functionality.
However, one has to expect that the number of summands
in the integrand explodes as the number of integrations in-
creases, especially in the case that integral bounds depend
on other integration variables.

To minimize compiler load for the integration over an n-
simplex Sn with vertices located at (0, 0, . . . , 0), (1, 0, . . . , 0),
. . ., (0, . . . , 0, 1), as it is needed for FEM using triangular
(n = 2) or tetrahedral (n = 3) elements, we have first derived

the following formula:

Z

Sn

“

n−1
Y

i=0

ξαi
i

”“

1−
n−1
X

i=0

ξi

”αn

dξ

=
α0! α1! · · ·αn!

(α0 + α1 + . . .+ αn + n)!
.

(6)

This formula allows to avoid any costly iterated integrations,
therefore it is sufficient to bring the integrand into the canon-
ical form

X

k

n−1
Y

i=0

ξ
αi,k

i

!

1 −

n−1
X

i=0

ξi

!αn,k

(7)

and integrate each summand separately. However, one has
to bear in mind that the costly iterated integration is avoided
at the cost of fixing the reference element.

Similar to differentiation, an optimization of the trans-
formed expression tree is carried out as a final step. This
results in a single rational number for each integral over the
reference element and is in terms of efficiency comparable to
hard-coding that particular value.

4. COMPUTATION OF ELEMENT MATRI-
CES AT COMPILE TIME

Since the mesh is unknown at compile time, evaluations
of the weak form (2) have to be carried out over each cell of
the mesh at run time. The standard procedure is to evaluate
the transformed weak formulation on a reference element
and to transform the result according to the location and
orientation of the respective element. This procedure is well
described in the literature and makes use of so-called local
element matrices [13]. The local element matrix A(T) for a
cell T is typically a linear combination of matrices Ak(Tref)
precomputed on a reference element Tref , thus

Ae(T) =

K
X

k=0

αk(T)Ak(Tref) , (8)

where K and the dimensions and entries of Ak(Tref) depend
on the spatial dimension, the underlying (system of) PDEs
and the chosen set of basis functions. While many FEM
implementations use hard-coded element matrices, we use
the fact that both the weak formulation and the test and
trial functions are available at compile time in order to com-
pute these local element matrices during the compilation. At
present a compile time integration is supported for simplex
cells only, because in that case the Jacobian of the trans-
formation is a scalar and can be pulled out of the resulting
integrals.

The transformation of integrals in the weak formulations
such as (2) requires the transformation of derivatives accord-
ing to the chain rule. Thus, this transformation also needs
to be applied to the template expression tree as illustrated
in Fig. 2 for the case of a product of two derivatives in two
dimensions. The class dt_dx<i,j> is used to represent the
entries of the Jacobian matrix of the mapping. Since such a
transformation is independent from the set of trial and test
functions, it has to be carried out only once during com-
pilation, keeping the workload for the compiler low. After
expansion of the products and rearrangement, the weak for-
mulation is recast into a form that directly leads to local
element matrices as in (8). In a compile time loop the test

and trial functions defined on the reference element are then
substituted in pairs into this recast weak formulation and the
resulting integrals are evaluated symbolically as described in
section 3.2. This evaluation has to be carried out for each
pair of test and trial functions separately, thus a compile
time integration cannot be applied to large sets of test and
trial functions without excessive compilation times.

To circumvent the restriction to small sets of test and trial
functions for symbolic integration at compile time, our im-
plementation also supports numerical integration. A switch
from symbolic to numeric integration is available within the
code for the weak formulation:

1 // symbolic integration
2 integral <Omega >(grad_u * grad_v ,
3 AnalyticIntegrationTag ())
4

5 // numerical integration , first order
6 integral <Omega >(grad_u * grad_v ,
7 LinearIntegrationTag ())
8

9 // default: numerical integration , seventh
order

10 integral <Omega >(grad_u * grad_v)

This allows to use several integration rules during the assem-
bly: For integrands which are known to be very smooth, a
low order quadrature rule can be assigned, while high order
quadrature rules can be applied to less regular integrands.

