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The problem of computing Craig Interpolants has recently received a lot of interest. In this paper,
we address the problem of efficient generation of interpolants for some important fragments of
first order logic, which are amenable for effective decision procedures, called Satisfiability Modulo
Theory solvers.

We make the following contributions. First, we provide interpolation procedures for several
basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over
rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach
to interpolate combinations of theories, that applies to the Delayed Theory Combination approach.

Efficiency is ensured by the fact that the proposed interpolation algorithms extend state of the
art algorithms for Satisfiability Modulo Theories. Our experimental evaluation shows that the
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1. INTRODUCTION

One of the most successful applications of computational logic is Formal Verification, It
that aims at proving (or disproving) certain properties of the behaviours of a reactive sys-
tem. In recent years, also thanks to the impressive improvements of SAT solvers, a wide
variety of verification methods based on SAT solving have been proposed. These methods
proved effective for discrete state systems, most notably hardware components. The ap-
proach is made practical by the fact that SAT solvers, in addition to proving efficiently the
satisfiability of huge propositional formulas, provide several functionalities, such as model
generation, proof production, extraction of unsatisfiablecores, and generation of Craig in-
terpolants (interpolation). In particular, since the seminal paper of McMillan [McMillan
2003], interpolation has been recognized to be a substantial tool for verification in the case
of Boolean systems [Cabodi et al. 2006; Li and Somenzi 2006; Marques-Silva 2007].

One of the main limitations of SAT-based approaches, is in their expressive power. Many
systems of practical interest, containing integer or real valued variables, such as software,
and timed and hybrid systems, can not be represented directly within propositional logic.
This has prompted research in the analysis of fragments of first order logic: given a for-
mula referring to variables, the problem is to find a satisfying assignment in a theory of
interest (e.g. linear arithmetic). This field, referred to as Satisfiability Modulo Theory
(SMT), has resulted in substantial theoretical results, and in very effective decision pro-
cedures, known as SMT solvers. State of the art SMT solvers complement the Boolean
SAT algorithms with specialized decision procedures for conjunctions of literals in some
given theory (theory solvers). In addition to checking satisfiability, SMT solvers are able to
generate models, produce proofs, and extract unsatisfiablecores. This has allowed, to lift
many SAT-based verification algorithms to SMT-based verification, as well as to to open
up the way to abstraction-refinement with SMT.

Quite surprisingly, however, the research on interpolation for SMT has not kept the
pace of SMT solving. In fact, the current approaches to producing interpolants for frag-
ments of first order theories [McMillan 2005; Yorsh and Musuvathi 2005; Rybalchenko
and Sofronie-Stokkermans 2007; Kroening and Weissenbacher 2007; Kapur et al. 2006;
Jain et al. 2008] all suffer from a number of problems. Some ofthe approaches are severely
limited in terms of their expressiveness. For instance, thetool described in [Rybalchenko
and Sofronie-Stokkermans 2007] can only deal with conjunctions of literals, whilst the
recent work described in [Kroening and Weissenbacher 2007]can not deal with many
useful theories. Furthermore, very few tools are available[Rybalchenko and Sofronie-
Stokkermans 2007; McMillan 2005], and these tools do not seem to scale particularly well.
More than to naı̈ve implementation, this appears to be due tothe underlying algorithms,
that substantially deviate from or ignore choices common instate-of-the-art SMT. For in-
stance, in the domain of linear arithmetic over the rationals (LA(Q)), strict inequalities
are encoded in [McMillan 2005] as the conjunction of a weak inequality and a disequality;
although sound, this choice destroys the structure of the constraints, forces reasoning in
the combination of theoriesLA(Q) ∪ EUF , requires additional splitting, and ultimately
results in a larger search space. Similarly, the fragment ofDifference Logic (DL(Q)) is
dealt with by means of a general-purpose algorithm for fullLA(Q), rather than one of
the well-known and much faster specialized algorithms. An even more fundamental ex-
ample is the fact that state-of-the-art SMT reasoners use dedicated algorithms for Linear
Arithmetic [Dutertre and de Moura 2006].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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In this paper, we tackle the problem of generating interpolants for SMT problems, fully
leveraging the algorithms used in a state of the art SMT solver. In particular, our main
contributions are:

(1) An interpolation algorithm forLA(Q) that exploits a variant of the algorithm pre-
sented in [Dutertre and de Moura 2006], and that is capable ofhandling the full
LA(Q)– including strict inequalities and disequalities – without the need of theory
combination;

(2) An algorithm for computing interpolants inDL – both over the rationals and over the
integers – that builds on top of the efficient graph-based decision algorithms given
in [Cotton and Maler 2006; Nieuwenhuis and Oliveras 2005], that ensures that the
generated interpolants are still in theDL fragment of linear arithmetic, and that allows
for computing stronger interpolants than the existing algorithms for the full linear
arithmetic;

(3) An algorithm for computing interpolants inUT VPI– both over the rationals and over
the integers – that builds on an encoding ofDL. The algorithm ensures that the gener-
ated interpolants are still in theUT VPI fragment of linear arithmetic, and that allows
for computing stronger interpolants than the existing algorithms for the full linear
arithmetic;

(4) An algorithm for computing interpolants in a combinationT1∪T2 of theories based on
the Delayed Theory Combination (DTC) method [Bozzano et al.2006; Bruttomesso
et al. 2008a] (as an alternative to the traditional Nelson-Oppen method), which does
not require ad-hoc interpolant combination methods, but exploits the propositional
interpolation algorithm for performing the combination oftheories;

(5) An efficient implementation of all the proposed techniques within the MATHSAT 4
SMT solver [Bruttomesso et al. 2008b], and an extensive experimental evaluation on
a wide range of benchmarks.

This comprehensive approach advances the state of the art intwo main directions: on
one side, we show how to extend efficient SMT solving techniques to SMT interpolation,
for a wide class of important theories, without paying a substantial price in performance; on
the other side, we present an interpolating SMT solver that is able to produce interpolants
for a much wider class of problems than its competitors, and,on problems that can be
dealt with by other tools, shows dramatic improvements in performance, often by orders
of magnitude.

Content. The paper is structured as follows. In§2 we present some background on in-
terpolation in SMT. In§3, §4 and§5 we show how to efficiently interpolateLA(Q), DL
andUT VPI respectively. In§6 we discuss interpolation for combined theories. The
proposed techniques are experimentally evaluated in§7. In §8 we draw some conclusions,
and outline directions for future work. The discussion of related work is distributed in the
technical sections (§3-§6).

Note to reviewers. Some of the material contained in this paper, in a less detailed form,
has been published in two conference papers [Cimatti et al. 2008; 2009].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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2. BACKGROUND AND STATE-OF-THE-ART

2.1 Satisfiability Modulo Theory – SMT

Our setting is standard first order logic. A0-ary function symbol is called aconstant. A
term is a first-order term built out of function symbols and variables. We writet1 ≡ t2
when the two termst1 andt2 are syntactically identical. Ift1, . . . , tn are terms andp is
a predicate symbol, thenp(t1, . . . , tn) is anatom. A literal is either an atom or its nega-
tion. A formulaφ is built in the usual way out of the universal and existentialquantifiers,
Boolean connectives, and atoms. We call a formulaquantifier-freeif it does not contain
quantifiers, andground if it does not contain free variables. Aclauseis a disjunction of
literals. A formula is said to be inconjunctive normal form(CNF) if it is a conjunction
of clauses. For every non-CNFT -formulaϕ, an equisatisfiable CNF formulaψ can be
generated in polynomial time [Tseitin 1968].

We also assume the usual first-order notions of interpretation, satisfiability, validity, log-
ical consequence, and theory, as given, e.g., in [Enderton 1972]. A first-order theory, T ,
is a set of first-order sentences. In this paper, we consider only theories with equality.
A structure A is a model of a theoryT if A satisfies every sentence inT . A formula is
satisfiable inT (or T -satisfiable) if it is satisfiable in a model ofT .

We call Satisfiability Modulo (the) TheoryT , SMT(T ), the problem of deciding the
satisfiability of quantifier-free formulas1 with respect to a background theoryT . We denote
formulas withφ, ψ,A,B,C, I, T -variables withx, y, z, Boolean variables withp, q and
numeric constants witha, b, c, l, u. Given a theoryT , we writeφ |=T ψ (or simplyφ |= ψ)
to denote that the formulaψ is a logical consequence ofφ in the theoryT . With φ � ψ
we denote that all uninterpreted (inT ) symbols ofφ appear inψ. If C is a clause,C ↓ B
is the clause obtained by removing all the literals whose atoms do not occur inB, and
C \ B that obtained by removing all the literals whose atoms do occur inB. With a little
abuse of notation, we might sometimes denote conjunctions of literals l1 ∧ . . . ∧ ln as sets
{l1, . . . , ln} and vice versa. Ifη

def
= {l1, . . . , ln}, we might write¬η to mean¬l1∨. . .∨¬ln.

A theoryT is stably-infiniteiff every quantifier-freeT -satisfiable formula is satisfiable in
an infinite model ofT . A theoryT is convexiff, for every collectionl1, . . . , lk, e1, . . . , en
of literals inT s.t. e1, . . . , en are in the form(x = y), x, y being variables, we have that
{l1, ..., lk} |=T

∨n
i=1 ei if and only if {l1, ..., lk} |=T ei for some1 ≤ i ≤ n.

Given a decidable first-order theoryT , we call atheory solver forT , T -solver, any tool
able to decide the satisfiability inT of sets/conjunctions of ground atomic formulas and
their negations —theory literalsor T -literals — in the language ofT . If S

def
= {l1, . . . , ln}

is a set of literals inT , we call(T )-conflict setany subsetη of S which is inconsistent in
T . 2 We call¬η aT -lemma. (Notice that¬η is aT -valid clause.)

Definition 2.1Resolution proof. Given a set of clausesS
def
= {C1, . . . , Cn} and a clause

C, we call aresolution proofof the deduction
∧

iCi |=T C a DAGP such that:

(1) C is the root ofP ;

(2) the leaves ofP are either elements ofS or T -lemmas;

1The general definition of SMT deals also with quantified formulas. Nevertheless, in this paper we restrict our
interest to quantifier-free formulas.
2In the next sections, as we are in an SMT(T ) context, we often omit specifying “in the theoryT ” when speaking
of consistency, validity, etc.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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1. SatValue Lazy SMT Solver (T -formula φ) {
2. φ′ = convert_to_cnf(φ)

3. φp = T 2P(φ′)
4. while (DPLL(φp, µp) == sat) {
5. 〈ρ, η〉 = T -solver(P2T (µp))
6. if (ρ == sat) then return sat

7. φp = φp ∧ T 2P(¬η)
8. }
9. return unsat

10. }

Fig. 1. A simplified schema for lazy SMT(T ) procedures.

(3) each non-leaf nodeC′ has two premisesCp1
andCp2

such thatCp1

def
= p ∨ φ1, Cp2

def
=

¬p ∨ φ2, andC′ def
= φ1 ∨ φ2. The atomp is called thepivot of Cp1

andCp2
.

If C is the empty clause (denoted with⊥), thenP is aresolution proof of (T -)unsatisfiability
for

∧

iCi.

We consider the SMT(T ) problem for some background theoryT .

Definition 2.2Craig Interpolant. Given an ordered pair(A,B) of formulas such that
A ∧B |=T ⊥, aCraig interpolant(simply “interpolant” hereafter) is a formulaI s.t.:

(i) A |=T I,
(ii) I ∧B |=T ⊥,

(iii) I � A andI � B.

2.2 Algorithms for SMT

A standard technique for solving the SMT(T ) problem is to integrate a DPLL-based SAT
solver and aT -solver in a “lazy” manner. The idea underlying every lazy SMT(T ) proce-
dure is that (a complete set of) the truth assignments for thepropositional abstraction ofφ
are enumerated and checked for satisfiability inT ; the procedure either returnssat if one
T -satisfiable truth assignment is found, or it returnsunsat otherwise.

Figure 1 presents a simplified schema of a lazy SMT(T ) procedure, called theoff-line
schema. The bijective functionT 2P (“Theory-to-Boolean”), calledBoolean abstraction,
maps Boolean atoms into themselves and non-BooleanT -atoms into fresh Boolean atoms
— so that two atom instances inφ are mapped into the same Boolean atom iff they are
syntactically identical — and extends toT -formulas and sets ofT -formulas in the obvious
way — i.e.,T 2P(¬φ1)

def
= ¬T 2P(φ1), T 2P(φ1 ⊲⊳ φ2)

def
= T 2P(φ1) ⊲⊳ T 2P(φ2) for each

Boolean connective⊲⊳, T 2P({φi}i)
def
= {T 2P(φi)}i. The functionP2T (“propositional-

to-theory”), calledrefinement, is the inverse ofT 2P . The propositional abstractionφp of
the input formulaφ is given as input to a SAT solver based on the DPLL algorithm [Davis
et al. 1962; Zhang and Malik 2002], which either decides thatφp is unsatisfiable, and hence
φ is T -unsatisfiable, or returns a satisfying assignmentµp; in the latter case,P2T (µp) is
given as input toT -solver. If P2T (µp) is foundT -consistent, thenφ is T -consistent. If
not, T -solver returns the conflict setη which caused theT -inconsistency ofP2T (µp);
the abstraction of theT -lemma¬η, T 2P (¬η), is then added as a clause toφp. Then the
DPLL solver is restarted from scratch on the resulting formula.

Practical implementations follow a more elaborated schema, called theon-line schema
(see [Sebastiani 2007]). As before,φp is given as input to a modified version of DPLL, and

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories · 7

when a satisfying assignmentµp is found, the refinementµ of µp is fed to theT -solver;
if µ is foundT -consistent, thenφ is T -consistent; otherwise,T -solver returns the con-
flict setη which caused theT -inconsistency ofP2T (µp). Then the clause¬ηp is added in
conjunction toφp, either temporarily or permanently (T -learning), and the algorithm back-
tracks up to the highest point in the search where one of the literals in¬ηp is unassigned
(T -backjumping), and therefore its value is (propositionally) implied by the others in¬ηp.
Another important improvement isearly pruning (EP): before every literal selection, in-
termediate assignments are checked forT -satisfiability and, if notT -satisfiable, they are
pruned (since no refinement can beT -satisfiable). Finally,theory propagationcan be used
to reduce the search space by allowing theT -solvers to explicitly return truth values for
unassigned literals, which can be unit-propagated by the SAT solver. The interested reader
is pointed to, e.g., [Sebastiani 2007] for details and further references.

With a small modification of the embedded DPLL engine, a lazy SMT solver can also
be used to generate a resolution proof of unsatisfiability (see e.g. [van Gelder 2007]).

2.3 Interpolation in SMT

The use of interpolation in formal verification has been introduced by McMillan in [McMil-
lan 2003] for purely-propositional formulas, and it was subsequently extended to handle
SMT(EUF∪LA(Q)) formulas in [McMillan 2005],EUF being the theory of equality and
uninterpreted functions. The technique is based on earlierwork by Pudlák [Pudlák 1997],
where two interpolant-generation algorithms are described: one for computing interpolants
for propositional formulas from resolution proofs of unsatisfiability, and one for generating
interpolants for conjunctions of (weak) linear inequalities inLA(Q). An interpolant for a
pair (A,B) of CNF formulas is constructed from a resolution proof of unsatisfiability of
A∧B, generated as outlined in§2.1. The algorithm works by computing a formulaIC for
each clause in the resolution refutation, such that the formula I⊥ associated to the empty
root clause is the computed interpolant.The algorithm can be described as follows:

Algorithm 1: Interpolant generation for SMT(T )

(1) Generate a resolution proof of unsatisfiabilityP for A ∧B.

(2) For everyT -lemma¬η occurring inP , generate an interpolantI¬η for (η \B, η ↓ B).

(3) For every input clauseC in P , setIC
def
= C ↓ B if C ∈ A, andIC

def
= ⊤ if C ∈ B.

(4) For every inner nodeC of P obtained by resolution fromC1
def
= p ∨ φ1 andC2

def
=

¬p∨ φ2, setIC
def
= IC1

∨ IC2
if p does not occur inB, andIC

def
= IC1

∧ IC2
otherwise.

(5) OutputI⊥ as an interpolant for(A,B).

EXAMPLE 2.1. Consider the following two formulas inLA(Q):

A
def
= (p ∨ (0 ≤ x1 − 3x2 + 1)) ∧ (0 ≤ x1 + x2) ∧ (¬q ∨ ¬(0 ≤ x1 + x2))

B
def
= (¬(0 ≤ x3 − 2x1 − 3) ∨ (0 ≤ 1− 2x3)) ∧ (¬p ∨ q) ∧ (p ∨ (0 ≤ x3 − 2x1 − 3))

Figure 2(a) shows a resolution proof of unsatisfiability forA ∧ B, in which the clauses
fromA have been underlined. The proof contains the followingLA(Q)-lemma (displayed

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



8 · Cimatti, Griggio and Sebastiani

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2)∨

¬(0 ≤ x3 − 2x1 − 3) ∨ ¬(0 ≤ 1− 2x3)

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2) ∨ p

p ∨ (0 ≤ x1 − 3x2 + 1)

¬p ∨ q

¬(0 ≤ x1 + x2) ∨ q

¬(0 ≤ x1 + x2)(0 ≤ x1 + x2)

⊥

¬(0 ≤ x1 + x2) ∨ p

¬(0 ≤ x3 − 2x1 − 3) ∨ (0 ≤ 1− 2x3)

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2)∨

¬q ∨ ¬(0 ≤ x1 + x2)

¬(0 ≤ x3 − 2x1 − 3) p ∨ (0 ≤ x3 − 2x1 − 3)

(0 ≤ 4x1 + 1)

⊤

⊤

p ∨ (0 ≤ 4x1 + 1)

(p ∨ (0 ≤ 4x1 + 1)) ∧ ¬q⊥

(p ∨ (0 ≤ 4x1 + 1)) ∧ ¬q

p ∨ (0 ≤ 4x1 + 1)

⊤

(0 ≤ 4x1 + 1)

(0 ≤ 4x1 + 1)

¬q

p

(a) (b)

Fig. 2. Resolution proof of unsatisfiability (a) and interpolant (b) for the pair(A,B) of formulas of Example 2.1.
In the tree on the left,T -lemmas are displayed in boldface, and clauses fromA are underlined.

in boldface):

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2) ∨ ¬(0 ≤ x3 − 2x1 − 3) ∨ ¬(0 ≤ 1− 2x3).

