0906.4492v1 [cs.LO] 24 Jun 2009

arXiv

Efficient Generation of Craig Interpolants
in Satisfiability Modulo Theories

ALESSANDRO CIMATTI

FBK-IRST

ALBERTO GRIGGIO and ROBERTO SEBASTIANI
DISI, Universita di Trento

The problem of computing Craig Interpolants has recently received a lot of interest. In this paper,
we address the problem of efficient generation of interpolants for some important fragments of
first order logic, which are amenable for effective decision procedures, called Satisfiability Modulo
Theory solvers.

We make the following contributions. First, we provide interpolation procedures for several
basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over
rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach
to interpolate combinations of theories, that applies to the Delayed Theory Combination approach.

Efficiency is ensured by the fact that the proposed interpolation algorithms extend state of the
art algorithms for Satisfiability Modulo Theories. Our experimental evaluation shows that the
MathSAT SMT solver can produce interpolants with minor overhead in search, and much more
efficiently than other competitor solvers.

Categories and Subject Descriptors: F.4Mkfhematical L ogic and Formal L anguages]: Mathematical Logic—
Mechanical theorem proving

General Terms: Theory, Algorithms
Additional Key Words and Phrases: Craig Interpolation, Decision Procedures, SMT

Authors addresses: Alessandro Cimatttifiatti@fbk.eu), FBK-IRST, Via Sommarive 18,
38050 Povo, Trento, ltaly. Alberto Griggiogfiggio@disi.unitn.it) and Roberto Sebastiani
(rseba@disi.unitn.it), DISI, Universita di Trento, Via Sommarive 14, 38050 PoVeento, ltaly.
Permission to make digital/hard copy of all or part of thistenal without fee for personal or classroom use
provided that the copies are not made or distributed forfpwoiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead otice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryversto redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr20YY, Pages 1-%?.

http://arxiv.org/abs/0906.4492v1

Cimatti, Griggio and Sebastiani

Note for reviewers. The table of contents is added only for the sake of revievserwe-
nience, and will be removed in the final version if the papecisepted.

Contents

1

2

Introduction

Background and state-of-the-art

2.1 Satisfiability Modulo Theory—SMT

2.2 AlgorithmsforSMT

2.3 Interpolationin SMT
2.3.1 Interpolants for conjunctions 6fA(Q)-literals

From SMT(LA(Q)) solving to SMT(L.A(Q)) interpolation

3.1 Interpolation with non-strictinequalities
3.1.1 The original Dutertre-de Moura algorithm
3.1.2 Ourproof-producingvariant

3.2 Interpolation with strict inequalities and disequefit

3.3 Obtaining strongerinterpolants

From SMT(DL) solvingto SMT(DL) interpolation

From SMT (U7 VPI) solvingto SMT (U T VPI) interpolation

5.1 Graph-based interpolation a7 VPZ on the Rationals
5.2 Graph-based interpolation a7 VPZ on the Integers

Computing interpolantsfor combined theoriesviaDTC

6.1 Background
6.1.1 Resolution proofs with NO vs. resolution proofs with®. . . .
6.1.2 Interpolation with Nelson-Oppen

6.2 From DTC solving to DTC Interpolation
6.2.1 EliminatingA B-mixed equalities by exploiting ie-locality
6.2.2 Generatinge -local proofsinDTC

6.3 DISCUSSION

6.4 Generating multiple interpolants

Experimental evaluation

7.1 Description of the benchmarksets
7.2 Comparison with the state-of-the-art tools available

Conclusions and Future Work

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

10
11
11

... 21

14
17

18

20
21
23

28
28
28

32
32
36
39
40

42
42
42

45

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 3

1. INTRODUCTION

One of the most successful applications of computatiorgatls Formal Verification, It
that aims at proving (or disproving) certain propertiesha behaviours of a reactive sys-
tem. In recent years, also thanks to the impressive impremsiof SAT solvers, a wide
variety of verification methods based on SAT solving havenleposed. These methods
proved effective for discrete state systems, most notadtgvkiare components. The ap-
proach is made practical by the fact that SAT solvers, intamtto proving efficiently the
satisfiability of huge propositional formulas, provide el functionalities, such as model
generation, proof production, extraction of unsatisfianees, and generation of Craig in-
terpolants (interpolation). In particular, since the seahipaper of McMillan [McMillan
2003], interpolation has been recognized to be a substémtidor verification in the case
of Boolean systems [Cabodi et al. 2006; Li and Somenzi 20QGpMes-Silva 2007].

One of the main limitations of SAT-based approaches, iseir txpressive power. Many
systems of practical interest, containing integer or refled variables, such as software,
and timed and hybrid systems, can not be represented glikeittiin propositional logic.
This has prompted research in the analysis of fragmentssofdider logic: given a for-
mula referring to variables, the problem is to find a satigfyassignment in a theory of
interest (e.g. linear arithmetic). This field, referred to%atisfiability Modulo Theory
(SMT), has resulted in substantial theoretical results, ianvery effective decision pro-
cedures, known as SMT solvers. State of the art SMT solvarplament the Boolean
SAT algorithms with specialized decision procedures farjenctions of literals in some
given theory theory solvers In addition to checking satisfiability, SMT solvers aréestio
generate models, produce proofs, and extract unsatisttabds. This has allowed, to lift
many SAT-based verification algorithms to SMT-based veiiion, as well as to to open
up the way to abstraction-refinement with SMT.

Quite surprisingly, however, the research on interpofafr SMT has not kept the
pace of SMT solving. In fact, the current approaches to pcodpinterpolants for frag-
ments of first order theories [McMillan 2005; Yorsh and Mustii 2005; Rybalchenko
and Sofronie-Stokkermans 2007; Kroening and Weissenb&@¥; Kapur et al. 2006;
Jain et al. 2008] all suffer from a number of problems. Sonte@approaches are severely
limited in terms of their expressiveness. For instancefdbedescribed in [Rybalchenko
and Sofronie-Stokkermans 2007] can only deal with conjonstof literals, whilst the
recent work described in [Kroening and Weissenbacher 268i]not deal with many
useful theories. Furthermore, very few tools are avail§Blgbalchenko and Sofronie-
Stokkermans 2007; McMillan 2005], and these tools do nansieescale particularly well.
More than to naive implementation, this appears to be dulketainderlying algorithms,
that substantially deviate from or ignore choices commastae-of-the-art SMT. For in-
stance, in the domain of linear arithmetic over the ratisrf&l4(Q)), strict inequalities
are encoded in [McMillan 2005] as the conjunction of a weaqunality and a disequality;
although sound, this choice destroys the structure of timstcaints, forces reasoning in
the combination of theorieS§ A(Q) U EUF, requires additional splitting, and ultimately
results in a larger search space. Similarly, the fragmefiérence Logic OL(Q)) is
dealt with by means of a general-purpose algorithm for fUll(Q), rather than one of
the well-known and much faster specialized algorithms. R@nemore fundamental ex-
ample is the fact that state-of-the-art SMT reasoners udeated algorithms for Linear
Arithmetic [Dutertre and de Moura 2006].

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

4 : Cimatti, Griggio and Sebastiani

In this paper, we tackle the problem of generating intenptsléor SMT problems, fully
leveraging the algorithms used in a state of the art SMT sollreparticular, our main
contributions are:

(1) An interpolation algorithm forZ.A(Q) that exploits a variant of the algorithm pre-
sented in [Dutertre and de Moura 2006], and that is capableaofiling the full
LA(Q)- including strict inequalities and disequalities — withthe need of theory
combination;

(2) An algorithm for computing interpolants 2L — both over the rationals and over the
integers — that builds on top of the efficient graph-basedsartalgorithms given
in [Cotton and Maler 2006; Nieuwenhuis and Oliveras 20064t tensures that the
generated interpolants are still in theC fragment of linear arithmetic, and that allows
for computing stronger interpolants than the existing atbms for the full linear
arithmetic;

(3) An algorithm for computing interpolants#7 VPZ— both over the rationals and over
the integers — that builds on an encodingof. The algorithm ensures that the gener-
ated interpolants are still in tié7VPZ fragment of linear arithmetic, and that allows
for computing stronger interpolants than the existing atms for the full linear
arithmetic;

(4) Analgorithm for computing interpolants in a combinatif U 75 of theories based on
the Delayed Theory Combination (DTC) method [Bozzano e2@06; Bruttomesso
et al. 2008a] (as an alternative to the traditional Nels@p&h method), which does
not require ad-hoc interpolant combination methods, bplats the propositional
interpolation algorithm for performing the combinationtbé&ories;

(5) An efficient implementation of all the proposed techmigjuvithin the NATHSAT 4
SMT solver [Bruttomesso et al. 2008b], and an extensive riax@atal evaluation on
a wide range of benchmarks.

This comprehensive approach advances the state of the rbimain directions: on
one side, we show how to extend efficient SMT solving techesio SMT interpolation,
for a wide class of important theories, without paying a sat$al price in performance; on
the other side, we present an interpolating SMT solver thable to produce interpolants
for a much wider class of problems than its competitors, amdproblems that can be
dealt with by other tools, shows dramatic improvements ifiguenance, often by orders
of magnitude.

Content. The paper is structured as follows. 38 we present some background on in-
terpolation in SMT. In§3, §4 and§5 we show how to efficiently interpolateA(Q), DL
andUTVPZ respectively. Ins6 we discuss interpolation for combined theories. The
proposed techniques are experimentally evaluatéd.imn §8 we draw some conclusions,
and outline directions for future work. The discussion déted work is distributed in the
technical sections;8-§6).

Note to reviewers. Some of the material contained in this paper, in a less éeltédrm,
has been published in two conference papers [Cimatti e088;2009].

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 5

2. BACKGROUND AND STATE-OF-THE-ART
2.1 Satisfiability Modulo Theory — SMT

Our setting is standard first order logic. 0Aary function symbol is called eonstant A
termis a first-order term built out of function symbols and valésh We writet; = to
when the two terms, andt, are syntactically identical. Ify, ..., ¢, are terms ang is

a predicate symbol, thes(ty,. .., t,) is anatom A literal is either an atom or its nega-
tion. A formula¢ is built in the usual way out of the universal and existergigntifiers,
Boolean connectives, and atoms. We call a forngquantifier-freeif it does not contain
quantifiers, andyroundif it does not contain free variables. dauseis a disjunction of
literals. A formula is said to be igonjunctive normal fornfCNF) if it is a conjunction
of clauses. For every non-CNF-formula ¢, an equisatisfiable CNF formula can be
generated in polynomial time [Tseitin 1968].

We also assume the usual first-order notions of interpoetasiatisfiability, validity, log-
ical consequence, and theory, as given, e.g., in [Ende@@2]1 A first-order theory T,
is a set of first-order sentences. In this paper, we considigrtheories with equality.
A structure A is a model of a theory if A satisfies every sentence ih. A formula is
satisfiable in7 (or T -satisfiablé if it is satisfiable in a model of .

We call Satisfiability Modulo (the) Theor§, SMT(T), the problem of deciding the
satisfiability of quantifier-free formuldsvith respect to a background thedFy We denote
formulas witho, v, A, B, C, I, T -variables withz, y, z, Boolean variables with, ¢ and
numeric constants with, b, ¢, [, u. Given a theoryl", we write¢ =7 1 (or simply¢ =)
to denote that the formula is a logical consequence gfin the theory7. With ¢ < ¢
we denote that all uninterpreted (i) symbols of¢ appear iny. If C'is a clauseC | B
is the clause obtained by removing all the literals whosenatdo not occur in3, and
C'\ B that obtained by removing all the literals whose atoms daioocB. With a little
abuse of notation, we might sometimes denote conjunctiblitealsl; A ... A, as sets
{ly,...,l,} and vice versa. « {li,...,1,}, we might write—n to mean-l; V...V —l,.

A theory T is stably-infiniteiff every quantifier-free7 -satisfiable formula is satisfiable in
an infinite model of7". A theoryT is convexff, for every collectioniy, ..., lg, e1,...,en

of literals in7 s.t. ey, ..., e, are in the form(z = y), z, y being variables, we have that
{li, ... le} B Vi, e; ifand only if {I, ..., [} =7 e; for somel <i < n.

Given a decidable first-order theoyy, we call atheory solver for7", T-solver, any tool
able to decide the satisfiability il of sets/conjunctions of ground atomic formulas and
their negations —theory literalsor 7-literals — in the language of". If S = {I,,...,1,,}
is a set of literals i/, we call(7)-conflict setany subset) of S which is inconsistent in
T.? We call-n a7-lemma. (Notice thatn is a7 -valid clause.)

Definition 2.1 Resolution proaf Given a set of clauses & {C4,...,C,}andaclause

C, we call aresolution proofof the deductior\; C; =7 C' a DAG P such that:

(1) C isthe root ofP;
(2) the leaves oP are either elements &f or 7-lemmas;

1The general definition of SMT deals also with quantified folasu Nevertheless, in this paper we restrict our
interest to quantifier-free formulas.

2In the next sections, as we are in an ST context, we often omit specifying “in the thed#’ when speaking

of consistency, validity, etc.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

6 : Cimatti, Griggio and Sebastiani

SatValue Lazy_SMT_Solver (7 -formula ¢) {
¢’ = convert_to_cnf (¢)
P =T2P(¢")
while (DPLL (¢?,uP) == sat) {
(p,m) = T-solver(P2T (uP))
if (p == sat) thenreturn sat
P = ¢P NT2P(-m)
}

return unsat

H O oo Jo Ul b W

Fig. 1. A simplified schema for lazy SMT") procedures.

def def

(3) each non-leaf nod€’ has two premise§’,, andC,, suchthaC,, =pV ¢1,Cp, =
—pV ¢g, andC’ £ ¢1 V ¢o. The atonp is called thepivot of Cp, andCp,.

If C'is the empty clause (denoted witl), thenP is aresolution proof of T -)unsatisfiability
for A\, C;.

We consider the SM{TT") problem for some background thecfy

Definition 2.2 Craig Interpolant Given an ordered pair4, B) of formulas such that
A A B =7 L, aCraig interpolant(simply “interpolant” hereafter) is a formulBs.t.:
i) AFT 1,
(i) IANBET 1,
(i) I < Aandl = B.

2.2 Algorithms for SMT

A standard technique for solving the SMIT(problem is to integrate a DPLL-based SAT
solver and & -solver in a fazy’ manner. The idea underlying every lazy SIT) proce-
dure is that (a complete set of) the truth assignments fopithpositional abstraction of
are enumerated and checked for satisfiability inthe procedure either retursst if one
T-satisfiable truth assignment is found, or it retuinsat otherwise.

Figure 1 presents a simplified schema of a lazy $W)Iprocedure, called theff-line
schema The bijective functiori/ 2P (“Theory-to-Boolean”), calledoolean abstraction
maps Boolean atoms into themselves and non-Bodleatoms into fresh Boolean atoms
— so that two atom instances ifhare mapped into the same Boolean atom iff they are
syntactically identical — and extendsTeformulas and sets of -formulas in the obvious
way —i.e.,T2P(=¢1) = =T 2P(41), T2P(p1 >4 ¢ha) = T2P(¢1) 1 T2P () for each
Boolean connectives, T2P({¢;};) £ {T2P(¢:)}i. The functionP27 (“propositional-
to-theory”), calledrefinementis the inverse of 2. The propositional abstractiat? of
the input formulap is given as input to a SAT solver based on the DPLL algorithaMiB
etal. 1962; Zhang and Malik 2002], which either decidesftas unsatisfiable, and hence
¢ is T-unsatisfiable, or returns a satisfying assignmentin the latter caseP27 (u?) is
given as input tof -solver If P27 (u?) is foundT-consistent, them is 7T-consistent. If
not, 7-solverreturns the conflict sef which caused th@ -inconsistency ofP27 (u?);
the abstraction of thg-lemma-—n, 72P (-n), is then added as a clausedb. Then the
DPLL solver is restarted from scratch on the resulting fdamu

Practical implementations follow a more elaborated schexaléed theon-line schema
(see [Sebastiani 2007]). As befoeé,is given as input to a modified version of DPLL, and

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 7

when a satisfying assignment is found, the refinement of u? is fed to theT-solver,

if 1 is foundT-consistent, thew is 7-consistent; otherwise] -solverreturns the con-
flict setn which caused th& -inconsistency of27 (u?). Then the clausen? is added in
conjunction tap?, either temporarily or permanentty {learning), and the algorithm back-
tracks up to the highest point in the search where one of tlls in—? is unassigned
(T-backjumping, and therefore its value is (propositionally) implied b tothers in-,”.
Another important improvement sarly pruning (EP) before every literal selection, in-
termediate assignments are checkedfesatisfiability and, if not7-satisfiable, they are
pruned (since no refinement can’besatisfiable). Finallytheory propagatiortan be used
to reduce the search space by allowing Theolvers to explicitly return truth values for
unassigned literals, which can be unit-propagated by thlesadver. The interested reader
is pointed to, e.g., [Sebastiani 2007] for details and frrtieferences.

With a small modification of the embedded DPLL engine, a lalTolver can also
be used to generate a resolution proof of unsatisfiabilég ésg. [van Gelder 2007]).