It has to be emphasized that symbolic integration can only
be applied in cases where coefficients in the weak formulation
do not show a spatial dependence. For example, the weak
form

Z

Ω

|x|∇u∇v dx =

Z

Ω

|x|v dx ∀v ∈ V (9)

fails for symbolic integration at compile time due to |x| in
the integrands. Nevertheless, in such a case one has to rely
on numerical integration, unless the space dependent part
is first projected or interpolated onto polynomials on the
reference element.

Hybrid approaches, where integrands without explicit spa-
tial dependence are integrated at compile time and those
with spatial dependence are integrated at run time, are also
possible. However, they have larger compilation times due to
the compile time integration, but hardly improve execution
times because most time needs to be spent on the numerical
integration anyway.

5. COMPILATION TIMES
We have compared compilation for the assembly of the

Poisson equation with weak formulation as in (2) for different
polynomial degrees of the trial and test spaces. The bench-
marks were carried out using GCC 4.3.2 with optimization
flag -O3 on a machine with a Core 2 Quad 9550 CPU.

Compilation times for full iterated integration, i.e. inte-
grating one variable after another for integrals as in (5),
are shown in Tab. 1. In one dimension the numbers stay
within an acceptable amount of two minutes. No iterated
integrals have to be computed and the number of test and
trial functions increases only linearly with the polynomial
order. Nevertheless, more than one gigabyte of memory is
required for test and trial functions of order five.

In two dimensions, full iterated integration works up to
cubic polynomials, but fails to yield reasonable compilation
times and memory requirements for polynomial orders larger

basisfun<1, diff<0> > basisfun<2, diff<0> >

×

(a) Initial expression tree.

basisfun<1, diff<0> >

basisfun<1, diff<1> > basisfun<2, diff<0> > basisfun<2, diff<1> >

dt_dx<0,0>

dt_dx<0,0>dt_dx<1,0> dt_dx<1,0>

×

× ×××

++

(b) Expression tree after transformation.

Figure 2: Transformation of the expression tree representing ∂u/∂x0 × ∂v/∂x0 to a two-dimensional reference
element.

1D 2D 3D

Linear 5s, 321MB 6s, 360MB 11s, 434MB

Quadratic 6s, 341MB 12s, 439MB 126s, 988MB

Cubic 7s, 363MB 384s, 1769MB -

Quartic 15s, 442MB - -

Quintic 86s, 1112MB - -

Table 1: Compilation times and compiler memory
consumption for several polynomial degrees of the
test and trial functions with iterated symbolic in-
tegration at compile time in different dimensions.
Dashes indicate that the compilation was aborted
after ten minutes.

than three. The reason for the breakdown is that the number
of test and trial functions increases quadratically with the
polynomial order and that the integrand gets considerably
more complicated due to the polynomials terms.

In three dimensions, triple integrals have to be evaluated
on the reference tetrahedron. This increased effort for the
compiler leads to reasonable compilation times in the case of
linear and quadratic test and trial functions only. Thus, full
iterated symbolic integration of element matrices at compile
time does not lead to reasonably short compilation times for
polynomial order larger than two.

As can be seen in Tab. 2, symbolic integration at com-
pile time using the derived formula (6) leads to reasonable
compilation times in one and two dimensions for all test
cases. In three dimensions one cannot go beyond cubic basis
polynomials for the trial and test spaces without excessive
compilation times. The reason is that there are already 20
different cubic test (and trial) functions in three dimensions,
so the compiler has to compute 400 entries for each local
element matrix. In the case of a polynomial basis of de-
gree four, 35 basis functions require to compute 1225 entries
in each local element matrix, which is for current compilers
on current desktop computers too much to handle in a rea-
sonable amount of time. A rough extrapolation estimates

1D 2D 3D

Linear 5s, 321MB 5s, 329MB 7s, 371MB

Quadratic 5s, 324MB 8s, 375MB 36s, 698MB

Cubic 6s, 326MB 12s, 457MB 424s, 1896MB

Quartic 7s, 328MB 35s, 760MB -

Quintic 7s, 330MB 148s, 1230MB -

Table 2: Compilation times and compiler memory
consumption for several polynomial degrees of the
test and trial functions with formula-assisted sym-
bolic integration at compile time in different dimen-
sions.

a compilation time of about 5000 seconds using eight giga-
bytes of memory for quartic polynomials in three dimensions.
Additionally, for more complicated weak formulations, com-
pilation times are further increased due to a larger number
of terms in the transformed weak formulation. Nevertheless,
due to the often complicated computational domains in real-
world applications it is in many cases sufficient to be able to
cope with basis polynomials up to third order.

