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Abstract

We present here transalpyne, a scripting language, to be exe-
cuted on top of a computer algebra system, that is specifically con-
ceived for automatic transposition of linear functions. Its type sys-
tem is able to automatically infer all the possible linear functions
realized by a computer program. The key feature of transalpyne
is its ability to transform a computer program computing a linear
function in another computer program computing the transposed
linear function. The time and space complexity of the resulting pro-
gram are similar to the original ones.

Categories and Subject Descriptors I.1.3 [Symbolic and Alge-
braic Manipulation]: Languages and Systems—Special-purpose
algebraic systems

General Terms Languages, Algorithms

Keywords Transposition principle, Tellegen’s principle, linear al-
gebra, programming languages

1. Introduction

Computer Algebra is devoted to developing algorithms to work
on symbolic representations of mathematical objects. Linear maps
over vector spaces or, more generally, free modules are often rep-
resented by matrices, either in dense or sparse form. The so-called
black-box model gives another way of representing a linear appli-
cation L : V → W : a computer program that on any input v ∈ V
gives as output L(v) is taken as a symbolic representation of L;
this of course assumes a precise computer representation of the el-
ements of V and W .

Since the seminal paper [25], computer algebraists have devel-
oped algorithms to work with black-box represented linear maps.
In the black-box model, algorithms are only allowed to query the
black-box by feeding an input to the black-box program and read-
ing its output; no other information on the linear map can be ob-
tained, in particular the source code of the program cannot be an-
alyzed. The complexity of black-box algorithms is measured as in
the computational model being used to describe the algorithm, plus
the number of calls to the black-box program is taken into account
as a special parameter.

In the black-box model, algorithms are known to compute the
minimal polynomial, the determinant, the inverse, the rank [17,
25] and the characteristic polynomial [5, 6, 23]. This model is
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interesting whenever the matrix representing the linear map is too
big to allow efficient processing by a computer program, however
its information can easily be compressed in a black-box program:
sparse or Vandermonde matrices are a classical example.

On the other side, Algebraic Complexity studies the complexity
of computer programs that perform algebraic computations by ab-
stracting from the actual representation of algebraic elements. Only
arithmetic operations in the ring of interest are accounted for. One
of the standard models used in algebraic complexity is the arith-
metic circuit: a directed acyclic graph (DAG) is used to represent
the flow of arithmetic evaluations, each node of the DAG accounts
for one arithmetic operation (usually + or ∗).

In particular, arithmetic circuits can be used to represent black-
box programs computing linear maps. Then it is a well known
theorem, [2, Th. 13.20] that a linear map and its transpose have
similar algebraic complexities in the arithmetic circuit model; this
is often known as transposition theorem or Tellegen’s theorem.
By a well known equivalence [2, Lemma 13.17], the transposition
theorem extends to the straight-line program (SLP) model. These
results justify the fact that some extensions of the black-box model
allow black-box algorithms to query the linear form as well as its
transpose.

Besides that, extensions of the transposition theorem to the
Random Acces Machine (RAM) model have been successfully
applied in computer algebra to develop efficient algorithms [1, 4,
12, 19, 22]. The key to all these results is to realize that a certain
map is the transpose of some other well known linear map L. Then,
an efficient algorithm in the RAM model for L is translated to
the arithmetic circuit model, the transposition theorem is applied
and the resulting arithmetic circuit is translated back to a RAM
algorithm. All the papers use ad hoc transformations to/from the
arithmetic circuit model but give no general technique to perform
such translation; the only notable exception is [1] that defines a very
restricted language –not far away from the SLP paradigm– in which
a constructive proof of the transposition principle is possible.

Here we present an extension of [1] that allows to automati-
cally treat a wider class of programs. We reserve the theoretical de-
tails of the construction for a forthcoming paper and focus instead
on its implementation. We are currently developing an extension
language for python, called transalpyne, for which transposition
can be automatically performed by the compiler/interpreter.

