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Abstract: We introduce a new family of multivariate wavelets which are ob-
tained by “polyharmonic subdivision”. They generalize directly the original compactly
supported Daubechies wavelets.
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1 Introduction

We consider new multivariate polyharmonic Daubechies type wavelets which
are called ”polyharmonic subdivision wavelets”. They have been recently introduced
in the paper [5]. They are obtained by means of a procedure called ”polyharmonic
subdivision” which is a generalization of the classical one-dimensional subdivision
scheme of Deslauriers-Dubuc [4] which is the original source for the first compactly
supported wavelets of Daubechies in 1988, cf. [3]. This new family of polyharmonic
wavelets is the second representative of the Polyharmonic Wavelet Analysis following
the ”polyspline wavelets” which have been introduced in the monograph [6].

An important feature of these newly-born wavelets is that they are a nice gener-
alization of the one-dimensional wavelets of Daubechies: they form an orthonormal
family, enjoy nice non-stationary ”refinement operator” equations, and have compact
filters. In addition to that they have elongated supports. Let us remind that a major
drawback of the one-dimensional spline wavelets of Ch. Chui is that they do not have
finite filters, and respectively, the polyspline wavelets of [6] do not have finite filters.

2 Construction of fundamental function ®,, for exponential
polynomials subdivision

The whole construction of the Daubechies type wavelets passes via the construction
of the so-called fundamental function of subdivision, cf. [I]. In the present case we
will work with non-stationary subdivision and we have a family of such functions
®,, for all m € Z which satisfy the refinement equations (two-scale relations)
given by
O ()= a2t —i)  forallteR. (1)
i€z

We define the non-stationary subdivision symbol by putting

alfl (2) = Za&k]zj. (2)
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We are interested in special subdivision processes arising through the solutions of
Ordinary Differential Equations. We assume that we are given a number of frequen-
cies 0 < A < Ay < ... <\, and put for the frequency vector (with repetitions)

A= {)\1, A2y ey )\N} @] {—)\1, —A2, .oy —)\N} .
We consider the space of C'*° solutions of the ODE
p d2 )
1 (4 %) s@=o Q
j=1

Let us recall a simple fact from ODEs: in the case of different A;’s the space of all
C* solutions in (@) is spanned by the set {e’\ft 17 =1,2, ...,p}. In the case of s
coinciding indices A\; = A\j4+1 = ... = Aj+s—1 we have that the solution set contains
the functions {t‘e**:¢=0,1,...,s}.

Let us proceed to the construction of the subdivision symbols. We put

y okl
T;=¢€ Ail2 .

We define the following Laurent polynomial

N z42:) (27 +
() = ) o= [ L)

and

They satisfy the equality
d (ei“) =P (sin2 %) for all w € R; (5)

cf. [7]. We will often drop the dependence on the upper index in d, a, P and the
other functions and symbols.
An important step for construction of the subdivision coefficients agm]

application of the Bezout theorem:

is the

Proposition 1 There exists a unique polynomial Q with real coefficients of degree
N — 1 such that
Pz)Qx)+P1l-2)Q(l—-2)=1

and

Q(z)>0 forxz €(0,1).

We define now the trigonometric polynomial b (z) = bl*! (2) by putting

iw) _ .2 W
b(e )—Q(sm 2).
We finally define the symmetric Laurent polynomial a (z) by putting
a(z):=a™(2):=2d(2)b(z) for z € C\ {0}. (6)

The following proposition is important for the application of the Riesz lemma to
a (z) and construction of the Wavelet Analysis, cf. [7], [5].



Proposition 2 The polynomial a (z) defined in (@) satisfies

2N—-1

a(z) = Z a;z’

j=—2N+1
with a; = a_; = a; and
a(z)>0 for all |z] = 1.

The following fundamental result shows that the symbols a(z) are the non-
stationary subdivision symbols for symmetric set of frequencies A, cf. [5].

Theorem 3 For every exponential polynomial, i.e. for every solution to the equation

N 2
L= IT (5 - %) £ 0 =0 )

we put

p1(3)

Then f is reproduced by means of interpolatory subdivision, i.e.

fﬁ“ = Z ayf],zjf;-ﬂ for all j' €7 (8)

j=—o00
it =1 for all j € Z,
For every m € Z the fundamental function of subdivision ®,, (t) is a continuous
function obtained throught the subdivision process (8), where one s?farts from fJQ =9;
for j € Z (here 0; is the Kronecker symbol), i.e. we put @, (5%) = 6, and Py,
satisfies the refinement equation ().

Having in hand the functions ®,,, and their refinement symbols a™ we may follow
the usual scheme for construction of father and mother wavelets which has been used
by Daubechies, cf. [3], [I]. The following fundamental result has been proved in [5].

Theorem 4 There exists a polynomial g (2) =3,y gjz7 such that it is the "square
root” of 2a (z), i.e.

a(e”) =5l () o)

For every m € 7 there exists a compactly supported function o, (t) which satisfies
the refinement equation

om () = Zgjcpm+1 (2t —j), (10)

and the family {¢n, (t — j)};cq is orthonormal. (These are the non-stationary father
wavelets.) The functions

Ym (t) = Z(_l)j 91— Pm+1 (2t_j) (11)
JEZ

are the mother wavelets; the family {¢{m (t — j)} ez is orthonormal and the family
{¥m (t = J)},n jeg forms an orthonormal basis of L (R).