2.3 Interpolation in SMT

The use of interpolation in formal verification has beenddtrced by McMillan in [McMil-
lan 2003] for purely-propositional formulas, and it was sedpuently extended to handle
SMT(EUFULA(Q)) formulas in [McMillan 2005]£U4 F being the theory of equality and
uninterpreted functions. The technique is based on eavbek by Pudlak [Pudlak 1997],
where two interpolant-generation algorithms are desdribae for computing interpolants
for propositional formulas from resolution proofs of unsgability, and one for generating
interpolants for conjunctions of (weak) linear inequaktin LA(Q). An interpolant for a
pair (4, B) of CNF formulas is constructed from a resolution proof ofatisfiability of
A A B, generated as outlined §2.1. The algorithm works by computing a formula for
each clause in the resolution refutation, such that the ditarh, associated to the empty
root clause is the computed interpolant. The algorithm @addscribed as follows:

Algorithm 1: Interpolant generation for SMT(7)

(1) Generate a resolution proof of unsatisfiabifityfor A A B.
(2) ForeveryT-lemma-n occurring inP, generate an interpolant,, for (n \ B,n | B).

def def

3) Foreveryinput claus€'in P, setlc =C | Bif C € A,andlo =T if C € B.
y Inp
(4) For every inner nodé€’ of P obtained by resolution fromt; £ p Vv ¢; andC, <
—pV b, setle = I, V I, if p does not occur iB, andI £ I, A I, otherwise.

(5) Outputl, as an interpolant fofA, B).

ExAamPLE 2.1. Consider the following two formulas i8.A(Q):

AZ(pV (0 <z —3z2+1) A0 <21 +22) A(—g V(0 < 1 + 22))

def

B=(-(0<a23—221-3)V(0<1—-223))A(-pVA(pV(0<a3—2x —3))

Figure 2(a) shows a resolution proof of unsatisfiability férA B, in which the clauses
from A have been underlined. The proof contains the followdot(Q)-lemma (displayed

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

8 : Cimatti, Griggio and Sebastiani

(0 <xq—3x2+1) V(0 < xq + x2)V
—(0 < x3—2x;1 —3) V(0 <1-2x3)

wogzg—zzl—:s)v(og1—21-:,) \ T
A (

0 <4z, +

(0 < 4x; +1)

=N\

(0 <@y —3xy+ 1) V(0 <2y +a9)V
~(0 <@y~ 22, -3) PV (0< w5 — 22 —3) y

(0 <day+1)

T

S0 <@ —3z2+1) V(0 <z +22) Vp

pV<0§z1—:’<2+1> / P\ /
pV
—pv \ T
/

—(0<a+32)Vp

(0 <z +22) Vg
-q
0<T1+T2)
\ P
0<a+ -(0< 1+T2) 1 (PVO<dz+1) A
€1 Iz / \ /
n (pV(0<da+1)) Ag

(@) (b)

Fig. 2. Resolution proof of unsatisfiability (a) and intelgot (b) for the pair A, B) of formulas of Example 2.1.
In the tree on the left7 -lemmas are displayed in boldface, and clauses frbare underlined.

in boldface):
ﬁ(OS,Tl —3$2+1)\/ﬁ(0§$€1 +$2)\/ﬁ(0§1‘3—21‘1 —3)\/ﬁ(0§ 1—21‘3).

Figure 2(b) shows, for each clau&k in the proof, the formulde, generated by Algorithm
1. For the LA(Q)-lemma, it is easy to see théd < 4x; + 1) is an interpolant for

(0<m =322+ 1) A(0<z14+x2),(0<mg—221 —3) A (0 <1-—2z3)) as required

by Step 2 of the algorithm. (We will show how to obtain thisrpblant in Example 2.2.)
Therefore] | = (p Vv (0 < 41 + 1)) A —q is an interpolant for(4, B).

Algorithm 1 can be applied also whehand B are not in CNF. In this case, it suffices to
pre-convert them into CNF by using disjoint sets of auxjliBoolean atoms in the usual
way [McMillan 2005].

Notice that Step 2. of the algorithm is the only part which elegs on the theory,
so that the problem of interpolant generation in SV} reduces to that of finding inter-
polants for7-lemmas. To this extent, in [McMillan 2005] McMillan giveseat of rules for
constructing interpolants fof -lemmas in the theory &t/ F, that of weak linear inequal-
ities (0 < t) in LA(Q), and their combination. Linear equalitié® = t) can be reduced
to conjunctiong0 < ¢) A (0 < —t) of inequalities. Thanks to the combination of theories,
also strict linear inequalitie® < ¢) can be handled i6U/F U LA(Q) by replacing them
with the conjunctior{0 < ¢) A (0 # t),2 but this solution can be very inefficient.

The combinatiorfU/F U LA(Q) can also be used to compute interpolants for other
theories, such as those of lists, arrays, sets and mulficapsir et al. 2006].

In [McMillan 2005], interpolants in the combined theaf§/F U LA(Q) are obtained

3The details are not given in [McMillan 2005]. One possibleyvad doing this is to rewrit(0 # t) as(y =
t) A (z=0) A (z # y), z andy being fresh variables.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 9

0=t 0<t 0<t¢
—— ComB—1 —="20¢,>0

LEQE
QQOSt 0 < city + cato

Fig. 3. LA(Q)-proof rules for a conjunctiolr of equalities and weak inequalities.

by means of ad-hoc combination rules. The work in [Yorsh anciwathi 2005], instead,
presents a method for generating interpolantsfiou 7, using the interpolant-generation
procedures off; and7; as black-boxes, using the Nelson-Oppen approach [Nelsdn an
Oppen 1979].

Also the method of [Rybalchenko and Sofronie-Stokkermd@@¥2allows to compute
interpolants infUUF U LA(Q). Its peculiarity is that it is not based on unsatisfiability
proofs. Instead, it generates interpolantgi(Q) by solving a system of constraints using
an off-the-shelf Linear Programming (LP) solver. The methfiows both weak and strict
inequalities. Extension to uninterpreted functions isiegdd by means of reduction to
LA(Q) using a hierarchical calculus [Sofronie-Stokkermans 2006e algorithm works
only with conjunctions of atoms, although in principle itutd be integrated in Algorithm
1 to generate interpolants f@r-lemmas inCA(Q). As an alternative, the authors show in
[Rybalchenko and Sofronie-Stokkermans 2007] how to geeénéerpolants for formulas
that are in Disjunctive Normal Form (DNF).

Another different approach is explored in [Kroening and 8enbacher 2007]. There,
the authors use theager SMT approach to encode the original SMT problem into an
equisatisfiable propositional problem, for which a propiosal proof of unsatisfiability
is generated. This proof is later “lifted” to the originakthry, and used to generate an
interpolant in a way similar to Algorithm 1. At the momentgetlpproach is however
limited to the theory of equality only (without uninterpeetfunctions).

All the above techniques construate interpolant for(A4, B). In general, however,
interpolants are not unique. In particular, some of thenmbeslpetter than others, depending
on the particular application domain. In [Jhala and McMil2005], it is shown how to
manipulate proofs in order to obtain stronger interpolahitgJhala and McMillan 2006;
2007], instead, a technique to restrict the language usé@terpolants is presented and
shown to be useful in preventing divergence of techniquesdan predicate abstraction.

One of the most important applications of interpolation orrRal Verification is ab-
straction refinement [Henzinger et al. 2004; McMillan 2Q06]such setting, every input

def

probleme has the formp = ¢1 A. .. A ¢,, and the interpolating solver is asked to compute

several interpolants,, . .., I,,_; corresponding to different partitions ¢finto A; andB;,
such that
Vi, AiZ 1A Aoy, and B; g1 A... A ¢ 1)
Moreover,I, ..., I, 1 should be related by the following:
LN i1 F Liya (2)

A sufficient condition for (2) to hold is that all thg’s are computed from the same proof
of unsatisfiabilityll for ¢ [Henzinger et al. 2004].

2.3.1 Interpolants for conjunctions af.A(Q)-literals. We recall the algorithm of [McMil-
lan 2005] for computing interpolants frof14(Q)-proofs of unsatisfiability, for conjunc-
tions of equalities and weak inequalitiesdmd(Q).

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

10 . Cimatti, Griggio and Sebastiani

An LA(Q)-proof rule R for a conjunctior” of equalities and weak inequalities is either
: P
an element of", or it has the formg, whereg is an equality or a weak inequality arfel

is a sequence of proof rules, called firemisef R. An LA(Q)-proof of unsatisfiability
for a conjunction of equalities and weak inequalifieis simply a rule in whickh =0 < ¢
and where: is a negative numerical constaht.

Similarly to [McMillan 2005], we use the proof rules of FiguB: LEQEQ for deriving
inequalities from equalities, anda®B for performing linear combinatiorss.

Given anLA(Q)-proof of unsatisfiability? for a conjunctiorl” of equalities and weak
inequalities partitioned intoA, B), an interpolanf can be computed simply by replacing
every atom) < ¢ occurring in B (resp0 = t) with 0 < 0 (resp.0 = 0) in each leaf sub-
rule of P, and propagating the results: the interpolant is then thglesiweak inequality
0 <t at the root ofP [McMillan 2005].

ExAMPLE 2.2. Consider the following sets @fA(Q) atoms:

AZ{0<z —322+1),(0 <21 +22)}
BE{(0< a3 — 211 —3),(0< 1 - 2x3)}.
An LA(Q)-proof of unsatisfiability? for A A B is the following:
1x(0<x1—3x2+1) 4%(0<z1+ x2) 2% (0<xzg—2x1—3) 1x%(0<1-—2x3)
1%(0<4x;+1) 1% (0 < —4x1 —b)
(0<—4)
By replacing inequalities ilB with (0 < 0), we obtain the prooP”:
1« (0<z1 —3z2+1) 4%(0<z1+z2) 2%(0<0) 1%x(0<0)
1% (0 <4z +1) 1% (0<0)
(0 <4z +1)

Thus, the interpolant obtained {8 < 4x; + 1).

3. FROM SMT(LA(Q)) SOLVING TO SMT(L.A(Q)) INTERPOLATION

Traditionally, SMT solvers used some kind of incrementaigex algorithm [Vanderbei
2001] asT7 -solver for theL.A(Q) theory. Recently, Dutertre and de Moura [Dutertre and
de Moura 2006] have proposed a new simplex-based algorghetifically designed for
integration in a lazy SMT solver. The algorithm is extrems&lytable for SMT, and SMT
solvers embedding it were shown to significantly outperf¢ofiten by orders of magni-
tude) the ones based on other simplex variants. It has nowibesgrated in several SMT
solvers, including &RGoL 1B, CVC3, MATHSAT, YICES, and Z3. Remarkably, this algo-
rithm allows for handling also strict inequalities.

In this Section, we show how to exploit this algorithm to afittly generate interpolants
for £LA(Q) formulas. Combined with the interpolation for the SWT) problem described
in is then obtained by combining the general§B1l we begin by considering the case

41n the following, we might sometimes writé as a synonym of an atond“< ¢” when c is a negative numerical
constant.

5In [McMillan 2005] the LEQEQ rule is not used inC.A(Q), because the input is assumed to consist only of
inequalities.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 11

in which the input atoms are only equalities and non-striegjualities. In this case, we
only need to show how to generate a proof of unsatisfiabgityce then we can use the
interpolation rules defined in [McMillan 2005]. Then, §3.2 we show how to generate
interpolants for problems containing also strict inediiediand disequalities.

3.1 Interpolation with non-strict inequalities

3.1.1 The original Dutertre-de Moura algorithmin its original formulation, the Dutertre-
de Moura algorithm assumes that the variabigare partitioned a priori in two sets, here-
after denoted a8 (“initially basic” or “dependent”) andV (“initially non-basic” or “in-
dependent”), and that the algorithm receives as inputs tadskof atomic formulas®

a set ofequationsq,, one for eachr; € B, of the form}_ . N GigTj +aziz; = 0S.t
. J
all a;;'s are numerical constants;

elementary atomef the formz; > I; orz; < u; st. z; € BUN andl;, u; are
numerical constants.

In order to handle problems that are not in the above form tiafigdility-preserving
preprocessing step is applied upfront, before invokingallgerithm.
The initial equationgq; are then used to build a table@u

{SCZ' = ije./\faijxj | xr; € B}, (3)

where3 (“basic” or “dependent”)/V (“non-basic” or “independent”) and}; are such that
initially B = B, N = N anda;j = —aij/a;.

In order to decide the satisfiability of the input problene tidgorithm performs ma-
nipulations of the tableau that change the €&nd A\ and the values of the coefficients
a;;, always keeping the tableduin (3) equivalent to its initial version. In particular, the
algorithm maintains a mapping: B U N — Q representing a candidate model which,
at every step, satisfies the following invariants:

V.”L‘j (S N, lj < B(.”L'j) < Uj, Vx; € B, B(.’L‘Z) = ZjGN aijﬂ(xj). (4)

The algorithm tries to adjust the values @fand the set®3 and\V, and hence the coef-
ficientsa,; of the tableau, such that < j(x;) < w; holds also for all ther;’s in B.
Inconsistency is detected when this is not possible withmlating any constraint in (4):
as the bounds on the variablesA are always satisfied by, then there is a variable
x; € B such that the inconsistency is caused either by the elenyeattam x; > [, or
by the atomz; < u; [Dutertre and de Moura 2006]; in the first cade conflict set; is
generated as follows:

n:{xjgujkvj €N+}U{$J‘le|l‘lj€N_}U{fL'iZli}, (5)
where(z; = sze/\/ a;;x;) is the row of the current version of the tabl€Bu3) corre-
sponding taz;, N is {z; € N|a;; > 0} andN~ is {z; € Nla;; < 0}.

Notice thatn is a conflict set in the sense that it is made inconsistent ey ¢sof) the
equations in the tabledli (3), i.e. T Un =, 4(q) L. In general, howeven =, 4q) L.

SNotationally, we use the hat symbbto denote the initial value of the generic symbol.
"Here we do not consider the second cage< u; as it is analogous to the first one.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

12 . Cimatti, Griggio and Sebastiani

3.1.2 Our proof-producing variant.In order to make it suitable for interpolant gener-
ation, we have conceived the following variant of the Dugede Moura algorithm.

We take as input an arbitrary set of inequalities< ", arn yn Of ur, > >, kh Yn,
and apply an internal preprocessing step to obtain a seuatiegs and a set of elementary
bounds. In particular, we introduce a “slack” variabjefor each distinct tern) , axn yn
occurring in the input inequalities. Then, we replace swmtwith s, (thus obtaining
l < sporug > si) and add an equatios), = >, ar, ys. Notice that we introduce a
slack variable even for “elementary” inequalitids < ;). With this transformation, the
initial tableauT” (3) is:

{sk = 221, arn Yn'tr, (6)

s.t. B is made of all the slack variableg’s, A is made of all the original variables,’s,
and the elementary atoms contain only slack variaklés

Then the algorithm proceeds as described above, produaetyd5) in case of incon-
sistency. In our variant of the algorithm, we can yge generate a conflict set, thanks
to the following theorem.

THEOREM 3.1. In the set of (5), z; and all thex;’s are slack variables introduced
by our preprocessing step. Moreover, thege€ 75+ Uny— U, is a conflict set, where

A+ = {ur >3, aknyn|sk = xj and z; € N1},

{lk < Zh akh yh|sk =uj and Tj € N_},

def
nwv- =
ni = Al <30, arnynlsk = i}
PROOF. We consider the case in whigf(5) is generated fromarow = }° .\ ai; ;
in the tablead” (3) such that3(x;) < I;. In [Dutertre and de Moura 2006] it is shown that

in this case the following facts hold:
vV €N+,ﬁ(:1cj):uj, and vV, EN_,ﬁ(,Tj):lj. @)

(We recall thaiv™ = {z; € N|a;; > 0} andN ™~ = {z; € Na;; < 0}.) The bounds
u; andl; can be introduced only by elementary atoms. Since in ouamatihe elementary
atoms contain only slack variables, eachmust be a slack variable (namedy). The
same holds fog:; (since its value is bounded y).

Now consider again. In [Dutertre and de Moura 2006] it is shown that whear#lact
is detected becaugk ;) < [;, then the following fact holds:

ﬁ(:vz) = sz enN+ QijUj + ij eN- aijlj. (8)
From thei-th row of the tablead” (3) we can derive
OSije/\/aijIj_Ii' (9)

If we take each inequality < u; —x; multiplied by the coefficient;; forall z; € N' T,
each inequality) < z; — I; multiplied by coefficient—a;; for all z; € N, and the
inequality (0 < z; — [;) multiplied by 1, and we add them to (9), we obtain

0< Z]\Fr Qi Uj-i-sz aij l; — 1, (20)
which by (8) is equivalenttd < 3(z;)—I;. Thus we have obtainéd< cwith ¢ = f(x;)—
l;, which is strictly lower than zero. Thereforg,s inconsistent under the definitions in

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 13

T. Since we know that; and all thez;’s in n are slack variables, we can replace every
z; (i.e., everysy) with its corresponding terfy, ax, v, thus obtaining)’, which is thus
inconsistent. [J

When our variant of the algorithm detects an inconsistem@y,construct a proof of
unsatisfiability as follows. From the sgebf (5) we build a conflict set’ by replacing each
elementary atom in it with the corresponding original at@s,shown in Theorem 3.1.
Using the Hrp rule, we introduce all the atoms i+, and combine them with repeated
applications of the GmB rule: if uy, > >, axs yn is the atom corresponding ., we
use as coefficient for the @B the a,; (in thei-th row of the current tableau) such that
s = xj. Then, we introduce each of the atomsjig- with HyP, and add them to the
previous combination, again usingo®@s. In this case, the coefficient to use-isy;;.
Finally, we introduce the atom ip; and add it to the combination with coefficient

COROLLARY 3.2. The result of the linear combination described above is ttrana
0 < ¢, such that is a numerical constant strictly lower than zero.

PrROOF Follows immediately by the proof of Theorem 3.1

Besides the case just described (and its dual when the iistemsy is due to an elemen-
tary atomz; < u;), another case in which an inconsistency can be detectetés two
contradictory atoms are assertég:< >, an yn andug, > >, agn yn, With 1, > .. In
this case, the proof is simply the combination of the two atevith coefficient 1.