One of the key features of transalpyne is the possibility to
automatically discover all the possible linearizations of a program.
In fact, many linear functions can correspond to the same computer
program: in the case of multiplication of polynomials, for example,
the same program corresponds to two linear functions, namely
left and right multiplication by a constant. transalpyne uses an
algorithm similar to the type inference of statically typed functional
languages [3] to discover all of these linearizations.

For each discovered linearization, the compiler/interpreter gen-
erates the correct transposition. It can be shown that the algebraic
complexity of the resulting program is similar to the one of the orig-
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inal program. In the next sections we summarize the theory and the
practice of transposition in transalpyne.

2. Arithmetic circuits

In this section we briefly present the arithmetic circuit model. For
convenience, our presentation slightly deviates from textbooks; for
a more classical and extensive treatment see [2, 24].

2.1 Basic definitions

DEFINITION 1 (Arithmetic operator, arity). Let R be a ring. An

arithmetic operator over R is a function f : Ri → Ro for some

i, o ∈ N. We set R0 = 0, the zero R-module. Here i is called the
in-arity of f or simply arity, o is called the out-arity of f .

DEFINITION 2 (Arithmetic basis). Let R be a ring. An arithmetic
R-basis is a (not necessarily finite) set of arithmetic operators over
R.

The arithmetic basis we will work with is the linear basis,
denoted by L. It is composed of

+ : R×R → R ∗a : R → R H : R → R×R

a, b 7→ a+ b b 7→ ab a 7→ a, a

0 : 0 → R ω : R → 0

⊥ 7→ 0 a 7→⊥

(L)

where we denote by ⊥ the unique element of 0 to avoid confusion
with the 0 of R. Arithmetic circuits are directed acyclic multigraphs
carrying information from an arithmetic basis; the formal definition
follows.

DEFINITION 3 (Arithmetic node). Let R be a ring and B be an
R-basis. A node over (R,B) is a tuple v = (I,O, f) such that

• I and O are finite ordered sets,

• f is either an element of B or the special value ∅.

• If f = ∅, one of the two following conditions must hold:

I is a singleton and O is empty, in this case we say that v is
an input node;

I is empty and O is a singleton, in this case we say that v is
an output node.

• If f 6= ∅, the cardinality of I matches the in-arity of f and the
cardinality of O matches the out-arity of f ; in this case we say
that v is an evaluation node.

We call input ports the elements of I and output ports the
elements of O, which we denote respectively by in(v) and out(v).
The cardinalities of I and O are called, respectively, the in-degree
and out-degree of v. We call f the value of v and write β(v) for it.

DEFINITION 4 (Arithmetic circuit). Let R be a ring and B be an
R-basis. An arithmetic circuit over (R,B) is a tuple C = (V,E,6
,6i,6o) such that

1. V is a finite set of nodes over (R,B);
2. < is a total order on V , <i is a total order on the input nodes

in V , <o is a total order on the output nodes in V ;

3. let I =
⊎

v∈V
in(v) and O =

⊎

v∈V
out(v), then E is a

bijection from O to I such that E(o) = i implies that o ∈
out(v), i ∈ in(v′) and v � v′.

It is useful to see E as a set of pairs (o, i) with i ∈ I and o ∈ O.
Then the elements of E are called the edges of the circuit. The
edges incident to v ∈ V are all the (o, i) ∈ E such that i ∈ in(v);
the edges stemming from v ∈ V are all the (i, o) ∈ E such that

o ∈ out(v). An edge stemming from v and incident to v′ is said to
connect v to v′. We call inputs and outputs of a circuit, respectively,
the input and output nodes in V ; which we denote by in(C) and
out(C).

DEFINITION 5 (Size, depth). Let C be a circuit over (R,B). The
size of C, denoted by size(C) is the number of evaluation nodes in
V ; the depth of C, denoted by depth(C) is the length of the longest
directed path –in a graph-theoretic sense– in (V,E).

Sometimes it is useful to only count certain nodes. Let X ⊂ B,
the X-weighted size of C, denoted by sizeX(C) is the number of
nodes v ∈ V such that β(v) ∈ X .