Figure 2(b) shows, for each clauseΘi in the proof, the formulaIΘi
generated by Algorithm

1. For theLA(Q)-lemma, it is easy to see that(0 ≤ 4x1 + 1) is an interpolant for
((0 ≤ x1 − 3x2 + 1) ∧ (0 ≤ x1 + x2), (0 ≤ x3 − 2x1 − 3) ∧ (0 ≤ 1− 2x3)) as required
by Step 2 of the algorithm. (We will show how to obtain this interpolant in Example 2.2.)
Therefore,I⊥

def
= (p ∨ (0 ≤ 4x1 + 1)) ∧ ¬q is an interpolant for(A,B).

Algorithm 1 can be applied also whenA andB are not in CNF. In this case, it suffices to
pre-convert them into CNF by using disjoint sets of auxiliary Boolean atoms in the usual
way [McMillan 2005].

Notice that Step 2. of the algorithm is the only part which depends on the theoryT ,
so that the problem of interpolant generation in SMT(T ) reduces to that of finding inter-
polants forT -lemmas. To this extent, in [McMillan 2005] McMillan gives aset of rules for
constructing interpolants forT -lemmas in the theory ofEUF , that of weak linear inequal-
ities (0 ≤ t) in LA(Q), and their combination. Linear equalities(0 = t) can be reduced
to conjunctions(0 ≤ t)∧ (0 ≤ −t) of inequalities. Thanks to the combination of theories,
also strict linear inequalities(0 < t) can be handled inEUF ∪ LA(Q) by replacing them
with the conjunction(0 ≤ t) ∧ (0 6= t),3 but this solution can be very inefficient.

The combinationEUF ∪ LA(Q) can also be used to compute interpolants for other
theories, such as those of lists, arrays, sets and multisets[Kapur et al. 2006].

In [McMillan 2005], interpolants in the combined theoryEUF ∪ LA(Q) are obtained

3The details are not given in [McMillan 2005]. One possible way of doing this is to rewrite(0 6= t) as(y =
t) ∧ (z = 0) ∧ (z 6= y), z andy being fresh variables.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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LEQEQ
0 = t

0 ≤ t
COMB

0 ≤ t1 0 ≤ t2

0 ≤ c1t1 + c2t2
c1, c2 > 0

Fig. 3. LA(Q)-proof rules for a conjunctionΓ of equalities and weak inequalities.

by means of ad-hoc combination rules. The work in [Yorsh and Musuvathi 2005], instead,
presents a method for generating interpolants forT1 ∪ T2 using the interpolant-generation
procedures ofT1 andT2 as black-boxes, using the Nelson-Oppen approach [Nelson and
Oppen 1979].

Also the method of [Rybalchenko and Sofronie-Stokkermans 2007] allows to compute
interpolants inEUF ∪ LA(Q). Its peculiarity is that it is not based on unsatisfiability
proofs. Instead, it generates interpolants inLA(Q) by solving a system of constraints using
an off-the-shelf Linear Programming (LP) solver. The method allows both weak and strict
inequalities. Extension to uninterpreted functions is achieved by means of reduction to
LA(Q) using a hierarchical calculus [Sofronie-Stokkermans 2006]. The algorithm works
only with conjunctions of atoms, although in principle it could be integrated in Algorithm
1 to generate interpolants forT -lemmas inLA(Q). As an alternative, the authors show in
[Rybalchenko and Sofronie-Stokkermans 2007] how to generate interpolants for formulas
that are in Disjunctive Normal Form (DNF).

Another different approach is explored in [Kroening and Weissenbacher 2007]. There,
the authors use theeagerSMT approach to encode the original SMT problem into an
equisatisfiable propositional problem, for which a propositional proof of unsatisfiability
is generated. This proof is later “lifted” to the original theory, and used to generate an
interpolant in a way similar to Algorithm 1. At the moment, the approach is however
limited to the theory of equality only (without uninterpreted functions).

All the above techniques constructone interpolant for(A,B). In general, however,
interpolants are not unique. In particular, some of them canbe better than others, depending
on the particular application domain. In [Jhala and McMillan 2005], it is shown how to
manipulate proofs in order to obtain stronger interpolants. In [Jhala and McMillan 2006;
2007], instead, a technique to restrict the language used ininterpolants is presented and
shown to be useful in preventing divergence of techniques based on predicate abstraction.

One of the most important applications of interpolation in Formal Verification is ab-
straction refinement [Henzinger et al. 2004; McMillan 2006]. In such setting, every input
problemφ has the formφ

def
= φ1∧ . . .∧φn, and the interpolating solver is asked to compute

several interpolantsI1, . . . , In−1 corresponding to different partitions ofφ intoAi andBi,
such that

∀i, Ai
def
= φ1 ∧ . . . ∧ φi, and Bi

def
= φi+1 ∧ . . . ∧ φn. (1)

Moreover,I1, . . . , In−1 should be related by the following:

Ii ∧ φi+1 |= Ii+1 (2)

A sufficient condition for (2) to hold is that all theIi’s are computed from the same proof
of unsatisfiabilityΠ for φ [Henzinger et al. 2004].

2.3.1 Interpolants for conjunctions ofLA(Q)-literals. We recall the algorithm of [McMil-
lan 2005] for computing interpolants fromLA(Q)-proofs of unsatisfiability, for conjunc-
tions of equalities and weak inequalities inLA(Q).
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An LA(Q)-proof ruleR for a conjunctionΓ of equalities and weak inequalities is either

an element ofΓ, or it has the form
P

φ
, whereφ is an equality or a weak inequality andP

is a sequence of proof rules, called thepremisesof R. An LA(Q)-proof of unsatisfiability
for a conjunction of equalities and weak inequalitiesΓ is simply a rule in whichφ ≡ 0 ≤ c
and wherec is a negative numerical constant.4

Similarly to [McMillan 2005], we use the proof rules of Figure 3: LEQEQ for deriving
inequalities from equalities, and COMB for performing linear combinations.5

Given anLA(Q)-proof of unsatisfiabilityP for a conjunctionΓ of equalities and weak
inequalities partitioned into(A,B), an interpolantI can be computed simply by replacing
every atom0 ≤ t occurring in B (resp.0 = t) with 0 ≤ 0 (resp.0 = 0) in each leaf sub-
rule of P , and propagating the results: the interpolant is then the single weak inequality
0 ≤ t at the root ofP [McMillan 2005].

EXAMPLE 2.2. Consider the following sets ofLA(Q) atoms:

A
def
= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2)}

B
def
= {(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3)}.

AnLA(Q)-proof of unsatisfiabilityP for A ∧B is the following:

1 ∗ (0 ≤ x1 − 3x2 + 1) 4 ∗ (0 ≤ x1 + x2)

1 ∗ (0 ≤ 4x1 + 1)

2 ∗ (0 ≤ x3 − 2x1 − 3) 1 ∗ (0 ≤ 1− 2x3)

1 ∗ (0 ≤ −4x1 − 5)

(0 ≤ −4)

By replacing inequalities inB with (0 ≤ 0), we obtain the proofP ′:

1 ∗ (0 ≤ x1 − 3x2 + 1) 4 ∗ (0 ≤ x1 + x2)

1 ∗ (0 ≤ 4x1 + 1)

2 ∗ (0 ≤ 0) 1 ∗ (0 ≤ 0)

1 ∗ (0 ≤ 0)

(0 ≤ 4x1 + 1)

Thus, the interpolant obtained is(0 ≤ 4x1 + 1).

3. FROM SMT(LA(Q)) SOLVING TO SMT(LA(Q)) INTERPOLATION

Traditionally, SMT solvers used some kind of incremental simplex algorithm [Vanderbei
2001] asT -solver for theLA(Q) theory. Recently, Dutertre and de Moura [Dutertre and
de Moura 2006] have proposed a new simplex-based algorithm,specifically designed for
integration in a lazy SMT solver. The algorithm is extremelysuitable for SMT, and SMT
solvers embedding it were shown to significantly outperform(often by orders of magni-
tude) the ones based on other simplex variants. It has now been integrated in several SMT
solvers, including ARGOL IB, CVC3, MATHSAT, YICES, and Z3. Remarkably, this algo-
rithm allows for handling also strict inequalities.

In this Section, we show how to exploit this algorithm to efficiently generate interpolants
for LA(Q) formulas. Combined with the interpolation for the SMT(T ) problem described
in is then obtained by combining the general In§3.1 we begin by considering the case

4In the following, we might sometimes write⊥ as a synonym of an atom “0 ≤ c” whenc is a negative numerical
constant.
5In [McMillan 2005] the LEQEQ rule is not used inLA(Q), because the input is assumed to consist only of
inequalities.
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in which the input atoms are only equalities and non-strict inequalities. In this case, we
only need to show how to generate a proof of unsatisfiability,since then we can use the
interpolation rules defined in [McMillan 2005]. Then, in§3.2 we show how to generate
interpolants for problems containing also strict inequalities and disequalities.

3.1 Interpolation with non-strict inequalities

3.1.1 The original Dutertre-de Moura algorithm.In its original formulation, the Dutertre-
de Moura algorithm assumes that the variablesxi are partitioned a priori in two sets, here-
after denoted aŝB (“initially basic” or “dependent”) andN̂ (“initially non-basic” or “in-
dependent”), and that the algorithm receives as inputs two kinds of atomic formulas:6

a set ofequationseqi, one for eachxi ∈ B̂, of the form
∑

xj∈N̂ âijxj + âiixi = 0 s.t.
all âij ’s are numerical constants;

elementary atomsof the formxj ≥ lj or xj ≤ uj s.t. xj ∈ B̂ ∪ N̂ and lj , uj are
numerical constants.

In order to handle problems that are not in the above form, a satisfiability-preserving
preprocessing step is applied upfront, before invoking thealgorithm.

The initial equationseqi are then used to build a tableauT :

{xi =
∑

xj∈N aijxj | xi ∈ B}, (3)

whereB (“basic” or “dependent”),N (“non-basic” or “independent”) andaij are such that
initially B ≡ B̂, N ≡ N̂ andaij ≡ −âij/âii.

In order to decide the satisfiability of the input problem, the algorithm performs ma-
nipulations of the tableau that change the setsB andN and the values of the coefficients
aij , always keeping the tableauT in (3) equivalent to its initial version. In particular, the
algorithm maintains a mappingβ : B ∪ N 7−→ Q representing a candidate model which,
at every step, satisfies the following invariants:

∀xj ∈ N , lj ≤ β(xj) ≤ uj, ∀xi ∈ B, β(xi) =
∑

j∈N aijβ(xj). (4)

The algorithm tries to adjust the values ofβ and the setsB andN , and hence the coef-
ficientsaij of the tableau, such thatli ≤ β(xi) ≤ ui holds also for all thexi’s in B.
Inconsistency is detected when this is not possible withoutviolating any constraint in (4):
as the bounds on the variables inN are always satisfied byβ, then there is a variable
xi ∈ B such that the inconsistency is caused either by the elementary atomxi ≥ li or
by the atomxi ≤ ui [Dutertre and de Moura 2006]; in the first case,7 a conflict setη is
generated as follows:

η = {xj ≤ uj|xj ∈ N+} ∪ {xj ≥ lj |xj ∈ N−} ∪ {xi ≥ li}, (5)

where(xi =
∑

xj∈N aijxj) is the row of the current version of the tableauT (3) corre-

sponding toxi, N+ is {xj ∈ N|aij > 0} andN− is {xj ∈ N|aij < 0}.
Notice thatη is a conflict set in the sense that it is made inconsistent by (some of) the

equations in the tableauT (3), i.e.T ∪ η |=LA(Q) ⊥. In general, however,η 6|=LA(Q) ⊥.

6Notationally, we use the hat symbolˆ to denote the initial value of the generic symbol.
7Here we do not consider the second casexi ≤ ui as it is analogous to the first one.
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3.1.2 Our proof-producing variant.In order to make it suitable for interpolant gener-
ation, we have conceived the following variant of the Dutertre-de Moura algorithm.

We take as input an arbitrary set of inequalitieslk ≤
∑

h âkh yh or uk ≥
∑

h âkh yh,
and apply an internal preprocessing step to obtain a set of equations and a set of elementary
bounds. In particular, we introduce a “slack” variablesk for each distinct term

∑

h âkh yh
occurring in the input inequalities. Then, we replace such term with sk (thus obtaining
lk ≤ sk or uk ≥ sk) and add an equationsk =

∑

h âkh yh. Notice that we introduce a
slack variable even for “elementary” inequalities(lk ≤ yk). With this transformation, the
initial tableauT (3) is:

{sk =
∑

h âkh yh}k, (6)

s.t. B̂ is made of all the slack variablessk ’s, N̂ is made of all the original variablesyh’s,
and the elementary atoms contain only slack variablessk ’s.

Then the algorithm proceeds as described above, producing asetη (5) in case of incon-
sistency. In our variant of the algorithm, we can useη to generate a conflict setη′, thanks
to the following theorem.

THEOREM 3.1. In the setη of (5), xi and all thexj ’s are slack variables introduced

by our preprocessing step. Moreover, the setη′
def
= ηN+ ∪ ηN− ∪ ηi is a conflict set, where

ηN+

def
= {uk ≥

∑

h âkh yh|sk ≡ xj and xj ∈ N+},

ηN−

def
= {lk ≤

∑

h âkh yh|sk ≡ xj and xj ∈ N−},

ηi
def
= {lk ≤

∑

h âkh yh|sk ≡ xi}.

PROOF. We consider the case in whichη (5) is generated from a rowxi =
∑

xj∈N aij xj
in the tableauT (3) such thatβ(xi) < li. In [Dutertre and de Moura 2006] it is shown that
in this case the following facts hold:

∀xj ∈ N+, β(xj) = uj, and ∀xj ∈ N−, β(xj) = lj . (7)

(We recall thatN+ = {xj ∈ N|aij > 0} andN− = {xj ∈ N|aij < 0}.) The bounds
uj andlj can be introduced only by elementary atoms. Since in our variant the elementary
atoms contain only slack variables, eachxj must be a slack variable (namelysk). The
same holds forxi (since its value is bounded byli).

Now considerη again. In [Dutertre and de Moura 2006] it is shown that when a conflict
is detected becauseβ(xi) < li, then the following fact holds:

β(xi) =
∑

xj∈N+ aijuj +
∑

xj∈N− aij lj . (8)

From thei-th row of the tableauT (3) we can derive

0 ≤
∑

xj∈N aij xj − xi. (9)

If we take each inequality0 ≤ uj−xj multiplied by the coefficientaij for all xj ∈ N+,
each inequality0 ≤ xj − lj multiplied by coefficient−aij for all xj ∈ N−, and the
inequality(0 ≤ xi − li) multiplied by 1, and we add them to (9), we obtain

0 ≤
∑

N+ aij uj +
∑

N− aij lj − li, (10)

which by (8) is equivalent to0 ≤ β(xi)−li. Thus we have obtained0 ≤ cwith c ≡ β(xi)−
li, which is strictly lower than zero. Therefore,η is inconsistent under the definitions in
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T . Since we know thatxi and all thexj ’s in η are slack variables, we can replace every
xj (i.e., everysk) with its corresponding term

∑

h âkh yh, thus obtainingη′, which is thus
inconsistent.

When our variant of the algorithm detects an inconsistency,we construct a proof of
unsatisfiability as follows. From the setη of (5) we build a conflict setη′ by replacing each
elementary atom in it with the corresponding original atom,as shown in Theorem 3.1.
Using the HYP rule, we introduce all the atoms inηN+ , and combine them with repeated
applications of the COMB rule: if uk ≥

∑

h âkh yh is the atom corresponding tosk, we
use as coefficient for the COMB theaij (in the i-th row of the current tableau) such that
sk ≡ xj . Then, we introduce each of the atoms inηN− with HYP, and add them to the
previous combination, again using COMB. In this case, the coefficient to use is−aij .
Finally, we introduce the atom inηi and add it to the combination with coefficient1.

COROLLARY 3.2. The result of the linear combination described above is the atom
0 ≤ c, such thatc is a numerical constant strictly lower than zero.

PROOF. Follows immediately by the proof of Theorem 3.1.

Besides the case just described (and its dual when the inconsistency is due to an elemen-
tary atomxi ≤ ui), another case in which an inconsistency can be detected is when two
contradictory atoms are asserted:lk ≤

∑

h âkh yh anduk ≥
∑

h âkh yh, with lk > uk. In
this case, the proof is simply the combination of the two atoms with coefficient 1.