The extension for handling also equalities ltke=)", ax, ys is straightforward: we
simply introduce two elementary atorbs < s, andb, > s, and, in the construction of
the proof, we use theBQEQ rule to introduce the proper inequality.

Finally, notice that the currentimplementation irsivH SAT (se&;7) is slightly different
from what presented here, and significantly more efficiemtprictice, n are not con-
structed in sequence; rather, they are built simultangoibreover, some optimizations
are applied to eliminate some slack variables when theyaraeeded.

ExAMPLE 3.1. Consider again the two sets 6f4(Q) atoms of Example 2.2:
AZ{0<z1—322+1),(0< x1 + a2}
BE{(0< a3 — 211 —3),(0< 1 - 2x3)}.

With our variant of the Dutertre-de Moura algorithm, fourlégk” variables are intro-
duced, resulting in the following tableau and elementanystaints:

S§1 = I1 — 3562 —1 S S1
T d:ef So = X1 + X2 0 S S92
S§3 = I3 — 2561 3 S S3
S4 = —21‘3 -1 S S4

To detect the inconsistency, the algorithm performs sometipg steps, resulting in the
final tableaul:

1 1 1
T = ——284 — 583 — 581
So = —is —28 —lS
T/ d:ef 2 = 4 3 3°1
xr1 = ——84—583
Ir3 = —584

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

14 . Cimatti, Griggio and Sebastiani

The final values of are as follows:
Blar) = 1 5(172):—% Blxs) = 3
B(s1) = —1 B(s2) = —3 B(s3) = B(s4) = —1
Therefore, the bounf) < s,) is violated. From the second row @7, the set; and the
conflict sety’ are computed:
NEDU{(=1<82),(3< 83), (-1 < s1)} U{(0 < s2)}
7 EPU{0<1—2x3),(0<x5—22 —3),(0 <z —329+1)}U{(0< a1 +22)}
The generated proof of unsatisfiabiliyis:
2x(0<1—2x3) 2x(0<axs— 221 —3)

3
1#(0< =221 - 3)
1*(0§—:c1—:cz—§) 1% (0 <z +x2)
0<-3)
After replacing the inequalities @8 with (0 < 0) in P, the new proof”’ is:
$x(0<0) 2x(0<0)
1% (0<0) $#(0< @ —3z2+1)
1*(0§%:c1—:cz+%) 1% (0 <z +x2)
(0< 321+ 3)
Thus the computed interpolant (8 < %xl + %) (which is equivalent to that of Exam-
ple 2.2).

3.2 Interpolation with strict inequalities and disequalities

Another benefit of the Dutertre-de Moura algorithm is thaih handle strict inequalities
directly. Its method is based on the following lemma.

LEMMA 3.3 LEMMA 1IN [DUTERTRE AND DEMOURA 2006]. A set of linear arith-

metic atomd" containing strict inequalitiess = {0 < t1,...,0 < t,} is satisfiable iff

there exists a rational number > 0 such thatl'. £ (T U S.) \ S is satisfiable, where

S. e <ty,...,e <tn}.

The idea of [Dutertre and de Moura 2006] is that of treatiregrtfinitesimal parameter
symbolically instead of explicitly computing its value ri6t bounds(xz < b) are replaced
with weak onegz < b — ¢), and the operations on bounds are adjusted to 4akéo
account.

We extend the same idea to the computation of interpolanéstrélvisform every atom
(0 < t;) occurring in the proof of unsatisfiability int@® < ¢; — ¢). Then we compute an
interpolant/. in the usual way. As a consequence of the rules of [McMillaB330I. is
always a single atom. As shown by the following lemmad_.itontainsz, then it must be
in the form(0 < ¢ — ce) with ¢ > 0, and we can rewrité. into (0 < t).

THEOREM 3.4 INTERPOLATION WITH STRICT INEQUALITIES LetT, S, I'. and S.
be defined as in Lemma 3.3. Létbe partitioned intoA and B, and letA. and B. be
obtained fromA and B by replacing atoms iy’ with the corresponding ones 5. Let /.
be an interpolant foA., B.). Then:

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 15

If e A I, thenl. is an interpolant for(A, B).
def

If e < I, thenl. = (0 <t — ce) for somec > 0, andI = (0 < t) is an interpolant
for (A, B).

PROOF Since the side condition of thedMB rule ensures that equations are combined
only using positive coefficients, and since the atoms intoedl in the proof either do not
contains or contain it with a negative coefficient,dfappears in., it must have a negative
coefficient.

If £ does not appear if., thenl. has been obtained from atoms appearingdiior B,
so thatl. is an interpolant fo(A, B).

If ¢ appears in., since its value has not been explicitly computed, it canrbérarily
small, so thanks to Lemma 3.3 we have tBat\ I. =, 4q) L impliesBAT =) L.

We can prove thal =, 4(q) I as follows. We consider some interpretatjowhich is
a model forA. Sinces does not occur i, we can exteng by settingu(¢) = 6 for some
6 > 0 such thatu is a model also forl.. As A, =, 4(q) e, 1 is also a model for., and
hencey is also a model for. Thus, we have thal =, 4q) I. O

Notice that Theorem 3.4 can be extended straightforwamlihe case in which the
interpolant is a conjunction of inequalities.

Thus, in case of strict inequalities, Theorem 3.4 gives us for constructing inter-
polants with no need of expensive theory combination (asatbwas the case in [McMil-
lan 2005]). Moreover, thanks to it we can handle also negededlities(0 # ¢) directly.
Suppose our sef of input atoms (partitioned intel and B) is the union of a sef’ of
equalities and inequalities (both weak and strict) and &5%ebf disequalities, and sup-
pose thatS’ is consistent. (If not so, an interpolant can be computethff.) Since
LA(Q) is convex,S is inconsistent iff exist§0 # ¢) € S7 such thatS’ U {(0 #)} is
inconsistent, that is, such that bathu {(0 <)} andS” U {(0 > ¢)} are inconsistent.

Therefore, we pick one elemeit + ¢) of S7 at a time, and check the satisfiability of
S"U{(0 < t)} andS" U {(0 > ¢)}. If both are inconsistent, from the two proofs we can
generate two interpolanfs™ andI™. We combinel ™ and/~ to obtain an interpolant
for (A, B):if (0#t) € A, thenlisI* Vv I ;if (0#t) € B,thenlisI™ AI~, as shown
by the following lemma.

THEOREM 3.5 INTERPOLATION FOR NEGATED EQUALITIES Let A and B two con-
def

junctions of£.A(Q) atoms, and let: £ (0 +# t) be one such atom. Let< (0 < ¢) and
1Z(0>1).

lfn e A, thenletAt £ A\ {n}U{g}, A~ £ A\ {n}U{l}, andBt £ B~ £ B.

lfn € B, thenletA™ = A~ £ A, Bt £ B\ {n}U{g}, andB~ = B\ {n} U {I}.
Assume thatl® A Bt |=, 1) L and thatA~ A B~ =, 4(g) L, and let/* andI~ be

two interpolants fo{ A*, B™) and (A~, B~) respectively, and let

w [I*VI~ ifneA
T\ I*AI- ifneB.

ThenI is an interpolant for(A, B).
PROOF We have to prove that:
() AEcaw I

(i) BAT):L.A(Q) 1
ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

16 . Cimatti, Griggio and Sebastiani

(i) 7 < Aandl < B.

(i) If n € A, thenA =, 4q) gV I. By hypothesis, we know that™* =,) I*
andA~ ;4 I~ Thentrivially AU {g} 4@ IT andAU{l} =L@ 1.
ThereforeAU{g} Fraq ITVITandAU{l} Era) I~ VIT, sothatd =4

If n € B,thenA™ = A~ = A. By hypothesisA =,) It andA =,) I~
that A 'ZL.A(Q

(i) If n € A, thenB+ = B~ = B. By hypothesisB A IT =, 4@ L andB A
I~ 'ZL.A(Q) 1,sothatB AT 'ZL.A(Q) 1.
If n € B, thenB =, 4 gV I, so that eithel3 — g or B — [must hold. By
hypothesis we havB* A I =, 4(q) L, sothatBU{g} AT =z 4 L. If B =g
holds, thenB A I =, 4(q) L, and henceB A I (=, 4q) L. Similarly, if B — [
holds, thenB A I~ =, 4(q) L, and so agail3 A I =, 4(q) L.

(iii) By the hypothesis, botd™ andZ~ contain only symbols common td and B, so
that/ < Aand/ < B. O

ExAamPLE 3.2. Consider the following sets @t A(Q) atoms:

AZ{(0# 2, — 3024+ 1),(0 =21 +x2)}
BE{(0=u1x3—2z; —1),(0=1—2z3)}.

def def

To compute an interpolant fdr4, B), we first splitn = (0 #£ 21 —3z2 + 1) intog = (0 <
21 — 3xg + 1) andl = & (0 < —x1 + 3w — 1), thus obtainingd™ and A~ defined as in
Theorem 3.5. We then generate téd(Q)- proofs of unsatisfiability>™ for A™ A B and
P~ for A~ A B, and replacey in P™ with g8 = (O <z1—3z2+1—¢)andlin P~ with

= (0 < —z1 + 322 — 1 —¢), obtainingP." and . (we omit the names of the inference

rules):

(0:x1+w2) (0:w3—2m1—1) (021—2(23)
0<z1—3224+1—¢) (0< @1 +22) (0< 23 —221—1) (0<1—2x3)

(0<dz; +1—¢) (0< —4z; — 1)
pr & (0< —¢)
(0 =21+ x2) (0=2z3 — 221 — 1) (0=1-—2z3)
O0<—z1+3z2—1—¢) (0< —z1 —x2) (0< —z3+2z1+1) (0<—1+2z3)
0< —dz1 —1—9) (0 < tda1 +1)
e (0<)

We then compute the two interpolaits from P-- and I from P :
IZ7E20<4z,+1—¢) I-Z(0< 4z, —1—¢).

Therefore, according to Theorem 3.4 the two interpolahitsfor (A™, B) and I~ for
(A, B) are:

ITZ(0 < 4z +1) I~ =0 < —4a; —1).
Finally, sincen € B, according to Theorem 3.5, the interpolanfor (A, B) is
I=

def

ITVIT =(0<4r,+1)V (0 < —da1 —1).

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 17

3.3 Obtaining stronger interpolants

We conclude this Section by illustrating a simple technifprémproving the strength of
interpolants inLA(Q). The technique is orthogonal to our proof-generation étlgor
described ir§3.1.2, and it is therefore of independent interest. It israprovement of the
general algorithm of [McMillan 2005] (and outlined §2.3.1) for generating interpolants
from LA(Q)-proofs of unsatisfiability.

Definition 3.6. Given two interpolant§, and /- for the same paifA, B) of conjunc-
tions of LA(Q)-literals, we say thal, is strongerthan/ if and only if I =, 4(q) I> but

Iy Fraw) I

Our technique is based on the simple observation that the mmpose of the sum-
mations performed during the traversal of proof trees fangoting the interpolant (as
described ir§2.3.1) is that of eliminatingi-local variables. In fact, it is easy to see that
the conjunction of the constraints df occurring as leaves in af.A(Q)-proof of unsat-
isfiability satisfies the first two points of the definition aitérpolant (Definition 2.2): if
such constraints do not contaittlocal variables, therefore, their conjunction is already
an interpolant; if not, it suffices to perform only the sumioias constraints ofl that are
necessary to eliminaté-local variables. Moreover, such interpolant is strongantthat
obtained by performing the summations with the coefficiéoisid in the proof tree, since
for any set of constraint§ss, ..., s, } and any set of positive coefficien{s:, ..., c,},

ST N ... N\Sp 'ZL',A(Q) Z?:l C; * S; holds.

According to this observation, our proposal can be desdrdse perform only those

summations which are are necessary for eliminatitpcal variables.

ExamMPLE 3.3. Consider the following sets @fA(Q)-atoms:
e 1 3
Ad:f{(()g:cl—3x2—|—1),(0§172—garg),(Ogu—51:5—1)}

B d:ef {(0 S 3.%'5 — 1‘1), (0 S xr3 — 21‘4)}
and the followingl.A(Q)-proof of unsatisfiability ofA A B:

(0<@1 —3z2+1) 3x%(0<az2— $x3)

(0<z —x3+1) 2% (0 <@g — 35— 1)
(0<z1 —x3+ 224 — 325 — 1) (0 <3x5 — 1)
(0 < —z3 + 224 — 1) (0 < z3 —2x4)
(0<-1)

Here, the variablers is A-local, whereas all the others atéB-common. The interpolant
computed with the algorithm §R.3.1 is

(0§1‘1—$3+2$4—3.’L‘5—1),

which is the result of the linear combination afl the atoms of4 in the proof. However,
in order to eliminate thed-local variablez,, it is enough to combin® < x; — 325 + 1)
(with coefficient 1) and0 < zo — §x3) (with coefficient 3), obtaining < xz; — x5 + 1).
Therefore, a stronger interpolant is

3
(OS$1—$3+1)/\(0§I4—5$5—1)

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

18 . Cimatti, Griggio and Sebastiani

The technique can be implemented with a small modificatiothefproof-based algo-
rithm described ir§2.3.1. We associate with each node in the piBbfwhich is obtained
from the original proofP by replacing inequalities fronB with (0 < 0)) a list of pairs
(coefficient, inequality For a leaf, this list is a singleton in which the coefficientiand
the inequality is the atom in the leaf itself. For an inner @@ahich corresponds to an
application of the ©wmB rule), the list/ is generated from the two lisis and/, of the
premises as follows:

(1) Setl as the concatenation 6f andis;

(2) Letc; andcs be the coefficients used in theo®@B rule. Multiply each coefficient,
occurring in a paifc;, 0 < ¢;) of I by ¢; if the pair comes fronk, and byc, otherwise;
(3) While there is am-local variabler occurring in more than one pait’, 0 < t) of [:®
(a) Collect all the pairgc;, 0 < ¢;) in whichz occurs;
(b) Generate a new pair= (1,0 < 37, ¢} x t;);
(c) Addptol, and remove all the pairg;, 0 < ¢;).

After having applied the above algorithm, we can take thgumartion of the inequalities
in the list associated with the root &f as an interpolant.

THEOREM 3.7. Let P be aLA(Q)-proof of unsatisfiability for a conjunctioA A B of
inequalities, andP’ be obtained fromP by replacing each inequality @8 with (0 < 0).
Let] & (1,0 < t1),...,{cn, 0 < t,) be the list associated with the root Bf, computed

def

as described above. Thén= A!_, (0 < ;) is an interpolant for(4, B). Moreover,! is
always stronger than or equal to the interpolant obtainethvifie algorithm 0£2.3.1 for
the same proof’.

PROOFE By induction on the structure @¥’, it is easy to prove that, for each constraint
(0 < t)in P’ with its associated ligt= (¢1,0 < t1),..., (cn, 0 < t,):

(1) AE AL (0<t);and
(2 0<t)=>1" - (0<t;)

Since the root of’ is an interpolant fof A, B), this immediately proves the theorem

4. FROM SMT(DL) SOLVING TO SMT(DL) INTERPOLATION

Several interesting verification problems can be encodetyuly a subset of A, the
theory of Difference LogicPL), either over the rationalsXL(Q)) or over the integers
(DL(Z)). DL is much simpler tharf.A, since inDL all atoms are inequalities of the form
(0 < y — x + ¢), wherex andy are variables and is an integer constant. Equalities
can be handled as conjunctions of inequalities. Here we tloarsider the case when we
also have strict inequalitig® < y — = + ¢) and disequalitie§) # y — x + ¢), because in
DL(Q) they can be handled in a way which is similar to that describg8.2 for LA(Q),
whilstin DL(Z) a strict inequality0 < y —x+c¢) can be rewritten a priori into a weak one
(0 < y—x+c—1),and adisequality can be replaced by a disjunction of sirazjualities.

8That is,« occurs int.

9Notice that we can assume w.l.0.g. that all constants aetiacause, if this is not so, then we can rewrite the
whole formula into an equivalently-satisfiable one by nplyiing all constant symbols occurring in the formula
by their greatest common denominator.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 19

Very efficient solving algorithms have been conceivedidl [Cotton and Maler 2006;
Nieuwenhuis and Oliveras 2005]. In this section we presepegialized technique for
computing interpolants irD£ which exploits such state-of-the-art decision procedures
Since a set of weak inequalities IDL is consistent over the rationals if and only if it is
consistent over the integers, our algorithm is applicabteaut any modifications to both
DL(Q) andDL(Z) (see e.g. [Nieuwenhuis and Oliveras 2005]).

Many SMT solvers use dedicated, graph-based algorithnehieeking the consistency
of a set of DL(Q) atoms [Cotton and Maler 2006; Nieuwenhuis and Oliveras R0OB5
tuitively, a setS of DL(Q) atoms induces a graph whose vertexes are the variables of the
atoms, and there exists an edgées y for every(0 <y — x + ¢) € S. S is inconsistent if
and only if the induced graph has a cycle of negative weight.

We now extend the graph-based approach to generate iraatpolConsider the inter-
polation problen{ A, B) whereA andB are sets of inequalities as above, andldie (the
set of atoms in) a negative cycle in the graph correspondingu B.

If C C A, thenA is inconsistent, in which case the interpolantlis Similarly, when
C C B, the interpolantisT. If neither of these occurs, then the edges in the cycle can be

Cn—1

partitioned in subsets of andB. We call maximalA-paths ofC' a pathz; = ... ——%
x, such thati) z; = x;4, € Afori e [1,n — 1], and (1) C containsz’ < x; and
x, ~— z” that are inB. Clearly, the end-point variables , z,, of the maximalA-path
are suchey, z, < A andzy,x, < B. Let thesummary constraindf a maximalA-path
r 2 2 4 be the inequality < x,, — x; + 2?2—11 .