Figure 1 shows an example of arithmetic circuit, the analogy
with multiDAGs is evident. We draw input and output nodes in
square boxes and evaluation nodes in round boxes.

x1 x2 x3

+ H

+ ∗2

y1 y2

x∗
1 x∗

2 x∗
3

H +

H ∗2

y∗
1 y∗

2

Figure 1. Two arithmetic circuits over L. The linear map y1 =
x1 + 3x2, y2 = x3 is computed by the circuit on the left and its
transpose is computed by the circuit on the right.

Circuits are endowed with the usual semantics consisting in the
evaluation of the arithmetic operations on their inputs. We denote

by evalC the function Ri → Ro computed by the circuit C. For a
circuit over (R,L) it can be shown that evalC is a linear operator;
we skip the formal definitions and proofs for conciseness.

2.2 The transposition theorem

For a circuit over the basis L, each node can be viewed as a
linear operator and the arrows can be understood as composing
operators in a suitable way to obtain evalC . By reversing the flow
and transposing the operator computed at each node, one obtains a
circuit that computes the transposed operator.

DEFINITION 6. Dual circuit Let C = (V,E,6,6I ,6O) be a
circuit over (R,L), the dual circuit of C, denoted by C∗, is the
arithmetic circuit

C
∗ = (V ∗

, E
−1

,6
′
,6

′
i,6

′
o)

where for any node v = (I, O, f) in V there is a node v∗ =
(O, I, f∗) in V ∗ where

f
∗ =



























f if f = ∗a,

+ if f = H,

H if f = +,

ω if f = 0,

0 if f = ω;

(1)

and for any input node v = (∅, O, ∅) there is an output node
v∗ = (O, ∅, ∅) and vice versa.

The orderings 6′, 6′
i and 6

′
o are defined as follows:

v 6 v
′ ⇔ v

′∗
6

′
v
∗
, (2)

v 6o v
′ ⇔ v

∗
6

′
o v

′∗
, (3)

v 6i v
′ ⇔ v

∗
6

′
i v

′∗
. (4)
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In particular, this makes (V ′, E−1) the reverse graph of (V,E)
in a graph-theoretic sense. Figure 1 shows two circuits that each
other’s dual. We now state the transposition theorem, for a proof
see [2, Th. 13.20].

THEOREM 1 (Transposition theorem). Let C be a circuit over
(R,L) that computes a linear application f , then C∗ computes
the transposed linear application f∗.

COROLLARY 1. A linear function f : Rn → Rm and its transpose
can be computed by arithmetic circuits of same sizes and depths. In
particular if C computes f and C∗ computes f∗,

size{+}(C) = size{H}(C
∗), size{H}(C) = size{+}(C

∗),

size{∗a}(C) = size{∗a}(C
∗) for any a ∈ R,

size{0}(C) = size{ω}(C
∗), size{ω}(C) = size{0}(C

∗).

A circuit is limited to compute one specific function with inputs
and outputs of fixed size (in term of elements of R). However com-
plexity theory is interested in algorithms that compute on inputs of
variable size. This leads to study families of circuits.

DEFINITION 7 (Circuit family). Let R be a ring, B a basis over
R and P a set. A circuit family over (R,B,P) is a family of
circuits over (R,B) indexed by P . P is called the parameter space
of the family. When the mapping from P to the circuits is Turing-
computable, the family is called uniform.

We are mainly interested in uniform circuit families since they
are equivalent to computable functions, theorem 1 easily gener-
alizes to them. We will not study uniform circuit families more
in depth, what we do instead is directly work on computer pro-
grams implicitly representing circuit families and automatically de-
duce the transposed family without actually using the circuit model.
More details on uniform circuit families can be found in [24].

3. transalpyne

transalpyne is a programming language suitable for expressing
linear algebraic programs and automatically transpose them. Its
compiler/interpreter is able to implicitly deduce which families of
circuits a given program is equivalent to and to produce a program
computing the transposed family.

3.1 Concepts

transalpyne has been conceived as a scripting language to be
used on top of computer algebra systems. We made an effort to
give syntax and semantics as close as possible to the python pro-
gramming language.