The extension for handling also equalities likebk =
∑

h âkh yh is straightforward: we
simply introduce two elementary atomsbk ≤ sk andbk ≥ sk and, in the construction of
the proof, we use the LEQEQ rule to introduce the proper inequality.

Finally, notice that the current implementation in MATHSAT (see§7) is slightly different
from what presented here, and significantly more efficient. In practice,η, η′ are not con-
structed in sequence; rather, they are built simultaneously. Moreover, some optimizations
are applied to eliminate some slack variables when they are not needed.

EXAMPLE 3.1. Consider again the two sets ofLA(Q) atoms of Example 2.2:

A
def
= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2}

B
def
= {(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3)}.

With our variant of the Dutertre-de Moura algorithm, four “slack” variables are intro-
duced, resulting in the following tableau and elementary constraints:

T
def
=







s1 = x1 − 3x2 −1 ≤ s1
s2 = x1 + x2 0 ≤ s2
s3 = x3 − 2x1 3 ≤ s3
s4 = −2x3 −1 ≤ s4

To detect the inconsistency, the algorithm performs some pivoting steps, resulting in the
final tableauT ′:

T ′ def
=







x2 = − 1
12s4 −

1
6s3 −

1
3s1

s2 = − 1
3s4 −

2
3s3 −

1
3s1

x1 = − 1
4s4 −

1
2s3

x3 = − 1
2s4
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The final values ofβ are as follows:

β(x1) =
7
4 β(x2) = − 1

12 β(x3) =
1
2

β(s1) = −1 β(s2) = − 4
3 β(s3) = 3 β(s4) = −1

Therefore, the bound(0 ≤ s2) is violated. From the second row ofT ′, the setη and the
conflict setη′ are computed:

η
def
= ∅ ∪ {(−1 ≤ s4), (3 ≤ s3), (−1 ≤ s1)} ∪ {(0 ≤ s2)}

η′
def
= ∅ ∪ {(0 ≤ 1− 2x3), (0 ≤ x3 − 2x1 − 3), (0 ≤ x1 − 3x2 + 1)} ∪ {(0 ≤ x1 + x2)}

The generated proof of unsatisfiabilityP is:
1

3
∗ (0 ≤ 1− 2x3)

2

3
∗ (0 ≤ x3 − 2x1 − 3)

1 ∗ (0 ≤ − 4

3
x1 −

5

3
) 1

3
∗ (0 ≤ x1 − 3x2 + 1)

1 ∗ (0 ≤ −x1 − x2 −
4

3
) 1 ∗ (0 ≤ x1 + x2)

(0 ≤ − 4

3
)

After replacing the inequalities ofB with (0 ≤ 0) in P , the new proofP ′ is:
1

3
∗ (0 ≤ 0) 2

3
∗ (0 ≤ 0)

1 ∗ (0 ≤ 0) 1

3
∗ (0 ≤ x1 − 3x2 + 1)

1 ∗ (0 ≤ 1

3
x1 − x2 +

1

3
) 1 ∗ (0 ≤ x1 + x2)

(0 ≤
4

3
x1 +

1

3
)

Thus the computed interpolant is(0 ≤ 4
3x1 + 1

3 ) (which is equivalent to that of Exam-
ple 2.2).

3.2 Interpolation with strict inequalities and disequalities

Another benefit of the Dutertre-de Moura algorithm is that itcan handle strict inequalities
directly. Its method is based on the following lemma.

LEMMA 3.3 LEMMA 1 IN [DUTERTRE AND DEMOURA 2006]. A set of linear arith-
metic atomsΓ containing strict inequalitiesS = {0 < t1, . . . , 0 < tn} is satisfiable iff
there exists a rational numberε > 0 such thatΓε

def
= (Γ ∪ Sε) \ S is satisfiable, where

Sε
def
= {ε ≤ t1, . . . , ε ≤ tn}.

The idea of [Dutertre and de Moura 2006] is that of treating the infinitesimal parameterε
symbolically instead of explicitly computing its value. Strict bounds(x < b) are replaced
with weak ones(x ≤ b − ε), and the operations on bounds are adjusted to takeε into
account.

We extend the same idea to the computation of interpolants. We transform every atom
(0 < ti) occurring in the proof of unsatisfiability into(0 ≤ ti − ε). Then we compute an
interpolantIε in the usual way. As a consequence of the rules of [McMillan 2005], Iε is
always a single atom. As shown by the following lemma, ifIε containsε, then it must be
in the form(0 ≤ t− c ε) with c > 0, and we can rewriteIε into (0 < t).

THEOREM 3.4 INTERPOLATION WITH STRICT INEQUALITIES. Let Γ, S, Γε and Sε

be defined as in Lemma 3.3. LetΓ be partitioned intoA andB, and letAε andBε be
obtained fromA andB by replacing atoms inS with the corresponding ones inSε. LetIε
be an interpolant for(Aε, Bε). Then:
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If ε 6� Iε, thenIε is an interpolant for(A,B).

If ε � Iε, thenIε ≡ (0 ≤ t− c ε) for somec > 0, andI
def
= (0 < t) is an interpolant

for (A,B).

PROOF. Since the side condition of the COMB rule ensures that equations are combined
only using positive coefficients, and since the atoms introduced in the proof either do not
containε or contain it with a negative coefficient, ifε appears inIε, it must have a negative
coefficient.

If ε does not appear inIε, thenIε has been obtained from atoms appearing inA orB,
so thatIε is an interpolant for(A,B).

If ε appears inIε, since its value has not been explicitly computed, it can be arbitrarily
small, so thanks to Lemma 3.3 we have thatBε ∧ Iε |=LA(Q) ⊥ impliesB ∧ I |=LA(Q) ⊥.

We can prove thatA |=LA(Q) I as follows. We consider some interpretationµ which is
a model forA. Sinceε does not occur inA, we can extendµ by settingµ(ε) = δ for some
δ > 0 such thatµ is a model also forAε. AsAǫ |=LA(Q) Iǫ, µ is also a model forIε, and
henceµ is also a model forI. Thus, we have thatA |=LA(Q) I.

Notice that Theorem 3.4 can be extended straightforwardly to the case in which the
interpolant is a conjunction of inequalities.

Thus, in case of strict inequalities, Theorem 3.4 gives us a way for constructing inter-
polants with no need of expensive theory combination (as instead was the case in [McMil-
lan 2005]). Moreover, thanks to it we can handle also negatedequalities(0 6= t) directly.
Suppose our setS of input atoms (partitioned intoA andB) is the union of a setS′ of
equalities and inequalities (both weak and strict) and a setS 6= of disequalities, and sup-
pose thatS′ is consistent. (If not so, an interpolant can be computed from S′.) Since
LA(Q) is convex,S is inconsistent iff exists(0 6= t) ∈ S 6= such thatS′ ∪ {(0 6= t)} is
inconsistent, that is, such that bothS′ ∪ {(0 < t)} andS′ ∪ {(0 > t)} are inconsistent.

Therefore, we pick one element(0 6= t) of S 6= at a time, and check the satisfiability of
S′ ∪ {(0 < t)} andS′ ∪ {(0 > t)}. If both are inconsistent, from the two proofs we can
generate two interpolantsI− andI+. We combineI+ andI− to obtain an interpolantI
for (A,B): if (0 6= t) ∈ A, thenI is I+ ∨ I−; if (0 6= t) ∈ B, thenI is I+ ∧ I−, as shown
by the following lemma.

THEOREM 3.5 INTERPOLATION FOR NEGATED EQUALITIES. LetA andB two con-
junctions ofLA(Q) atoms, and letn

def
= (0 6= t) be one such atom. Letg

def
= (0 < t) and

l
def
= (0 > t).

If n ∈ A, then letA+ def
= A \ {n} ∪ {g}, A− def

= A \ {n} ∪ {l}, andB+ def
= B− def

= B.
If n ∈ B, then letA+ def

= A− def
= A, B+ def

= B \ {n} ∪ {g}, andB− def
= B \ {n} ∪ {l}.

Assume thatA+ ∧ B+ |=LA(Q) ⊥ and thatA− ∧ B− |=LA(Q) ⊥, and letI+ andI− be
two interpolants for(A+, B+) and(A−, B−) respectively, and let

I
def
=

{
I+ ∨ I− if n ∈ A
I+ ∧ I− if n ∈ B.

ThenI is an interpolant for(A,B).

PROOF. We have to prove that:

(i) A |=LA(Q) I

(ii) B ∧ I |=LA(Q) ⊥
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(iii) I � A andI � B.

(i) If n ∈ A, thenA |=LA(Q) g ∨ l. By hypothesis, we know thatA+ |=LA(Q) I
+

andA− |=LA(Q) I
−. Then triviallyA ∪ {g} |=LA(Q) I

+ andA ∪ {l} |=LA(Q) I
−.

ThereforeA∪{g} |=LA(Q) I
+∨I− andA∪{l} |=LA(Q) I

−∨I+, so thatA |=LA(Q)

I.
If n ∈ B, thenA+ ≡ A− ≡ A. By hypothesisA |=LA(Q) I

+ andA |=LA(Q) I
−, so

thatA |=LA(Q) I.
(ii) If n ∈ A, thenB+ ≡ B− ≡ B. By hypothesisB ∧ I+ |=LA(Q) ⊥ andB ∧

I− |=LA(Q) ⊥, so thatB ∧ I |=LA(Q) ⊥.
If n ∈ B, thenB |=LA(Q) g ∨ l, so that eitherB → g or B → l must hold. By
hypothesis we haveB+∧I+ |=LA(Q) ⊥, so thatB∪{g}∧I+ |=LA(Q) ⊥. If B → g
holds, thenB ∧ I+ |=LA(Q) ⊥, and henceB ∧ I |=LA(Q) ⊥. Similarly, if B → l
holds, thenB ∧ I− |=LA(Q) ⊥, and so againB ∧ I |=LA(Q) ⊥.

(iii) By the hypothesis, bothI+ andI− contain only symbols common toA andB, so
thatI � A andI � B.

EXAMPLE 3.2. Consider the following sets ofLA(Q) atoms:

A
def
= {(0 6= x1 − 3x2 + 1), (0 = x1 + x2)}

B
def
= {(0 = x3 − 2x1 − 1), (0 = 1− 2x3)}.

To compute an interpolant for(A,B), we first splitn
def
= (0 6= x1− 3x2+1) into g

def
= (0 <

x1 − 3x2 + 1) and l
def
= (0 < −x1 + 3x2 − 1), thus obtainingA+ andA− defined as in

Theorem 3.5. We then generate twoLA(Q)-proofs of unsatisfiabilityP+ for A+ ∧B and
P− for A− ∧B, and replaceg in P+ with gε

def
= (0 ≤ x1 − 3x2 +1− ε) andl in P− with

lε
def
= (0 ≤ −x1 +3x2 − 1− ε), obtainingP+

ε andP−
ε (we omit the names of the inference

rules):

P+
ε

def
=

(0 ≤ x1 − 3x2 + 1− ε)

(0 = x1 + x2)

(0 ≤ x1 + x2)

(0 ≤ 4x1 + 1− ε)

(0 = x3 − 2x1 − 1)

(0 ≤ x3 − 2x1 − 1)

(0 = 1− 2x3)

(0 ≤ 1− 2x3)

(0 ≤ −4x1 − 1)

(0 ≤ −ε)

P−
ε

def
=

(0 ≤ −x1 + 3x2 − 1− ε)

(0 = x1 + x2)

(0 ≤ −x1 − x2)

(0 ≤ −4x1 − 1− ε)

(0 = x3 − 2x1 − 1)

(0 ≤ −x3 + 2x1 + 1)

(0 = 1− 2x3)

(0 ≤ −1 + 2x3)

(0 ≤ +4x1 + 1)

(0 ≤ −ε)

We then compute the two interpolantsI+ε fromP+
ε andI−ε fromP−

ε :

I+ε
def
= (0 ≤ 4x1 + 1− ε) I−ε

def
= (0 ≤ −4x1 − 1− ε).

Therefore, according to Theorem 3.4 the two interpolantsI+ for (A+, B) and I− for
(A−, B) are:

I+
def
= (0 < 4x1 + 1) I−

def
= (0 < −4x1 − 1).

Finally, sincen ∈ B, according to Theorem 3.5, the interpolantI for (A,B) is

I
def
= I+ ∨ I− ≡ (0 < 4x1 + 1) ∨ (0 < −4x1 − 1).
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3.3 Obtaining stronger interpolants

We conclude this Section by illustrating a simple techniquefor improving the strength of
interpolants inLA(Q). The technique is orthogonal to our proof-generation algorithm
described in§3.1.2, and it is therefore of independent interest. It is an improvement of the
general algorithm of [McMillan 2005] (and outlined in§2.3.1) for generating interpolants
fromLA(Q)-proofs of unsatisfiability.

Definition 3.6. Given two interpolantsI1 andI2 for the same pair(A,B) of conjunc-
tions ofLA(Q)-literals, we say thatI1 is strongerthanI2 if and only if I1 |=LA(Q) I2 but
I2 6|=LA(Q) I1.

Our technique is based on the simple observation that the only purpose of the sum-
mations performed during the traversal of proof trees for computing the interpolant (as
described in§2.3.1) is that of eliminatingA-local variables. In fact, it is easy to see that
the conjunction of the constraints ofA occurring as leaves in anLA(Q)-proof of unsat-
isfiability satisfies the first two points of the definition of interpolant (Definition 2.2): if
such constraints do not containA-local variables, therefore, their conjunction is already
an interpolant; if not, it suffices to perform only the summations constraints ofA that are
necessary to eliminateA-local variables. Moreover, such interpolant is stronger than that
obtained by performing the summations with the coefficientsfound in the proof tree, since
for any set of constraints{s1, . . . , sn} and any set of positive coefficients{c1, . . . , cn},
s1 ∧ . . . ∧ sn |=LA(Q)

∑n
i=1 ci ∗ si holds.

According to this observation, our proposal can be described as: perform only those
summations which are are necessary for eliminatingA-local variables.

EXAMPLE 3.3. Consider the following sets ofLA(Q)-atoms:

A
def
= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x2 −

1

3
x3), (0 ≤ x4 −

3

2
x5 − 1)}

B
def
= {(0 ≤ 3x5 − x1), (0 ≤ x3 − 2x4)}

and the followingLA(Q)-proof of unsatisfiability ofA ∧B:

(0 ≤ x1 − 3x2 + 1) 3 ∗ (0 ≤ x2 − 1

3
x3)

(0 ≤ x1 − x3 + 1) 2 ∗ (0 ≤ x4 − 3

2
x5 − 1)

(0 ≤ x1 − x3 + 2x4 − 3x5 − 1) (0 ≤ 3x5 − x1)

(0 ≤ −x3 + 2x4 − 1) (0 ≤ x3 − 2x4)

(0 ≤ −1)

Here, the variablex2 isA-local, whereas all the others areAB-common. The interpolant
computed with the algorithm of§2.3.1 is

(0 ≤ x1 − x3 + 2x4 − 3x5 − 1),

which is the result of the linear combination ofall the atoms ofA in the proof. However,
in order to eliminate theA-local variablex2, it is enough to combine(0 ≤ x1 − 3x2 + 1)
(with coefficient 1) and(0 ≤ x2 −

1
3x3) (with coefficient 3), obtaining(0 ≤ x1 − x3 + 1).

Therefore, a stronger interpolant is

(0 ≤ x1 − x3 + 1) ∧ (0 ≤ x4 −
3

2
x5 − 1).
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The technique can be implemented with a small modification ofthe proof-based algo-
rithm described in§2.3.1. We associate with each node in the proofP ′ (which is obtained
from the original proofP by replacing inequalities fromB with (0 ≤ 0)) a list of pairs
〈coefficient, inequality〉. For a leaf, this list is a singleton in which the coefficient is 1 and
the inequality is the atom in the leaf itself. For an inner node (which corresponds to an
application of the COMB rule), the listl is generated from the two listsl1 and l2 of the
premises as follows:

(1) Setl as the concatenation ofl1 andl2;

(2) Let c1 andc2 be the coefficients used in the COMB rule. Multiply each coefficientc′i
occurring in a pair〈c′i, 0 ≤ ti〉 of l by c1 if the pair comes froml1, and byc2 otherwise;

(3) While there is anA-local variablex occurring in more than one pair〈c′, 0 ≤ t〉 of l:8

(a) Collect all the pairs〈c′i, 0 ≤ ti〉 in whichx occurs;
(b) Generate a new pairp

def
= 〈1, 0 ≤

∑

i c
′
i ∗ ti〉;

(c) Addp to l, and remove all the pairs〈c′i, 0 ≤ ti〉.

After having applied the above algorithm, we can take the conjunction of the inequalities
in the list associated with the root ofP ′ as an interpolant.

THEOREM 3.7. LetP be aLA(Q)-proof of unsatisfiability for a conjunctionA∧B of
inequalities, andP ′ be obtained fromP by replacing each inequality ofB with (0 ≤ 0).
Let l

def
= 〈c1, 0 ≤ t1〉, . . . , 〈cn, 0 ≤ tn〉 be the list associated with the root ofP ′, computed

as described above. ThenI
def
=

∧n
i=1(0 ≤ ti) is an interpolant for(A,B). Moreover,I is

always stronger than or equal to the interpolant obtained with the algorithm of§2.3.1 for
the same proofP ′.