THEOREM 4.1. The conjunction of summary constraints of thepaths ofC' is an
interpolant for(A, B).

PROOF Using the rules foll A(Q) of Figure 3, we build a deduction of the summary
constraint of an maximali-path from the conjunction of its corresponding set of con-
straints\ ' (0 < i1 — @ + ¢i):

(O0O<za—z1+c1) (0L a3 —m2+C2)
(0<z3—w1+c1+c2) (0<zqy —x3+c3)

(0<zn —xp—1+4cn-1)
(0<zn—a1 + 375).

Hence, A entails the conjunction of the summary constraints of alkimal A-paths.
Then, we notice that the conjunction of the summary conggas inconsistent with3.

In fact, the weight of a maximali-path and the weight of its summary constraint are
the same. Thus the cycle obtained fr@amby replacing each maximal-path with the
corresponding summary constraint is also a negative cyslally, we notice that every
variablex occurring in the conjunction of the summary constraintsisiad-point variable,
and thusy < Aandx < B. [

Afinal remark is in order. In principle, in order to generaggraof of unsatisfiability for
a conjunction ofDL(Q) atomsA A B, the same rules used fat4(Q) [McMillan 2005]
could be used. For instance, it is easy to build a proof whegieatedly applies thedms
rule withc; = ¢o = 1. In general, however, the interpolants generated from pucbfs
are notDL(Q) formulas anymore and, if computed starting from the samensistent
setC, they are either identical or weaker than those generatddour method. In fact,
it is easy to see that, unless our techniqué38 is adopted, such interpolants are in the

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

20 . Cimatti, Griggio and Sebastiani

form (0 < >, t;) s.t. A,(0 < t;) is the corresponding interpolant generated with our
graph-based method.

ExAMPLE 4.1. Consider the following sets @£(Q) atoms: A — a,—__g 5
B —& } 0 -1

AZ{(0<a —22+1),(0 < a3 —3),(0 < g — 25 — 1)} 1

x T4
Bd:ef{(o§$5—$1),(0§$3—$4—1)}. 2\1/1

T3
corresponding to the negative cycle on the right. It is gfreforward to see from the graph
that the resulting interpolant i) < z7 — x5 + 1) A (0 < x4 — x5 — 1), because the first
conjunct is the summary constraint of the first two conjuncts.
Applying instead the rules of Figure 3 with coefficients &, poof of unsatisfiability is:

(0<z1—z2+1) (0<z2—x3)

(0<z; —23+1) (0<zg—25—1)
(0 <z —x3+ T4 —5) (0<z5—x1)
(0 < —z3 + 24) 0<z3—z4—1)

0<-1

By using the interpolation rules faf.A(Q), the interpolant we obtain i€ < x; — x5 +
x4 — 25), Which is notinDL(Q), and is weaker than that computed above:

(0<@ —x2+1) (0<z2—x3)

O0<z1—23+1) (0<zg—25—1)
(0<z1 —x3+ 24 — 5) (0<0)
(0<z1 —x3+ 24 —5) (0<0)

(0<z; —x3+ 24 —25)

Notice that, if instead we apply our technique;af3, then theC A(Q)-interpolant gener-
ated from the above proof is identical to theC(Q) one above.

5. FROM SMT(UTVPZI) SOLVING TO SMT(UTVPZI) INTERPOLATION

The Unit-Two-Variables-Per-Inequality/("VPI) theory is a subtheory of linear arith-
metic, in which all constraints are in the forfh < ax; + bxs + k), wherek is a numer-
ical constanta,b € {—1,0,1}, and variables:;, x» range either over the rationals (for
UTVPZ(Q)) or over the integers (faW7TVPZ(Z)). ConsequentlyDL(Q) is a subthe-
ory of UTVPZ(Q), which is itself a subtheory of A(Q), andDL(Z) is a subtheory of
UTVPZL(Z), which is itself a subtheory of A(Z).

As for DL, UTVPT can be treated more efficiently than the fdl1, and several spe-
cialized algorithms fot/7VPZ have been proposed in the literature. Traditional tech-
nigues are based on the iterative computation of the tie@sitosure of the constraints
[Harvey and Stuckey 1997; Jaffar et al. 1994]; more recdhtifiri and Musuvathi 2005]
proposed a novel technique based on a reductidd4o so that graph-based techniques
can be exploited, resulting into an asymptotically-fastiggorithm. We adopt the latter
approach and show how the graph-based interpolation tggbmif$4 can be extended to
UTVPZ, for both the rationalssb.1) and the integer$%.2).

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 21

UTVPI(Q) constraints| DL(Q) constraints

((0<5‘31_5‘32 + k), (0 <z —x1 + k)
((0<m1 —m2+k) (0<w2—x1 +k)
0<z1+a2+k) (0<azf —m2+k) (0<zy —ay +k)
((
((

O<:(:1 —z +2-k)
O<:(:1 —x; +2-k)

Fig. 4. The conversion map frotd7VPZ(Q) to DL(Q).

5.1 Graph-based interpolation for /7 VPZ on the Rationals

We analyze first the simpler case @7 VPZ(Q). Miné [Miné 2001] showed that it is
possible to encode a set@f7 VPZ(Q) constraints into &L(Q) one in a satisfiability-
preserving way. The encoding works as follows. We uséo denote variables in the
UTVPZ(Q) domain andu, v for variables in theD£(Q) domain. For every variable;
inUTVPZ(Q), we introduce two distinct variables™ andz; in DL(Q). We introduce a
mappingY from DL(Q) variables td/7 VPZ(Q) signed variables, such thfi{z;") = z;
andY(z *) = —z;. T extends to (sets of) constraints in the natural wiy0 < ax; +
by +k) = (0 < aT(:Cl) +bY(z2) 4 ¢), andY ({¢;}i) = {Y(c;) }i. We say thatz;)~ =
z; and(z;)* = x}. We say that the constraint¢ < v —v) and(0 < (v)™ — (u)”)
st u,v € {:cl , T }1 aredual We encode eadi’7VPZ constraint into the conjunction
of two dualDL(Q) constraints, as represented in Figure 4. For €a€{Q) constraint
0<v—u+k),(0<7T(v)— T(u)+ k) is the corresponding 7T VPZ(Q) constraint.
Notice that the two dua£(Q) constraints in the right column of Figure 4 are just différen
representations of the origindl7 VPZ(Q) constraint. (The two dual constraints encoding
a single-variable constraint are identical, so that theitjenction is collapsed into one
constraint only.) The resulting set of constraints is §atide inDL(Q) if and only if the
original one is satisfiable iN'7 VPZ(Q) [Miné 2001; Lahiri and Musuvathi 2005].

Consider the paifA, B) whereA and B are sets of/7T VPZ(Q) constraints. We apply
the map of Figure 4 and we encodé, B) into a DL(Q) pair (4, B’), and build the
constraint grapliz(A’ A B'). If G(A’ A B’) has no negative cycle, we can conclude that
A" A B'is DL(Q)-consistent, and hence that\ B isUTVPZ(Q)-consistent; otherwise,
A’ AB'is DL(Q)-inconsistent, and henceA B isUUT VPZ(Q)-inconsistent [Miné 2001;
Lahiri and Musuvathi 2005]. In fact, it is straightforwaral dbserve that for any set of
DL(Q) constraints{CY, ..., C,,C} resulting from the encoding of soni¢7 VPZ(Q)
constraints, if\;", Ci =pzq) C then\!, T(Ci) Furvpz) Y(O).

WhenA A B is inconsistent, we can generatelai VPZ(Q)-interpolant by extending
the graph-based approach used®a(Q).

THEOREM 5.1. Let A A B be an inconsistent conjunction@f7 VPZ(Q)-constraints,
and letG(A’ A B”) be the corresponding graph f£(Q)-constraints. Lef’ be aDL(Q)-
def

interpolant built fromG(A’ A B’) with the technique described $d. Thenl = Y(I') is
an interpolant for(A, B).

PrROOF. (i) I" is a conjunction of summary constraints, so itis in the fgxpC;. There-
fore A" E=prq) C; for all i, and so by the observation above = vpzq) Y(Ci).
Hence,A =y mvpz(q) I. (i) From theDL(Q)-inconsistency of’ A B’ we immediately
derive that! A B isUUTVPZ(Q)-inconsistent. (i) < A andI < B derive fromI’ < A’

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

22 . Cimatti, Griggio and Sebastiani

A

B
-

negative cycle
St hn)

maximal A-paths

Fig. 5. The constraint graph of Example 5.1. (We represeiyt one negative cycle with its corresponding
A-paths, because the other is dual.)

andl’ < B’ by the definitions ofl" and the map of Figure 4.7

As with theDL(Q) case, in principle, it is possible to generate a proof of tisfability
for a conjunction ot/ T VPZ(Q) atomsA A B by repeatedly applying the@s rule for
LA(Q) [McMillan 2005] with ¢; = ¢o = 1. As with DL(Q), however, the interpolants
generated from such proofs may not & VPZ(Q) formulas anymore. Moreover, if
computed starting from the same inconsistent(detnd unless our technique §8.3 is
adopted, they are either identical or weaker than thosergttewith our graph-based

method, since they are in the forfh < . ¢;) s.t. A,;(0 < ¢;) is the interpolant generated
with our method.

ExampLE 5.1. Consider the following sets &f7 VPZ(Q) constraints:
A={0< —20—21+3),(0<z1 + 25+ 1),
(0< —23 —24—6),(0< a5 + 24 + 1)}
B={(0<z3+23+43),0< 2 —a5—1),(0< 24 —26+4)}

By the map of Figure 4, they are converted into the followiets ®fDL(Q) constraints:
A ={0<a] —af +3),(0<z; —xf +3),
J(0<af —25 +1)
(0 <25 —xf —6)
(+1)

(0 <ad —ay

0<af —27 +1

0<z, —at —6
4 3

(0<af —a;5 +1

3

)

}

—_ — ~— —

Sy
<

Il
—_~
—

0<axi —xy +3),(0< 25 — a5 +3),
(ngg'—x;'—l),(ngg—:cg—l),
(0<zj —ag +4),(0< 25 — 25 +4)}

whose conjunction corresponds to the constraint graph gliié 5. This graph has a
negative cycle

C’d:efx;ixl_ i>:v§f7—6>:vg imcﬁ_ ;1>xg i>x1'7—6>:v§ ix;
Thus,A A B is inconsistent it/ TVPZ(Q). From the negative cyclé” we can extract
the set ofd’-paths{z; N Ty, Ty = x5 }, corresponding to the formul& o<
ry —x3 —2)A(0 < x5 —x5 —5), whichis an interpolant fotA’, B'). I’ is thus mapped
ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 23

def def

backintol = Y(I') = (0 < —za — 24 — 2) A (0 < 25 — 23 — 5), which is an interpolant
for (A, B).

Applying instead the&.A(Q) interpolation technique of [McMillan 2005], we find the
interpolant(0 < —xzo — x4 + 5 — 23 — 7), Which is not in/TVPZ(Q) and is strictly
weaker than that computed with our method.

5.2 Graph-based interpolation for {7 VPZ on the Integers

In order to deal with the more complex casel¥ VPZ(Z), we adopt a layered ap-
proach [Sebastiani 2007]. First, we check the consistemzg/iVPZ(Q) using the tech-
nique of [Miné 2001]. If this results in an inconsistencye wompute a/7VPZ(Q)-
interpolant as described §%.1. If thel{TVPZ(Q)-procedure does not detect an inconsis-
tency, we check the consistencyifi VPZ(Z) using the algorithm proposed by Lahiri and
Musuvathi in [Lahiri and Musuvathi 2005], which extends itieas of [Miné 2001] to the
integer domain. In particular, it gives necessary and safficconditions to decide unsat-
isfiability by detecting particular kinds of zero-weightobgs in the induce® L constraint
graph. This procedure works (n - m) time andO(n + m) spaceyn andn being the
number of constraints and variables respectively, whigbraves the previou®(n? - m)
time andO(n?) space complexity of the previous procedure of [Jaffar e1284].

We build on top of this algorithm and we extend the graph-baggproach of5.1 for
producing interpolants also 7 VPZ(Z). In particular, we use the following reformula-
tion of a result of [Lahiri and Musuvathi 2005].

THEOREM 5.2. Let¢ be a conjunction of(TVPZ(Z) constraints s.tg is satisfiable
in UTVPZ(Q). Theng is unsatisfiable i/TVPZ(Z) iff the constraint graphG(¢)
generated fromp has a cycleC' of weight 0 containing two vertices™ andz; s.t. the
weight of the pathr; ~ z;" alongC is odd.

PROOF The “only if” part is a corollary of lemmas 1, 2 and 4 in [Laltand Musuvathi
2005]. The “if” comes straightforwardly from the analysisre in [Lahiri and Musuvathi
2005], whose main intuitions we recall in what follows. Aswithe constraint grapfi(¢)
generated fronp has one cycle€ of weight 0 containing two vertices andz; s.t. the
weight of the pathz; ~ z; alongC is 2k + 1 for some integer valué. (SinceC
has weight), the weight of the other path;” ~» z; alongC is —2k — 1.) Then, the
pathsz; ~ z andz] ~ x; contain at least two constraints, because otherwise their
weight would be even (see the last two lines of Figure 4). Then~+ z; is in the
formz; ~ v & 2, for somev andn. Fromz; ~» v, we can derive the summary
constrain{0 < v —z; + (2k +1 —n)), which corresponds to tHé7 VPZ(Z) constraint
(0 < Y(v)+z;+(2k+1—n)). (This corresponds tb- 2 applications of the RANSITIVE
rule of [Lahiri and Musuvathi 2005}, being the number of constraints ifj ~» z;".)
Then, by observing that thé7VPZ(Z) constraint corresponding to - = is (0 <
z; — Y(v) + n), we can apply the IGHTENING rule of [Lahiri and Musuvathi 2005] to
obtain(0 < z; + [(2k + 1 — n+n)/2]), which is equivalent td0 < x; + k). Similarly,
from ;7 ~» z; we can obtain0 < —x; — k — 1), and thus an inconsistency using the
CONTRADICTION rule of [Lahiri and Musuvathi 2005].1

Consider a pai(A, B) of UTVPI(Z) constraints such thal A B is consistent in
UTVPZ(Q) butinconsistent ia/7TVPZ(Z). By Theorem 1, the constraint grapi{ A’ A
B') has a cycle” of weight 0 containing two vertices; andz; s.t. the weight of the

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

24 . Cimatti, Griggio and Sebastiani

@y)
4 * \2 4 ° \2
x+ EI/' . x+ x+ E/] x+
2 3 2 &\ T é ********** > 3
-4T l's —4]\ \\\ l's
4
Tg & < 0 ® 5 Tg @ oz,
0 - A 0~ A
o< e,f A o eo—— o 7 Do
xf 0 0 B xy 0 ’ B
4 —e 4 —
Fig. 6. UTVPI(Z)interpolation, Case 1. Fig. 7. UTVPI(Z) interpolation, Case 2.

pathsz; ~» z; andz; ~ x; alongC are2k + 1 and—2k — 1 respectively, for some
valuek € Z. Our algorithm computes an interpolant fod, B) from the cycleC. Let
C4 andCp be the subsets of the edgesnhcorresponding to constraints ' and B’
respectively. We have to distinguish four distinct subesas

Case 1: z; occurs inB but not in A. Consequentlyy;” andx; occur in B’ but not in
A’, and hence they occur ifig but not inC4. Let I’ be the conjunction of the summary
constraints of the maximal' 4-paths, and lef be the conjunction of the corresponding
UTVPZL(Z) constraints.

THEOREM 5.3. I is an interpolant for(4, B).

PROOF. (i) By construction,A = rvpz(z) I, as in§5.1. (i) The constraints i’
and Cp form a cycle matching the hypotheses of Theorem 5.2, frontiwlhiA B is
UTVPI(Z)-inconsistent. (i) We notice that every variabi?, z; occurring in the con-
junction of the summary constraints is an end-point vaeiadd that’ < C'4 andl’ < Cp,
andthusl < Aandl < B. O

ExAMPLE 5.2. Consider the following set of constraints:
S={0<21 —22+4),(0< —29 —23—5),(0 < w2+ 26 —4),(0 <25 + 72 + 3),
(0< =1 +23+2),(0< —26 —74),(0 < 24 — 75)},

partitioned intoA and B as follows:

(O<CC3—CC1+2) (0§(E1-I2+4)
A (OS—I6—$4) B (Og—xg—x3—5)
(0 < x4 —w5) (0<z2tae =)

(0 < a5+ 22+ 3)

Figure 6 shows a zero-weight cyoie in G(A’ A B’) such that the paths, ~ x
andzj ~ z, have an odd weight{1 and 1 resp.) Therefore, by Theorem 52/ B
is UTVPZI(Z)-inconsistent. The two summary constraints of the max&hapaths are
(0 <2y —ad)and(0 < 2§ —xf +2). Itiseasy to see that= (0 < —z —x5) A (0 <
x3 — a1 + 2) isanUTVPZL(Z)-interpolant for(A, B).

Case2: x; occurs in both4 and B. Consequentlyy;” andz; occur in bothA’ and B’. If
neitherz;” norz; is such that both the incoming and outgoing edges belorg,tathen

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 25

the cycle obtained by replacing each maxiraa-path with its summary constraint still
contains both:;” andz;, so we can apply the same process of Case 1. Otherwise, if both
the incoming and outgoing edgesof belong toC 4, then we split the maximal'4-path

Ck+1 Cn

u 2.2 r —— ... =% u, containingr; into the two parts which are separated

Ck+1 Cn

by xf: up = .0 2t andxi — ... =% u,. We do the same faor; . LetI’
be the conjunction of the resulting summary constraintd,lan/ be corresponding set of
UTVPZL(Z) constraints.