In transalpyne there is no such concept as an executable
program: only functions can be defined in transalpyne. We call
target language the language to which transalpyne programs are
compiled; the output of compilation is a library file whose functions
can be imported by programs written in the target language. Only
compilation to python is supported for the moment.

transalpyne can also be interpreted via the python interpreter.
A transalpyne library contained in a file my-library.yp can be
imported in a python program via the statement
✞ ☎

import my-library
✝ ✆

The python interpreter recognizes the .yp extension and launches
the transalpyne interpreter on the file; the functions of the library
are interpreted and transposed by the transalpyne interpreter and
their names are exported to the python namespace.

transalpyne is mostly dynamically typed, with the only
exception of algebraic types. In order to transpose a function,

transalpyne must know at transpose time which variables con-
tain algebraic elements and which variables contain other data
(such as booleans, strings, ints, etc.); this can be done by explicitly
specifying the type of the input and output parameters of a function,
while all the other variables can be left untyped. transalpyne
supports two sorts of algebraic types: ring elements and module
elements; we plan to support more complex algebraic types, such
as algebras, in the future. transalpyne relies on python’s operator
overloading to represent ring operations.

Before transposing a function, transalpyne must prove that it
is indeed a linear function in its arguments. The technique it uses
is to linearize the function, that is to make certain input and output
parameters constant until it can be shown that the remaining output
parameters are linear in the remaining input parameters. We discuss
this in Section 4.

3.2 Syntax

We only describe transalpyne syntax informally. Indentation has
a syntactic value (it delimits blocks) and keywords are pretty much
the same. A transalpyne file contains a type declaration section
followed by a name definition section.

3.2.1 Type declarations

transalpyne supports two type constructors: a ring constructor
and a free module constructor.
✞ ☎

type Ring R
type Module(R) M

✝ ✆

This example declares R as a ring type and M as a free module
type over the ring R. The typechecker ensures that modules are
consistently declared.

3.2.2 Name declarations

Name declarations take three forms: imports, function definitions
and aliases. Imports are declared as in python and have the same
semantics. Note however that the linearization algorithm considers
any imported function as a constant function.

There is no return statement in transalpyne, function defi-
nitions are declared as follows
✞ ☎

def (a, b)my -function(c, d):
✝ ✆

where input arguments are given on the right and output arguments
on the left.

Inside function definitions, there are four types of statements:

pass statements1, assignments (including augmented assignments),
for loops and ifs. The syntax is identical to python’s.

On the left hand side of assignments, may only appear variable
names and subscripts. On the right hand side of assignments, the
following types of expressions may appear:

• String, numeric and boolean constants;

• Binary and unary operators +, -, *, /, %, div, mod, <, >, <=, <=,
==, !=, and, or, not, in;

• Parenthesized expressions;

• Subscripts and slices;

• List constructors, including comprehensions;

• Variable evaluations;

• Function calls.

1 The statement that does nothing.
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The syntax for all of these is identical to python’s. The only notable
exception are function calls where a keyword trans is added to let
the user call a transposition of a function. In case a function has
more than one linearization (and thus more than one transposition),
signature specifiers enclosed in braces {, } permit to specify which
linearization/transposition is wanted.

Finally, aliases permit to export specific linearization/transpo-
sitions of functions with names that can be used inside a python
program.

Figure 2 gives a complete transalpyne example. It defines a
product function and two aliases (with transposition and signature
specifiers).

✞ ☎

type Ring R

def (R c)product(R a, R b):
c = a * b

l_product = trans \
{linear R}product{linear R, const R}

r_product = trans \
{linear R}product{const R, linear R}

✝ ✆

Figure 2. A transalpyne program

3.3 Semantics

We only give here the points were transalpyne semantics differ
from python’s.

3.3.1 Types

transalpyne is statically typed for algebraic types. The type of
each input and output parameter of a function must be specified
in the definition as in figure 2. When the type of an argument
is omitted, it is assumed to have non-algebraic type. Variables
inside the body of a function cannot be explicitly typed, a type-
inference algorithm deduces their types from the types of the input
parameters.