2.1 The polyharmonic case

For the polyharmonic subdivision we will work with very special ODEs defined by

Le == (d?/dt?* — gQ)N which are the Fourier transform of the polyharmonic operator
AN, For a fixed constant £ > 0 we put

A= (_57 _57"'7_575557"'75) GRQN (12)
ie. A\j =&, forj=1,2,..., N. Now for fixed £ > 0 and k € Z we define the polynomial

(z+ xO)N (z_l + xO)N

d(z):= ke (2) := dl¥! (2) := T :60)2N

for z € C; (13)

here we put xy := e=¢/2""" For the sake of simplicity we will very often drop the

dependence on k and £. By (Bl we have d (eiw) =P (sin2 %) where

N
4170 N
Pa)={(1- —2 o) =@1-n)", (14)
< (1 +20)* )
and we have put
4x 2
n= W[k]’E — 0

(1+20)° L+ cosh(§/204T)

Then following Proposition [l we have to find the polynomial solution @) to the equa-
tion

P)Q(x)+Q(1l—a2)P(1—2)=1
where () has degree < N — 1.

Remark 5 Let us recall that the polynomial Q in the classical case, cf. e.g. [1], p.
195, satisfies condition

1-9»" QW +y Q1 —y) =1

The lowest degree solution polynomial Q@ will be called Daubechies’ polynomial and
we put

N-1 .

N+j—-1\

ryw= Y (VT (15)

— J
J

(Note that in [3] and [1] the notation used is Py !)

It is amazing that it is possible to solve the problem in Proposition [ explicitly.

Proposition 6 Let A = (—¢,—¢,...,—£,€,€,...,€) € RN, Then for the correspond-
ing polynomial P (z) = (1 — n:v)N , the polynomial Q of degree N — 1 defined by

0w =i =y Y (VT Ul

= j (2-n)
solves the equation
P@ Q@) +P(l-2)Q(l—x)=1. (17)
Hence,
QW = -0 Ry (02T, (18)



Hence, we find the trigonometric polynomial b (z) by putting

bl¥] (2) := plklE (ei“’) = QIFl€ (sin2 %) (19)
where we recall the notations

L ow l—cosw 1 z+271
r=sin’=="—""TT"="2-_
2 2 2 4 ’

Finally, we obtain the subdivision symbol a!*! (z) by putting
al® () == alFl€ (2) .= 2dF1€ (2) blF1€ (2) . (20)

Now by Theorem [ we find the ”square root” of the symbol al¥! (z) . This means that
we have to take separately the ”square root” of the Laurent polynomials d!¥! (z) and
bl (2). The ”square root” of dl¥l (z) is obvious; taking the "square root” of bl¥l ()
needs taking the ”square root” of the polynomial Q.

3 Algorithm for finding the square root of the polynomials @)

For the algorithmic aspects of taking the ”square root” of the polynomial @ it will
be important to describe the polynomial @ through the zeros of the Daubechies’
polynomial Ry in (I5)).

Proposition 7 Let the zeros of the Daubechies’ polynomial (I3) be c , i.e.
N-1 . N-—1
N+j—1\ , (2N -2)
Ry (y) = ( . )yJ:72 (y_
ng J (N =1)1) ]1;[1
Then the polynomial Q as determined by (I0) is given by

N-1

Q== B [T

where

K @2=-n+n-1
n
By formula (I3) we have the representation

Cj =

2
(z+z0)"

d*l (2) = 1+ )N
Zo

for z = e,

hence, we take the trigonometric polynomial

(z+z0)™

M) =

(21)

as its "square root”, i.e. diM (z) = |M; (2)|* for |z| = 1. Further, we have to take care
of the ”square root” of the polynomial b¥ (z). Thus we have to find the polynomial
M> of degree < N — 1 such that

s () = 2@ (52 2), (22)

which may be obtained by using the roots of the Daubechies polynomials.



Remark 8 Let the polynomial Q) have the zeros C; as in Proposition [}, and let us
put
Cj =1- 2OJ

We see that Q (sin2 %) = C~2 (cosw) for some polynomial @ and c; are the zeros of @

Hence, we may apply the algorithm for the Riesz representation of Cj, see e.g. [, p.
197 — 198.

Thus we obtain finally for every integer m > 0 and £ € Z™ the representation
1
almhel () = 5 [M1(2) M2 ()%, (23)
and the family of functions
M (2) := M (2) .= MME (2) .= My (2) M; (2) (24)

represents the refinement masks for the family of scaling functions (father wavelets)
{om (t)},,>0 for which the functions ®,, are autocorrelation functions.

Remark 9 Note that the above factorization has been found in the special case £ =0
by Daubechies in [3], p. 266; the coefficients of the “square root” polynomial for
N = 2.10 are in table 6.1 in [3]. A detailed discussion of more efficient meth-
ods for choosing the proper polynomial Ms (2) is available in Strang-Nguyen [8], p.
157, in chapter 5.4 on Spectral factorization. The factorization of the Daubechies’
polynomial Ry (y) is discussed in Burrus [2], on p. T8 and the Matlab program is
[hn,hin]=daub(N) in Appendiz C. They work with the zeros of the polynomial Ry
and provide a number of manipulations for finding a more stable factorization.
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