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Abstract: We introduce a new family of multivariate wavelets which are ob-
tained by ”polyharmonic subdivision”. They generalize directly the original compactly
supported Daubechies wavelets.
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1 Introduction

We consider new multivariate polyharmonic Daubechies type wavelets which
are called ”polyharmonic subdivision wavelets”. They have been recently introduced
in the paper [5]. They are obtained by means of a procedure called ”polyharmonic
subdivision” which is a generalization of the classical one-dimensional subdivision
scheme of Deslauriers-Dubuc [4] which is the original source for the first compactly
supported wavelets of Daubechies in 1988, cf. [3]. This new family of polyharmonic
wavelets is the second representative of the Polyharmonic Wavelet Analysis following
the ”polyspline wavelets” which have been introduced in the monograph [6].

An important feature of these newly-born wavelets is that they are a nice gener-
alization of the one-dimensional wavelets of Daubechies: they form an orthonormal
family, enjoy nice non-stationary ”refinement operator” equations, and have compact
filters. In addition to that they have elongated supports. Let us remind that a major
drawback of the one-dimensional spline wavelets of Ch. Chui is that they do not have
finite filters, and respectively, the polyspline wavelets of [6] do not have finite filters.

2 Construction of fundamental function Φ
m

for exponential

polynomials subdivision

The whole construction of the Daubechies type wavelets passes via the construction
of the so-called fundamental function of subdivision, cf. [1]. In the present case we
will work with non-stationary subdivision and we have a family of such functions
Φm for all m ∈ Z which satisfy the refinement equations (two-scale relations)
given by

Φm (t) =
∑

i∈Z

a
[m]
i Φm+1 (2t− i) for all t ∈ R. (1)

We define the non-stationary subdivision symbol by putting

a[k] (z) :=
∑

j∈Z

a
[k]
j zj. (2)
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We are interested in special subdivision processes arising through the solutions of
Ordinary Differential Equations. We assume that we are given a number of frequen-
cies 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λp and put for the frequency vector (with repetitions)

Λ = {λ1, λ2, ..., λN} ∪ {−λ1,−λ2, ...,−λN} .

We consider the space of C∞ solutions of the ODE

p∏

j=1

(
d2

dt2
− λ2j

)
f (t) = 0. (3)

Let us recall a simple fact from ODEs: in the case of different λj ’s the space of all
C∞ solutions in (3) is spanned by the set

{
eλjt : j = 1, 2, ..., p

}
. In the case of s

coinciding indices λi = λi+1 = ... = λi+s−1 we have that the solution set contains
the functions

{
tℓeλit : ℓ = 0, 1, ..., s

}
.

Let us proceed to the construction of the subdivision symbols. We put

xj = e−λj/2
k+1

.

We define the following Laurent polynomial

d (z) := d[k] (z) :=

N∏

j=1

(z + xj)
(
z−1 + xj

)

(1 + xj)
2

and

P (x) := P [k] (x) :=

N∏

j=1

(
1−

4xj

(1 + xj)
2x

)
. (4)

They satisfy the equality

d
(
eiω
)
= P

(
sin2

ω

2

)
for all ω ∈ R; (5)

cf. [7]. We will often drop the dependence on the upper index in d, a, P and the
other functions and symbols.

An important step for construction of the subdivision coefficients a
[m]
j is the

application of the Bezout theorem:

Proposition 1 There exists a unique polynomial Q with real coefficients of degree
N − 1 such that

P (x)Q (x) + P (1− x)Q (1− x) = 1

and
Q (x) > 0 for x ∈ (0, 1) .

We define now the trigonometric polynomial b (z) = b[k] (z) by putting

b
(
eiω
)
= Q

(
sin2

ω

2

)
.

We finally define the symmetric Laurent polynomial a (z) by putting

a (z) := a[k] (z) := 2d (z) b (z) for z ∈ C \ {0} . (6)

The following proposition is important for the application of the Riesz lemma to
a (z) and construction of the Wavelet Analysis, cf. [7], [5].
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Proposition 2 The polynomial a (z) defined in (6) satisfies

a (z) =

2N−1∑

j=−2N+1

ajz
j

with aj = a−j = aj and

a (z) ≥ 0 for all |z| = 1.