3.3.2 Side effects

There is no side effect in transalpyne. In particular, there is no
global variable and assignment itself is more akin to the let-binding
of a functional language. After having transposed the functions, the
transalpyne compiler/interpreter leaves to the target language the
task of executing them, thus it cannot enforce the no-side-effect
policy at runtime. It is the responsibility of the user to insure that
no side effect happens inside a transalpyne function.

3.3.3 Algebraic variables

Type declarations merely say that some variables belong to a type,
but do not specify any particular implementation of the type. The
implementation of rings and modules is left to the user and must
be given in an external module written in the target language. The
user is only required to implement them as objects and to expose a
few methods.

Ring objects must:

• Overload + and * with the obvious semantic;

• Implement a method zero that returns the zero of the ring;

• Optionally, implement a method one that returns the one of the
ring;

• Optionally, implement a method Z that takes an integer n and
returns the element n · 1 of the ring;

• Optionally, implement methods div and mod that perform Eu-
clidean division with remainder;

• Optionally, overload / thus making the ring into a field.

Module objects must:

• Overload + and * with the obvious semantic;

• Implement a method zero that returns the zero of the module;

• Overload the subscript operator [] so that it implements some
arbitrary projections on the underlying ring. Most often, a mod-
ule will be implemented as an array of ring objects and [i] will
just be projection onto the i-th coordinate.

• Overload the assignment to subscript operator in the obvious
way.

Algebraic output parameters of a function are implicitly initial-
ized to zero via their zero method. This insures that non-assigned
algebraic output parameters are always linear in the inputs of the
function.

Algebraic elements cannot be combined through the use of lists:
lists of algebraic objects are non-algebraic objects and extraction
from a list always yields a non-algebraic object.

3.3.4 Function calls

transalpyne does not have tuples; the return type of a function
with many output parameters is not a tuple, as a consequence its
return value cannot be assigned to a variable: it must be assigned
to as many variables as there are output parameters. Another con-
sequence of this is that functions with many outputs cannot be used
inside expressions: their outputs can only be assigned to variables.

Function names not declared in the library are simply regarded
as external functions. They are assumed to have one return parame-
ter, thus a multi-assignment will return an error. External functions
have no algebraic input or output parameters. This is useful to call

builtin python functions2 from inside a transalpyne program.

3.3.5 Recursion and Higher order

transalpyne allows recursion and even calling its own transpose.
It does not allow to pass functions as arguments to a function, al-
though the transposition algorithm internally uses this technique to
transpose for loops. A higher order transposable language is theo-
retically possible and we plan to add this feature to transalpyne
in the future.

4. Linearization

The function
✞ ☎

def (R c)product(R a, R b):
c = a * b

✝ ✆

is not linear in a and b, but it can be made linear by fixing one of
the two arguments, for example by considering it as the family of
mappings a 7→ ab for any given b. We call const the arguments
that are fixed and linear the others; clearly const outputs must only
depend on const inputs, while linear outputs must linearly depend
on linear inputs for any given values of the const inputs. This is
equivalent to model the function as a family of circuits whose
parameter space is the domain of the const arguments.

transalpyne allows the user to annotate the types of the ar-
guments in order to specify whether they are const or linear (non-
algebraic arguments are by default const).

2 One common example is the function range, needed to iterate over mod-
ule elements.
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✞ ☎

def (linear R c)product(linear R a,
const R b):

c = a * b
✝ ✆

Fortunately, the user need not specify all the modifiers since they
can be inferred algorithmically.

We call signature a list of linear/const modifiers attached to the
arguments of a function. A function can, of course, have more than
one signature. The idea behind the signature inference algorithm is
simple. transalpyne starts from a few axioms on the signature of
elementary operators, here is some of them:

* : (linear, const) -> linear
(const, linear) -> linear
(const, const) -> const

+ : (linear, linear) -> linear
(const, const) -> const

zero : linear
const

one : const

Then transalpyne applies an algorithm similar to the type
inference of functional languages [3] to deduce all the possible
signatures of a function. If more than one linearization exists,
transalpyne will generate one transposition for each of them.
The user is also allowed to only specify partial information, the
compiler/interpreter will restrict to the signatures that match such
information or issue an error if no signature matches.