PROOF. By induction on the structure ofP ′, it is easy to prove that, for each constraint
(0 ≤ t) in P ′ with its associated listl

def
= 〈c1, 0 ≤ t1〉, . . . , 〈cn, 0 ≤ tn〉:

(1) A |=
∧n

i=1(0 ≤ ti); and

(2) (0 ≤ t) ≡
∑n

i=1 ci · (0 ≤ ti)

Since the root ofP ′ is an interpolant for(A,B), this immediately proves the theorem.

4. FROM SMT(DL) SOLVING TO SMT(DL) INTERPOLATION

Several interesting verification problems can be encoded using only a subset ofLA, the
theory of Difference Logic (DL), either over the rationals (DL(Q)) or over the integers
(DL(Z)). DL is much simpler thanLA, since inDL all atoms are inequalities of the form
(0 ≤ y − x + c), wherex andy are variables andc is an integer constant.9 Equalities
can be handled as conjunctions of inequalities. Here we do not consider the case when we
also have strict inequalities(0 < y − x+ c) and disequalities(0 6= y − x+ c), because in
DL(Q) they can be handled in a way which is similar to that describedin §3.2 forLA(Q),
whilst inDL(Z) a strict inequality(0 < y−x+c) can be rewritten a priori into a weak one
(0 ≤ y−x+c−1), and a disequality can be replaced by a disjunction of strictinequalities.

8That is,x occurs int.
9Notice that we can assume w.l.o.g. that all constants are inZ because, if this is not so, then we can rewrite the
whole formula into an equivalently-satisfiable one by multiplying all constant symbols occurring in the formula
by their greatest common denominator.
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Very efficient solving algorithms have been conceived forDL [Cotton and Maler 2006;
Nieuwenhuis and Oliveras 2005]. In this section we present aspecialized technique for
computing interpolants inDL which exploits such state-of-the-art decision procedures.
Since a set of weak inequalities inDL is consistent over the rationals if and only if it is
consistent over the integers, our algorithm is applicable without any modifications to both
DL(Q) andDL(Z) (see e.g. [Nieuwenhuis and Oliveras 2005]).

Many SMT solvers use dedicated, graph-based algorithms forchecking the consistency
of a set ofDL(Q) atoms [Cotton and Maler 2006; Nieuwenhuis and Oliveras 2005]. In-
tuitively, a setS of DL(Q) atoms induces a graph whose vertexes are the variables of the
atoms, and there exists an edgex

c
−→ y for every(0 ≤ y − x+ c) ∈ S. S is inconsistent if

and only if the induced graph has a cycle of negative weight.
We now extend the graph-based approach to generate interpolants. Consider the inter-

polation problem(A,B) whereA andB are sets of inequalities as above, and letC be (the
set of atoms in) a negative cycle in the graph corresponding toA ∪B.

If C ⊆ A, thenA is inconsistent, in which case the interpolant is⊥. Similarly, when
C ⊆ B, the interpolant is⊤. If neither of these occurs, then the edges in the cycle can be
partitioned in subsets ofA andB. We call maximalA-paths ofC a pathx1

c1−→ . . .
cn−1

−−−→

xn such that (I) xi
ci−→ xi+1 ∈ A for i ∈ [1, n − 1], and (II ) C containsx′

c′

−→ x1 and

xn
c′′

−→ x′′ that are inB. Clearly, the end-point variablesx1, xn of the maximalA-path
are suchx1, xn � A andx1, xn � B. Let thesummary constraintof a maximalA-path
x1

c1−→ . . .
cn−1

−−−→ xn be the inequality0 ≤ xn − x1 +
∑n−1

i=1 ci.

THEOREM 4.1. The conjunction of summary constraints of theA-paths ofC is an
interpolant for(A,B).

PROOF. Using the rules forLA(Q) of Figure 3, we build a deduction of the summary
constraint of an maximalA-path from the conjunction of its corresponding set of con-
straints

∧n−1
i=1 (0 ≤ xi+1 − xi + ci):

(0 ≤ x2 − x1 + c1) (0 ≤ x3 − x2 + c2)

(0 ≤ x3 − x1 + c1 + c2) (0 ≤ x4 − x3 + c3)

. . . . . . (0 ≤ xn − xn−1 + cn−1)

(0 ≤ xn − x1 +
Pn−1

i=1
ci).

Hence,A entails the conjunction of the summary constraints of all maximal A-paths.
Then, we notice that the conjunction of the summary constraints is inconsistent withB.
In fact, the weight of a maximalA-path and the weight of its summary constraint are
the same. Thus the cycle obtained fromC by replacing each maximalA-path with the
corresponding summary constraint is also a negative cycle.Finally, we notice that every
variablex occurring in the conjunction of the summary constraints is an end-point variable,
and thusx � A andx � B.

A final remark is in order. In principle, in order to generate aproof of unsatisfiability for
a conjunction ofDL(Q) atomsA ∧ B, the same rules used forLA(Q) [McMillan 2005]
could be used. For instance, it is easy to build a proof which repeatedly applies the COMB

rule with c1 = c2 = 1. In general, however, the interpolants generated from suchproofs
are notDL(Q) formulas anymore and, if computed starting from the same inconsistent
setC, they are either identical or weaker than those generated with our method. In fact,
it is easy to see that, unless our technique of§3.3 is adopted, such interpolants are in the
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form (0 ≤
∑

i ti) s.t.
∧

i(0 ≤ ti) is the corresponding interpolant generated with our
graph-based method.

EXAMPLE 4.1. Consider the following sets ofDL(Q) atoms:

A
def
= {(0 ≤ x1 − x2 + 1), (0 ≤ x2 − x3), (0 ≤ x4 − x5 − 1)}

B
def
= {(0 ≤ x5 − x1), (0 ≤ x3 − x4 − 1)}. −1

−10

1

0

1

A
B

x1
x5

x2

x3

x4

corresponding to the negative cycle on the right. It is straightforward to see from the graph
that the resulting interpolant is(0 ≤ x1 − x3 + 1) ∧ (0 ≤ x4 − x5 − 1), because the first
conjunct is the summary constraint of the first two conjunctsin A.

Applying instead the rules of Figure 3 with coefficients 1, the proof of unsatisfiability is:

(0 ≤ x1 − x2 + 1) (0 ≤ x2 − x3)

(0 ≤ x1 − x3 + 1) (0 ≤ x4 − x5 − 1)

(0 ≤ x1 − x3 + x4 − x5) (0 ≤ x5 − x1)

(0 ≤ −x3 + x4) (0 ≤ x3 − x4 − 1)

(0 ≤ −1)

By using the interpolation rules forLA(Q), the interpolant we obtain is(0 ≤ x1 − x3 +
x4 − x5), which is not inDL(Q), and is weaker than that computed above:

(0 ≤ x1 − x2 + 1) (0 ≤ x2 − x3)

(0 ≤ x1 − x3 + 1) (0 ≤ x4 − x5 − 1)

(0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)

(0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)

(0 ≤ x1 − x3 + x4 − x5)

Notice that, if instead we apply our technique of§3.3, then theLA(Q)-interpolant gener-
ated from the above proof is identical to theDL(Q) one above.

5. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

The Unit-Two-Variables-Per-Inequality (UT VPI) theory is a subtheory of linear arith-
metic, in which all constraints are in the form(0 ≤ ax1 + bx2 + k), wherek is a numer-
ical constant,a, b ∈ {−1, 0, 1}, and variablesxi, x2 range either over the rationals (for
UT VPI(Q)) or over the integers (forUT VPI(Z)). Consequently,DL(Q) is a subthe-
ory of UT VPI(Q), which is itself a subtheory ofLA(Q), andDL(Z) is a subtheory of
UT VPI(Z), which is itself a subtheory ofLA(Z).

As for DL, UT VPI can be treated more efficiently than the fullLA, and several spe-
cialized algorithms forUT VPI have been proposed in the literature. Traditional tech-
niques are based on the iterative computation of the transitive closure of the constraints
[Harvey and Stuckey 1997; Jaffar et al. 1994]; more recently[Lahiri and Musuvathi 2005]
proposed a novel technique based on a reduction toDL, so that graph-based techniques
can be exploited, resulting into an asymptotically-fasteralgorithm. We adopt the latter
approach and show how the graph-based interpolation technique of§4 can be extended to
UT VPI, for both the rationals (§5.1) and the integers (§5.2).
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UT VPI(Q) constraints DL(Q) constraints
(0 ≤ x1 − x2 + k) (0 ≤ x+

1
− x+

2
+ k), (0 ≤ x−

2
− x−

1
+ k)

(0 ≤ −x1 − x2 + k) (0 ≤ x−

1
− x+

2
+ k), (0 ≤ x−

2
− x+

1
+ k)

(0 ≤ x1 + x2 + k) (0 ≤ x+
1
− x−

2
+ k), (0 ≤ x+

2
− x−

1
+ k)

(0 ≤ −x1 + k) (0 ≤ x−

1
− x+

1
+ 2 · k)

(0 ≤ x1 + k) (0 ≤ x+

1
− x−

1
+ 2 · k)

Fig. 4. The conversion map fromUT VPI(Q) to DL(Q).

5.1 Graph-based interpolation for UT VPI on the Rationals

We analyze first the simpler case ofUT VPI(Q). Miné [Miné 2001] showed that it is
possible to encode a set ofUT VPI(Q) constraints into aDL(Q) one in a satisfiability-
preserving way. The encoding works as follows. We usexi to denote variables in the
UT VPI(Q) domain andu, v for variables in theDL(Q) domain. For every variablexi
in UT VPI(Q), we introduce two distinct variablesx+i andx−i in DL(Q). We introduce a
mappingΥ fromDL(Q) variables toUT VPI(Q) signed variables, such thatΥ(x+i ) = xi
andΥ(x−i ) = −xi. Υ extends to (sets of) constraints in the natural way:Υ(0 ≤ ax1 +

bx2+k)
def
= (0 ≤ aΥ(x1)+ bΥ(x2)+ c), andΥ({ci}i)

def
= {Υ(ci)}i. We say that(x+i )

− =
x−i and(x−i )

− = x+i . We say that the constraints(0 ≤ u − v) and(0 ≤ (v)− − (u)−)
s.t. u, v ∈ {x+i , x

−
i }i aredual. We encode eachUT VPI constraint into the conjunction

of two dualDL(Q) constraints, as represented in Figure 4. For eachDL(Q) constraint
(0 ≤ v − u + k), (0 ≤ Υ(v) − Υ(u) + k) is the correspondingUT VPI(Q) constraint.
Notice that the two dualDL(Q) constraints in the right column of Figure 4 are just different
representations of the originalUT VPI(Q) constraint. (The two dual constraints encoding
a single-variable constraint are identical, so that their conjunction is collapsed into one
constraint only.) The resulting set of constraints is satisfiable inDL(Q) if and only if the
original one is satisfiable inUT VPI(Q) [Miné 2001; Lahiri and Musuvathi 2005].

Consider the pair(A,B) whereA andB are sets ofUT VPI(Q) constraints. We apply
the map of Figure 4 and we encode(A,B) into a DL(Q) pair (A′, B′), and build the
constraint graphG(A′ ∧ B′). If G(A′ ∧ B′) has no negative cycle, we can conclude that
A′ ∧B′ isDL(Q)-consistent, and hence thatA∧B isUT VPI(Q)-consistent; otherwise,
A′∧B′ isDL(Q)-inconsistent, and henceA∧B isUT VPI(Q)-inconsistent [Miné 2001;
Lahiri and Musuvathi 2005]. In fact, it is straightforward to observe that for any set of
DL(Q) constraints{C1, . . . , Cn, C} resulting from the encoding of someUT VPI(Q)
constraints, if

∧n
i=1 Ci |=DL(Q) C then

∧n
i=1 Υ(Ci) |=UT VPI(Q) Υ(C).

WhenA ∧B is inconsistent, we can generate anUT VPI(Q)-interpolant by extending
the graph-based approach used forDL(Q).

THEOREM 5.1. LetA∧B be an inconsistent conjunction ofUT VPI(Q)-constraints,
and letG(A′∧B′) be the corresponding graph ofDL(Q)-constraints. LetI ′ be aDL(Q)-
interpolant built fromG(A′ ∧ B′) with the technique described in§4. ThenI

def
= Υ(I ′) is

an interpolant for(A,B).

PROOF. (i) I ′ is a conjunction of summary constraints, so it is in the form
∧

iCi. There-
fore A′ |=DL(Q) Ci for all i, and so by the observation aboveA |=UT VPI(Q) Υ(Ci).
Hence,A |=UT VPI(Q) I. (ii) From theDL(Q)-inconsistency ofI ′ ∧ B′ we immediately
derive thatI ∧B isUT VPI(Q)-inconsistent. (iii)I � A andI � B derive fromI ′ � A′
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A

B

negative cycle

maximal A−paths

−5

−2

1 1 4 4

−6 133 −1

−6 133 −1

x−
1 x+

2 x−
3 x+

4 x−
5 x−

6

x+
6x+

5x−
4x+

3x−
2x+

1

Fig. 5. The constraint graph of Example 5.1. (We represent only one negative cycle with its corresponding
A-paths, because the other is dual.)

andI ′ � B′ by the definitions ofΥ and the map of Figure 4.

As with theDL(Q) case, in principle, it is possible to generate a proof of unsatisfiability
for a conjunction ofUT VPI(Q) atomsA ∧B by repeatedly applying the COMB rule for
LA(Q) [McMillan 2005] with c1 = c2 = 1. As with DL(Q), however, the interpolants
generated from such proofs may not beUT VPI(Q) formulas anymore. Moreover, if
computed starting from the same inconsistent setC and unless our technique of§3.3 is
adopted, they are either identical or weaker than those generated with our graph-based
method, since they are in the form(0 ≤

∑

i ti) s.t.
∧

i(0 ≤ ti) is the interpolant generated
with our method.

EXAMPLE 5.1. Consider the following sets ofUT VPI(Q) constraints:

A = {(0 ≤ −x2 − x1 + 3), (0 ≤ x1 + x3 + 1),

(0 ≤ −x3 − x4 − 6), (0 ≤ x5 + x4 + 1)}

B = {(0 ≤ x2 + x3 + 3), (0 ≤ x6 − x5 − 1), (0 ≤ x4 − x6 + 4)}

By the map of Figure 4, they are converted into the following sets ofDL(Q) constraints:

A′ = {(0 ≤ x−1 − x+2 + 3), (0 ≤ x−2 − x+1 + 3),

(0 ≤ x+3 − x−1 + 1), (0 ≤ x+1 − x−3 + 1),

(0 ≤ x−4 − x+3 − 6), (0 ≤ x−3 − x+4 − 6),

(0 ≤ x+4 − x−5 + 1), (0 ≤ x+5 − x−4 + 1)}

B′ = {(0 ≤ x+3 − x−2 + 3), (0 ≤ x+2 − x−3 + 3),

(0 ≤ x+6 − x+5 − 1), (0 ≤ x−5 − x−6 − 1),

(0 ≤ x+4 − x+6 + 4), (0 ≤ x−6 − x−4 + 4)}

whose conjunction corresponds to the constraint graph of Figure 5. This graph has a
negative cycle

C′ def
= x+2

3
−→ x−1

1
−→ x+3

−6
−−→ x−4

4
−→ x−6

−1
−−→ x−5

1
−→ x+4

−6
−−→ x−3

3
−→ x+2 .

Thus,A ∧ B is inconsistent inUT VPI(Q). From the negative cycleC′ we can extract

the set ofA′-paths{x+2
−2
−−→ x−4 , x

−
5

−5
−−→ x−3 }, corresponding to the formulaI ′

def
= (0 ≤

x−4 −x+2 −2)∧(0 ≤ x−3 −x−5 −5), which is an interpolant for(A′, B′). I ′ is thus mapped
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back intoI
def
= Υ(I ′)

def
= (0 ≤ −x2 − x4 − 2)∧ (0 ≤ x5 − x3 − 5), which is an interpolant

for (A,B).
Applying instead theLA(Q) interpolation technique of [McMillan 2005], we find the

interpolant(0 ≤ −x2 − x4 + x5 − x3 − 7), which is not inUT VPI(Q) and is strictly
weaker than that computed with our method.

5.2 Graph-based interpolation for UT VPI on the Integers

In order to deal with the more complex case ofUT VPI(Z), we adopt a layered ap-
proach [Sebastiani 2007]. First, we check the consistency in UT VPI(Q) using the tech-
nique of [Miné 2001]. If this results in an inconsistency, we compute anUT VPI(Q)-
interpolant as described in§5.1. If theUT VPI(Q)-procedure does not detect an inconsis-
tency, we check the consistency inUT VPI(Z) using the algorithm proposed by Lahiri and
Musuvathi in [Lahiri and Musuvathi 2005], which extends theideas of [Miné 2001] to the
integer domain. In particular, it gives necessary and sufficient conditions to decide unsat-
isfiability by detecting particular kinds of zero-weight cycles in the inducedDL constraint
graph. This procedure works inO(n ·m) time andO(n +m) space,m andn being the
number of constraints and variables respectively, which improves the previousO(n2 ·m)
time andO(n2) space complexity of the previous procedure of [Jaffar et al.1994].

We build on top of this algorithm and we extend the graph-based approach of§5.1 for
producing interpolants also inUT VPI(Z). In particular, we use the following reformula-
tion of a result of [Lahiri and Musuvathi 2005].