THEOREM 5.4. [is an interpolant for(4, B).

PROOF. (i) As with Case 1, againd = rvpz(z) 1. (i) Since we split the maximal
C4 paths as described above, the constraintg’ iand C's form a cycle matching the
hypotheses of Theorem 5.2, from whiém B is UTVPZ(Z)-inconsistent. (iii)z;, z;
occur in bothA’” and B’ by hypothesis, and every other variab:ié, z; occurring in the
conjunction of the summary constraints is an end- pomtaizﬂﬂ so that’ < C'4 and
I' < Cp,andthud < Aand/ < B. O

ExampPLE 5.3. Consider again the set of constraintsof Example 5.2, partitioned
into A and B as follows:

O<$C3—.”L‘1+2)
0<—$6—.”L'4)

O<$2—|—SE6—4)
O<$1—SE2—|—4)

E (0§—.’L‘2—.’L‘3—5)
A (B (0 < x5+ 29 + 3)

((0 < xy4 —x5)
and the zero-weight cyclé of G(A’ A B’) shown in Figure 7. As in the previous example,
there is a pathr, ~» x] of weight—1 and a pathyfr ~» x5 of weightl. In this case there
is only one maximal’4 path, namelw4 ~» 3. Since the cycle obtained by replacmg it
with its summary constrairfd < :53 —x +2) does not containy , we splitgc4 ~ z§ into
two pathsz ~ x§ andzy ~ x4, whose summary constraints g < =5 — zf — 4)
and (0 < z§ — 25 + 6) respectively. By replacing the two paths above with the two
summary constraints, we get a zero- weight cycle whichaiititains the two odd paths
Ty ~ xy andxzy ~ x5 . Therefore] £ (0 <azg—24—4)N (0 <23 —224+6)isa@n
interpolant for(A, B).

Notice that the/TVPZ(Z)-formulaJ £ (0 < SC3 — x4 + 2) corresponding to the

summary constraint of the maximal, pathz; ~ z3 is not an interpolant, smceT AN B

is notUTVPI(Z)-inconsistent. In fact, if we replace the maxin@i pathz} ~ z§

with the summary constraint; 2, r3, the cycle we obtain has still weight zero, but it
contains no odd path between two variahl¢sandz; .

Case 3: z; occurs inA but not in B, and one of the paths]” ~» z; orz; ~ x in C
contains only constraints @f 4. In this casez;” andz;” occurinA’ but notinB’. Suppose
thatz; ~ z; consists only of constraints 6t (the caser;” ~ z; is analogous).

Let 2k + 1 be the weight of the path; ~» z;" (which is odd by hypothesis), and let

C be the cycle obtained by replacing such path with the egge® 2 in C. In the
following, we call such a replacemetightening summarizatiarSinceC has weight zero,
C has negative weight. Le&t” be the set oD L-constraints in the path; ~» z;. LetI’
be theDL-interpolant computed frord’ for (C4 \ C¥ U {(0 < o] — 27 + 2k)},Cp),
and let! be the correspondifd7 VPZ(Z) formula.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

26 . Cimatti, Griggio and Sebastiani

@y)
o
4/ \2 4 ‘\\\2‘
i w- o x;rlilV \\‘\\;V_,'x?:r
) R -3
-4 T~ -5 -4 T~ -5
S 2 T~
_ ~on _ _ =~ _
Tg ® ~~- -) ;1 fffffffffff > @z, Zg o‘\\\ 0 ® x,
N 3 N 3
o o————— o A e o— ot A
ot 0 o B zF 0 N B
4 —e 4 —
Fig. 8. UTVPI(Z) interpolation, Case 3. Fig. 9. UTVPI(Z)interpolation, Case 4.

THEOREM 5.5. I is an interpolant for(4, B).

PROOF (i) Let P be the set ot/TVPZ(Z) constraints in the path, ~» z;. Since
the weight2k + 1 of such path is odd, we have th&t = 7vpziz) (0 < o + k) (cf.
page 23). Since” C A, therefore,A =y 7ypzrz) (0 < x; + k). By observing that
(0 < 2} — 2, +2k) is theDL-constraint corresponding {0 < z; + k) we conclude that
CA\CPU (0< I;’_ —x; +2k) Epe I'implies thatA\ PU (0 < z; + k) 'ZMTVPI(Z) 1,
and so thatd =y ypzz) 1.

(ii) Since all the constraints i€’z occur inC, we have thatB A I is UTVPI(Z)-
inconsistent.

(iii) Since by hypothesis all the constraints in the pafh ~» z;7 occur inCy,, from
I' 2 (Ca\CPU{(0 < af —ax; +2k)}) we have thaf < A. Finally, since all the
constraints inC'z occur inC, we have thaf < B. [

ExAaMPLE 5.4. Consider again the sef of constraints of Example 5.2, this time par-
titioned intoA and B as follows:

(O§x1—$2+4)
(0 <z3—2142)
(OS—I2—.§C3—5)
(O§$2+1‘6—4)

Figure 8 shows a zero-weight cyalé of G(A’ A B’). The only maximaC, path is
s ~ x,. Since the pathvy ~ z, has weightl, we can add the tightening edge
xy RN x5 to G(A’ A B') (shown in dots and dashes in Figure 8), corresponding to the
constraint(0 < x, — x3). Since all constraints in the path] ~» =, belong toA’,

A’ = (0 < z; — x7). Moreover, the cycle obtained by replacing the path~» =, with
the tightening edge; 2 x5 has a negative weight{1). Therefore, we can generate

a DL-interpolant!” = (0 < x5 — zg — 4) from such cycle, which corresponds to the
def

UTVPL(Z)-interpolant] = (0 < —x5 + x6 — 4).

Notice that, similarly to Example 5.3, also in this case wera# obtain an interpolant
from the summary constraifd < x; — x5 — 3) of the maximally pathzg ~ z5, as
(0 < —x9 + 26 — 3) A Bis notd TVPL(Z)-inconsistent.

(OS$5+$2+3)
B (0 < —xg —x4)
(0 < x4 — as5)

A

Case4: z; occurs inA but notinB, and neither the path;” ~» z; nor the pathr;” ~» z;
in C consists only of constraints 6t4. As in the previous case;; andz; occur in A’

5

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 27

but not in B’, and hence they occur ifi, but not inCg. In this case, however we can
apply a tightening summarization neithertp ~» x; nor toz; ~» z;, since none of
the two paths consists only of constraintof. We can, however perform-ndmonal
tightening summarizatioas follows. LetCy and C£ be the sets of constraints 6f4
andC respectively occurring in the patt] ~ z;7, and IetCA andCB be the sets of
summary constraints of maximal pathsdt, and CP. From C’A U C’B, we can derive
xi_ 2k, z; (cf. Case 3), wherek + 1 is the we|ght of the path; ~ z;7. Therefore,
cLuch): (0<af —a; +2k), and thus, = T — (0 < x —x; +2k). We say
that(0 < o — x; + 2k) is the summary constraint far” ~» z;~ conditioned tc'y.
Using conditional tightening summarization we generaténgerpolant as follows. By

replacing the pathr; ~» 7 with x; 2k, r;, we obtain a negative-weight cyclg,
as in Case 3. Lel’ be theD/L-interpolant computed fromd’ for (C4 \ CF U {(0 <
r —x; +2k)},Cp\ CE), and letl be the correspondirig7 VPZ(Z) formula. Finally,

let P be the conjunction di(7VPZ(Z) constraints correspondingfog.
THEOREM 5.6. (P — I) is an interpolant for(A, B).

PROOF. (i) We know thatC4 \ C¥ U {(0 < af —x; + 2k)} = I, becausd’ is a
DL-interpolant. Moreovei(, U Ty |= (0 < z —x; +2k), and saCf U CpE=(0<
x —x; +2k). Therefore(C'y U U; = I',and thusA U P = 7vpz(z) I, from which
A Fyrverz) (P — I).

(i) Since I’ is aDL-interpolant for(Ca \ CF U {(0 < 2} — z; +2k)},Cp \ CL),

' A (Cp \ CF) is DL-inconsistent, and thusA B isUTVPZ(Z)-inconsistent. Since by
constructionB =y vpzz) Pp, (P — I) A BisUTVPL(Z)-inconsistent.

(iii) From I' < Cp \ CE we have that < B, and fromI’ < C, \ C§ U {(0 <
x —x; +2k)} that! < A. Moreover, all the variables occurring in the constrain@ﬁ

are end-point variables, so trﬁgj Cy andUZ < Cp,andthusPz < AandPg < B.
Therefore(Pp — 1) < Aand(Pg — I) < B. O

EXAMPLE 5.5. We partition the sef of constraints of Example 5.2 intd and B as
follows:

O<$1—ZC2—|—4)
O<—$2—$C3—5)
0 < x5+ 22+ 3)
O<$2—|—ZC6—4)

E (0 <ag—x1+2)
A (B (O S —Tg — 1‘4)

((O S Ty — 1‘5)
Consider the zero-weight cycie of G(A’ A B’) shown in Figure 9. In this case, neither
the pathx] ~» x, nor the pathrz, ~» x5 consists only of constraints of’, and thus

we cannot use any of the two tightening edgési x5 andzy kN x5 directly
for computing an interpolant. However, we can compute tharsaryz, =N xy for

r, ~ x5 conditioned tor: N zg ,» Which is the summary constraint of thg-path
rd ~ x4, and whose corresponding7 VPZ(Z) constraint is(0 < —z — x5). By
replacing the pathr; ~ z3 with such summary, we obtain a negative-weight cy¢le
from which we generate thBL-interpolant(0 < z — 4 — 3), corresponding to the

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

28 . Cimatti, Griggio and Sebastiani

UTVPZL(Z) formula(0 < x; —x3—3). Therefore, the generatéd7 VPZ(Z)-interpolant
IS(OS —$6—$5) — (OS.CCl —1‘3—3).

As in Example 5.4, notice that we cannot generate an intargdtom the conjunction
of summary constraints of maximél, paths, since the formula we obtain (i.€0 <
1+ 26) A (0 < x5 — x3 — 2)) is not inconsistent withB.

6. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

In this Section, we consider the problem of generating pukmts for a pair off; U 7s-
formulas(A4, B), and propose a method based on the Delayed Theory CominifBXIeC)
approach [Bozzano et al. 2006]. First,§6.1 we provide some background on Nelson-
Oppen (NO) and DTC combination methods, and recall fromgi@nd Musuvathi 2005]
the basics of interpolation for combined theories using @n, we present our novel
technique for computing interpolants using DTd®.Q); in§6.3 we discuss the advantages
of the novel method; finally, i186.4, we show how our novel technique can be used to
generate multiple interpolants from the same proof.

6.1 Background

6.1.1 Resolution proofs with NO vs. resolution proofs with DT@ne of the typical
approaches to the SMT problem in combined theories, SVMT(/2), is that of combining
the solvers foff; and for7; with the Nelson-Oppen (NO) integration schema [Nelson and
Oppen 1979]. The NO framework works for combinations of Istaififinite, signature-
disjoint theoriesJ; with equality. Moreover, it requires the input formula to fere (i.e.,

s.t. all the atoms contain only symbols in one theory): if, reopurification step is per-
formed, by recursively labeling termswith fresh variablesy, and by conjoining the
definition atom(v, = ¢) to the formula. This process is linear in the size of the input
formula.® For instance, the formuléf(z + 3y) = g(2z — y)) can be purified into
(f(Var3y) = g(v2e—y)) A (Vatsy = @ + 3Y) A (V22—y = 22 — y)).

In the NO setting, the two decision proceduresfoand7:; cooperate by deducing and
exchangingnterface equalitie¥, that is, equalities between variables appearing in atoms
of different theoriesifiterface variablel

With an NO-based SMT solver, resolution proofs for formutea combinatioriy; U 7
of theories have the same structure as those for formulasimgde theory7. The only
difference is that theory lemmas in this case are the reftiiedNO-combination of; and
T2 (i.e., they aré/; U T3-lemmas) (Figure 10 left). From the point of view of intergibn,
the difference with respect to the case of a single thgory that the7; U 7»-interpolants
for the negations of th@; U 75-lemmas can be computed with the combination method of
[Yorsh and Musuvathi 2005] whenever it applies (§6€1.2).

Recently, an alternative approach for combining theoreSMT has been proposed,
called Delayed Theory Combination (DTC) [Bozzano et al.J08Vith DTC, the solvers
for 71 and7:z do not communicate directly. The integration is performgthe SAT solver,
by augmenting the Boolean search space with up to all theljjesaterface equalities,
so that each truth assignment on both original atoms andacte equalities is checked

10As shown in [Barrett et al. 2002], the purification step is siictly necessary. However, in the rest we shalll
assume that it is performed (as it is traditionally done ipgra on combination of theories), since it makes the
exposition easier.

11 They deduce and exchandsjunctionsof interface equalities if the theory is not convex.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 29

T u7’2 lemma m
\
T u7; -lemma T uT, Iemma T Iemma
‘
O Y
1
(NO) (DTC)

Fig. 10. Different structures of resolution proofs of uisf@bility for 71 U 72-formulas, using NO (left) and
DTC (right).

for consistency independently on both theories. DTC hasraéadvantages wrt. NO,
in terms of versatility, efficiency, and restrictions impdsto 7-solvers [Bozzano et al.
2006; Bruttomesso et al. 2008a], so that many current SMIB iogplement variants and
evolutions of DTC.

With DTC, resolution proofs are quite different from thodastained with NO. There
is no 77 U T3-lemma anymore, because the t@Wpsolvers don’t communicate directly.
Instead, the proofs contain bdfh-lemmas and;-lemmas (Figure 10 right), and — impor-
tantly —they contain also interface equalitieENotice that7;-lemmas derive either from
T;-conflicts and front7;-propagation steps.) In this case, the combination of theds
encoded directly in the proofs (thanks to the presence effate equalities), and not “hid-
den”in the7; U 72-lemmas as with NO. This observation is at the heart of our iba€ed
interpolant combination method.

ExamMPLE 6.1. Consider the following formula:

def

¢ = (a1 = fa2)) A (b1 = f(b2))A
(y—az=1A{y—br=1)A(a1+y=0)A(br+y=1).
¢ is expressed over the combined the6tyF U LA(Q): the first two atoms belong to

EUF, while the last four belong td.A(Q).
Using the NO combination methaglcan be proved unsatisfiable as follows:

(1) From the conjunctiorfy — az = 1) A (y — b2 = 1), the LA(Q)-solver deduces the
interface equalityas = b2), which is sent to th€l/ F-solver;

(2) From (a2 = b2) and the conjunctiotfa; = f(az2)) A (b1 = f(b2)) the EUF-solver
deduces the interface equality; = b;), which is sent to th&€ A(Q)-solver;

(3) Together with the conjunctiofu; +y = 0) A (b1 +y = 1), (a1 = by) causes an
inconsistency in th&€.4(Q)-solver;

(4) TheEUF U LA(Q) conflict-set generated i§(y — az = 1),(y — by = 1), (a1 =
f(az2)), (b1 = f(b2)), (a1 +y = 0),(by +y = 1)}, corresponding to th&/F U
LAQ)-lemmaC £ —(y —ay = 1) V—(y — by = 1)V =(a; = f(az)) V —(by =
f(b2)) Vv =(ar +y=0) V(b +y=1).

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

30 . Cimatti, Griggio and Sebastiani

The corresponding NO proof of unsatisfiability fors thus:
C (bi+y=1)
(a1 +y=0)
(y—b2=1)

(y—a2=1)
(b1 = f(b2))

(a1 = f(a2))

1

With DTC, the Boolean search space is augmented with the sdéitpmssible interface
equalitiesEq = {(a1 = as), (a1 = b1), (a1 = ba), (a2 = br), (as = ba), (b1 = ba)},
so that the DPLL engine can branch on them. If we suppose lieahégative branch is
explored first (and we assume for simplicity that fhaolvers do not perform deductions),
using the DTC combination methgdcan be proved unsatisfiable as follows:

(1) Assigning(az = b2) to false causes an inconsistency in el (Q)-solver, which
generates th&€ A(Q)-lemmaC, = “(y—az=1)V-ly—by=1)V (a2 =b2). C4
is used by the DPLL engine to backjump and unit-propagate= b.);

(2) After such propagation, assignirig; = b1) to false causes an inconsistency in the
EUF-solver, which generates th&l/F-lemmaCy £ —(a; = f(az)) V =(by =
f(b2)) V =(az = ba) V (a1 = b1). Cois used by the DPLL engine to backjump
and unit-propagatéa; = b1);

(3) This propagation causes an inconsistency in £4(Q)-solver, which generates the
LAQ)-lemmaCs = —(y —ay = 1)V =(y — by = 1) V =(a; = b);

(4) After learningCs3, the DPLL engine detects the unsatisfiabilitysof

The corresponding DTC proof of unsatisfiability tois thus:

Ci (y—a2=1)

(y—b2=1)

Co
(b1 = f(b2))

C3
(b1 +y=1)

(a1 +y=0)
(a1 = f(a2))

1

An important remark is in order. It is relatively easy to implent DTC in such a way
that, if both7; and7; are convex, then all -lemmas generated contain at most one pos-
itive interface equality. This is due to the fact that for eex theoriesy it is possible to
implement efficienf -solverswhich generates conflict sets containing at most one negated
equality between variables [Bozzano et al. 2085]E.g., this is true for all thg;-solvers
on convex theories implemented indvH SAT.) Thus, since we restrict to convex theories,
in the rest of this paper we can assume w.l.0.g. that eyelgmma occurring as leaf in

12\We recall that, ifT is convex, themu A A\, =l; =7 Liff u A =l; =7 L for somei, where thel;’s are
positive literals.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 31

a resolution proofI of unsatisfiability deriving from DTC contains at most onespive
interface equality.