Function calls and aliases use the same principle. The signature
specifiers {...} let the user specify which of the linearizations
of a given function has to be called or saved under a new name.
Thus, in the example we gave in figure 2, l_product is an alias for
the transposed left-linear product, while r_product is an alias for
the transposed right-linear one. Aliases are extremely useful since
they permit to export to the namespace of the target language the
transposed functions that could not be accessed otherwise.

5. A word about automatic differentiation

Before discussing the way transalpyne transposes programs, we
recall some concepts from the theory of Automatic Differentiation
(AD).

The transposition principle has often been viewed as a special
case of the reverse mode in automatic differentiation [1, 14, 18].
This is somewhat ironic as the whole idea of automatic differenti-
ation can elegantly be derived in the arithmetic circuit model and
reverse mode in particular is just an application of the transposition
principle [7]. It is probable that the need for efficient AD tools in
many scientific areas other than mathematics and computer science
is responsible for such reversal of roles.

Here we show how AD can be expressed in the arithmetic
circuit model and then discuss the main differences between the
AD tools and our approach. A much more complete study on the
differentiation of circuits and on how the transposition principle
relates the gradient to the differential can be found in [7, 20].

To simplify, we consider a basis B over R made exclusively
of everywhere continuously derivable functions (w.r.t the standard
metric of the Euclidean space Rn). What we give here is a tech-
nique to approximate a circuit over (R,B) by a “linear” circuit.

DEFINITION 8 (Derivative of a circuit). Let C be a circuit over
(R,B) with n inputs and let x ∈ Rn. For any function f ∈ B, we
denote by Jf its Jacobian. Then the derivative of C at x, denoted
by dx C is the arithmetic circuit where any v ∈ V with β(v) = f
and incident edges e1, . . . , em has been substituted by a v′ with

β(v′) = Jf (evale1(x), . . . , evalem(x)) . (5)

x1 x2 x3

∗

∗

y1

dx1 dx2 dx3

(b, a)

(c, ab)

d y1

Figure 3. A circuit and its derivative at the point x = (a, b, c).
We have replaced multiplication nodes with linear applications
represented by 1× 2 matrices.

Taking the derivative of a circuit at x amounts to chose for each
node a linear approximation at the point where it is evaluated. It is
clear that this yields a linear approximation for the circuit at x.

PROPOSITION 1. evaldx C = JevalC (x).

It is also clear that dx C is defined over a basis that is exclu-
sively made of matrices with coefficients in R. These circuits are
slightly more general than those over the basis L, but it is easy to
generalize theorem 1 to them. In other words we have defined a
transformation from circuits computing derivable functions to lin-
ear circuits.

Now dx C can be queried by black-box algorithms to obtain
information about the Jacobian JevalC (x). The simplest application
is to compute the directional derivative in x along a direction u: for
this task it suffices to evaluate the circuit once, since evaldx C(u)
is the desired value. Computing the derivative along n linearly
independent directions yields the whole Jacobian and this roughly

corresponds to the direct mode in automatic differentiation3.
When the circuit has many inputs but only one output, there is

a more convenient way to get the whole gradient with only one
black-box query: dx C computes a linear form whose coefficients
are exactly the coefficients of the gradient, thus the dual circuit
(dx C)∗ computes the transposed form, or column vector. The
single query eval(dx C)∗(1) yields this vector. This is exactly what
is called “reverse mode” in automatic differentiation.

Note however that one is not limited to direct or reverse mode:
any black-box algorithm can be combined with the derivative cir-
cuit to obtain information on the original function. For example
Wiedemann’s algorithm [25] can be used to determine if the func-
tion is invertible around x, and the directional derivatives of the
inverse can be computed.

Of course, direct and reverse automatic differentiation can be
defined by the more classical chain rule, and then the transposition
theorem can be derived as a special case of the reverse mode by
observing that, when all the nodes of the circuit are linear maps,
C = dx C for any x. After all, the code transformation techniques
given in [1] and developed in the next section were already invented
by researchers in AD [10], though not often implemented.