THEOREM 5.2. Letφ be a conjunction ofUT VPI(Z) constraints s.t.φ is satisfiable
in UT VPI(Q). Thenφ is unsatisfiable inUT VPI(Z) iff the constraint graphG(φ)
generated fromφ has a cycleC of weight 0 containing two verticesx+i andx−i s.t. the
weight of the pathx−i ❀ x+i alongC is odd.

PROOF. The “only if” part is a corollary of lemmas 1, 2 and 4 in [Lahiri and Musuvathi
2005]. The “if” comes straightforwardly from the analysis done in [Lahiri and Musuvathi
2005], whose main intuitions we recall in what follows. Assume the constraint graphG(φ)
generated fromφ has one cycleC of weight 0 containing two verticesx+i andx−i s.t. the
weight of the pathx−i ❀ x+i alongC is 2k + 1 for some integer valuek. (SinceC
has weight0, the weight of the other pathx+i ❀ x−i alongC is −2k − 1.) Then, the
pathsx−i ❀ x+i andx+i ❀ x−i contain at least two constraints, because otherwise their
weight would be even (see the last two lines of Figure 4). Then, x−i ❀ x+i is in the
form x−i ❀ v

n
−→ x+i , for somev andn. Fromx−i ❀ v, we can derive the summary

constraint(0 ≤ v− x−i +(2k+1−n)), which corresponds to theUT VPI(Z) constraint
(0 ≤ Υ(v)+xi+(2k+1−n)). (This corresponds tol−2 applications of the TRANSITIVE

rule of [Lahiri and Musuvathi 2005],l being the number of constraints inx−i ❀ x+i .)
Then, by observing that theUT VPI(Z) constraint corresponding tov

n
−→ x+i is (0 ≤

xi − Υ(v) + n), we can apply the TIGHTENING rule of [Lahiri and Musuvathi 2005] to
obtain(0 ≤ xi + ⌊(2k + 1− n+ n)/2⌋), which is equivalent to(0 ≤ xi + k). Similarly,
from x+i ❀ x−i we can obtain(0 ≤ −xi − k − 1), and thus an inconsistency using the
CONTRADICTION rule of [Lahiri and Musuvathi 2005].

Consider a pair(A,B) of UT VPI(Z) constraints such thatA ∧ B is consistent in
UT VPI(Q) but inconsistent inUT VPI(Z). By Theorem 1, the constraint graphG(A′ ∧
B′) has a cycleC of weight 0 containing two verticesx+i andx−i s.t. the weight of the
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Fig. 6. UT VPI(Z) interpolation, Case 1.
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Fig. 7. UT VPI(Z) interpolation, Case 2.

pathsx−i ❀ x+i andx+i ❀ x−i alongC are2k + 1 and−2k − 1 respectively, for some
valuek ∈ Z. Our algorithm computes an interpolant for(A,B) from the cycleC. Let
CA andCB be the subsets of the edges inC corresponding to constraints inA′ andB′

respectively. We have to distinguish four distinct sub-cases.

Case 1: xi occurs inB but not inA. Consequently,x+i andx−i occur inB′ but not in
A′, and hence they occur inCB but not inCA. Let I ′ be the conjunction of the summary
constraints of the maximalCA-paths, and letI be the conjunction of the corresponding
UT VPI(Z) constraints.

THEOREM 5.3. I is an interpolant for(A,B).

PROOF. (i) By construction,A |=UT VPI(Z) I, as in§5.1. (ii) The constraints inI ′

andCB form a cycle matching the hypotheses of Theorem 5.2, from which I ∧ B is
UT VPI(Z)-inconsistent. (iii) We notice that every variablex+j , x

−
j occurring in the con-

junction of the summary constraints is an end-point variable, so thatI ′ � CA andI ′ � CB,
and thusI � A andI � B.

EXAMPLE 5.2. Consider the following set of constraints:

S = {(0 ≤ x1 − x2 + 4), (0 ≤ −x2 − x3 − 5), (0 ≤ x2 + x6 − 4), (0 ≤ x5 + x2 + 3),

(0 ≤ −x1 + x3 + 2), (0 ≤ −x6 − x4), (0 ≤ x4 − x5)},

partitioned intoA andB as follows:

A







(0 ≤ x3 − x1 + 2)
(0 ≤ −x6 − x4)
(0 ≤ x4 − x5)

B







(0 ≤ x1 − x2 + 4)
(0 ≤ −x2 − x3 − 5)
(0 ≤ x2 + x6 − 4)
(0 ≤ x5 + x2 + 3)

Figure 6 shows a zero-weight cycleC in G(A′ ∧ B′) such that the pathsx−2 ❀ x+2
andx+2 ❀ x−2 have an odd weight (−1 and1 resp.) Therefore, by Theorem 5.2A ∧ B
is UT VPI(Z)-inconsistent. The two summary constraints of the maximalCA paths are
(0 ≤ x−6 − x+5 ) and(0 ≤ x+3 − x+1 +2). It is easy to see thatI = (0 ≤ −x6 − x5)∧ (0 ≤
x3 − x1 + 2) is anUT VPI(Z)-interpolant for(A,B).

Case 2: xi occurs in bothA andB. Consequently,x+i andx−i occur in bothA′ andB′. If
neitherx+i norx−i is such that both the incoming and outgoing edges belong toCA, then
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the cycle obtained by replacing each maximalCA-path with its summary constraint still
contains bothx+i andx−i , so we can apply the same process of Case 1. Otherwise, if both
the incoming and outgoing edges ofx+i belong toCA, then we split the maximalCA-path

u1
c1−→ . . .

ck−→ x+i
ck+1

−−−→ . . .
cn−→ un containingx+i into the two parts which are separated

by x+i : u1
c1−→ . . .

ck−→ x+i andx+i
ck+1

−−−→ . . .
cn−→ un. We do the same forx−i . Let I ′

be the conjunction of the resulting summary constraints, and let I be corresponding set of
UT VPI(Z) constraints.

THEOREM 5.4. I is an interpolant for(A,B).

PROOF. (i) As with Case 1, again,A |=UT VPI(Z) I. (ii) Since we split the maximal
CA paths as described above, the constraints inI ′ andCB form a cycle matching the
hypotheses of Theorem 5.2, from whichI ∧ B is UT VPI(Z)-inconsistent. (iii)x+i , x

−
i

occur in bothA′ andB′ by hypothesis, and every other variablex+j , x
−
j occurring in the

conjunction of the summary constraints is an end-point variable, so thatI ′ � CA and
I ′ � CB, and thusI � A andI � B.

EXAMPLE 5.3. Consider again the set of constraintsS of Example 5.2, partitioned
intoA andB as follows:

A







(0 ≤ x3 − x1 + 2)
(0 ≤ −x6 − x4)
(0 ≤ x2 + x6 − 4)
(0 ≤ x1 − x2 + 4)

B







(0 ≤ −x2 − x3 − 5)
(0 ≤ x5 + x2 + 3)
(0 ≤ x4 − x5)

and the zero-weight cycleC ofG(A′ ∧B′) shown in Figure 7. As in the previous example,
there is a pathx−2 ❀ x+2 of weight−1 and a pathx+2 ❀ x−2 of weight1. In this case there
is only one maximalCA path, namelyx+4 ❀ x+3 . Since the cycle obtained by replacing it
with its summary constraint(0 ≤ x+3 −x

+
4 +2) does not containx+2 , we splitx+4 ❀ x+3 into

two paths,x+4 ❀ x+2 andx+2 ❀ x+3 , whose summary constraints are(0 ≤ x+2 − x+4 − 4)
and (0 ≤ x+3 − x+2 + 6) respectively. By replacing the two paths above with the two
summary constraints, we get a zero-weight cycle which stillcontains the two odd paths
x−2 ❀ x+2 andx+2 ❀ x−2 . Therefore,I

def
= (0 ≤ x2 − x4 − 4) ∧ (0 ≤ x3 − x2 + 6) is an

interpolant for(A,B).
Notice that theUT VPI(Z)-formula J

def
= (0 ≤ x3 − x4 + 2) corresponding to the

summary constraint of the maximalCA pathx+4 ❀ x+3 is not an interpolant, sinceJ ∧ B
is notUT VPI(Z)-inconsistent. In fact, if we replace the maximalCA pathx+4 ❀ x+3
with the summary constraintx+4

2
−→ x+3 , the cycle we obtain has still weight zero, but it

contains no odd path between two variablesx+i andx−i .

Case 3: xi occurs inA but not inB, and one of the pathsx+i ❀ x−i or x−i ❀ x+i in C
contains only constraints ofCA. In this case,x+i andx−i occur inA′ but not inB′. Suppose
thatx−i ❀ x+i consists only of constraints ofCA (the casex+i ❀ x−i is analogous).

Let 2k + 1 be the weight of the pathx−i ❀ x+i (which is odd by hypothesis), and let

C be the cycle obtained by replacing such path with the edgex−i
2k
−→ x+i in C. In the

following, we call such a replacementtightening summarization. SinceC has weight zero,
C has negative weight. LetCP be the set ofDL-constraints in the pathx−i ❀ x+i . Let I ′

be theDL-interpolant computed fromC for (CA \ CP ∪ {(0 ≤ x+i − x−i + 2k)}, CB),
and letI be the correspondingUT VPI(Z) formula.
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Fig. 8. UT VPI(Z) interpolation, Case 3.
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Fig. 9. UT VPI(Z) interpolation, Case 4.

THEOREM 5.5. I is an interpolant for(A,B).

PROOF. (i) Let P be the set ofUT VPI(Z) constraints in the pathx−i ❀ x+i . Since
the weight2k + 1 of such path is odd, we have thatP |=UT VPI(Z) (0 ≤ xi + k) (cf.
page 23). SinceP ⊆ A, therefore,A |=UT VPI(Z) (0 ≤ xi + k). By observing that
(0 ≤ x+i −x−i +2k) is theDL-constraint corresponding to(0 ≤ xi+ k) we conclude that
CA \CP ∪ (0 ≤ x+i −x−i +2k) |=DL I

′ implies thatA\P ∪ (0 ≤ xi+k) |=UT VPI(Z) I,
and so thatA |=UT VPI(Z) I.

(ii) Since all the constraints inCB occur inC, we have thatB ∧ I is UT VPI(Z)-
inconsistent.

(iii) Since by hypothesis all the constraints in the pathx−i ❀ x+i occur inCA, from
I ′ � (CA \ CP ∪ {(0 ≤ x+i − x−i + 2k)}) we have thatI � A. Finally, since all the
constraints inCB occur inC, we have thatI � B.

EXAMPLE 5.4. Consider again the setS of constraints of Example 5.2, this time par-
titioned intoA andB as follows:

A







(0 ≤ x1 − x2 + 4)
(0 ≤ x3 − x1 + 2)
(0 ≤ −x2 − x3 − 5)
(0 ≤ x2 + x6 − 4)

B







(0 ≤ x5 + x2 + 3)
(0 ≤ −x6 − x4)
(0 ≤ x4 − x5)

Figure 8 shows a zero-weight cycleC of G(A′ ∧ B′). The only maximalCA path is
x−6 ❀ x−2 . Since the pathx+2 ❀ x−2 has weight1, we can add the tightening edge

x+2
1−1
−−→ x−2 toG(A′ ∧ B′) (shown in dots and dashes in Figure 8), corresponding to the

constraint(0 ≤ x−2 − x+2 ). Since all constraints in the pathx+2 ❀ x−2 belong toA′,
A′ |= (0 ≤ x−2 − x+2 ). Moreover, the cycle obtained by replacing the pathx+2 ❀ x−2 with

the tightening edgex+2
0
−→ x−2 has a negative weight (−1). Therefore, we can generate

a DL-interpolantI ′
def
= (0 ≤ x−2 − x−6 − 4) from such cycle, which corresponds to the

UT VPI(Z)-interpolantI
def
= (0 ≤ −x2 + x6 − 4).

Notice that, similarly to Example 5.3, also in this case we cannot obtain an interpolant
from the summary constraint(0 ≤ x−2 − x−6 − 3) of the maximalCA pathx−6 ❀ x−2 , as
(0 ≤ −x2 + x6 − 3) ∧B is notUT VPI(Z)-inconsistent.

Case 4: xi occurs inA but not inB, and neither the pathx+i ❀ x−i nor the pathx−i ❀ x+i
in C consists only of constraints ofCA. As in the previous case,x+i andx−i occur inA′
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but not inB′, and hence they occur inCA but not inCB . In this case, however, we can
apply a tightening summarization neither tox+i ❀ x−i nor tox−i ❀ x+i , since none of
the two paths consists only of constraints ofCA. We can, however, perform aconditional
tightening summarizationas follows. LetCP

A andCP
B be the sets of constraints ofCA

andCB respectively occurring in the pathx−i ❀ x+i , and letC
P

A andC
P

B be the sets of

summary constraints of maximal paths inCP
A andCP

B . FromC
P

A ∪ C
P

B, we can derive

x−i
2k
−→ x+i (cf. Case 3), where2k + 1 is the weight of the pathx−i ❀ x+i . Therefore,

C
P

A ∪C
P

B |= (0 ≤ x+i − x−i + 2k), and thusC
P

A |= C
P

B → (0 ≤ x+i − x−i + 2k). We say

that(0 ≤ x+i − x−i + 2k) is the summary constraint forx−i ❀ x+i conditioned toC
P

B .
Using conditional tightening summarization, we generate an interpolant as follows. By

replacing the pathx−i ❀ x+i with x−i
2k
−→ x+i , we obtain a negative-weight cycleC,

as in Case 3. LetI ′ be theDL-interpolant computed fromC for (CA \ CP
A ∪ {(0 ≤

x+i − x−i +2k)}, CB \CP
B ), and letI be the correspondingUT VPI(Z) formula. Finally,

let PB be the conjunction ofUT VPI(Z) constraints corresponding toC
P

B.

THEOREM 5.6. (PB → I) is an interpolant for(A,B).

PROOF. (i) We know thatCA \ CP
A ∪ {(0 ≤ x+i − x−i + 2k)} |= I ′, becauseI ′ is a

DL-interpolant. Moreover,C
P

A ∪ C
P

B |= (0 ≤ x+i − x−i + 2k), and soCP
A ∪ C

P

B |= (0 ≤

x+i − x−i + 2k). Therefore,CA ∪C
P

B |= I ′, and thusA ∪ PB |=UT VPI(Z) I, from which
A |=UT VPI(Z) (PB → I).

(ii) SinceI ′ is aDL-interpolant for(CA \ CP
A ∪ {(0 ≤ x+i − x−i + 2k)}, CB \ CP

B ),
I ′ ∧ (CB \CP

B ) isDL-inconsistent, and thusI ∧B isUT VPI(Z)-inconsistent. Since by
constructionB |=UT VPI(Z) PB, (PB → I) ∧B is UT VPI(Z)-inconsistent.

(iii) From I ′ � CB \ CP
B we have thatI � B, and fromI ′ � CA \ CP

A ∪ {(0 ≤

x+i −x−i +2k)} thatI � A. Moreover, all the variables occurring in the constraints inC
P

B

are end-point variables, so thatC
P

B � CA andC
P

B � CB , and thusPB � A andPB � B.
Therefore,(PB → I) � A and(PB → I) � B.

EXAMPLE 5.5. We partition the setS of constraints of Example 5.2 intoA andB as
follows:

A







(0 ≤ x1 − x2 + 4)
(0 ≤ −x2 − x3 − 5)
(0 ≤ x5 + x2 + 3)
(0 ≤ x2 + x6 − 4)

B







(0 ≤ x3 − x1 + 2)
(0 ≤ −x6 − x4)
(0 ≤ x4 − x5)

Consider the zero-weight cycleC ofG(A′ ∧ B′) shown in Figure 9. In this case, neither
the pathx+2 ❀ x−2 nor the pathx−2 ❀ x+2 consists only of constraints ofA′, and thus

we cannot use any of the two tightening edgesx+2
1−1
−−→ x−2 andx−2

−1−1
−−−−→ x+2 directly

for computing an interpolant. However, we can compute the summaryx−2
−2
−−→ x+2 for

x−2 ❀ x+2 conditioned tox+5
0
−→ x−6 , which is the summary constraint of theB-path

x+5 ❀ x−6 , and whose correspondingUT VPI(Z) constraint is(0 ≤ −x6 − x5). By
replacing the pathx−2 ❀ x+2 with such summary, we obtain a negative-weight cycleC,
from which we generate theDL-interpolant(0 ≤ x+1 − x+3 − 3), corresponding to the
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UT VPI(Z) formula(0 ≤ x1−x3−3). Therefore, the generatedUT VPI(Z)-interpolant
is (0 ≤ −x6 − x5) → (0 ≤ x1 − x3 − 3).

As in Example 5.4, notice that we cannot generate an interpolant from the conjunction
of summary constraints of maximalCA paths, since the formula we obtain (i.e.(0 ≤
x1 + x6) ∧ (0 ≤ x5 − x3 − 2)) is not inconsistent withB.

6. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

In this Section, we consider the problem of generating interpolants for a pair ofT1 ∪ T2-
formulas(A,B), and propose a method based on the Delayed Theory Combination (DTC)
approach [Bozzano et al. 2006]. First, in§6.1 we provide some background on Nelson-
Oppen (NO) and DTC combination methods, and recall from [Yorsh and Musuvathi 2005]
the basics of interpolation for combined theories using NO;then, we present our novel
technique for computing interpolants using DTC (§6.2); in§6.3 we discuss the advantages
of the novel method; finally, in§6.4, we show how our novel technique can be used to
generate multiple interpolants from the same proof.