The following fundamental result shows that the symbols a (z) are the non-
stationary subdivision symbols for symmetric set of frequencies Λ, cf. [5].

Theorem 3 For every exponential polynomial, i.e. for every solution to the equation

Lf (t) :=

N∏

j=1

(
d2

dt2
− λ2j

)
f (t) = 0 (7)

we put

fk
j = f

(
j

2k

)
.

Then f is reproduced by means of interpolatory subdivision, i.e.

fk+1
j′ =

∞∑

j=−∞

a
[k]
j′−2jf

k
j for all j′ ∈ Z (8)

fk+1
2j = fk

j for all j ∈ Z,

For every m ∈ Z the fundamental function of subdivision Φm (t) is a continuous
function obtained throught the subdivision process (8), where one starts from f0

j = δj

for j ∈ Z (here δj is the Kronecker symbol), i.e. we put Φm

(
j
2m

)
= δj , and Φm

satisfies the refinement equation (1).

Having in hand the functions Φm and their refinement symbols a[m] we may follow
the usual scheme for construction of father and mother wavelets which has been used
by Daubechies, cf. [3], [1]. The following fundamental result has been proved in [5].

Theorem 4 There exists a polynomial g (z) =
∑

j∈Z
gjz

j such that it is the ”square
root” of 2a (z) , i.e.

a
(
eiθ
)
=

1

2

∣∣g
(
eiθ
)∣∣2 (9)

For every m ∈ Z there exists a compactly supported function ϕm (t) which satisfies
the refinement equation

ϕm (t) =
∑

j

gjϕm+1 (2t− j) , (10)

and the family {ϕm (t− j)}j∈Z
is orthonormal. (These are the non-stationary father

wavelets.) The functions

ψm (t) =
∑

j∈Z

(−1)
j
g1−jϕm+1 (2t− j) (11)

are the mother wavelets; the family {ψm (t− j)}j∈Z
is orthonormal and the family

{ψm (t− j)}m,j∈Z
forms an orthonormal basis of L2 (R) .
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2.1 The polyharmonic case

For the polyharmonic subdivision we will work with very special ODEs defined by

Lξ :=
(
d2/dt2 − ξ2

)N
which are the Fourier transform of the polyharmonic operator

∆N . For a fixed constant ξ ≥ 0 we put

Λ := (−ξ,−ξ, ...,−ξ, ξ, ξ, ..., ξ) ∈ R
2N (12)

i.e. λj = ξ, for j = 1, 2, ..., N. Now for fixed ξ ≥ 0 and k ∈ Z we define the polynomial

d (z) := d[k],ξ (z) := d[k] (z) :=
(z + x0)

N (
z−1 + x0

)N

(1 + x0)
2N

for z ∈ C; (13)

here we put x0 := e−ξ/2k+1

. For the sake of simplicity we will very often drop the
dependence on k and ξ. By (5) we have d

(
eiω
)
= P

(
sin2 ω

2

)
where

P (x) =

(
1−

4x0

(1 + x0)
2x

)N

= (1− ηx)
N
, (14)

and we have put

η = η[k],ξ :=
4x0

(1 + x0)
2 =

2

1 + cosh (ξ/2k+1)
.

Then following Proposition 1 we have to find the polynomial solution Q to the equa-
tion

P (x)Q (x) +Q (1− x)P (1− x) = 1

where Q has degree ≤ N − 1.

Remark 5 Let us recall that the polynomial Q in the classical case, cf. e.g. [1], p.
195, satisfies condition

(1− y)
N
Q (y) + yNQ (1− y) = 1.

The lowest degree solution polynomial Q will be called Daubechies’ polynomial and
we put

RN (x) :=
N−1∑

j=0

(
N + j − 1

j

)
yj. (15)

(Note that in [3] and [1] the notation used is PN !)

It is amazing that it is possible to solve the problem in Proposition 1 explicitly.

