Polyharmonic Daubechies type wavelets in Image Processing and Astronomy, I

Ognyan Kounchev, Damyan Kalaglarsky

Abstract

We introduce a new family of multivariate wavelets which are obtained by "polyharmonic subdivision". They generalize directly the original compactly supported Daubechies wavelets.

Key words: Wavelet Analysis, Daubechies wavelet, Image Processing.

1 Introduction

We consider new multivariate polyharmonic Daubechies type wavelets which are called "polyharmonic subdivision wavelets". They have been recently introduced in the paper [5]. They are obtained by means of a procedure called "polyharmonic subdivision" which is a generalization of the classical one-dimensional subdivision scheme of Deslauriers-Dubuc [4] which is the original source for the first compactly supported wavelets of Daubechies in 1988, cf. [3]. This new family of polyharmonic wavelets is the second representative of the Polyharmonic Wavelet Analysis following the "polyspline wavelets" which have been introduced in the monograph 6].

An important feature of these newly-born wavelets is that they are a nice generalization of the one-dimensional wavelets of Daubechies: they form an orthonormal family, enjoy nice non-stationary "refinement operator" equations, and have compact filters. In addition to that they have elongated supports. Let us remind that a major drawback of the one-dimensional spline wavelets of Ch. Chui is that they do not have finite filters, and respectively, the polyspline wavelets of [6] do not have finite filters.

2 Construction of fundamental function Φ_{m} for exponential polynomials subdivision

The whole construction of the Daubechies type wavelets passes via the construction of the so-called fundamental function of subdivision, cf. [1]. In the present case we will work with non-stationary subdivision and we have a family of such functions Φ_{m} for all $m \in \mathbb{Z}$ which satisfy the refinement equations (two-scale relations) given by

$$
\begin{equation*}
\Phi_{m}(t)=\sum_{i \in \mathbb{Z}} a_{i}^{[m]} \Phi_{m+1}(2 t-i) \quad \text { for all } t \in \mathbb{R} . \tag{1}
\end{equation*}
$$

We define the non-stationary subdivision symbol by putting

$$
\begin{equation*}
a^{[k]}(z):=\sum_{j \in \mathbb{Z}} a_{j}^{[k]} z^{j} \tag{2}
\end{equation*}
$$

We are interested in special subdivision processes arising through the solutions of Ordinary Differential Equations. We assume that we are given a number of frequencies $0 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{p}$ and put for the frequency vector (with repetitions)

$$
\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\} \cup\left\{-\lambda_{1},-\lambda_{2}, \ldots,-\lambda_{N}\right\}
$$

We consider the space of C^{∞} solutions of the ODE

$$
\begin{equation*}
\prod_{j=1}^{p}\left(\frac{d^{2}}{d t^{2}}-\lambda_{j}^{2}\right) f(t)=0 \tag{3}
\end{equation*}
$$

Let us recall a simple fact from ODEs: in the case of different λ_{j} 's the space of all C^{∞} solutions in (3) is spanned by the set $\left\{e^{\lambda_{j} t}: j=1,2, \ldots, p\right\}$. In the case of s coinciding indices $\lambda_{i}=\lambda_{i+1}=\ldots=\lambda_{i+s-1}$ we have that the solution set contains the functions $\left\{t^{\ell} e^{\lambda_{i} t}: \ell=0,1, \ldots, s\right\}$.

Let us proceed to the construction of the subdivision symbols. We put

$$
x_{j}=e^{-\lambda_{j} / 2^{k+1}}
$$

We define the following Laurent polynomial

$$
d(z):=d^{[k]}(z):=\prod_{j=1}^{N} \frac{\left(z+x_{j}\right)\left(z^{-1}+x_{j}\right)}{\left(1+x_{j}\right)^{2}}
$$

and

$$
\begin{equation*}
P(x):=P^{[k]}(x):=\prod_{j=1}^{N}\left(1-\frac{4 x_{j}}{\left(1+x_{j}\right)^{2}} x\right) \tag{4}
\end{equation*}
$$

They satisfy the equality

$$
\begin{equation*}
d\left(e^{i \omega}\right)=P\left(\sin ^{2} \frac{\omega}{2}\right) \quad \text { for all } \omega \in \mathbb{R} \tag{5}
\end{equation*}
$$

cf. [7. We will often drop the dependence on the upper index in d, a, P and the other functions and symbols.