Apart from compilation times there is another limiting
factor for symbolic integration: The denominator in the term
(6) produces an integer overflow at 13!, so in three space
dimensions with n = 3, the criterion

α0 + α1 + α2 + α3 < 10 (10)

has to be fulfilled. Since the sum of the exponents is roughly
twice the polynomial degree of the test and trial functions,
one cannot go far beyond degree four even if common factors
in the fractional terms are cancelled.

Using numerical integration at run time, but no integra-
tion at compile time, the compiler load is much smaller and
polynomial orders much larger than three in three dimen-
sions can be handled within less then a minute of compilation
times. The drawback of unnecessary numerical integration
at run time can be circumvented by a suitable expression
engine at run time, as it is implemented e.g. in Sundance.

SI NI, 1 Point Exact NI

Linear 0.026 0.025 0.025

Quadratic 0.094 0.105 0.132

Cubic 0.36 0.65 2.17

Quartic 0.96 7.50 88.58

Quintic 1.7 35.9 462

Table 3: Comparison of assembly times (in seconds)
for symbolic integration (SI) and numerical integra-
tion (NI) for different degrees of basis functions in
two dimensions on a triangular mesh with 66049 ver-
tices.

SI NI, 1 Point Exact NI

Linear 0.0064 0.0069 0.0069

Quadratic 0.093 0.120 0.229

Cubic 0.47 0.65 2.82

Table 4: Comparison of assembly times (in seconds)
for symbolic integration (SI) and numerical integra-
tion (NI) for different degrees of basis functions in
three dimensions on a tetrahedral mesh with 4913
vertices.

6. EXECUTION TIMES
We have compared execution times for the assembly of the

Poisson equation with weak formulation as in (2) for different
polynomial degrees of the trial and test spaces. In all our
test cases the test space was chosen equal to the trial space
and simplex cells were used. The benchmarks were again
carried out using GCC 4.3.2 with optimization flag -O3 on a
machine with a Core 2 Quad 9550 CPU.

Matrix access times due to sparse matrix lookup times
have been eliminated by redirecting all write operations to
a fixed memory position, thus the measured times reflect
the time needed to compute the matrix entries, the element
transformation coefficients and the lookup times for the in-
dices of the global system matrix. We have compared the
symbolic integration with a numerical integration rule using
one quadrature point and a quadrature rule with the min-
imum number of points needed to compute the respective
integrals exactly. For polynomials of degree p, we have thus
chosen a quadrature rule exact for polynomials up to degree
2p−2, since according to (2) and (3) each integrand consists
of a product of two derivatives of polynomials. The quadra-
ture rule with only one integration point is used to compare
the costs of a single evaluation of the integrand relative to
other costs.

For a two-dimensional simulation domain with triangular
elements, the results in Tab. 3 show that symbolic integra-
tion is very attractive for higher order methods. For linear
basis functions, there is no notable difference between nu-
merical and symbolic integration. For higher order polyno-
mials we observe that even if only a single quadrature point
is used, the increased effort needed to evaluate higher order
polynomials leads to a severe difference in execution times
of up to a factor of 20 for a quintic basis.