6.1.2 Interpolation with Nelson-OpperiThe work in [Yorsh and Musuvathi 2005]
gives a method for generating an interpolant for a gdir B) of 71 U 7a-formulas s.t.
AN B E7,ur, L by means of the NO schema. As in [Yorsh and Musuvathi 2005], we
assume thatl and B have been purified using disjoint sets of auxiliary variabl&/e recall
from [Yorsh and Musuvathi 2005] a couple of definitions.

Definition 6.1 AB-mixed equality An equality between variablds = b) is an AB-
mixed equality iffa A B andb A A (or vice versa).

Definition 6.2 Equality-interpolating theory A theory7 is said to be equality-interpolating
iff, forall AandBin T s.t. AA B =7 (a = b) and for all AB-mixed equalitiega = b),
there exists a termsuch thatd A B =7 (a =) A (t = b) andt < A andt < B.

The work in [Yorsh and Musuvathi 2005] describes procedfwesomputing the term
t from an AB-mixed interface equalitya = b) for some convex theories of interest,
including€UF, LA(Q), and the theory of lists.

Notationally, with the letters;, x;, v, v;, 2 we denote generic variables, whilst with the
lettersa, a;, andb, b; we denote variables s4; A B andb; A A; hence, with the letters
e; we denote generid B-mixed interface equalities in the forfn, = b;); with the letters
7, n; we denote conjunctions of literals where Ad3-mixed interface equality occurs,
and with the letterg:, 1; we denote conjunctions of literals wheAgB3-mixed interface
equalities may occur. Ifi; (respn;) is A, l;, we write —; (resp. —n;) for the clause
Vi i

Let A A B be a7; U Tz-inconsistent conjunction of; U 7»-literals, such thatd =
A1 A As andB £ B; A B, where eachd; and B; is T;-pure. The NO-based method of
[Yorsh and Musuvathi 2005] computes an interpolantfér B) by combining7;-specific
interpolants for subsets of, B and the set of entailed interface equalit{es}; that are
exchanged between tffg-solvers for deciding the unsatisfiability d@f A B. In particular,
let Eq = {e;}; be the set of entailed interface equalities. Due to the featttioth7; and
T2 are equality-interpolating, it is possible to assume vgl.thatFq does not containl B-
mixed equalities, because instead of deducingl&mixed interface equalitya = b), a
T-solvercan always deduce the two corresponding equalfties) A (¢t = b). (Notice
that the other7-solvertreats the ternt as if it were a variable [Yorsh and Musuvathi
2005].) Letd’ £ AU (Eq | A) andB’ £ BU (Eq | B). Then,T;-specific partial
interpolants are combined according to the following intdkgcdefinition:

1 fec A
Inple) = T ife € B (11)
(Ig,_’B,(e) V' Ve, ea la,B(ea)) A /\ebGB’ I4 p(ep) otherwise

wheree is either an entailed interface equality or and]j,,,B,(e) is a7;-interpolant for
(AU —e,B)if e < A, and for(A’, B’ U —e) otherwise (ife < B). The computed
interpolant for(A4, B) is thenl4 p(L). We refer the reader to [Yorsh and Musuvathi 2005]
for more details.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

32 . Cimatti, Griggio and Sebastiani

6.2 From DTC solving to DTC Interpolation

We now discuss how to extend the DTC method to interpola#iarwith [Yorsh and Musu-
vathi 2005], we can handle the case tiiatand7; are convex and equality-interpolating.
The approach to generating interpolants for combined tbgeatarts from the proof gen-
erated by DTC. Leq be the set of all interface equalities occurring in a DTC tation
proof for a7; U Tz-unsatisfiable formula “AAB.

In the caseFq does not containal B-mixed equalities, that idyq can be partitioned into
two sets(Eq \ B) £ {(z = y)|(z = y) < Aand(z = y) £ B} and(Eq | B) £
{(z = y)|(x = y) = B}, nointerpolant-combination method is needéte combination
is already encoded in the proof of unsatisfiability, and &dimapplication of Algorithm
1 to such proof yields an interpolant for the combined thehry) 7;. Notice that this
fact holds despite the fact that the interface equalitie&jroccur neither ind nor in B,
but might be introduced in the resolution prdafby 7-lemmas. In fact, as observed in
[McMillan 2005], as long as for an atomeitherp < A orp < B holds, it is possible to
consider it part ofd (resp. ofB) simply by assuming the tautology clause’ —p to be
part of A (resp. ofB). Therefore, we can treat the interface equalitie§hlg \ B) as if
they appeared idl, and those ifEq | B) as if they appeared iB.

When Eq containsA B-mixed equalities, instead, a proof-rewriting step is parfed
in order to obtain a proof which is free fromB-mixed equalities, that is amenable for
interpolation as described above. The idea is similar toubked in [Yorsh and Musuvathi
2005] in the case of NO: using the fact tlfatandT> are equality-interpolating, we reduce
this case to the previous one by “splitting” evety3-mixed interface equalitya; = b;)
into the conjunction of two parté; = t;) A (¢; = b;), such thatla;, = t;) < A and
(t; = b;) = B. The main difference is that we do ttasposteriorj after the construction
of the resolution proof of unsatisfiabiliti. In order to do this, we traverde and split
eachAB-mixed equality, performing also the necessary maniputatto ensure that the
result is still a resolution proof of unsatisfiability.

We describe this process in two steps.§&2.1 we introduce a particular kind of res-
olution proofs of unsatisfiability, calle -local, and show how to eliminaté B-mixed
interface equalities frone -local proofs; ing6.2.2 we show how to implement a variant of
DTC so that to generate -local proofs.

6.2.1 Eliminating A B-mixed equalities by exploiting ie-locality

Definition 6.3ie -local proof A resolution proof of unsatisfiabilityl is local with re-
spect to interface equalitiege(-local) iff the interface equalities occur only in subpreof
IT# of I1, such that within eachl:

(i) all leaves are als@ -lemma leaves off;
(ii) all the pivots are interface equalities;
(i) the root contains no interface equality;

(iv) every right premise of an inner node is a Il§atemma containing exactly one positive
interface equality:3

As a consequence of this definition, we also have that, wehhl T in IT:

13 We have adopted the graphical convention that at each tesoktep in al'[iz.e subproof, if(a; = b;) is the
pivot, then the premises containirga; = b;) and(a; = b;) are the left and right premises respectively.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 33

(v) all nodes are7; U T»-valid; (Proof sketchthey result from Boolean resolution steps
from 71 -valid and7s-valid clauses, hence they afeU 7»-valid.)

(vi) the only leaf7-lemma which is a left premise contains no positive intezfaqual-
ity. (Proof sketchwe notice that, in a resolution st@%ﬁ if C'3 contains no positive
interface equality, at least one betwégnandC-, contains no positive interface equal-
ity; since by (iv) the right premise contains one positiveeiface equality, only the
left premise contains no positive interface equality. Tthesleftmost leaf/-lemma
of ITi* contains no positive interface equality.)

(vii) if an interface equalitye; occurs negatively in som&-lemmac;, thene; occurs
positively in a leaf7 -lemmacC, which is the right premise of a resolution step whose
left premise derives fron’; and other7-lemmas. Proof sketch:suppose thate;
occurs inC; bute; does not occur in any sucty,. Thene; can not be a pivot, hence
—e; occurs in the root ofl'¢, thus violating (iii).)

Intuitively, in ie -local proofs of unsatisfiability all the reasoning on ifiéee equal-
ities is circumscribed withifli® subproofs, which are linear sub-proofs involving only
T-lemmas as leaves, starting from the one containing noipesitterface equality, each
time eliminating one negative interface equality by resa\it against the only positive
one occurring in another legf-lemma.

ExAaMPLE 6.2. Consider the€UUF U LA(Q) formula ¢ of Example 6.1, and th&-
lemmasCi, Co and C3 introduced by DTC to prove its unsatisfiability. The prabof
Example 6.1 is noie -local, because resolution steps involving interface ditjga are
interleaved with resolution steps involving other atontse Tollowing proofil’, instead, is

ie -local: all the interface equalities are used as pivots ie IH® subproof:

e
%2 pivot (ar = b1)]
L [pivot (a2 = b2)] (az+2=1)
(a1 +2=0)
(z—xz2=1)
(a1 = f(z1))
(a2 = f(x2))
(z—z1=1)
1

1 (ar =bp) vy —ar = 1)V ~(y —b2 = 1)
C2 = (a1 = b) V (b = f(02)V (o = (@) ¥ ~(az = bo)
Cs d:efﬁ(m ty=0Vabr+y=1)V-la=b)

If IT is anie -local proof containingd B-mixed interface equalities, then it is possible
to eliminate all of them fronil by applying Algorithm 2 to everyI¢ subproof ofII. In a
nutshell, eachill® subproof is explored bottom-up, starting from the rightrpise of the
root, each time expanding the rightmost sfdéemmain the forn; £ (a; = bj)V—m; s.t.
(a; = b;) is AB-mixed into the (implicit) conjunction of two novél-lemmasC’ = (a; =

t;) V —m; andC? = (t; = b;) V —n; (step (4)), where; is the AB-pure term computed
from C; as descrlbed i§6.1.2. Then the resolution step agai@stis substituted with the
concatenation of two resolution steps agaitisandC?’ (step (5)) and then the substitution
=(a; = b;) — —(a; = t;) V —(t; = b;) is propagated bottom-up along the left subproof

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

34 . Cimatti, Griggio and Sebastiani

Algorithm 2: Rewriting of IT'® subproofs

(1) Leto be a mapping from negativé B-mixed interface equalities to a disjunction of
two negative interface equalities, such thét(a; = b;)] — —(a; = t;) V =(t; = b;)
andt; is an A B-pure term as described §6.1.2. Initially,o is empty.

(2) Letc; & (a; = b;)V—-pu; be the right premisg -lemma of the root of th&l'® subproof.

def

(3) Replace eachi(a; = b;) in C; with o[—=(a; = b;)], to obtainC;* = (a; = b;) V —;.
If (a; = b;) is not AB-mixed, then lefll be the subproof rooted in the left premise,
and go to step (7).

(4) SpIItC’Z* into Oz/ « (ai = tz) Vo, andC’{’ « (tz = bl) V ;.

(5) Rewrite the subproof

o, into | (@i =) VAt =b) Vg | G

—(a; = bi) V
Yy PRV —(ti = bi) V -y Vg cy
Nk V
where —n;, is obtained by—u; by substituting each negativéB-mixed interface
equality—(a; = b;) with o[=(a; = b;)].
(6) Updates by settingo[—(a; = b;)] to —(a; = t;) V = (t; = b;).

G

(7) If ITis of the form

(8) Otherwise[l is the leaf—(a; = t;) V —(t; = b;) V —uk. In this case, replace each
—(a; = bj) in ~p with o[—(a; = b;)], and then exit.

, setC; to C'; and go to step (3).

I1. Notice thatC! andC!’ are still 7;-valid becaus§; is Equality-interpolating ang, does
not contain otherd B-mixed interfaced equalities.

EXAMPLE 6.3. Consider the formula of Example 6.1 and it -local proof of unsat-
isfiability of Example 6.2. Suppose thais partitioned as follows:

def

6 ANB
A= (a1 = flaz)) Ay —az = 1) A(ar +y =0)
BE (b =f(b2) Aly—b2=1 A1 +y=1)

In this case, both interface equaliti€¢s; = b1) and (a2 = by) are AB-mixed. Consider
theII'® subproof of Example 6.2:

Cr E(aa =ba)Valy—az =1)V(y —by=1) Cs G e
0y E (a1 =b1) V(b1 = f(b2)) V (a1 = f(a2)) V ~(az = b2) CH &1
C3 d:ef—|(a1 +y=0)Va(bi +y=1)V (a1 =b1) O2

©1 = (a1 +y =0) V(b +y=1) V(b1 = f(b2)) V ~(a1 = f(a2)) V =(az = bs)
©2 Ea(a1 +y=0)V (b +y=1) V(b = f(b2)) V ~(a1 = f(a2)) V~(y —az = 1) V =(y — bp = 1)

The first7-lemma processed by Algorithm 2G§. Using the technique of [Yorsh and

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

35

Musuvathi 2005](as = b2) is splitinto(az = y — 1) A (y — 1 = b) (step (4)), thus

obtainingC], C{ and the new proof (in step (5)):
Ol = (a2 =y—1)Valy—az=1)V(y—by=1)
CrE (y—1=b)V-(y—as=1)V-ly—bp=1)
04 £ ~(y—1=bs) V(a1 +y=0) V(b +y=1) V(b = f(b2))V
(a1 = fla2)) V-a(y—az=1)Va(y—b2=1)

Cs Ca
01
05

¢

©2

"
Cl

Then,o[—(az = by)] is setto-(az = y — 1) V =(y — 1 = by) (step (6)), and a new

iteration of the loop (3)-(7) is performed, this time prosieg Cs. First, ~(a2 = bs) is

replaced by-(as =y — 1) V =(y — 1 = bs) (step (3)). Then(a; = b1) can be split into
(a1 = fly—=1)A(f(y—1) = by) (step (4)). After the rewriting of step (5), the proof is:

Oy £ (a1 = fly — 1) V(b1 = f(b2)) V (a1 = flaz)) V ~(az =y — 1)V

=(y —1=102)
Oy £ (fly—1)=b1) V(b = f(b2)) V—(a1 = f(az)) V (a2 = y —)V
—(y —1="b2)

01 = (a1 +y=0)Valbr+y=1)V-(br = f(b2)) V =(a1 = f(a2))V
ﬁ(ag :y—l)Vﬁ(y—lzbg)

O = =(a1 = fly—1) V(a1 +y=0)V-(br +y=1) V(b1 = f(b2))V
—(a1 = f(a2)) V ~(az = b2)

Cs ¢
o
e

"
C2

©5

i

©2

"
Cl

Finally, C5 is processed in step (8)(a; = b1) gets replaced withr(a; = f(y — 1)) V

—(f(y — 1) = b1), and the following final proofI"® is generated:
Cs Gy
oy cy

O

) def

such tha€3 = 03[_‘(0,1 = bl) — _‘(al = f(y — 1)) \ ﬁ(f(y — 1) = bl)]

The following theorem states that Algorithm 2 is correct.

THEOREM 6.4. LetII be alT' subproof, and lefl’ be the result of applying Algorithm

2 toIl. Then:

(a) I’ does not contain anyl B-mixed interface equality; and
(b) I is a valid subproof with the same root Hs

PrROOR

(a) Consider thg -lemmacC; of Step (3). By item (vii) of Definition 6.3, all negative in-
terface equalities occurring ifi; occur positively in leaf/ -lemmas that are closer to
the root ofIl. For the same reason, the fifstlemmacC; analyzed in step (2) contains

no negatived B-mixed interface equalities. Therefore, it follows by ition that all

negatived B-mixed interface equalities i@; must have been splitin Step (4) of a pre-
vious iteration of the loop (3)-(7) of Algorithm 2, and thueey occur ino. The same

argument can be used to show also that at steps (5) and (§)reegativeA B-mixed

interface equality inp, occurs ino.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

36 . Cimatti, Griggio and Sebastiani

(b) We show that:
/ "

(i) Every substepgg# of IT" is a valid resolution step;

(i) every leaf ofIl’ is a7-lemma; and
(iii) the root of Il is the same as that @f.

(i) The only problematic case is the resolution step
ﬁ(ai = ti) V ﬁ(ti = bl) V S Cz/
ﬁ(ti = bl) V =g Vo,

introduced in step (5) of Algorithm 2. In this case, we havshow that at the
end of the algorithm, all the negativeB-mixed interface equalities iny; have
been replaced such that the result is identicat4g. We already know that all
negativeA B-mixed equalities in-p; occur ing, thus we only have to show that
o[—e;] cannot change between the time wher} was rewritten to obtairm,,
and the time in which it is rewritten ing;,. The negative equalitye; is replaced
in —uy at the next iteration of the algorithm (in step (5) for innedes, and in
step (8) for the final leaf). In the meantime, the only update is performed in
step (6), but it involves the negative equalitya; = b;), which does not occur
N =,

(i) Let C; be aT-lemmainll. First, we observe that &; = —(a; = b;) V —u;, then
for anyt; also the claus€’f « —(a; = t;) V —(t; = b;) V -, is aT-lemma,
since(a; = t;) A (t; = b;) E7 (a; = b;) by transitivity. Therefore, it follows
by induction on the number of substitutions that the clawd#ained in steps
(3) and (8) of Algorithm 2 are stilf -lemmas. Finally, since we are considering
equality-interpolating theories, after step (4) of Algbm 2 bothC/ andC?" are
T-lemmas.

(i) Since the root ofll does not contain any interface equality (item (iii) of Defini
tion 6.3), in step (5)1; = —u; and—n, = —ug, and therefore the root does not
change.

O

Clearly, Algorithm 2 operates in linear time on the numbeffefemmas, and thus of
AB-mixed interface equalities. Moreover, every time an ifatee equality is split, only
two new nodes are added to the proof (a right leaf and an ino@ée)n and therefore the
size ofII’ is linear in that offI.