An important step for construction of the subdivision coefficients $a_{j}^{[m]}$ is the application of the Bezout theorem:

Proposition 1 There exists a unique polynomial Q with real coefficients of degree $N-1$ such that

$$
P(x) Q(x)+P(1-x) Q(1-x)=1
$$

and

$$
Q(x)>0 \quad \text { for } x \in(0,1)
$$

We define now the trigonometric polynomial $b(z)=b^{[k]}(z)$ by putting

$$
b\left(e^{i \omega}\right)=Q\left(\sin ^{2} \frac{\omega}{2}\right)
$$

We finally define the symmetric Laurent polynomial $a(z)$ by putting

$$
\begin{equation*}
a(z):=a^{[k]}(z):=2 d(z) b(z) \quad \text { for } z \in \mathbb{C} \backslash\{0\} \tag{6}
\end{equation*}
$$

The following proposition is important for the application of the Riesz lemma to $a(z)$ and construction of the Wavelet Analysis, cf. [7, [5].

Proposition 2 The polynomial $a(z)$ defined in (6) satisfies

$$
a(z)=\sum_{j=-2 N+1}^{2 N-1} a_{j} z^{j}
$$

with $a_{j}=a_{-j}=\overline{a_{j}}$ and

$$
a(z) \geq 0 \quad \text { for all }|z|=1
$$

The following fundamental result shows that the symbols $a(z)$ are the nonstationary subdivision symbols for symmetric set of frequencies Λ, cf. [5].

Theorem 3 For every exponential polynomial, i.e. for every solution to the equation

$$
\begin{equation*}
L f(t):=\prod_{j=1}^{N}\left(\frac{d^{2}}{d t^{2}}-\lambda_{j}^{2}\right) f(t)=0 \tag{7}
\end{equation*}
$$

we put

$$
f_{j}^{k}=f\left(\frac{j}{2^{k}}\right)
$$

Then f is reproduced by means of interpolatory subdivision, i.e.

$$
\begin{align*}
f_{j^{\prime}}^{k+1}=\sum_{j=-\infty}^{\infty} a_{j^{\prime}-2 j}^{[k]} f_{j}^{k} & \text { for all } j^{\prime} \in \mathbb{Z} \tag{8}\\
f_{2 j}^{k+1}=f_{j}^{k} & \text { for all } j \in \mathbb{Z}
\end{align*}
$$

For every $m \in \mathbb{Z}$ the fundamental function of subdivision $\Phi_{m}(t)$ is a continuous function obtained throught the subdivision process (8), where one starts from $f_{j}^{0}=\delta_{j}$ for $j \in \mathbb{Z}$ (here δ_{j} is the Kronecker symbol), i.e. we put $\Phi_{m}\left(\frac{j}{2^{m}}\right)=\delta_{j}$, and Φ_{m} satisfies the refinement equation (1).

Having in hand the functions Φ_{m} and their refinement symbols $a^{[m]}$ we may follow the usual scheme for construction of father and mother wavelets which has been used by Daubechies, cf. [3] , 1]. The following fundamental result has been proved in [5].

Theorem 4 There exists a polynomial $g(z)=\sum_{j \in \mathbb{Z}} g_{j} z^{j}$ such that it is the "square root" of $2 a(z)$, i.e.

$$
\begin{equation*}
a\left(e^{i \theta}\right)=\frac{1}{2}\left|g\left(e^{i \theta}\right)\right|^{2} \tag{9}
\end{equation*}
$$

For every $m \in \mathbb{Z}$ there exists a compactly supported function $\varphi_{m}(t)$ which satisfies the refinement equation

$$
\begin{equation*}
\varphi_{m}(t)=\sum_{j} g_{j} \varphi_{m+1}(2 t-j) \tag{10}
\end{equation*}
$$

and the family $\left\{\varphi_{m}(t-j)\right\}_{j \in \mathbb{Z}}$ is orthonormal. (These are the non-stationary father wavelets.) The functions

$$
\begin{equation*}
\psi_{m}(t)=\sum_{j \in \mathbb{Z}}(-1)^{j} g_{1-j} \varphi_{m+1}(2 t-j) \tag{11}
\end{equation*}
$$

are the mother wavelets; the family $\left\{\psi_{m}(t-j)\right\}_{j \in \mathbb{Z}}$ is orthonormal and the family $\left\{\psi_{m}(t-j)\right\}_{m, j \in \mathbb{Z}}$ forms an orthonormal basis of $L_{2}(\mathbb{R})$.