Similar results are obtained in three dimensions, c.f. Tab. 4.
A noteable difference to the two-dimensional case is that

Linear Quadratic Cubic

Metaprog. Approach 0.052 0.74 3.78

deal.II 6.1.0 [4] 0.056 1.77 31.20

DOLPHIN 0.9.0 [5] 0.18 1.31 7.16

Getfem++ 3.1 [7] 2.73 8.21 28.37

Sundance 2.3 [10] 0.20 0.53 -

Hand-Tuned Ref. 0.022 0.33 -

Table 5: Execution times (in seconds) for the assem-
bly of the system matrix for the Poisson problem.
Linear and quadratic test and trial functions on a
tetrahedral mesh with 35937 vertices were compared.
Matrix access times are not included.

symbolic integration leads to a slightly smaller execution
times already in the case of linear polynomials. For higher
order polynomials, the number of quadrature points increases
as well as the effort needed for each evaluation, leading to
much larger execution times compared to those obtained
with symbolic integration. In the cubic case, the difference
is already close to one order of magnitude.

Additionally, we have compared assembly times of our
symbolic integration approach with existing FEM software
in the case of linear, quadratic and cubic basis polynomi-
als in three dimensions. Again, we have eliminated matrix
access times in order to emphasize assembly times. Due
to the strongly varying software architectures among the
packages, the measured execution times have to be taken
with a grain of salt, since other components like for exam-
ple mesh handling influence the result. The obtained results
were compared with a hand-tuned reference implementation
that should reflect the achievable performance. The selected
packages differ significantly in their architecture: deal.ii

requires the user to write large parts of the discretization
herself. DOLPHIN relies on scripts from which C++ code is
generated and therefore reflects the family of code genera-
tion approaches. Getfem++ and Sundance allow to specify
the weak formulation directly in code and parse it at run
time.

As can be seen in Tab. 5, our approach leads to good run
time efficiency only beaten by Sundance in the quadratic
case. An interesting observation is the large spread between
the execution times, which is more than one order of mag-
nitude compared to the hand-tuned reference implementa-
tion. However, especially for simple linear PDEs the assem-
bly times make up only a small amount of the total execution
time, which also includes pre- and postprocessing steps and
the solution of the resulting linear system. Therefore, differ-
ences in execution times for the full solution process show
considerably smaller variation among the test candidates.

7. CONCLUSION
We have shown that the application of template metapro-

gramming together with its functional paradigm in C++
is very well suited for the representation of mathematical
objects such as polynomials and operations such as inte-
gration or differentiation. The application to FEM allows
an abstraction as high as the mathematical formulation so
that the weak formulation can directly be transferred from
paper to code. Unlike traditional object-oriented program-

ming, template metaprogramming avoids unnecessary dis-
patches at run time, leading to excellent run time efficiency
and short assembly times. Moreover, having the full weak
formulation of the underlying mathematical problem avail-
able during compile time allows many other optimizations
and manipulations at compile time that could have been
achieved earlier only by separate, error-prone precompiler.
The drawback of our template metaprogramming approach
is the longer and memory demanding compilation process,
which is still within reasonable limits up to cubic polynomi-
als in three dimensions.

8. REFERENCES
[1] D. Abrahams and A. Gurtovoy. C++ Template

Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond (C++ in Depth Series).
Addison-Wesley Professional, 2004.

[2] A. Alexandrescu. Modern C++ Design: Generic
Programming and Design Patterns Applied.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[3] O. Axelsson and V. A. Barker. Finite Element
Solution of Boundary Value Problems: Theory and
Computation. Academic Press, Orlando, Fla., 1984.

[4] deal.II . Internet: http://www.dealii.org/.

[5] FEniCS project . Internet: http://www.fenics.org/.

[6] freeFEM++ . Internet: http://www.freefem.org/.

[7] Getfem++. Internet: http://home.gna.org/getfem/.

[8] ISO/IEC JTC1 SC22 WG21. The C++ Standard:
ISO/IEC 14882:1998, 1998.

[9] E. Rosten. Floating Point Arithmetic in C++
Templates . Internet: http://mi.eng.cam.ac.uk/
~er258/code/fp_template.html.

[10] Sundance 2.3. Internet:
http://www.math.ttu.edu/~klong/Sundance/html/.

[11] D. Vandevoorde and N. M. Josuttis. C++ Templates.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[12] T. Veldhuizen. Expression templates. C++ Report,
7(5):26–31, June 1995.

[13] O. C. Zienkiewicz and R. L. Taylor. The Finite
Element Method - Volume 1: The Basis.
Butterworth-Heinemann, 5th edition, 2000.