6.1 Background

6.1.1 Resolution proofs with NO vs. resolution proofs with DTC.One of the typical
approaches to the SMT problem in combined theories, SMT(T1∪T2), is that of combining
the solvers forT1 and forT2 with the Nelson-Oppen (NO) integration schema [Nelson and
Oppen 1979]. The NO framework works for combinations of stably-infinite, signature-
disjoint theoriesTi with equality. Moreover, it requires the input formula to bepure (i.e.,
s.t. all the atoms contain only symbols in one theory): if not, a purificationstep is per-
formed, by recursively labeling termst with fresh variablesvt, and by conjoining the
definition atom(vt = t) to the formula. This process is linear in the size of the input
formula. 10 For instance, the formula(f(x + 3y) = g(2x − y)) can be purified into
(f(vx+3y) = g(v2x−y)) ∧ (vx+3y = x+ 3y) ∧ (v2x−y = 2x− y)).

In the NO setting, the two decision procedures forT1 andT2 cooperate by deducing and
exchanginginterface equalities11, that is, equalities between variables appearing in atoms
of different theories (interface variables).

With an NO-based SMT solver, resolution proofs for formulasin a combinationT1 ∪T2
of theories have the same structure as those for formulas in asingle theoryT . The only
difference is that theory lemmas in this case are the result of the NO-combination ofT1 and
T2 (i.e., they areT1 ∪T2-lemmas) (Figure 10 left). From the point of view of interpolation,
the difference with respect to the case of a single theoryT is that theT1 ∪ T2-interpolants
for the negations of theT1 ∪ T2-lemmas can be computed with the combination method of
[Yorsh and Musuvathi 2005] whenever it applies (see§6.1.2).

Recently, an alternative approach for combining theories in SMT has been proposed,
called Delayed Theory Combination (DTC) [Bozzano et al. 2006]. With DTC, the solvers
for T1 andT2 do not communicate directly. The integration is performed by the SAT solver,
by augmenting the Boolean search space with up to all the possible interface equalities,
so that each truth assignment on both original atoms and interface equalities is checked

10As shown in [Barrett et al. 2002], the purification step is notstrictly necessary. However, in the rest we shall
assume that it is performed (as it is traditionally done in papers on combination of theories), since it makes the
exposition easier.
11They deduce and exchangedisjunctionsof interface equalities if the theory is not convex.
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⊥

T1 ∪ T2-lemma

T1 ∪ T2-lemma T1 ∪ T2-lemma

T2-lemmaT1-lemma

T1-lemma

T1-lemma
T1-lemma

T1-lemma

T2-lemma

T2-lemma
T1-lemma

⊥

(NO) (DTC)

Fig. 10. Different structures of resolution proofs of unsatisfiability for T1 ∪ T2-formulas, using NO (left) and
DTC (right).

for consistency independently on both theories. DTC has several advantages wrt. NO,
in terms of versatility, efficiency, and restrictions imposed toT -solvers [Bozzano et al.
2006; Bruttomesso et al. 2008a], so that many current SMT tools implement variants and
evolutions of DTC.

With DTC, resolution proofs are quite different from those obtained with NO. There
is no T1 ∪ T2-lemma anymore, because the twoTi-solvers don’t communicate directly.
Instead, the proofs contain bothT1-lemmas andT2-lemmas (Figure 10 right), and – impor-
tantly – they contain also interface equalities. (Notice thatTi-lemmas derive either from
Ti-conflicts and fromTi-propagation steps.) In this case, the combination of theories is
encoded directly in the proofs (thanks to the presence of interface equalities), and not “hid-
den” in theT1 ∪T2-lemmas as with NO. This observation is at the heart of our DTC-based
interpolant combination method.

EXAMPLE 6.1. Consider the following formulaφ:

φ
def
= (a1 = f(a2)) ∧ (b1 = f(b2))∧

(y − a2 = 1) ∧ (y − b2 = 1) ∧ (a1 + y = 0) ∧ (b1 + y = 1).

φ is expressed over the combined theoryEUF ∪ LA(Q): the first two atoms belong to
EUF , while the last four belong toLA(Q).

Using the NO combination method,φ can be proved unsatisfiable as follows:

(1) From the conjunction(y − a2 = 1) ∧ (y − b2 = 1), theLA(Q)-solver deduces the
interface equality(a2 = b2), which is sent to theEUF -solver;

(2) From (a2 = b2) and the conjunction(a1 = f(a2)) ∧ (b1 = f(b2)) theEUF -solver
deduces the interface equality(a1 = b1), which is sent to theLA(Q)-solver;

(3) Together with the conjunction(a1 + y = 0) ∧ (b1 + y = 1), (a1 = b1) causes an
inconsistency in theLA(Q)-solver;

(4) TheEUF ∪ LA(Q) conflict-set generated is{(y − a2 = 1), (y − b2 = 1), (a1 =
f(a2)), (b1 = f(b2)), (a1 + y = 0), (b1 + y = 1)}, corresponding to theEUF ∪

LA(Q)-lemmaC
def
= ¬(y − a2 = 1) ∨ ¬(y − b2 = 1) ∨ ¬(a1 = f(a2)) ∨ ¬(b1 =

f(b2)) ∨ ¬(a1 + y = 0) ∨ ¬(b1 + y = 1).
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The corresponding NO proof of unsatisfiability forφ is thus:

C (b1 + y = 1)

· · · (a1 + y = 0)

· · · (y − b2 = 1)

· · · (y − a2 = 1)

· · · (b1 = f(b2))

· · · (a1 = f(a2))

⊥

With DTC, the Boolean search space is augmented with the set of all possible interface
equalitiesEq

def
= {(a1 = a2), (a1 = b1), (a1 = b2), (a2 = b1), (a2 = b2), (b1 = b2)},

so that the DPLL engine can branch on them. If we suppose that the negative branch is
explored first (and we assume for simplicity that theT -solvers do not perform deductions),
using the DTC combination methodφ can be proved unsatisfiable as follows:

(1) Assigning(a2 = b2) to false causes an inconsistency in theLA(Q)-solver, which
generates theLA(Q)-lemmaC1

def
= ¬(y − a2 = 1) ∨ ¬(y − b2 = 1) ∨ (a2 = b2). C1

is used by the DPLL engine to backjump and unit-propagate(a2 = b2);

(2) After such propagation, assigning(a1 = b1) to false causes an inconsistency in the
EUF -solver, which generates theEUF -lemmaC2

def
= ¬(a1 = f(a2)) ∨ ¬(b1 =

f(b2)) ∨ ¬(a2 = b2) ∨ (a1 = b1). C2 is used by the DPLL engine to backjump
and unit-propagate(a1 = b1);

(3) This propagation causes an inconsistency in theLA(Q)-solver, which generates the
LA(Q)-lemmaC3

def
= ¬(y − a2 = 1) ∨ ¬(y − b2 = 1) ∨ ¬(a1 = b1);

(4) After learningC3, the DPLL engine detects the unsatisfiability ofφ.

The corresponding DTC proof of unsatisfiability forφ is thus:

C1 (y − a2 = 1)

· · · (y − b2 = 1)

· · · C2

· · · (b1 = f(b2))

· · · C3

· · · (b1 + y = 1)

· · · (a1 + y = 0)

· · · (a1 = f(a2))

⊥

An important remark is in order. It is relatively easy to implement DTC in such a way
that, if bothT1 andT2 are convex, then allT -lemmas generated contain at most one pos-
itive interface equality. This is due to the fact that for convex theoriesT it is possible to
implement efficientT -solverswhich generates conflict sets containing at most one negated
equality between variables [Bozzano et al. 2005].12 (E.g., this is true for all theTi-solvers
on convex theories implemented in MATHSAT.) Thus, since we restrict to convex theories,
in the rest of this paper we can assume w.l.o.g. that everyT -lemma occurring as leaf in

12We recall that, ifT is convex, thenµ ∧
V

i ¬li |=T ⊥ iff µ ∧ ¬li |=T ⊥ for somei, where theli ’s are
positive literals.
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a resolution proofΠ of unsatisfiability deriving from DTC contains at most one positive
interface equality.

6.1.2 Interpolation with Nelson-Oppen.The work in [Yorsh and Musuvathi 2005]
gives a method for generating an interpolant for a pair(A,B) of T1 ∪ T2-formulas s.t.
A ∧ B |=T1∪T2

⊥ by means of the NO schema. As in [Yorsh and Musuvathi 2005], we
assume thatA andB have been purified using disjoint sets of auxiliary variables. We recall
from [Yorsh and Musuvathi 2005] a couple of definitions.

Definition 6.1AB-mixed equality. An equality between variables(a = b) is anAB-
mixed equality iffa 6� B andb 6� A (or vice versa).

Definition 6.2Equality-interpolating theory. A theoryT is said to be equality-interpolating
iff, for all A andB in T s.t.A ∧B |=T (a = b) and for allAB-mixed equalities(a = b),
there exists a termt such thatA ∧B |=T (a = t) ∧ (t = b) andt � A andt � B.

The work in [Yorsh and Musuvathi 2005] describes proceduresfor computing the term
t from anAB-mixed interface equality(a = b) for some convex theories of interest,
includingEUF , LA(Q), and the theory of lists.

Notationally, with the lettersx, xi, y, yi, z we denote generic variables, whilst with the
lettersa, ai, andb, bi we denote variables s.t.ai 6� B andbi 6� A; hence, with the letters
ei we denote genericAB-mixed interface equalities in the form(ai = bi); with the letters
η, ηi we denote conjunctions of literals where noAB-mixed interface equality occurs,
and with the lettersµ, µi we denote conjunctions of literals whereAB-mixed interface
equalities may occur. Ifµi (respηi) is

∧

i li, we write¬µi (resp. ¬ηi) for the clause
∨

i ¬li.

Let A ∧ B be aT1 ∪ T2-inconsistent conjunction ofT1 ∪ T2-literals, such thatA
def
=

A1 ∧ A2 andB
def
= B1 ∧ B2 where eachAi andBi is Ti-pure. The NO-based method of

[Yorsh and Musuvathi 2005] computes an interpolant for(A,B) by combiningTi-specific
interpolants for subsets ofA, B and the set of entailed interface equalities{ej}j that are
exchanged between theTi-solvers for deciding the unsatisfiability ofA ∧B. In particular,
letEq

def
= {ej}j be the set of entailed interface equalities. Due to the fact that bothT1 and

T2 are equality-interpolating, it is possible to assume w.l.o.g. thatEq does not containAB-
mixed equalities, because instead of deducing anAB-mixed interface equality(a = b), a
T -solvercan always deduce the two corresponding equalities(a = t) ∧ (t = b). (Notice
that the otherT -solver treats the termt as if it were a variable [Yorsh and Musuvathi
2005].) LetA′ def

= A ∪ (Eq ↓ A) andB′ def
= B ∪ (Eq ↓ B). Then,Ti-specific partial

interpolants are combined according to the following inductive definition:

IA,B(e)
def
=







⊥ if e ∈ A
⊤ if e ∈ B
(IiA′,B′(e) ∨

∨

ea∈A′ IA,B(ea)) ∧
∧

eb∈B′ IA,B(eb) otherwise,
(11)

wheree is either an entailed interface equality or⊥, andIiA′,B′(e) is aTi-interpolant for
(A′ ∪ ¬e,B′) if e � A, and for(A′, B′ ∪ ¬e) otherwise (ife � B). The computed
interpolant for(A,B) is thenIA,B(⊥). We refer the reader to [Yorsh and Musuvathi 2005]
for more details.
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6.2 From DTC solving to DTC Interpolation

We now discuss how to extend the DTC method to interpolation.As with [Yorsh and Musu-
vathi 2005], we can handle the case thatT1 andT2 are convex and equality-interpolating.
The approach to generating interpolants for combined theories starts from the proof gen-
erated by DTC. LetEq be the set of all interface equalities occurring in a DTC refutation
proof for aT1 ∪ T2-unsatisfiable formulaφ

def
= A ∧B.

In the caseEq does not containAB-mixed equalities, that is,Eq can be partitioned into
two sets(Eq \ B)

def
= {(x = y)|(x = y) � A and(x = y) 6� B} and (Eq ↓ B)

def
=

{(x = y)|(x = y) � B}, no interpolant-combination method is needed: the combination
is already encoded in the proof of unsatisfiability, and a direct application of Algorithm
1 to such proof yields an interpolant for the combined theoryT1 ∪ T2. Notice that this
fact holds despite the fact that the interface equalities inEq occur neither inA nor inB,
but might be introduced in the resolution proofΠ by T -lemmas. In fact, as observed in
[McMillan 2005], as long as for an atomp eitherp � A or p � B holds, it is possible to
consider it part ofA (resp. ofB) simply by assuming the tautology clausep ∨ ¬p to be
part ofA (resp. ofB). Therefore, we can treat the interface equalities in(Eq \ B) as if
they appeared inA, and those in(Eq ↓ B) as if they appeared inB.

WhenEq containsAB-mixed equalities, instead, a proof-rewriting step is performed
in order to obtain a proof which is free fromAB-mixed equalities, that is amenable for
interpolation as described above. The idea is similar to that used in [Yorsh and Musuvathi
2005] in the case of NO: using the fact thatT1 andT2 are equality-interpolating, we reduce
this case to the previous one by “splitting” everyAB-mixed interface equality(ai = bi)
into the conjunction of two parts(ai = ti) ∧ (ti = bi), such that(ai = ti) � A and
(ti = bi) � B. The main difference is that we do thisa posteriori, after the construction
of the resolution proof of unsatisfiabilityΠ. In order to do this, we traverseΠ and split
eachAB-mixed equality, performing also the necessary manipulations to ensure that the
result is still a resolution proof of unsatisfiability.

We describe this process in two steps. In§6.2.1 we introduce a particular kind of res-
olution proofs of unsatisfiability, calledie -local, and show how to eliminateAB-mixed
interface equalities fromie -local proofs; in§6.2.2 we show how to implement a variant of
DTC so that to generateie -local proofs.

6.2.1 EliminatingAB-mixed equalities by exploiting ie-locality

Definition 6.3 ie -local proof. A resolution proof of unsatisfiabilityΠ is local with re-
spect to interface equalities (ie -local) iff the interface equalities occur only in subproofs
Πie

i of Π, such that within eachΠie

i :

(i) all leaves are alsoT -lemma leaves ofΠ;

(ii) all the pivots are interface equalities;

(iii) the root contains no interface equality;

(iv) every right premise of an inner node is a leafT -lemma containing exactly one positive
interface equality.13

As a consequence of this definition, we also have that, withineachΠie

i in Π:

13 We have adopted the graphical convention that at each resolution step in aΠie

i
subproof, if(ai = bi) is the

pivot, then the premises containing¬(ai = bi) and(ai = bi) are the left and right premises respectively.
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(v) all nodes areT1 ∪ T2-valid; (Proof sketch: they result from Boolean resolution steps
from T1-valid andT2-valid clauses, hence they areT1 ∪ T2-valid.)

(vi) the only leafT -lemma which is a left premise contains no positive interface equal-
ity. (Proof sketch:we notice that, in a resolution stepC1 C2

C3
, if C3 contains no positive

interface equality, at least one betweenC1 andC2 contains no positive interface equal-
ity; since by (iv) the right premise contains one positive interface equality, only the
left premise contains no positive interface equality. Thusthe leftmost leafT -lemma
of Πie

i contains no positive interface equality.)

(vii) if an interface equalityej occurs negatively in someT -lemmaCj , thenej occurs
positively in a leafT -lemmaCk which is the right premise of a resolution step whose
left premise derives fromCj and otherT -lemmas. (Proof sketch:suppose that¬ej
occurs inCj but ej does not occur in any suchCk. Thenej can not be a pivot, hence
¬ej occurs in the root ofΠie

i , thus violating (iii).)

Intuitively, in ie -local proofs of unsatisfiability all the reasoning on interface equal-
ities is circumscribed withinΠie

i subproofs, which are linear sub-proofs involving only
T -lemmas as leaves, starting from the one containing no positive interface equality, each
time eliminating one negative interface equality by resolving it against the only positive
one occurring in another leafT -lemma.

EXAMPLE 6.2. Consider theEUF ∪ LA(Q) formulaφ of Example 6.1, and theT -
lemmasC1, C2 andC3 introduced by DTC to prove its unsatisfiability. The proofΠ of
Example 6.1 is notie -local, because resolution steps involving interface equalities are
interleaved with resolution steps involving other atoms. The following proofΠ′, instead, is
ie -local: all the interface equalities are used as pivots in theΠie subproof:

C3 C2

. . .
[pivot (a1 = b1)]

C1

. . .
[pivot (a2 = b2)]

Πie

(a2 + z = 1)

. . . (a1 + z = 0)

. . . (z − x2 = 1)

. . . (a1 = f(x1))

. . . (a2 = f(x2))

. . . (z − x1 = 1)

⊥

C1
def
= (a2 = b2) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)

C2
def
= (a1 = b1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = b2)

C3
def
= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(a1 = b1).

If Π is an ie -local proof containingAB-mixed interface equalities, then it is possible
to eliminate all of them fromΠ by applying Algorithm 2 to everyΠie

i subproof ofΠ. In a
nutshell, eachΠie

i subproof is explored bottom-up, starting from the right premise of the
root, each time expanding the rightmost sideT -lemma in the formCi

def
= (ai = bi)∨¬ηi s.t.