So, why invent transalpyne when there is already plenty of
AD tools out there? The answer is manifold and we only list here
some key points.

• AD is often interested in recovering the full Jacobian, instead of
just having a black-box for it. For an n×m matrix, this requires
n queries in direct mode or m queries in reverse mode. In both
cases, AD tools do more work than what we would like to.

3 To be more precise, direct mode automatic differentiation constructs dx C

and evaluates the n directions in parallel, thus reducing the amount of
storage needed.
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• Many AD tools do not optimize the computation of dx C for the
case where nodes are linear and still compute the whole circuit.
In particular, many AD tools generate a graph representation
of an arithmetic circuit from a program instead of directly
transposing the code. This adds a constant overhead to the case
of transposition where simply dx C = C.

• If the circuit dx C is computed, it must be fully stored in
memory for reverse mode. This may seem innocuous as dx C
has the same size as C, but consider programs that compute
evalC by means of for loops or other iterative constructs: while
the evaluation of C is compact and cheap, the evaluation of
dx C possibly requires to introduce a new variable for each
iteration of the loop. Depending on the implementation, this
may lead to code or storage bloat. In the case of transposition,
this never happens since for loops are directly reversed (at
least when all the variables are linear). Griewank [11] gives a
time/memory compromise that permits to keep both storage and
time in a factor of log n from the original program, but this is
still not as good as transposition.

• Our approach is more general in that it permits to automatically
treat functions that depend both on linear and non-linear argu-
ments without any help from the user. Thanks to this, we are
able to treat recursive functions, while only few AD tools can.

• Our approach is algebraic and permits to prove bounds on
the algebraic complexity of the generated programs, while AD
tools usually only deal with floating point numbers. More gen-
erally, AD languages are usually less rich than transalpyne.

6. Transpostion

After the linearization phase, transalpyne generates the trans-
posed functions. Linear in- and out- arguments are swapped, while
const arguments do not move. The body itself of the function is
transformed: formally, it is translated to a family of arithmetic cir-
cuits, the circuits are reversed and the result is translated back to
a program; in practice we never compute the circuit representation
and work directly on the source code.

The key ideas relevant to the transposition of linear programs
are in [2, Chap. 13] and [1], but they have their roots in the method
of the adjoint code for automatic differentiation, a survey can be
found in [10]. We first discuss transposition of functions with no
const arguments, then go to the general case.

Consider the program in figure 4 and assume that h and g have
an unique signature where any argument is linear. The transpo-
sition is obtained by reversing the flow and transposing the code
line by line. When transposing function calls, one simply replaces
the function by its transpose. Also, following definition 6, addi-
tions become duplications of variables and double uses of variables
(such as c) become additions. It is interesting to notice that opti-
mizing the transposed program by sharing the double assignment to
trans h(a) and transposing again yields an equivalent improve-
ment to the original program.

Handling const variables permits to treat if statements and
products. In if statements each branch is transposed as above;
this ultimately permits to treat recursive functions: in fact they are
treated no differently than normal functions, as in figure 5.

Observe however that this reversal of code may lead to the
situation where a function needs a const argument that has not
been computed yet. In automatic differentiation, the same problem
appears when applying the reverse mode: in this case a forward
sweep is needed to precompute the jacobians of all the functions
at the point of differentiation, then a reverse sweep runs through
the code in reverse order applying the transpose of the Jacobian to
the input vector; see [10, 11]. In our case all the function calls are

✞ ☎

def (R a)f(R b, R c):
x, y = g(b, c)
a = h(x) + h(c) + y

✝ ✆
✞ ☎

def (R b, R c)fT(R a):
y, x, c = a, trans h(a), trans h(a)
b, tmp = trans g(x, y)
c += tmp

✝ ✆

Figure 4. A program with no const variables and its transpose.

✞ ☎

def (M a)f(linear M b, n):
if n > 0:

a = f(b, n - 1)
a[n] += R.Z(n) * b[n]

✝ ✆
✞ ☎

def (linear M b)fT(M a, n):
if n > 0:

b[n] += R.Z(n) * a[n]
b += trans f(a, n - 1)

✝ ✆

Figure 5. A recursive program and its transpose.

linear, thus we do not need to compute the jacobians; but we apply
the same technique to predict the values of const variables.