The advantage of havinig -local proofs is that they ease significantly the process of
eliminating A B-mixed interface equalities. First, since all the reasgninvolving inter-
face equalities is confined ifi’® subproofs, only such subproofs — which typically con-
stitute only a small fraction of the whole proof — need to lmvérsed and manipulated.
Second, the simple structure B¢ subproofs allows for an efficient application of the
rewriting process of steps (5) and (3), preventing any esiptoin size of the proof. In
fact, e.g., if in step (5) the right premise of the last stepeniastead the root of some
subproofl; with C; as a leaf, then two copies B, andII; would be produced, in which
each instance dfu; = b;) bust be replaced wittu; = ¢;) and(¢, = b;) respectively.

6.2.2 Generatinge -local proofs in DTC.In this section we show how to implement
a variant of DTC so that to generate-local proofs of unsatisfiability. For the sake of

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 37

I’_/.—'—"""’_{:: Cria C)Lrl Czl Cy
LT v S8 NN
¢ ~ // N L S L . N 11 C
ST A B N \ e 1
j \ '/.,_ ‘ A ,k, * / \1\\/
... DPLLL B2 2 pivot one; <
g DPLL-2 : PROOF -
S ey S GENERATION (&
s pivot one; &
unit-/7-prop. €2 onj C? ,/’"; :
S CM\/C e *EE\C/)\/CF)%'I:TING
unit-/T-prop.elonjct < ' c
~ bl ¢ T -tﬂ 2
3 pivot oney <7772
—eq K -~ A Cbl
LearnC; lCI%-H K
LearnCl11
e
LearnC,

Fig. 11. Simple strategy for generatifg-local proofs. Left: DTC search; top-right: correspond{sgb)proof;
bottom-right:IT*® (sub)proof after rewriting.

simplicity, we describe first a simplified algorithm which kes use of two distinct DPLL
engines. We then describe how to avoid the need of a secont Bfitjine with the use of
a particular search strategy for DTC.

The simplified algorithm uses two distinct DPLL enginesnain one and arauxiliary

one, which we shall call DPLL-1 and DPLL-2 respectively. Gmier Figure 11, left.
DPLL-1 receives in input the clauses of the input probleifwhich we assume pure and
T1 UTz-inconsistent), but no interface equality, which are iadtgiven to DPLL-2. DPLL-
1 enumerates total Boolean modgl®f ¢, and invokes the tw@;-solvers separately on
the subsetgiy; and u7, of u. If one 7;-solverreports an inconsistency, then DPLL-1
backtracks. Otherwise, boghy; are7;-consistent, and DPLL-2 is invoked on the list of
unit clauses composed of tfig U 7s-literals iny, to check its7; U 73-consistency.

DPLL-2 branches only on interface equalities, assignirgnthalways to false first.

Some interface equalities, however, may be assigned to true by unit-propagation on
def

previously-learned clauses in the foﬂ‘q’i = ﬂu{ \% e-{, or by 7 -propagation on deduction
clausesC” in the same form; we call/ the antecedent clausef /. 1 (As in [Brut-
tomesso et al. 2008a], we assume that whéRpropagation step = ¢! occurs,u’
being a subset of the current branch, the deduction clatis& -’ v ¢/ is learned, ei-
ther temporarily or permanently; if so, we can see this sge@ anit-propagation o@-ij.)
When all the interface equalities have been assigned avalitle, the propositional model
1 = pr Upr, Upie is checked foff; U T2-consistency by invoking each of thig-solvers

4 Notationally, e{ denotes thg-th most-recently unit-propagated interface equalityhimbranch in whiclC; is

learned, ancd?{ o ﬁug \ eg denotes the antecedent clause;bf

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

38 . Cimatti, Griggio and Sebastiani

on i, U pie. ¥ Sinceg is inconsistent, one of the twh-solvers detects an inconsistency
(if both do, we consider only the first). Therefordalemmac is generated. As stated
at the end 0£6.1.1, we can assume w.l.0.g. tii&t contains at most one positive interface
equalitye;. (Notice also that all negative interface equalitieg in C1, if any, have been

assigned by unit-propagation @r-propagation on some antecedent claﬁée DPLL-2
then learng”; and uses it as conflicting clause to backjump: starting f€gnit eliminates
from the clause everye] by resolving the current clause against its antecedense(@y

until no negated equality occurs in the final cladge *°

If C; includes one positive interface equality, then also the final clausg; includes
it, so that DPLL-2 use€’; as a conflict clause to jump up foand to unit-propagate; .

Then DPLL-2 starts exploring a new branch. This procesgisated on several branches,
learning a sequence @f-lemmag’y, ..., C eachC; containing only one positive interface
equalitye;, until a branch causes the generation gf--femmacC,;; containing no positive
interface equalities. The@',, is resolved backward against the antecedent clauses of
its negative interface equalities, generating a final conéliauseC* which contains no

interface equalities.

Overall, DPLL-2 has checked tHg U Ts-unsatisfiability ofu, building a resolution
(sub)proofll* whose root isC*. (Figure 11, top right.) Then th§; U 72-lemmaC™ is
passed to DPLL-1, which uses it as a blocking clause for thigasenty, it backtracks

and continues the search. When the empty clause is obtdingenerates a proof of
unsatisfiability in the usual way (see e.g. [van Gelder 2D07]
Since the main solver knows nothing about interface edeslithey can only appear

inside the proofs of the blocking clauses generated by thiiay solver (likeIl*). Each
IT* is not yet all'® subproof, since it complies only with items (i), (i) andi)iof Def-
inition 6.3 but not with item (iv). The reason for the lattexct is thatll* contains a

set of right brancheBl¢,, one of each/-lemmac; in {Cyy1,...,C1}, representing the

resolution steps to resolve away the interface equalitiigsduced by unit-propagatich/

propagation in each branch. Each such sub-brahehhowever, can be reduced to length

one by moving downwards the resolution steps with the adedeclauses’}, C?, ...

which C; encounters in the branch. (Figure 11, bottom right.) Thidoise by recursively
applying the following rewriting step ti¢,, until it reduces to the single clauég:

cl i1
—— i

7

Ci

ol

J J 7 J
Ve, oy Ve Ve

—e; V ﬁlu;

g Vo Ve

S N o Vo

As a result, eachl* is transformed into &l'® subproof, so that the final proofis-local.

151n fact, it is not necessary to wait for all interface equeditto have a value before invoking tfig-solvers.

Ic,

=

i

j—1
C;

7

ol

—e; Vool |l Vel Ve

1
Ci

gV ol v el

cl
——
Ve

SV gV gy

Rather, the standamhrly pruningoptimization (se€2.2) can be applied.

161n order to determine the order in which to eliminate theriiaige equalities, thémplication graphof the

auxiliary DPLL engine can be used. This is a standard pracetse conflict analysis in modern SAT and SMT
solvers (see, e.g., [van Gelder 2007; Sebastiani 2007]).

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 39

In an actual implementation, there is no need of having twetirdit DPLL solvers for
constructinge -local proofs. In fact, we can obtain the same result by dadg variant
of the DTC Strategy 1 of [Bruttomesso et al. 2008a]. We negkacs an interface equality
for case splitting if there is some other unassigned atord,ves always assign false to
interface equalities first. Moreover, we “delay™-propagation of interface equalities until
all the original atoms have been assigned a truth value. Il¥ziméhen splitting on inter-
face equalities, we restrict both the backjumping and tamieg procedures of the DPLL
engine as follows. Let be the depth in the DPLL tree at which the first interface agual
is selected for case splitting. If during the exploratiothef current DPLL branch we have
to backjump abové, then we generate by resolution a conflict clause that doesam
tain any interface equality, and “deactivate” all thelemmas containing some interface
equality — that is, we do not use sughlemmas for performing unit propagation — and
we re-activate them only when we start splitting on integfaqualities again. Using such
strategy, we obtain the same effect as in the simple algonitsing two DPLL engines: the
search space is partitioned in two distinct subspaces,ta@boriginal atoms and the one
of interface equalities, and the generated proof of urfeatitity reflects such partition.

Finally, we remark that what described above is amtgpossible strategy for generating
ie -local proofs, and not necessarily the most efficient onerddeer, that of generating
ie -local proofs is only aufficientcondition to obtain interpolants from DTC avoiding du-
plications of sub-proofs, and more general strategies reayhceived. The investigation
of alternative strategies is part of ongoing and future work

6.3 Discussion

Our new DTC-based combination method has several advantage the traditional one
of [Yorsh and Musuvathi 2005] based on NO:

(1) Itinherits all the advantages of DTC over the traditioN® in terms of versatility,
efficiency and restrictions imposed o-solvers [Bozzano et al. 2006; Bruttomesso
et al. 2008a]. Moreover, it allows for using a more modern Sddlver, since many
state-of-the-art solvers adopt variants or extensionsIdf ihstead of NO.

(2) Instead of requiring an “ad-hoc” method for performihg ttombination, it exploits
the Boolean interpolation algorithm. In fact, thanks tofie that interface equalities
occur in the proof of unsatisfiabilityi, once thed B-mixed terms il 1 are split there is
no need of any interpolant-combination method at all. Int@st, with the NO-based
method of [Yorsh and Musuvathi 2005] interpolants foiJ 75 -lemmas are generated
by combining “theory-specific partial interpolants” foethwo 7;’s with an algorithm
that essentially duplicates the work that in our case isgqoeréd by the Boolean algo-
rithm. This allows also for potentially exploiting optinaition techniques for Boolean
interpolation which are or will be made available from tterature.

(3) By splitting AB-mixed terms onlyafter the construction of the prodt, it allows
for computing several interpolants for several differemtitions of the input problem
into (A, B) from the same prodfl . This is particularly important for applications in
abstraction refinement [Henzinger et al. 2004]. (This femisidiscussed if6.4.)

The work of [Yorsh and Musuvathi 2005] can in principle de&hmon-convex theories.
Our approach is currently limited to the case of convex tiesphowever, we see no reason
that would prevent from it being extensible at least thécadly to the case of nonconvex

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

40 . Cimatti, Griggio and Sebastiani

theories. Extending the approach to non-convex theorigarisof ongoing work. We also
remark that implementing the algorithm of [Yorsh and Mughv2005] for non-convex
theories is a non-trivial task, and in fact we are not awar@gfsuch implementation.

Another algorithm for computing interpolants in combinkddries is given in [Sofronie-
Stokkermans 2006]. Rather than a combination of theoriéls dijoint signatures, that
work considers the interpolation problem for extensiorsloése (convex) theory with new
function symbols, and it is therefore orthogonal to ourse $hlution adopted is however
similar to what we propose, in the sense that also the algoritf [Sofronie-Stokkermans
2006] works by splittingd B-mixed terms. The difference is that our algorithm is tightl
integrated in an SMT context, as it is guided by the resofypimof generated by the DPLL
engine.

6.4 Generating multiple interpolants

In §2.3 we remarked that a sufficient condition for generatindtipla interpolants is that

all the interpolantd;’s are computed from the same proof of unsatisfiability. When
generating interpolants with our DTC-based algorithm, éasv, we generate a different
proof of unsatisfiabilityll; for each partition of the input formula into A; and B;. In
particular, evenyl; is obtained from the same “base” prdaf by splitting all theA; B;-
mixed interface equalities with the algorithm described6r?. In this section, we show
that (2) (at§2.3) holds also when eadlh; is obtained from the same -local proofII by

the rewriting of Algorithm 2 0%6.2.1. In order to do so, we need the following lemma.

LEMMA 6.5. Let® be a7; U T2-lemma, and lefI be all'® proof for it which does not
contain anyAB-mixed term. Then the formulk, associated t@® in Algorithm 1 is an
interpolant for(—-© \ B, -0 | B).

PROOF By induction on the structure @f, we have to prove that:

(1) -©\ B E Is;
(2) len(=© 1 B) E L;
(3) Ig contains only common symbols.

The base case is whéhis just a single leaf. Then, the lemma trivially holds by diiiom
of I in this case (see Algorithm 1).

For the inductive step, lé; £ (z = y) V ¢; andO, £ —(z =) V ¢, be the antecedents
of ©inIL (S0O £ ¢ V ¢). Let Io, andle, be the interpolants foP; and©- (by the
inductive hypothesis).

def

If (SC = y) A B, thenlg = Ig, V lo,.

(1) By the inductive hypothesié;- g1 A =(z =y))\ B=(-¢1 \ B) A-(x =y) E
Io,, and(—¢2 \ B) A (z = y) |E le,. Then by resolutiorf—¢; A —pa) \ B =
-0\ B E Is.

(2) By the inductive hypothesidg, E ¢1 | B andle, = ¢2 | B, sole, V lo, E
(61 V ¢o) | B, thatisIe A (—© | B) = L.

(3) By the inductive hypothesis botl, and/e, contain only common symbols, and
so alsolg does.

If (x =1y) < B, thenlg £ Ig, A lo,.

(1) By the inductive hypothesis;¢1 \ B = Io, and—¢2 \ B = Ie,, SO (—¢1 A
—¢2)\ B=-0\B E Io.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 41

(2) By the inductive hypothesis, we also have that &= ¢; | BV (x = y) and
Io, E ¢2 | BV —(z = y). Therefore,lo, A lo, = (1 V ¢2) | B, thatis
IoN(-© | B) = L.

(3) Finally, also in this case both,, andle, contain only common symbols, and so
alsolg does. [

We now formalize the sufficient condition of [Henzinger et 2004] that (2) holds if
theI;’s are computed from the sanhke The proof of it will be useful for showing that (2)
holds also if thel;’s are computed fronil;’s obtained frondI by splitting theA; B;-mixed
interface equalities.

def

THEOREM 6.6. Let¢ = ¢1 A g2 A @3, and letll be a proof of unsatisfiability for it. Let
A Ep1, B Z py A3, A = ¢ Ay and B £ ¢, and letl’” andI” be two interpolants
for (A’, B') and (A", B") respectively, both computed frdh Then

I'Ngo =T

PROOF. Letllg be a proof whose root is the clau®e We will prove, by induction on
the structure oflg, that

Io N2 E 15V (O ¢3),

wherelg is defined as in Algorithm 1. The validity of the theorem falloimmediately,
by observing that the root df is L.

We have to consider three cases:

(1) Thefirstis wher® is an input clause. Then, we have three subcases:
(@) IfO € ¢3,thenly, £ T, 14 = T and(© \ ¢3) = L, so the theorem holds.
(b) 1 © € ¢1,thenly £ (O] (p2Uds)), I5V (O \d3) = (O | ¢3)V(0\¢3) = O,
so the theorem holds also in this case.
(€) If © € ¢, thenly A g2 = o andIf V (O \ ¢3) = O, so again the implication
holds.

(2) The second is whe@ is a7-lemma. In this case, we have thigtis an interpolant for
(7O \ (P2 U ¢3), 7O | (¢2 U ¢3)) andI{ is an interpolant fo(—0 \ ¢3, =0 | ¢3).
Therefore, by the definition of interpolatit;©\ (p2Ugs)) = I and(—0\ ¢3) = 1.
Therefore, I, V (O \ (¢2 U ¢3)) andIg Vv (O \ ¢3) are valid clauses, and so the
implication trivially holds.

def

(3) Inthis case is obtained by resolution fro; = ¢V pand©y = ¢V —p. If p € ¢y
orp € ¢3, then by the inductive hypotheses tligt A ¢z = 1.V (©; \ ¢3), we have
thatIg A ¢ =15 V (O \ ¢3).

If p € 6o, thenly = I AT, andIf = 15 Vv 14, . Again, by the inductive
hypotheses;, A ¢2 =I5 V (O \ ¢3) holds. O

def

THEOREM 6.7. Letg = ¢y Ao A 3. Let A’ = ¢y, A” = 1 Ao, B = 9 A b3, and
B" = ¢,. LetII be a proof of unsatisfiability fop, and letll’ andII” be obtained fromI
by splitting all theA’ B’-mixed andA” B”-mixed interface equalities respectively. L&t
be an interpolant for A’, B’) computed fronil’, andI” be an interpolant fo A”, B")
computed fromiI”. Then

I'Ngo =T

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

42 . Cimatti, Griggio and Sebastiani

PROOF We observe thall’ andII” are identical except for somig'® subproofs that
contained some mixed interface equalities. Then, we cacegbas in Theorem 6.6, we
just need to consider one more case, namely vihaa 7, U7>-lemma at the root of &'
subproof. In this case, thanks to Lemma 6.5 we have the sdusisn as in the second
case of the proof of Theorem 6.6, and so we can apply the saguenant. [

Thus, due to Theorem 6.7, we can use our DTC-based inteigolaethod in the con-
text of abstraction refinement without any modification: sitenough to remember the
original proofIl, and compute the interpolaht from the proofll; obtained by splitting
the A; B;-mixed terms irl1, for each partition of the input formulainto A; and B; as in

(D).

7. EXPERIMENTAL EVALUATION

The techniques presented in previous sections have bedenmapted within MATHSAT

4 [Bruttomesso et al. 2008b] MHSAT is an SMT solver supporting a wide range of
theories and their combinations. In the last SMT solverspetition (SMT-COMP’08),

it has proved to be competitive with the other state-ofdhtesolvers. In this Section, we
experimentally evaluate our approach.

7.1 Description of the benchmark sets

We have performed our experiments on two different sets n€tmarks. The first is ob-
tained by running the BasT software model checker [Beyer et al. 2007] on some Windows
device drivers; these are similar to those used in [Rybalkband Sofronie-Stokkermans
2007]. This is one of the most important applications of iptdation in formal verifi-
cation, namely abstraction refinement in the context of CRGEhe problem represents
an abstract counterexample trace, and consists of a cdigormaf atoms. In this setting,
the interpolant generator is called very frequently, eaule tvith a relatively simple input
problem.

The second set of benchmarks originates from the SMT-LIBi[&aand Tinelli 2006],
and is composed of a subset of the unsatisfiable problemsingedent SMT solvers
competitions ittp://www.smtcomp.org). The instances have been converted to
CNF and then split in two consistent parts of approximatedystame size. The set consists
of problems of varying difficulty and with a nontrivial Bo@le structure.