(ai = bi) isAB-mixed into the (implicit) conjunction of two novelT -lemmasC′
i

def
= (ai =

ti) ∨ ¬ηi andC′′
i

def
= (ti = bi) ∨ ¬ηi (step (4)), whereti is theAB-pure term computed

fromCi as described in§6.1.2. Then the resolution step againstCi is substituted with the
concatenation of two resolution steps againstC′

i andC′′
i (step (5)) and then the substitution

¬(ai = bi) 7−→ ¬(ai = ti) ∨ ¬(ti = bi) is propagated bottom-up along the left subproof
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Algorithm 2: Rewriting of Πie subproofs

(1) Let σ be a mapping from negativeAB-mixed interface equalities to a disjunction of
two negative interface equalities, such thatσ[¬(ai = bi)] 7→ ¬(ai = ti) ∨ ¬(ti = bi)
andti is anAB-pure term as described in§6.1.2. Initially,σ is empty.

(2) LetCi
def
= (ai = bi)∨¬µi be the right premiseT -lemma of the root of theΠie subproof.

(3) Replace each¬(aj = bj) in Ci with σ[¬(aj = bj)], to obtainC∗
i

def
= (ai = bi) ∨ ¬ηi.

If (ai = bi) is notAB-mixed, then letΠ be the subproof rooted in the left premise,
and go to step (7).

(4) SplitC∗
i intoC′

i

def
= (ai = ti) ∨ ¬ηi andC′′

i

def
= (ti = bi) ∨ ¬ηi.

(5) Rewrite the subproof

...
¬(ai = bi) ∨ ¬µk Ci

¬µk ∨ ¬µi

into

...
¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬µk

Π

C′
i

¬(ti = bi) ∨ ¬ηk ∨ ¬ηi C′′
i

¬ηk ∨ ¬ηi
where¬ηk is obtained by¬µk by substituting each negativeAB-mixed interface
equality¬(aj = bj) with σ[¬(aj = bj)].

(6) Updateσ by settingσ[¬(ai = bi)] to¬(ai = ti) ∨ ¬(ti = bi).

(7) If Π is of the form

... Cj

· · ·
, setCi toCj and go to step (3).

(8) Otherwise,Π is the leaf¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬µk. In this case, replace each
¬(aj = bj) in ¬µk with σ[¬(aj = bj)], and then exit.

Π. Notice thatC′
i andC′′

i are stillTi-valid becauseTi is Equality-interpolating andηi does
not contain otherAB-mixed interfaced equalities.

EXAMPLE 6.3. Consider the formulaφ of Example 6.1 and itsie -local proof of unsat-
isfiability of Example 6.2. Suppose thatφ is partitioned as follows:

φ
def
= A ∧B

A
def
= (a1 = f(a2)) ∧ (y − a2 = 1) ∧ (a1 + y = 0)

B
def
= (b1 = f(b2)) ∧ (y − b2 = 1) ∧ (b1 + y = 1)

In this case, both interface equalities(a1 = b1) and(a2 = b2) areAB-mixed. Consider
theΠie subproof of Example 6.2:

C1
def
= (a2 = b2) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)

C2
def
= (a1 = b1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = b2)

C3
def
= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(a1 = b1)

C3 C2

Θ1 C1

Θ2

Π
ie

Θ1
def
= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = b2)

Θ2
def
= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)

The firstT -lemma processed by Algorithm 2 isC1. Using the technique of [Yorsh and
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Musuvathi 2005],(a2 = b2) is split into (a2 = y − 1) ∧ (y − 1 = b2) (step (4)), thus
obtainingC′

1, C′′
1 and the new proof (in step (5)):

C′
1

def
= (a2 = y − 1) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)

C′′
1

def
= (y − 1 = b2) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)

Θ′
2

def
= ¬(y − 1 = b2) ∨ ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2))∨

¬(a1 = f(a2)) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)

C3 C2

Θ1 C′
1

Θ′
2

C′′
1

Θ2

Then,σ[¬(a2 = b2)] is set to¬(a2 = y − 1) ∨ ¬(y − 1 = b2) (step (6)), and a new
iteration of the loop (3)-(7) is performed, this time processingC2. First, ¬(a2 = b2) is
replaced by¬(a2 = y − 1) ∨ ¬(y − 1 = b2) (step (3)). Then,(a1 = b1) can be split into
(a1 = f(y− 1))∧ (f(y− 1) = b1) (step (4)). After the rewriting of step (5), the proof is:

C′
2

def
= (a1 = f(y − 1)) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = y − 1)∨

¬(y − 1 = b2)

C′′
2

def
= (f(y − 1) = b1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = y − 1)∨

¬(y − 1 = b2)

Θ′
1

def
= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2))∨

¬(a2 = y − 1) ∨ ¬(y − 1 = b2)

Θ′′
1

def
= ¬(a1 = f(y − 1)) ∨ ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2))∨

¬(a1 = f(a2)) ∨ ¬(a2 = b2)

C3 C′
2

Θ′′
1

C′′
2

Θ′
1

C′
1

Θ′
2

C′′
1

Θ2

Finally, C3 is processed in step (8),¬(a1 = b1) gets replaced with¬(a1 = f(y − 1)) ∨
¬(f(y − 1) = b1), and the following final proofΠ′ie is generated:

C′
3 C′

2

Θ′′
1 C′′

2

Θ′
1 C′

1

Θ′
2 C′′

1

Θ2

such thatC′
3

def
= C3[¬(a1 = b1) 7→ ¬(a1 = f(y − 1)) ∨ ¬(f(y − 1) = b1)].

The following theorem states that Algorithm 2 is correct.

THEOREM 6.4. LetΠ be aΠie subproof, and letΠ′ be the result of applying Algorithm
2 toΠ. Then:

(a) Π′ does not contain anyAB-mixed interface equality; and

(b) Π′ is a valid subproof with the same root asΠ.

PROOF.

(a) Consider theT -lemmaCi of Step (3). By item (vii) of Definition 6.3, all negative in-
terface equalities occurring inCi occur positively in leafT -lemmas that are closer to
the root ofΠ. For the same reason, the firstT -lemmaCi analyzed in step (2) contains
no negativeAB-mixed interface equalities. Therefore, it follows by induction that all
negativeAB-mixed interface equalities inCi must have been split in Step (4) of a pre-
vious iteration of the loop (3)-(7) of Algorithm 2, and thus they occur inσ. The same
argument can be used to show also that at steps (5) and (8) every negativeAB-mixed
interface equality in¬µk occurs inσ.
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(b) We show that:

(i) Every substep
Θ′ Θ′′

Θ′′′
of Π′ is a valid resolution step;

(ii) every leaf ofΠ′ is aT -lemma; and
(iii) the root ofΠ′ is the same as that ofΠ.

(i) The only problematic case is the resolution step

¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬µk C′
i

¬(ti = bi) ∨ ¬ηk ∨ ¬ηi

introduced in step (5) of Algorithm 2. In this case, we have toshow that at the
end of the algorithm, all the negativeAB-mixed interface equalities in¬µk have
been replaced such that the result is identical to¬ηk. We already know that all
negativeAB-mixed equalities in¬µk occur inσ, thus we only have to show that
σ[¬ej ] cannot change between the time when¬ej was rewritten to obtain¬ηk
and the time in which it is rewritten in¬µk. The negative equality¬ej is replaced
in ¬µk at the next iteration of the algorithm (in step (5) for inner nodes, and in
step (8) for the final leaf). In the meantime, the only update to σ is performed in
step (6), but it involves the negative equality¬(ai = bi), which does not occur
in ¬µk.

(ii) Let Ci be aT -lemma inΠ. First, we observe that ifCi ≡ ¬(ai = bi)∨¬µi, then
for any ti also the clauseC∗

i

def
= ¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬µi is aT -lemma,

since(ai = ti) ∧ (ti = bi) |=T (ai = bi) by transitivity. Therefore, it follows
by induction on the number of substitutions that the clausesobtained in steps
(3) and (8) of Algorithm 2 are stillT -lemmas. Finally, since we are considering
equality-interpolating theories, after step (4) of Algorithm 2 bothC′

i andC′′
i are

T -lemmas.
(iii) Since the root ofΠ does not contain any interface equality (item (iii) of Defini-

tion 6.3), in step (5)¬ηi ≡ ¬µi and¬ηk ≡ ¬µk, and therefore the root does not
change.

Clearly, Algorithm 2 operates in linear time on the number ofT -lemmas, and thus of
AB-mixed interface equalities. Moreover, every time an interface equality is split, only
two new nodes are added to the proof (a right leaf and an inner node), and therefore the
size ofΠ′ is linear in that ofΠ.

The advantage of havingie -local proofs is that they ease significantly the process of
eliminatingAB-mixed interface equalities. First, since all the reasoning involving inter-
face equalities is confined inΠie subproofs, only such subproofs – which typically con-
stitute only a small fraction of the whole proof – need to be traversed and manipulated.
Second, the simple structure ofΠie subproofs allows for an efficient application of the
rewriting process of steps (5) and (3), preventing any explosion in size of the proof. In
fact, e.g., if in step (5) the right premise of the last step were instead the root of some
subproofΠi with Ci as a leaf, then two copies ofΠ′

i andΠ′′
i would be produced, in which

each instance of(ai = bi) bust be replaced with(ai = ti) and(ti = bi) respectively.

6.2.2 Generatingie -local proofs in DTC. In this section we show how to implement
a variant of DTC so that to generateie -local proofs of unsatisfiability. For the sake of
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pivot on
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Fig. 11. Simple strategy for generatingie -local proofs. Left: DTC search; top-right: corresponding(sub)proof;
bottom-right:Πie (sub)proof after rewriting.

simplicity, we describe first a simplified algorithm which makes use of two distinct DPLL
engines. We then describe how to avoid the need of a second DPLL engine with the use of
a particular search strategy for DTC.

The simplified algorithm uses two distinct DPLL engines, amainone and anauxiliary
one, which we shall call DPLL-1 and DPLL-2 respectively. Consider Figure 11, left.
DPLL-1 receives in input the clauses of the input problemφ (which we assume pure and
T1∪T2-inconsistent), but no interface equality, which are instead given to DPLL-2. DPLL-
1 enumerates total Boolean modelsµ of φ, and invokes the twoTi-solvers separately on
the subsetsµT1

andµT2
of µ. If one Ti-solver reports an inconsistency, then DPLL-1

backtracks. Otherwise, bothµTi
areTi-consistent, and DPLL-2 is invoked on the list of

unit clauses composed of theT1 ∪ T2-literals inµ, to check itsT1 ∪ T2-consistency.
DPLL-2 branches only on interface equalities, assigning them always to false first.

Some interface equalitiesej1, however, may be assigned to true by unit-propagation on
previously-learned clauses in the formCj

1
def
= ¬µj

1 ∨ e
j
1, or byT -propagation on deduction

clausesCj
1 in the same form; we callCj

1 the antecedent clauseof ej1. 14 (As in [Brut-
tomesso et al. 2008a], we assume that when aT -propagation stepµj

i |=T eji occurs,µj
i

being a subset of the current branch, the deduction clauseCj
i

def
= ¬µj

i ∨ e
j
i is learned, ei-

ther temporarily or permanently; if so, we can see this step as a unit-propagation onCj
i .)

When all the interface equalities have been assigned a truthvalue, the propositional model
µ′ ≡ µT1

∪µT2
∪µie is checked forT1∪T2-consistency by invoking each of theTi-solvers

14Notationally,ej
i

denotes thej-th most-recently unit-propagated interface equality in the branch in whichCi is

learned, andCj
i

def
= ¬µj

i
∨ e

j
i

denotes the antecedent clause ofe
j
i
.
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onµTi
∪ µie. 15 Sinceφ is inconsistent, one of the twoTi-solvers detects an inconsistency

(if both do, we consider only the first). Therefore aTi-lemmaC1 is generated. As stated
at the end of§6.1.1, we can assume w.l.o.g. thatC1 contains at most one positive interface
equalitye1. (Notice also that all negative interface equalities¬ej1 in C1, if any, have been
assigned by unit-propagation orT -propagation on some antecedent clauseCj

1 .) DPLL-2
then learnsC1 and uses it as conflicting clause to backjump: starting fromC1, it eliminates
from the clause every¬ej1 by resolving the current clause against its antecedent clauseCj

1 ,
until no negated equality occurs in the final clauseC∗

1 . 16

If C1 includes one positive interface equalitye1, then also the final clauseC∗
1 includes

it, so that DPLL-2 usesC∗
1 as a conflict clause to jump up toµ and to unit-propagatee1.

Then DPLL-2 starts exploring a new branch. This process is repeated on several branches,
learning a sequence ofT -lemmasC1, ..., Ck eachCi containing only one positive interface
equalityei, until a branch causes the generation of aT -lemmaCk+1 containing no positive
interface equalities. ThenCk+1 is resolved backward against the antecedent clauses of
its negative interface equalities, generating a final conflict clauseC∗ which contains no
interface equalities.

Overall, DPLL-2 has checked theT1 ∪ T2-unsatisfiability ofµ, building a resolution
(sub)proofΠ∗ whose root isC∗. (Figure 11, top right.) Then theT1 ∪ T2-lemmaC∗ is
passed to DPLL-1, which uses it as a blocking clause for the assignmentµ, it backtracks
and continues the search. When the empty clause is obtained,it generates a proof of
unsatisfiability in the usual way (see e.g. [van Gelder 2007]).

Since the main solver knows nothing about interface equalities, they can only appear
inside the proofs of the blocking clauses generated by the auxiliary solver (likeΠ∗). Each
Π∗ is not yet aΠie subproof, since it complies only with items (i), (ii) and (iii) of Def-
inition 6.3 but not with item (iv). The reason for the latter fact is thatΠ∗ contains a
set of right branchesΠCi

, one of eachT -lemmaCi in {Ck+1, ..., C1}, representing the
resolution steps to resolve away the interface equalities introduced by unit-propagation/T -
propagation in each branch. Each such sub-branchΠCi

, however, can be reduced to length
one by moving downwards the resolution steps with the antecedent clausesC1

i , C
2
i , ...

whichCi encounters in the branch. (Figure 11, bottom right.) This isdone by recursively
applying the following rewriting step toΠCi

, until it reduces to the single clauseCi:

...
¬ei ∨ ¬µ′

i

C
j
i

︷ ︸︸ ︷

¬µj
i ∨ e

j
i

Cj−1
i

C1
i Ci

...

¬µ′′
i ∨ ¬eji ∨ ei

¬µj
i ∨ ¬µ′′

i ∨ ei

ΠCi

¬µ′
i ∨ ¬µj

i ∨ ¬µ′′
i =⇒

...
¬ei ∨ ¬µ′

i

Cj−1
i

C1
i Ci

...

¬µ′′
i ∨ ¬eji ∨ ei

Π′

Ci

¬µ′
i ∨ ¬µ′′

i ∨ ¬eji

C
j

i
︷ ︸︸ ︷

¬µj
i ∨ e

j
i

¬µ′
i ∨ ¬µj

i ∨ ¬µ′′
i

(12)
As a result, eachΠ∗ is transformed into aΠie subproof, so that the final proof isie -local.

15In fact, it is not necessary to wait for all interface equalities to have a value before invoking theTi-solvers.
Rather, the standardearly pruningoptimization (see§2.2) can be applied.
16In order to determine the order in which to eliminate the interface equalities, theimplication graphof the
auxiliary DPLL engine can be used. This is a standard processin the conflict analysis in modern SAT and SMT
solvers (see, e.g., [van Gelder 2007; Sebastiani 2007]).
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In an actual implementation, there is no need of having two distinct DPLL solvers for
constructingie -local proofs. In fact, we can obtain the same result by adopting a variant
of the DTC Strategy 1 of [Bruttomesso et al. 2008a]. We never select an interface equality
for case splitting if there is some other unassigned atom, and we always assign false to
interface equalities first. Moreover, we “delay”T -propagation of interface equalities until
all the original atoms have been assigned a truth value. Finally, when splitting on inter-
face equalities, we restrict both the backjumping and the learning procedures of the DPLL
engine as follows. Letd be the depth in the DPLL tree at which the first interface equality
is selected for case splitting. If during the exploration ofthe current DPLL branch we have
to backjump aboved, then we generate by resolution a conflict clause that does not con-
tain any interface equality, and “deactivate” all theT -lemmas containing some interface
equality — that is, we do not use suchT -lemmas for performing unit propagation — and
we re-activate them only when we start splitting on interface equalities again. Using such
strategy, we obtain the same effect as in the simple algorithm using two DPLL engines: the
search space is partitioned in two distinct subspaces, the one of original atoms and the one
of interface equalities, and the generated proof of unsatisfiability reflects such partition.

Finally, we remark that what described above is onlyonepossible strategy for generating
ie -local proofs, and not necessarily the most efficient one. Moreover, that of generating
ie -local proofs is only asufficientcondition to obtain interpolants from DTC avoiding du-
plications of sub-proofs, and more general strategies may be conceived. The investigation
of alternative strategies is part of ongoing and future work.

6.3 Discussion

Our new DTC-based combination method has several advantages over the traditional one
of [Yorsh and Musuvathi 2005] based on NO:

(1) It inherits all the advantages of DTC over the traditional NO in terms of versatility,
efficiency and restrictions imposed toT -solvers [Bozzano et al. 2006; Bruttomesso
et al. 2008a]. Moreover, it allows for using a more modern SMTsolver, since many
state-of-the-art solvers adopt variants or extensions of DTC instead of NO.

