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Abstract

This paper presents a linear frequency estimation (LFE) technique for data reduction of frequency-

based signals. LFE converts a signal to the frequency domain by utilizing the Fourier transform 

and estimates both the real and imaginary parts with a series of vectors much smaller than the 

original signal size. The estimation is accomplished by selecting optimal points from the 

frequency domain and interpolating data between these points with a first order approximation. 

The difficulty of such a problem lies in determining which points are most significant. LFE is 

unique in the fact that it is generic to a wide variety of frequency-based signals such as 

electromyography (EMG), voice, and electrocardiography (ECG). The only requirement is that 

spectral coefficients are spatially correlated. This paper presents the algorithm and results from 

both EMG and voice data. We complete the paper with a description of how this method can be 

applied to pattern types of recognition, signal indexing, and compression.
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1. INTRODUCTION

This paper presents a linear frequency estimation (LFE) technique for data reduction of 

frequency-based signals. LFE is applicable to a wide variety of signals including voice, 

electromyography (EMG), and electrocardiography (ECG) data. This technique relies on 

one fundamental property: spatial correlation of frequency components. LFE relies on the 

ability of a small subset of frequency components to accurately estimate the entire frequency 

band of a signal. This method allows an extremely aggressive removal of frequency 

components resulting in a representation based on a number of vectors far less than the 

original input size. This paper presents the basic algorithm and initial results. As we discuss 

later, this algorithm is applicable to many fields of computer science including compression 

and signal indexing.
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LFE not only reduces the amount of data, but allows for the reconstruction of a signal with a 

configurable amount of data loss. This property yields a technique that is not only applicable 

to pattern recognition and signal indexing, but to compression as well. We later show results 

that demonstrate this technique’s applicability in the all three of the aforementioned fields.

There are three main contributions of this paper. First, we show a data reduction algorithm 

for reducing frequency based signals based on a minimization of error per spectral 

coefficient. A full description of the minimization function, algorithm (and its inverse), and 

complexity are provided. Second, we show results of this algorithm as applied to EMG and 

voice data. Finally, we demonstrate the applicability of this technique to compression, 

pattern recognition, and indexing of frequency based signals.

2. ALGORITHM

LFE is based on Fourier transforms. The reduction is accomplished by converting the signal 

to the frequency domain and extracting the most significant points to allow an estimation 

that minimizes the error per spectral coefficient. These most significant components 

construct a vector representation of the original signal.

The data is first separated into bins of size m. We then convert each bin to the frequency 

domain using a Fast Fourier Transform (FFT) similar to that described in [2]. This 

transformation results in a complex array of numbers that consist of both real and imaginary 

parts. These two parts are separated and stored in two arrays of size . Note that the two 

arrays only require a size of  as opposed to m. This is true since we generally deal with 

real valued data. An FFT applied to a real data set results in a symmetrical output where the 

negative frequencies are the complex conjugate of the positive. Hence, half the frequency 

output is redundant. Further details are provided in [4].

Next, we determine the most significant points in both the imaginary and real domains as 

computed by the FFT for each bin independently. The most significant points are defined as 

the minimum number of points to estimate the frequency domain within an error measure of 

Δ (A full description of variables are defined in table 1). Δ is derived by finding the 

minimum error per frequency component between an estimation function and the original 

function. We define m − 1 estimation functions; one for each size of αi from 2 ⇒ m. An 

optimal estimation function is defined by a series of lines connecting to each consecutive 

point in . Any point in M, but not in  is estimated by these lines on reconstruction. The 

optimal estimation function is defined by:

(1)
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(2)

(3)

This calculation is done for all i from 2 ⇒ m for both the real and imaginary parts for all 

bins. However, the above equation results in a non-polynomial runtime bounded by 

. We define a dynamic programming algorithm to achieve a polynomial 

runtime.

2.1. Dynamic Programming Algorithm

We introduce a dynamic programming algorithm inspired by [6] to compute these points. 

This dynamic programming algorithm finds the minimum number of points to estimate a 

signal with a local error per spectral coefficient below a predefined threshold δ. These 

minimum points are considered the most significant points and construct a series of vectors 

that best estimate the original real and imaginary domains.