2.1 The polyharmonic case

For the polyharmonic subdivision we will work with very special ODEs defined by $L_{\xi}:=\left(d^{2} / d t^{2}-\xi^{2}\right)^{N}$ which are the Fourier transform of the polyharmonic operator Δ^{N}. For a fixed constant $\xi \geq 0$ we put

$$
\begin{equation*}
\Lambda:=(-\xi,-\xi, \ldots,-\xi, \xi, \xi, \ldots, \xi) \in \mathbb{R}^{2 N} \tag{12}
\end{equation*}
$$

i.e. $\lambda_{j}=\xi$, for $j=1,2, \ldots, N$. Now for fixed $\xi \geq 0$ and $k \in \mathbb{Z}$ we define the polynomial

$$
\begin{equation*}
d(z):=d^{[k], \xi}(z):=d^{[k]}(z):=\frac{\left(z+x_{0}\right)^{N}\left(z^{-1}+x_{0}\right)^{N}}{\left(1+x_{0}\right)^{2 N}} \quad \text { for } z \in \mathbb{C} \tag{13}
\end{equation*}
$$

here we put $x_{0}:=e^{-\xi / 2^{k+1}}$. For the sake of simplicity we will very often drop the dependence on k and ξ. By (5) we have $d\left(e^{i \omega}\right)=P\left(\sin ^{2} \frac{\omega}{2}\right)$ where

$$
\begin{equation*}
P(x)=\left(1-\frac{4 x_{0}}{\left(1+x_{0}\right)^{2}} x\right)^{N}=(1-\eta x)^{N} \tag{14}
\end{equation*}
$$

and we have put

$$
\eta=\eta^{[k], \xi}:=\frac{4 x_{0}}{\left(1+x_{0}\right)^{2}}=\frac{2}{1+\cosh \left(\xi / 2^{k+1}\right)}
$$

Then following Proposition 1 we have to find the polynomial solution Q to the equation

$$
P(x) Q(x)+Q(1-x) P(1-x)=1
$$

where Q has degree $\leq N-1$.
Remark 5 Let us recall that the polynomial Q in the classical case, cf. e.g. [1], p. 195, satisfies condition

$$
(1-y)^{N} Q(y)+y^{N} Q(1-y)=1
$$

The lowest degree solution polynomial Q will be called Daubechies' polynomial and we put

$$
\begin{equation*}
R_{N}(x):=\sum_{j=0}^{N-1}\binom{N+j-1}{j} y^{j} \tag{15}
\end{equation*}
$$

(Note that in [3] and [1] the notation used is P_{N} !)
It is amazing that it is possible to solve the problem in Proposition 1 explicitly.
Proposition 6 Let $\Lambda=(-\xi,-\xi, \ldots,-\xi, \xi, \xi, \ldots, \xi) \in \mathbb{R}^{2 N}$. Then for the corresponding polynomial $P(x)=(1-\eta x)^{N}$, the polynomial Q of degree $N-1$ defined by

$$
\begin{equation*}
Q(x)=Q_{N}^{k, \xi}(x)=(2-\eta)^{-N} \sum_{j=0}^{N-1}\binom{N+j-1}{j} \frac{(1-\eta(1-x))^{j}}{(2-\eta)^{j}} \tag{16}
\end{equation*}
$$

solves the equation

$$
\begin{equation*}
P(x) Q(x)+P(1-x) Q(1-x)=1 \tag{17}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
Q(x)=(2-\eta)^{-N} R_{N}\left(\frac{1-\eta(1-x)}{2-\eta}\right) \tag{18}
\end{equation*}
$$

Hence, we find the trigonometric polynomial $b^{[k]}(z)$ by putting

$$
\begin{equation*}
b^{[k]}(z):=b^{[k], \xi}\left(e^{i \omega}\right):=Q^{[k], \xi}\left(\sin ^{2} \frac{\omega}{2}\right) \tag{19}
\end{equation*}
$$

where we recall the notations

$$
x=\sin ^{2} \frac{\omega}{2}=\frac{1-\cos \omega}{2}=\frac{1}{2}-\frac{z+z^{-1}}{4}
$$

Finally, we obtain the subdivision symbol $a^{[k]}(z)$ by putting

$$
\begin{equation*}
a^{[k]}(z):=a^{[k], \xi}(z):=2 d^{[k], \xi}(z) b^{[k], \xi}(z) \tag{20}
\end{equation*}
$$

Now by Theorem 4 we find the "square root" of the symbol $a^{[k]}(z)$. This means that we have to take separately the "square root" of the Laurent polynomials $d^{[k]}(z)$ and $b^{[k]}(z)$. The "square root" of $d^{[k]}(z)$ is obvious; taking the "square root" of $b^{[k]}(z)$ needs taking the "square root" of the polynomial Q.

3 Algorithm for finding the square root of the polynomials Q

For the algorithmic aspects of taking the "square root" of the polynomial Q it will be important to describe the polynomial Q through the zeros of the Daubechies' polynomial R_{N} in (15).