A pathological example is shown in figure 6. Here y is a const
variable and its value is needed in order to compute x in the reverse
sweep; but the value is only computed by a call to f or its transpose,
thus it can only be known too late in the reverse sweep. The forward
sweep permits to compute the value of y before it is needed.

✞ ☎

def (R a, R b)f(R c, R d):
if d > R.zero ():

x, y = f(c, d - R.one ())
a, b = x * y, y + R.one()

else:
a, b = c, d

✝ ✆
✞ ☎

def (R c, R b)fT(R a, R d):
# Forward sweep
if (d > R.zero ()):

_, y = f(a, d - R.one ())
b = y + R.one()

else:
b = d

# Reverse sweep
if (d > R.zero ()):

x = a * y
c, y = trans f(x, d - R.one ())

else:
c = a

✝ ✆

Figure 6. A pathological example and its transpose (relative to
the signature {linear R, const R}f{linear R, const R})
using a forward sweep.

Notice however that combining forward sweeps and recursion
has a disruptive effect: the transposed algorithm contains now two
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recursive calls and its complexity is much worse than the original
algorithm. The solution is to compute in the forward sweep only the
values that are needed; and to compute them only once through a
lazy approach. In practice, based on the fact that const outputs only
depend on const inputs, transalpyne generates a constification
for each signature of each function by stripping out all the linear
variables and by replacing function calls with constified function
calls. Each time a constified function is evaluated, its output is
stored in a memoization table and any future call on the same
input values will use the values stored in the table. This technique
permits to guarantee that the time complexity of the transposed
function obeys the transposition theorem, but the space complexity
is potentially increased to be as large as time complexity. This
is analogous to what happens in the reverse mode of automatic
differentiation; also notice that a technique similar to [11] could
be applied in order to obtain a tradeoff between the increases in
time and space complexities.

In practice, well written programs will contain few assignments
to const variables and pathological functions, such as the one of fig-
ure 6, will be rare. For this reason transalpyne only implements
the lazy approach in the interpreter, while the compiler produces
classical code with a forward and a reverse sweep. For the same
reason, we did not implement the technique of [11].

Finally, transalpyne handles for loops by translating them
into a tail-recursive function and then transposing it. The resulting
transposed function is head-recursive and can be transformed back
to a for loop, unless it contains a forward sweep, which happens
whenever the loop contains assignments of const variables. This is
more powerful than the setting of [1] where for loops can always
be transposed to for loops.

7. Conclusion

We presented transalpyne a scripting language that is well suited
to implement linear algebra algorithms. transalpyne has no exe-
cution capabilities, but permits to define libraries of (multi-)linear
transformations that can be used by a target language, this makes it
very useful as a scripting language on top of computer algebra sys-
tems. transalpyne can be easily integrated in any python-based
system: all the user has to do is to make sure its ring elements im-
plement the interface given in Section 3.3.3, then any function writ-
ten in transalpyne is transposed on the fly by the interpreter and
can be called by other functions written in python. As more output
languages will be added to transalpyne’s compiler, integration
will be possible with other computer algebra systems or generic
user written code, although this requires some more effort by the
user.

The main features of transalpyne are its ability to discover
linearizations of computer programs and to transpose linear pro-
grams. The result of the transposition is almost as time and space
efficient as the original program, this permits to quickly and auto-
matically implement pairs of algorithms related by duality that are
found in the literature and that required a lot of hard man-work to be
derived. Some examples we have in mind are the power projection
and the middle product that so often recur in algebraic algorithms
[12, 19, 22]. Having ourselves spent a few weeks deriving and im-
plementing transposed algorithms for [4], we can testify on how
useful transalpyne would have been at that time!

Hence, we believe that transalpyne will prove itself as a use-
ful tool to any computer algebraist. transalpyne is open source

software released under the CeCILL licencse4. We are planning to
release the first stable version in the next few months, it will be
available at http://transalpyne.gforge.inria.fr/.

4 http://www.cecill.info/
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