Our algorithm iteratively creates an  table Ti and Tr (for both real and imaginary 

components) where T(i, j) denotes the minimum error per spectral coefficient to travel from 

point i to point m (endpoint) that include j edges. This is done for each bin computed by the 

FFT. As the number of j increases, the spectral error will decrease until j = m − 1 (or when 

all edges from i ⇒ end are included in the set). The algorithm builds this table from left to 

right, iterating through each column from top to bottom. The algorithm is shown in figure 1. 

This algorithm computes both T and S where S stores the next optimum point for each path. 

S is required to reconstruct the optimum path described by T.

BuildEdges constructs an m × m array that contains the absolute difference between the 

values defined by the edge  and the actual values from i to j. m is the size of the input. 

Details of this algorithm are shown in 2. The function Line creates a line between the two 

input points and returns a vector of values defined by this line.

We create a variable δ that determines the maximal spectral error allowed for each 

estimation computed in ComputeOptimalPoints. Once T is returned, we enumerate the first 

row of T calculating its error percentage. We start from 1 to m stopping at the first point that 

satisfied our constraint δ. We are guaranteed to satisfy any value of δ since in the worse case 

we could choose all points as most significant meaning the error per spectral coefficient 

would equal 0.
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2.2 Reconstruction

The reconstruction algorithm is much simpler than compression. Reconstruction is 

accomplished by inserting previously omitted values by their linear estimations computing 

during data reduction. Once a bin is constructed, we convert the signal to the time domain 

through an inverse Fast Fourier Transform (iFFT). Each bin is appended to construct the full 

time domain signal.

2.3. Runtime Analysis of Reduction

The reduction algorithm starts by splitting the input signal into bins of size m (Fourier 

window size) and computing the Fourier transform for each bin. When using the FFT as 

defined by [2] we achieve a runtime bounded by . Next, we 

loop through each bin. During this loop we extract the real and imaginary parts and find 

their corresponding most significant points. Extracting the real and imaginary parts is 

trivially bounded by O(n). In fact, this step can be entirely avoided by implementing the FFT 

algorithm to return both real and imaginary parts separately.

Next we calculate the most significant points by minimizing the error per spectral 

coefficient. ComputeOptimalPoints starts by calling BuildEdges. This function builds an 

mxm matrix (as described earlier). This function consists of an outer and inner loop both 

bounded by m yielding an O(m2) runtime. Next, ComputeOptimalPoints has 3 nested loops 

each bounded by m and include all constant time operations. This gives a total runtime of 

ComputeOptimalPoints of O(m2 + m3) = O(m3). This yields a total runtime for compression 

of .

2.4. Runtime Analysis of Reconstruction

Analysis of the reconstruction algorithm starts with the insertion of omitted points. The 

algorithm loops through each bin constructed during compression and inserts each missing 

point. The number of bins is derived by the total number of points divided by the Fourier 

window size or |bins| = n/m where n is the size of the input and m is the size of the Fourier 

window. For each bin we recreate the imaginary and real curve and calculate the iFFT. The 

iFFT runs in m log m as shown in [2]. Each bin has at most m points with a total of n/m 
bins. For each bin we insert omitted points than perform an iFFT for a bounded runtime of 

O(m + m log m) = O(m log m). This yields a total runtime of O(n/m(m log m)) = O(n log m)

3. RESULTS

We used two distinctly different sets of data to assess LFE. The first set of data included 

EMG data acquired from rats surgically implanted with EMG electrodes. The data included 

20 different readings from 10 different rats and a heterogeneous mix of biceps and triceps 

from both the hind limbs and forelimbs. Samples ranged from 45 seconds to 3 minutes and 

were sampled at 2kHz. The second set of data were voice samples taken from the Open 

Speech Repository [8]. Speech included 20 samples of both male and female speaking in 

English, and Mandarin. Speech was sampled at 8kHz and samples ranged from 20 to 45 

seconds. To note, speech data was chosen to show LFE’s flexibility and not as a replacement 
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to current speech specific algorithms. An example reconstructed signal versus its original 

signal is shown in figure 3.