Proposition 6 Let Λ = (−ξ,−ξ, ...,−ξ, ξ, ξ, ..., ξ) ∈ R2N . Then for the correspond-

ing polynomial P (x) = (1− ηx)
N
, the polynomial Q of degree N − 1 defined by

Q (x) = Qk,ξ
N (x) = (2− η)

−N
N−1∑

j=0

(
N + j − 1

j

)
(1− η (1− x))

j

(2− η)
j (16)

solves the equation

P (x)Q (x) + P (1− x)Q (1− x) = 1. (17)

Hence,

Q (x) = (2− η)
−N

RN

(
1− η (1− x)

2− η

)
. (18)
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Hence, we find the trigonometric polynomial b[k] (z) by putting

b[k] (z) := b[k],ξ
(
eiω
)
:= Q[k],ξ

(
sin2

ω

2

)
(19)

where we recall the notations

x = sin2
ω

2
=

1− cosω

2
=

1

2
−
z + z−1

4
,

Finally, we obtain the subdivision symbol a[k] (z) by putting

a[k] (z) := a[k],ξ (z) := 2d[k],ξ (z) b[k],ξ (z) . (20)

Now by Theorem 4 we find the ”square root” of the symbol a[k] (z) . This means that
we have to take separately the ”square root” of the Laurent polynomials d[k] (z) and
b[k] (z) . The ”square root” of d[k] (z) is obvious; taking the ”square root” of b[k] (z)
needs taking the ”square root” of the polynomial Q.

3 Algorithm for finding the square root of the polynomials Q

For the algorithmic aspects of taking the ”square root” of the polynomial Q it will
be important to describe the polynomial Q through the zeros of the Daubechies’
polynomial RN in (15).

Proposition 7 Let the zeros of the Daubechies’ polynomial (15) be cDj , i.e.

RN (y) =

N−1∑

j=0

(
N + j − 1

j

)
yj =

(2N − 2)!

((N − 1)!)
2

N−1∏

j=1

(
y − cDj

)
.

Then the polynomial Q as determined by (16) is given by

Q (x) = (2− η)
−2N+1

ηN−1 (2N − 2)!

((N − 1)!)
2

N−1∏

j=1

(x− Cj) ,

where

Cj :=
cDj (2− η) + η − 1

η
.

By formula (13) we have the representation

d[k] (z) =

∣∣∣∣∣
(z + x0)

N

(1 + x0)
N

∣∣∣∣∣

2

for z = eiω ,

hence, we take the trigonometric polynomial

M1 (z) :=
(z + x0)

N

(1 + x0)
N

(21)

as its ”square root”, i.e. d[k] (z) = |M1 (z)|
2
for |z| = 1. Further, we have to take care

of the ”square root” of the polynomial b[k] (z) . Thus we have to find the polynomial
M2 of degree ≤ N − 1 such that

∣∣M2

(
eiω
)∣∣2 =

1

2
Q
(
sin2

ω

2

)
, (22)

which may be obtained by using the roots of the Daubechies polynomials.
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Remark 8 Let the polynomial Q have the zeros Cj as in Proposition 7, and let us
put

cj = 1− 2Cj .

We see that Q
(
sin2 ω

2

)
= Q̃ (cosω) for some polynomial Q̃ and cj are the zeros of Q̃.

Hence, we may apply the algorithm for the Riesz representation of Q̃, see e.g. [1], p.
197− 198.

Thus we obtain finally for every integer m ≥ 0 and ξ ∈ Zn the representation

a[m],|ξ| (z) =
1

2
|M1 (z)M2 (z)|

2
, (23)

and the family of functions

M (z) :=M [m] (z) :=M [m],ξ (z) :=M1 (z)M2 (z) (24)

represents the refinement masks for the family of scaling functions (father wavelets)
{ϕm (t)}m≥0 for which the functions Φm are autocorrelation functions.

Remark 9 Note that the above factorization has been found in the special case ξ = 0
by Daubechies in [3], p. 266; the coefficients of the ”square root” polynomial for
N = 2..10 are in table 6.1 in [3]. A detailed discussion of more efficient meth-
ods for choosing the proper polynomial M2 (z) is available in Strang-Nguyen [8], p.
157, in chapter 5.4 on Spectral factorization. The factorization of the Daubechies’
polynomial RN (y) is discussed in Burrus [2], on p. 78 and the Matlab program is
[hn,hin]=daub(N) in Appendix C. They work with the zeros of the polynomial RN

and provide a number of manipulations for finding a more stable factorization.
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