The experiments have been performed on a 3GHz Intel Xeonimawlith 4GB of RAM
running Linux. All the tools were run with a timeout of 600 seds and a memory limit
of 900 MB. All the benchmark instances, thealWH SAT executable, and the set of scripts
used to perform the experiments are availabletatp: //disi.unitn.it/~griggio/
papers/tocl_itp.tar.bz?2.

7.2 Comparison with the state-of-the-art tools available

In this section, we compare with the other interpolant gatoes which are available:d€i
[McMillan 2005; Jhala and McMillan 2006f;LP-PROVER [Rybalchenko and Sofronie-
Stokkermans 2007] and CSAT [Beyer et al. 2008]. Other natural candidates for compar-
ison would have beenA® [Ball et al. 2005] and LFTER [Kroening and Weissenbacher
2007]; however, it was not possible to obtain them from thibars. We also remark that
no comparison with INT2 [Jain et al. 2008] is possible, sitteedomains of applications
of MATHSAT and INT2 are disjoint: INT2 can handied(Z) equations/disequations and

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories
Family #of problems | MATHSAT Foci CLP-PROVER | CSISAT

kbfiltr.i 64 0.16 0.36 1.47 0.17

diskperf.i 119 0.33 0.78 3.08 0.39

floppy.i 235 0.73 1.64 5.91 0.86

cdaudio.i 130 0.35 1.07 2.98 0.47

43

Fig. 12. Comparison of execution times ofAvH SAT, Focl, cLP-PROVERand CSEAT on problems generated

Execution Time

1le+06

100000

10000

1000

2x

ax
Single theory
Multiple theories

100

by BLAST.
1000
0 o
@
100 F° o
o]
— © g
U o]
o o & %5
L 10 fo ©
o]
oo g @
18 o0&
the ee0
0 o
@o@g
o/
0.1 - L
0.1 1

I
10 100

MATHSAT

10
1000

Size of the Interpolant

o0 o
°0 o
L 58 -~ 4
B .
2} ‘
o ° H
¥ g]
®oom ",o o oo
o B 5
o .o/ 7 o
© 08,5 o

2x

4x
Single theory ©
Multiple theories &

I I
100 1000

I I
10000 100000 let

MATHSAT

Fig. 13. Comparison of MTHSAT and Foci on SMT-LIB instances: execution time (left), and size
interpolant (right). In the left plot, points on the horizahand vertical lines are timeouts/failures.

Execution Time

1000
Jol=]
S0 oo@
o,
100 | ° o}
®
10} ©
o
w
>
&
1F .
d °8
) &
01} T ——
4x
0.01 . . ! L
0.01 0.1 1 10 100 1000
MATHSAT

Fig. 14. Comparison of MTHSAT andcLP-PROVERON conjunctions of£.A(Q) atoms.

of the

modular equations but only conjunctions of literals, wiasr®aTHSAT can handle formu-
las with arbitrary Boolean structure, but does not supgottZ) except for its fragments
DL(Z) andUTVPL(Z).

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

44 . Cimatti, Griggio and Sebastiani

Execution Time

=S

1000

100 °

CSlIsAT

0.01

L L L
0.01 0.1 1 10

MATHSAT

Fig. 15. Comparison of MTHSAT and CS§AT on

SMT-LIB instances.

L
100

1000

Execution Time

— 7 VY. N —

1000

CSlsAT

o1t

0.01 L Al P - ol

L A ——
Float precision error——

0.01 0.1 1 10
MATHSAT

L
100

Fig. 16. Comparison of MTHSAT and CS§AT on

conjunctions of£.A(Q) atoms.

The comparison had to be adapted to the limitationsaf iFCLP-PROVERaNd CSEAT.

In fact, the current version ofdci which is publically available does not handle the full
LA(Q), but only theDL(Q) fragment’. We also notice that the interpolants it generates
are not alway®DL(Q) formulas. (See, e.g., Example 4.1 of SectionclLp-PROVERdOES
handle the full. A(Q), but it accepts only conjunctions of atoms, rather than fdaswith
arbitrary Boolean structure. C8AT, instead, can deal witf/F U LA(Q) formulas with
arbitrary Boolean structure, but it does not support Baokiables. These limitations
made it impossible to compare all the four tools on all thésinses of our benchmark sets.
Therefore, we perform the following comparisons:

— We compare all the four solvers on the problems generat@&1 bgT;

— We compare MTHSAT with Foci on SMT-LIB instances in the theories 6t/ F,
DL(Q) and their combination. In this case, we compare both theutierctimes
and the sizes of the generated interpolants (in terms of puwinodes in the DAG
representation of the formula). For computing interpdantEU/ F, we apply the
algorithm of [McMillan 2005], using an extension of the alilom of [Nieuwenhuis
and Oliveras 2007] to generafé{ F proof trees. The combinatiafi/F U DL(Q) is
handled with the technique described

— We compare MTHSAT, cLP-PROVERand CSEAT on LA(Q) problems consisting

of conjunctions of atoms. These problems are single branchtihe search trees ex-
plored by MaTHSAT for someL.A(Q) instances in the SMT-LIB. We have collected
several problems that took more tHah seconds to MTHSAT to solve, and then ran-
domly pickeds0 of them. In this case, we do not compare the sizes of the iolmnps
as they are always atomic formulas;

— We compare MTHSAT and CS$AT on the subset (Consisting of 78 instances of the
about 400 collected) of the SMT-LIB instances without Beoleariables.

17For example, it fails to detect th@.A(Q)-unsatisfiability of the following problem(0 < y — z +w) A (0 <

z—z—w)AN0<z—y—1).

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . 45

The results are collected in Figures 12, 13, 14, 15 and 16. aNeobserve the following
facts:

— Interpolation problems generated by 43T are trivial for all the tools. In fact, we
even had some difficulties in measuring the execution tineiahly. Despite this,
MATHSAT and CS$AT seem to be a little faster than the others.

— For problems with a nontrivial Boolean structure AMiSAT outperforms BCl in
terms of execution time. This is true even for problems incivabined theory U/ F U
DL(Q), despite the fact that the currentimplementation is stéliminary.

As regards CSHAT, it could solve (within the time and memory limits) only 5 diet
78 instances it could potentially handle, and in all casesWVBAT outperforms it.

— In terms of size of the generated interpolants, the gapdstiWihATHSAT and FocCl
is smaller on average. However, the right plot of Figure 18i¢l considers only
instances for which both tools were able to generate anpakent) shows that there
are more cases in which MtHSAT produces a smaller interpolant.

— On conjunctions o£.A(Q) atoms, MaTHSAT outperformscLP-PROVER sometimes
by more than two orders of magnitude. The performance af WVBAT and CS$AT
is comparable on such instances, witiniWi SAT being slightly faster. However,
there are several cases in which G&t computes a wrong result, due to the use
of floating-point arithmetic instead of infinite-precisianthmetic (which is used by
MATHSAT).

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how to efficiently build integuis using state-of-the-art
SMT solvers. Our methods encompass a wide range of theand@sding EUF, DL,
UTVPZ, and L A), and their combination (based on the Delayed Theory Coatioin
schema). A thorough experimental evaluation shows thgbithposed methods retain the
efficiency of the solvers, and are vastly superior to theestéthe art interpolants, both in
terms of expressiveness, and in terms of efficiency.

In the future, we plan to investigate the following issuestst-we will improve the
implementation of the interpolation method for combinegitties, that is currently rather
naive, and limited to the case of convex theories. SecordyilV investigate interpola-
tion with other rules, in particular Ackermann’s expansiéinally, we will integrate our
interpolator within a CEGAR loop based on decision procedusuch as BLAST or the
new version of NUSMV. In fact, such an integration raisesri@sting problems related to
controlling the structure of the generated interpolanitsild and McMillan 2006; 2007],
e.g. in order to limit the number or the size of constants ooty in the proof.

REFERENCES

BALL, T. AND JONES, R. B., Eds. 2006.Computer Aided Verification, 18th International Conferen€AV
2006, Seattle, WA, USA, August 17-20, 2006, Proceedirggure Notes in Computer Science, vol. 4144,
Springer.

BALL, T., LAHIRI, S. K.,AND MUSUVATHI, M. 2005. Zap: Automated theorem proving for software asialy
In Proc. LPAR G. Sutcliffe and A. Voronkov, Eds. LNCS, vol. 3835. Spring&-22.

BARRETT, C. W., DiLL, D. L., AND STUMP, A. 2002. A Generalization of Shostak’'s Method for Combgnin
Decision Procedures. FroCos A. Armando, Ed. LNCS, vol. 2309. Springer, 132-146.

BEYER, D., HENZINGER, T. A., JHALA, R.,AND MAJUMDAR, R. 2007. The software model checkerA&T.
STTT 95-6, 505-525.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

46 . Cimatti, Griggio and Sebastiani

BEYER, D., ZUFFEREY, D., AND MAJUMDAR, R. 2008. CS$AT: Interpolation for LA+EUF. See Gupta and
Malik [2008], 304—308.

BozzaNO, M., BRUTTOMESSQ R., OMATTI, A., JUNTTILA, T., ROSSUM, P., SHULZ, S.,AND SEBAS-
TIANI, R. 2005. MathSAT: A Tight Integration of SAT and Mathemati®ecision ProcedureJournal of
Automated Reasoning 35;3 (October).

BozzaNO, M., BRUTTOMESSQR., OMATTI, A., JUNTTILA, T.,VAN ROSSUM, P., RANISE, S.,AND SEBAS-
TIANI, R. 2006. Efficient Theory Combination via Boolean Searkitformation and Computation 2040
(October), 1411-1596.

BRUTTOMESSQ R., QMATTI, A., FRANZEN, A., GRIGGIO, A., AND SEBASTIANI, R. 2008a. Delayed The-
ory Combination vs. Nelson-Oppen for Satisfiability ModUlbeories: A Comparative Analysis. Extended
version.Annals of Mathematics and Atrtificial Intelligenc&o appear.

BRUTTOMESSQR., OMATTI, A., FRANZEN, A., GRIGGIO, A., AND SEBASTIANI, R. 2008b. The MTHSAT
4 SMT solver. See Gupta and Malik [2008], 299-303.

CaBoDI, G., MURCIANO, M., Nocco, S.,AND QUER, S. 2006. Stepping forward with interpolants in un-
bounded model checking. FProc. ICCAD’06 S. Hassoun, Ed. ACM.

CIMATTI, A., GRIGGIO, A., AND SEBASTIANI, R. 2008. Efficient Interpolant Generation in Satisfiapilit
Modulo Theories. IfProc. TACASLNCS, vol. 4963. Springer.

CIMATTI, A., GRIGGIO, A., AND SEBASTIANI, R. 2009. Interpolant Generation for UTVPI.Pnoc. CADE-22
LNCS. Springer. To appear.

COTTON, S.AND MALER, O. 2006. Fast and Flexible Difference Constraint Propagdor DPLL(T). InProc.
SAT A. Biere and C. P. Gomes, Eds. LNCS, vol. 4121. Springer;-188.

Davis, M., LOGEMANN, G.,AND LOVELAND, D. W. 1962. A machine program for theorem-provir@om-
mun. ACM 57, 394-397.

DUTERTRE, B. AND DE MOURA, L. 2006. A Fast Linear-Arithmetic Solver for DPLL(T). Se@lBand Jones
[2006], 81-94.

ENDERTON, H. 1972.A Mathematical Introduction to LogicAcademic Press.

ETESsAMI, K. AND RAJAMANI, S. K., Eds. 2005Computer Aided Verification, 17th International Conferenc
CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Prooegsl Lecture Notes in Computer Science, vol.
3576. Springer.

GUPTA, A. AND MALIK, S., Eds. 2008Computer Aided Verification, 20th International ConferenCAV 2008,
Princeton, NJ, USA, July 7-14, 2008, ProceedingsCS, vol. 5123. Springer.

HARVEY, W. AND STUCKEY, P. 1997. A unit two variable per inequality integer constraolver for constraint
logic programming. IrAustralian Computer Science Conference (Australian Cdergscience Communica-
tions). 102-111.

HENZINGER, T. A., JHALA, R., MAJUMDAR, R.,AND MCMILLAN, K. L. 2004. Abstractions from proofs. In
POPL N. D. Jones and X. Leroy, Eds. ACM, 232-244.

HERMANNS, H. AND PALSBERG, J., Eds. 2006.Tools and Algorithms for the Construction and Analysis of
Systems, 12th International Conference, TACAS 2006 Hétdd®f the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2006, Vienna, Austriarchl 25 - April 2, 2006, Proceeding&ecture
Notes in Computer Science, vol. 3920. Springer.

JAFFAR, J., MAHER, M. J., STUCKEY, P. J.,AND YAP, R. H. C. 1994. Beyond Finite Domains. RPCP.
LNCS, vol. 874. Springer, 86-94.

JaIN, H., CLARKE, E. M., AND GRUMBERG, O. 2008. Efficient Craig Interpolation for Linear Diophiuet
(Dis)Equations and Linear Modular Equations. See GuptaMailk [2008], 254—267.

JHALA, R.AND MCMILLAN, K. 2005. Interpolant-based transition relation appraion. See Etessami and
Rajamani [2005], 39-51.

JHALA, R.AND MCMILLAN, K. L. 2006. A Practical and Complete Approach to Predicatérement. See
Hermanns and Palsberg [2006], 459-473.

JHALA, R.AND MCMILLAN, K. L. 2007. Array Abstractions from Proofs. ©AV, W. Damm and H. Hermanns,
Eds. LNCS, vol. 4590. Springer, 193-206.

KAPUR, D., MAJUMDAR, R.,AND ZARBA, C. G. 2006. Interpolation for data structures. SIGSOFT FSE
M. Young and P. T. Devanbu, Eds. ACM, 105-116.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories . a7

KROENING, D. AND WEISSENBACHER G. 2007. Lifting Propositional Interpolants to the Woravel. In
FMCAD. IEEE Computer Society, Los Alamitos, CA, USA, 85-89.

LAHIRI, S. K.AND MUSUVATHI, M. 2005. An Efficient Decision Procedure for UTVPI Conattai InFroCos
B. Gramlich, Ed. Lecture Notes in Computer Science, vol.73Bpringer, 168-183.

L1, B. AND SOMENZzI, F. 2006. Efficient Abstraction Refinement in Interpolat®ased Unbounded Model
Checking. See Hermanns and Palsberg [2006], 227-241.

MARQUES-SILVA, J. 2007. Interpolant Learning and Reuse in SAT-Based MoHetking.Electr. Notes Theor.
Comput. Sci. 1743, 31-43.

MCMILLAN, K. L. 2003. Interpolation and SAT-Based Model CheckingCWiV, W. A. H. Jr. and F. Somenzi,
Eds. Lecture Notes in Computer Science, vol. 2725. Sprirgdr3.

MCMILLAN, K. L. 2005. An interpolating theorem proverheor. Comput. Sci. 344, 101-121.

MCMILLAN, K. L. 2006. Lazy Abstraction with Interpolants. See Baltlalones [2006], 123—-136.

MINE, A. 2001. The Octagon Abstract Domain. \WCRE 310—.

NELSON, G. AND OPPEN D. 1979. Simplification by Cooperating Decision ProcedurdCM Trans. on
Programming Languages and Systemg,1245-257.

NIEUWENHUIS, R. AND OLIVERAS, A. 2005. DPLL(T) with Exhaustive Theory Propagation arglApplica-
tion to Difference Logic. See Etessami and Rajamani [2088]-334.

NIEUWENHUIS, R.AND OLIVERAS, A. 2007. Fast Congruence Closure and ExtensibifsComput. 20054,
557-580.

PUDLAK, P. 1997. Lower bounds for resolution and cutting planesfgrand monotone computationd. of
Symb. Logic 623.

RANISE, S. AND TINELLI, C. 2006. The Satisfiability Modulo Theories Library (SMTB).
www.SMT-LIB.org.

RYBALCHENKO, A. AND SOFRONIE-STOKKERMANS, V. 2007. Constraint Solving for Interpolation. M-
CAl, B. Cook and A. Podelski, Eds. Lecture Notes in Computerreievol. 4349. Springer, 346-362.

SEBASTIANI, R. 2007. Lazy Satisfiability Modulo Theoriedournal on Satisfiability, Boolean Modeling and
Computation, JSAT 3-4, 141-224.

SOFRONIE-STOKKERMANS, V. 2006. Interpolation in Local Theory Extensions. IICAR U. Furbach and
N. Shankar, Eds. Lecture Notes in Computer Science, voD 438ringer, 235-250.

TSEITIN, G. S. 1968. On the complexity of derivation in propositiocelculus. Studies in Constructive Math-
ematics and Mathematical Logic, Parf 215-125.

VAN GELDER, A. 2007. Verifying Propositional Unsatisfiability: Pitlato Avoid. In SAT, J. Marques-Silva and
K. A. Sakallah, Eds. Lecture Notes in Computer Science,4801. Springer, 328-333.

VANDERBEI, R. J. 2001 Linear Programming: Foundations and ExtensioSpringer.

YORSH, G. AND MUSUVATHI, M. 2005. A combination method for generating interpolantsn CADE,
R. Nieuwenhuis, Ed. LNCS, vol. 3632. Springer.

ZHANG, L. AND MALIK, S. 2002. The quest for efficient boolean satisfiability scdv INCADE, A. Voronkov,
Ed. Lecture Notes in Computer Science, vol. 2392. SprirZf5;-313.

ACM Transactions on Computational Logic, Vol. V, No. N, Mbr2oYY.