Accuracy was calculated by comparing the original signal’s frequency power to a 

reconstructed signal’s frequency power. The comparison used a sliding window Discrete 

Fourier Transform (SWDFT). For each window, the Fourier transform is calculated for both 

the original and reconstructed signal. Next, the euclidean distance of the Fourier transform is 

calculated for both signals and compared. The error is averaged over all windows to find the 

total error and is returned as a percentage difference between the reconstructed and original 

signal. Each bin is normalized such that bin’s containing little frequency power contribute 

less than bins containing higher frequency power.

Results for EMG and voice are shown in 4. Larger Fourier window sizes generally get better 

results with diminishing improvements. A window size of 1024 worked well for both EMG 

and voice receiving a compression of 70% and 92% respectively when using a 45% local 

accuracy (δ). Both had a 25% error rate on reconstruction.

4. IMPLEMENTATIONS

LFE is applicable to many fields including compression, pattern recognition, and signal 

indexing. The applicability to compression is quite obvious from the results in section 3. 

Compression rates are near 90% with high accuracy and include no optimizations. Further 

compression can be obtained by taking advantage of properties of the signal’s receiver. For 

example, algorithms could remove/combine redundant frequency components by utilizing 

the human ears natural pitch resolution and range. These are similar mechanisms as done in 

MP3 and AAC [1]. However, the power of this algorithm is it ability to reduce a fairly 

general set of frequency based signals. Utilizing signals’ observers’ properties will reduce 

the applicability to one domain.

A less obvious application of LFE is in pattern recognition. One simplified method of 

pattern recognition is to treat each frequency bin as a character and a concatenation of bins 

as words. Algorithms such as [5] can then be used to find similarities between patterns. The 

difficult part is determining the definition of a character. Training using LFE can be used to 

define different classes of characters. The idea is quite simple. A series of training bins of 

the same type (or character are analysed to find values for each point in the frequency 

domain (1 to m). Next, we find the standard deviation at each point (1 to m) and define the 

upper bound of the signal to be one standard deviation from the mean and the lower bound 

to be one standard deviation below the mean. We treat the lower bound and upper bound as 

new signals and calculate their LFE representation. Next, we can take an LFE reduced signal 

and check bins for a specific character. The number of comparisons (on the average) would 

be reduced significantly since the number of comparisons is reduced from m (as in standard 

euclidean distance) to a number m′ < < m.

The method above trivially leads to a signal indexing method. By reducing a frequency 

based signal to textual-like representation, we can use several established methods of 
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indexing and categorization such as those in [7] [9] improve signal searching capabilities. 

Similar methods have been applied by [3] on non frequency-based signals.

5. CONCLUSION

This paper presented a generic algorithm for reducing frequency based signals. This 

algorithm is specifically applicable to index and search signals, pattern recognition and data 

compression. We presented examples of how this algorithm can be applied to these three 

areas as well as presented reduction results from both EMG and voice; two largely different 

signals.
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Figure 1. 
A dynamic programming algorithm that calculates the optimal path from each point to the 

end point with path length from 1 to m − 1
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Figure 2. 
Computes the total spectral error by calculating the difference between the integral of every 

edge  and 
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Figure 3. 
A reconstructed voice signal.
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Figure 4. 
Shows reduction percentage vs Fourier window size and accuracy vs. Fourier Window size 

for both EMG and voice. As expected, an inverse relationship is observed between accuracy 

and compression rate. Reduction and accuracy are computed for local accuracy of 45%, 

60%, 75%, and 90%.
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Table 1

Variable definitions for the LFE algorithm

Variable Definition

M Set of all points in the current bin (|M|=m)

f Original signal of the current bin

αi An ordered set of points of size i consisting
of both a domain and range component

αix An ordered set of domain points of size i
(corresponding to αi)

αiy An ordered set of range points of size i (cor-
responding to αi)

The optimal ordered set of size i

Δ Local error per spectral coefficient
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