(2) Instead of requiring an “ad-hoc” method for performing the combination, it exploits
the Boolean interpolation algorithm. In fact, thanks to thefact that interface equalities
occur in the proof of unsatisfiabilityΠ, once theAB-mixed terms inΠ are split there is
no need of any interpolant-combination method at all. In contrast, with the NO-based
method of [Yorsh and Musuvathi 2005] interpolants forT1∪T2-lemmas are generated
by combining “theory-specific partial interpolants” for the twoTi’s with an algorithm
that essentially duplicates the work that in our case is performed by the Boolean algo-
rithm. This allows also for potentially exploiting optimization techniques for Boolean
interpolation which are or will be made available from the literature.

(3) By splittingAB-mixed terms onlyafter the construction of the proofΠ, it allows
for computing several interpolants for several different partitions of the input problem
into (A,B) from the same proofΠ . This is particularly important for applications in
abstraction refinement [Henzinger et al. 2004]. (This feature is discussed in§6.4.)

The work of [Yorsh and Musuvathi 2005] can in principle deal with non-convex theories.
Our approach is currently limited to the case of convex theories; however, we see no reason
that would prevent from it being extensible at least theoretically to the case of nonconvex
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theories. Extending the approach to non-convex theories ispart of ongoing work. We also
remark that implementing the algorithm of [Yorsh and Musuvathi 2005] for non-convex
theories is a non-trivial task, and in fact we are not aware ofany such implementation.

Another algorithm for computing interpolants in combined theories is given in [Sofronie-
Stokkermans 2006]. Rather than a combination of theories with disjoint signatures, that
work considers the interpolation problem for extensions ofa base (convex) theory with new
function symbols, and it is therefore orthogonal to ours. The solution adopted is however
similar to what we propose, in the sense that also the algorithm of [Sofronie-Stokkermans
2006] works by splittingAB-mixed terms. The difference is that our algorithm is tightly
integrated in an SMT context, as it is guided by the resolution proof generated by the DPLL
engine.

6.4 Generating multiple interpolants

In §2.3 we remarked that a sufficient condition for generating multiple interpolants is that
all the interpolantsIi’s are computed from the same proof of unsatisfiability. When
generating interpolants with our DTC-based algorithm, however, we generate a different
proof of unsatisfiabilityΠi for each partition of the input formulaφ into Ai andBi. In
particular, everyΠi is obtained from the same “base” proofΠ, by splitting all theAiBi-
mixed interface equalities with the algorithm described in§6.2. In this section, we show
that (2) (at§2.3) holds also when eachΠi is obtained from the sameie -local proofΠ by
the rewriting of Algorithm 2 of§6.2.1. In order to do so, we need the following lemma.

LEMMA 6.5. LetΘ be aT1 ∪ T2-lemma, and letΠ be aΠie proof for it which does not
contain anyAB-mixed term. Then the formulaIΘ associated toΘ in Algorithm 1 is an
interpolant for(¬Θ \B,¬Θ ↓ B).

PROOF. By induction on the structure ofΠ, we have to prove that:

(1) ¬Θ \B |= IΘ;
(2) IΘ ∧ (¬Θ ↓ B) |= ⊥;
(3) IΘ contains only common symbols.

The base case is whenΠ is just a single leaf. Then, the lemma trivially holds by definition
of IΘ in this case (see Algorithm 1).
For the inductive step, letΘ1

def
= (x = y)∨φ1 andΘ2

def
= ¬(x = y)∨φ2 be the antecedents

of Θ in Π. (SoΘ
def
= φ1 ∨ φ2). Let IΘ1

andIΘ2
be the interpolants forΘ1 andΘ2 (by the

inductive hypothesis).

If (x = y) 6� B, thenIΘ
def
= IΘ1

∨ IΘ2
.

(1) By the inductive hypothesis,(¬φ1 ∧ ¬(x = y)) \B ≡ (¬φ1 \B) ∧ ¬(x = y) |=
IΘ1

, and(¬φ2 \ B) ∧ (x = y) |= IΘ2
. Then by resolution(¬φ1 ∧ ¬φ2) \ B ≡

¬Θ \B |= IΘ.
(2) By the inductive hypothesis,IΘ1

|= φ1 ↓ B andIΘ2
|= φ2 ↓ B, soIΘ1

∨ IΘ2
|=

(φ1 ∨ φ2) ↓ B, that isIΘ ∧ (¬Θ ↓ B) |= ⊥.
(3) By the inductive hypothesis bothIΘ1

andIΘ2
contain only common symbols, and

so alsoIΘ does.
If (x = y) � B, thenIΘ

def
= IΘ1

∧ IΘ2
.

(1) By the inductive hypothesis,¬φ1 \ B |= IΘ1
and¬φ2 \ B |= IΘ2

, so (¬φ1 ∧
¬φ2) \B ≡ ¬Θ \B |= IΘ.
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(2) By the inductive hypothesis, we also have thatIΘ1
|= φ1 ↓ B ∨ (x = y) and

IΘ2
|= φ2 ↓ B ∨ ¬(x = y). Therefore,IΘ1

∧ IΘ2
|= (φ1 ∨ φ2) ↓ B, that is

IΘ ∧ (¬Θ ↓ B) |= ⊥.
(3) Finally, also in this case bothIΘ1

andIΘ2
contain only common symbols, and so

alsoIΘ does.

We now formalize the sufficient condition of [Henzinger et al. 2004] that (2) holds if
theIi’s are computed from the sameΠ. The proof of it will be useful for showing that (2)
holds also if theIi’s are computed fromΠi’s obtained fromΠ by splitting theAiBi-mixed
interface equalities.

THEOREM 6.6. Letφ
def
= φ1∧φ2∧φ3, and letΠ be a proof of unsatisfiability for it. Let

A′ def
= φ1,B′ def

= φ2∧φ3,A′′ def
= φ1∧φ2 andB′′ def

= φ3, and letI ′ andI ′′ be two interpolants
for (A′, B′) and(A′′, B′′) respectively, both computed fromΠ. Then

I ′ ∧ φ2 |= I ′′.

PROOF. LetΠΘ be a proof whose root is the clauseΘ. We will prove, by induction on
the structure ofΠΘ, that

I ′Θ ∧ φ2 |= I ′′Θ ∨ (Θ \ φ3),

whereIΘ is defined as in Algorithm 1. The validity of the theorem follows immediately,
by observing that the root ofΠ is⊥.

We have to consider three cases:

(1) The first is whenΘ is an input clause. Then, we have three subcases:
(a) If Θ ∈ φ3, thenI ′Θ

def
= ⊤, I ′′Θ

def
= ⊤ and(Θ \ φ3) ≡ ⊥, so the theorem holds.

(b) If Θ ∈ φ1, thenI ′Θ
def
= (Θ ↓ (φ2∪φ3)), I ′′Θ∨(Θ\φ3)

def
= (Θ ↓ φ3)∨(Θ\φ3) ≡ Θ,

so the theorem holds also in this case.
(c) If Θ ∈ φ2, thenI ′Θ ∧ φ2 ≡ φ2 andI ′′Θ ∨ (Θ \ φ3) ≡ Θ, so again the implication

holds.
(2) The second is whenΘ is aT -lemma. In this case, we have thatI ′Θ is an interpolant for

(¬Θ \ (φ2 ∪ φ3),¬Θ ↓ (φ2 ∪ φ3)) andI ′′Θ is an interpolant for(¬Θ \ φ3,¬Θ ↓ φ3).
Therefore, by the definition of interpolant,(¬Θ\(φ2∪φ3)) |= I ′Θ and(¬Θ\φ3) |= I ′′Θ.
Therefore,I ′Θ ∨ (Θ \ (φ2 ∪ φ3)) and I ′′Θ ∨ (Θ \ φ3) are valid clauses, and so the
implication trivially holds.

(3) In this caseΘ is obtained by resolution fromΘ1
def
= φ∨ p andΘ2

def
= ψ ∨¬p. If p ∈ φ1

or p ∈ φ3, then by the inductive hypotheses thatI ′Θi
∧φ2 |= I ′′Θi

∨ (Θi \φ3), we have
thatI ′Θ ∧ φ2 |= I ′′Θ ∨ (Θ \ φ3).
If p ∈ φ2, thenI ′Θ

def
= I ′Θ1

∧ I ′Θ2
and I ′′Θ

def
= I ′′Θ1

∨ I ′′Θ2
. Again, by the inductive

hypothesesI ′Θ ∧ φ2 |= I ′′Θ ∨ (Θ \ φ3) holds.

THEOREM 6.7. Letφ
def
= φ1 ∧φ2∧φ3. LetA′ def

= φ1,A′′ def
= φ1∧φ2,B′ def

= φ2 ∧φ3, and
B′′ def

= φ3. LetΠ be a proof of unsatisfiability forφ, and letΠ′ andΠ′′ be obtained fromΠ
by splitting all theA′B′-mixed andA′′B′′-mixed interface equalities respectively. LetI ′

be an interpolant for(A′, B′) computed fromΠ′, andI ′′ be an interpolant for(A′′, B′′)
computed fromΠ′′. Then

I ′ ∧ φ2 |= I ′′.
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PROOF. We observe thatΠ′ andΠ′′ are identical except for someΠie subproofs that
contained some mixed interface equalities. Then, we can proceed as in Theorem 6.6, we
just need to consider one more case, namely whenΘ is aT1∪T2-lemma at the root of aΠie

subproof. In this case, thanks to Lemma 6.5 we have the same situation as in the second
case of the proof of Theorem 6.6, and so we can apply the same argument.

Thus, due to Theorem 6.7, we can use our DTC-based interpolation method in the con-
text of abstraction refinement without any modification: it is enough to remember the
original proofΠ, and compute the interpolantIi from the proofΠi obtained by splitting
theAiBi-mixed terms inΠ, for each partition of the input formulaφ intoAi andBi as in
(1).

7. EXPERIMENTAL EVALUATION

The techniques presented in previous sections have been implemented within MATHSAT
4 [Bruttomesso et al. 2008b] MATHSAT is an SMT solver supporting a wide range of
theories and their combinations. In the last SMT solvers competition (SMT-COMP’08),
it has proved to be competitive with the other state-of-the-art solvers. In this Section, we
experimentally evaluate our approach.

7.1 Description of the benchmark sets

We have performed our experiments on two different sets of benchmarks. The first is ob-
tained by running the BLAST software model checker [Beyer et al. 2007] on some Windows
device drivers; these are similar to those used in [Rybalchenko and Sofronie-Stokkermans
2007]. This is one of the most important applications of interpolation in formal verifi-
cation, namely abstraction refinement in the context of CEGAR. The problem represents
an abstract counterexample trace, and consists of a conjunction of atoms. In this setting,
the interpolant generator is called very frequently, each time with a relatively simple input
problem.

The second set of benchmarks originates from the SMT-LIB [Ranise and Tinelli 2006],
and is composed of a subset of the unsatisfiable problems usedin recent SMT solvers
competitions (http://www.smtcomp.org). The instances have been converted to
CNF and then split in two consistent parts of approximately the same size. The set consists
of problems of varying difficulty and with a nontrivial Boolean structure.

The experiments have been performed on a 3GHz Intel Xeon machine with 4GB of RAM
running Linux. All the tools were run with a timeout of 600 seconds and a memory limit
of 900 MB. All the benchmark instances, the MATHSAT executable, and the set of scripts
used to perform the experiments are available athttp://disi.unitn.it/∼griggio/

papers/tocl itp.tar.bz2.

7.2 Comparison with the state-of-the-art tools available

In this section, we compare with the other interpolant generators which are available: FOCI

[McMillan 2005; Jhala and McMillan 2006],CLP-PROVER [Rybalchenko and Sofronie-
Stokkermans 2007] and CSISAT [Beyer et al. 2008]. Other natural candidates for compar-
ison would have been ZAP [Ball et al. 2005] and LIFTER [Kroening and Weissenbacher
2007]; however, it was not possible to obtain them from the authors. We also remark that
no comparison with INT2 [Jain et al. 2008] is possible, sincethe domains of applications
of MATHSAT and INT2 are disjoint: INT2 can handleLA(Z) equations/disequations and
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Family # of problems MATHSAT FOCI CLP-PROVER CSISAT

kbfiltr.i 64 0.16 0.36 1.47 0.17
diskperf.i 119 0.33 0.78 3.08 0.39
floppy.i 235 0.73 1.64 5.91 0.86

cdaudio.i 130 0.35 1.07 2.98 0.47

Fig. 12. Comparison of execution times of MATHSAT, FOCI, CLP-PROVERand CSISAT on problems generated
by BLAST.
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Fig. 13. Comparison of MATHSAT and FOCI on SMT-LIB instances: execution time (left), and size of the
interpolant (right). In the left plot, points on the horizontal and vertical lines are timeouts/failures.
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Fig. 14. Comparison of MATHSAT andCLP-PROVERon conjunctions ofLA(Q) atoms.

modular equations but only conjunctions of literals, whereas MATHSAT can handle formu-
las with arbitrary Boolean structure, but does not supportLA(Z) except for its fragments
DL(Z) andUT VPI(Z).
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Fig. 15. Comparison of MATHSAT and CSISAT on
SMT-LIB instances.
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Fig. 16. Comparison of MATHSAT and CSISAT on
conjunctions ofLA(Q) atoms.

The comparison had to be adapted to the limitations of FOCI, CLP-PROVERand CSISAT.
In fact, the current version of FOCI which is publically available does not handle the full
LA(Q), but only theDL(Q) fragment17. We also notice that the interpolants it generates
are not alwaysDL(Q) formulas. (See, e.g., Example 4.1 of Section 4.)CLP-PROVERdoes
handle the fullLA(Q), but it accepts only conjunctions of atoms, rather than formulas with
arbitrary Boolean structure. CSISAT, instead, can deal withEUF ∪LA(Q) formulas with
arbitrary Boolean structure, but it does not support Boolean variables. These limitations
made it impossible to compare all the four tools on all the instances of our benchmark sets.
Therefore, we perform the following comparisons:

– We compare all the four solvers on the problems generated byBLAST;

– We compare MATHSAT with FOCI on SMT-LIB instances in the theories ofEUF ,
DL(Q) and their combination. In this case, we compare both the execution times
and the sizes of the generated interpolants (in terms of number of nodes in the DAG
representation of the formula). For computing interpolants in EUF , we apply the
algorithm of [McMillan 2005], using an extension of the algorithm of [Nieuwenhuis
and Oliveras 2007] to generateEUF proof trees. The combinationEUF ∪ DL(Q) is
handled with the technique described in§6;

– We compare MATHSAT, CLP-PROVERand CSISAT onLA(Q) problems consisting
of conjunctions of atoms. These problems are single branches of the search trees ex-
plored by MATHSAT for someLA(Q) instances in the SMT-LIB. We have collected
several problems that took more than0.1 seconds to MATHSAT to solve, and then ran-
domly picked50 of them. In this case, we do not compare the sizes of the interpolants
as they are always atomic formulas;

– We compare MATHSAT and CSISAT on the subset (Consisting of 78 instances of the
about 400 collected) of the SMT-LIB instances without Boolean variables.

17For example, it fails to detect theLA(Q)-unsatisfiability of the following problem:(0 ≤ y− x+w)∧ (0 ≤
x− z − w) ∧ (0 ≤ z − y − 1) .
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The results are collected in Figures 12, 13, 14, 15 and 16. We can observe the following
facts:

– Interpolation problems generated by BLAST are trivial for all the tools. In fact, we
even had some difficulties in measuring the execution times reliably. Despite this,
MATHSAT and CSISAT seem to be a little faster than the others.

– For problems with a nontrivial Boolean structure, MATHSAT outperforms FOCI in
terms of execution time. This is true even for problems in thecombined theoryEUF∪
DL(Q), despite the fact that the current implementation is still preliminary.
As regards CSISAT, it could solve (within the time and memory limits) only 5 of the
78 instances it could potentially handle, and in all cases MATHSAT outperforms it.

– In terms of size of the generated interpolants, the gap between MATHSAT and FOCI

is smaller on average. However, the right plot of Figure 13 (which considers only
instances for which both tools were able to generate an interpolant) shows that there
are more cases in which MATHSAT produces a smaller interpolant.

– On conjunctions ofLA(Q) atoms, MATHSAT outperformsCLP-PROVER, sometimes
by more than two orders of magnitude. The performance of MATHSAT and CSISAT

is comparable on such instances, with MATHSAT being slightly faster. However,
there are several cases in which CSISAT computes a wrong result, due to the use
of floating-point arithmetic instead of infinite-precisionarithmetic (which is used by
MATHSAT).

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how to efficiently build interpolants using state-of-the-art
SMT solvers. Our methods encompass a wide range of theories (including EUF , DL,
UT VPI, andLA), and their combination (based on the Delayed Theory Combination
schema). A thorough experimental evaluation shows that theproposed methods retain the
efficiency of the solvers, and are vastly superior to the state of the art interpolants, both in
terms of expressiveness, and in terms of efficiency.

In the future, we plan to investigate the following issues. First, we will improve the
implementation of the interpolation method for combined theories, that is currently rather
naı̈ve, and limited to the case of convex theories. Second, we will investigate interpola-
tion with other rules, in particular Ackermann’s expansion. Finally, we will integrate our
interpolator within a CEGAR loop based on decision procedures, such as BLAST or the
new version of NuSMV. In fact, such an integration raises interesting problems related to
controlling the structure of the generated interpolants [Jhala and McMillan 2006; 2007],
e.g. in order to limit the number or the size of constants occurring in the proof.
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