Proposition 7 Let the zeros of the Daubechies' polynomial (15) be c_{j}^{D}, i.e.

$$
R_{N}(y)=\sum_{j=0}^{N-1}\binom{N+j-1}{j} y^{j}=\frac{(2 N-2)!}{((N-1)!)^{2}} \prod_{j=1}^{N-1}\left(y-c_{j}^{D}\right) .
$$

Then the polynomial Q as determined by (16) is given by

$$
Q(x)=(2-\eta)^{-2 N+1} \eta^{N-1} \frac{(2 N-2)!}{((N-1)!)^{2}} \prod_{j=1}^{N-1}\left(x-C_{j}\right),
$$

where

$$
C_{j}:=\frac{c_{j}^{D}(2-\eta)+\eta-1}{\eta} .
$$

By formula (13) we have the representation

$$
d^{[k]}(z)=\left|\frac{\left(z+x_{0}\right)^{N}}{\left(1+x_{0}\right)^{N}}\right|^{2} \quad \text { for } z=e^{i \omega}
$$

hence, we take the trigonometric polynomial

$$
\begin{equation*}
M_{1}(z):=\frac{\left(z+x_{0}\right)^{N}}{\left(1+x_{0}\right)^{N}} \tag{21}
\end{equation*}
$$

as its "square root", i.e. $d^{[k]}(z)=\left|M_{1}(z)\right|^{2}$ for $|z|=1$. Further, we have to take care of the "square root" of the polynomial $b^{[k]}(z)$. Thus we have to find the polynomial M_{2} of degree $\leq N-1$ such that

$$
\begin{equation*}
\left|M_{2}\left(e^{i \omega}\right)\right|^{2}=\frac{1}{2} Q\left(\sin ^{2} \frac{\omega}{2}\right), \tag{22}
\end{equation*}
$$

which may be obtained by using the roots of the Daubechies polynomials.

Remark 8 Let the polynomial Q have the zeros C_{j} as in Proposition 7, and let us put

$$
c_{j}=1-2 C_{j} .
$$

We see that $Q\left(\sin ^{2} \frac{\omega}{2}\right)=\widetilde{Q}(\cos \omega)$ for some polynomial \widetilde{Q} and c_{j} are the zeros of \widetilde{Q}. Hence, we may apply the algorithm for the Riesz representation of \widetilde{Q}, see e.g. [1], p. 197-198.

Thus we obtain finally for every integer $m \geq 0$ and $\xi \in \mathbb{Z}^{n}$ the representation

$$
\begin{equation*}
a^{[m],|\xi|}(z)=\frac{1}{2}\left|M_{1}(z) M_{2}(z)\right|^{2} \tag{23}
\end{equation*}
$$

and the family of functions

$$
\begin{equation*}
M(z):=M^{[m]}(z):=M^{[m], \xi}(z):=M_{1}(z) M_{2}(z) \tag{24}
\end{equation*}
$$

represents the refinement masks for the family of scaling functions (father wavelets) $\left\{\varphi_{m}(t)\right\}_{m \geq 0}$ for which the functions Φ_{m} are autocorrelation functions.

Remark 9 Note that the above factorization has been found in the special case $\xi=0$ by Daubechies in [3], p. 266; the coefficients of the "square root" polynomial for $N=2.10$ are in table 6.1 in [3]. A detailed discussion of more efficient methods for choosing the proper polynomial $M_{2}(z)$ is available in Strang-Nguyen [8], p. 157, in chapter 5.4 on Spectral factorization. The factorization of the Daubechies' polynomial $R_{N}(y)$ is discussed in Burrus [2], on $p .78$ and the Matlab program is $[\boldsymbol{h n}, \boldsymbol{h i n}]=\operatorname{daub}(\mathbf{N})$ in Appendix C. They work with the zeros of the polynomial R_{N} and provide a number of manipulations for finding a more stable factorization.

Acknowledgement. The first named author was sponsored partially by the Alexander von Humboldt Foundation, and both authors were sponsored by Project DO-2-275/2008 "Astroinformatics" with Bulgarian NSF.

References

[1] Ch. Blatter, Wavelets: A Primer, A K Peters, Natick, MA, 1998.
[2] S. Burrus, R. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms, Prentice Hall, Englewood Cliffs, N.J., 1998.
[3] I. Daubechies, Ten lectures on wavelets, SIAM, 2002.
[4] G. Deslauriers, S. Dubuc, Symmetric iterative interpolation process, Constr. Approx., 5 (1989), 49-68.
[5] N. Dyn, O. Kounchev, D. Levin, H. Render, Polyharmonic subdivision for CAGD and multivariate Daubechies type wavelets, preprint, 2010.
[6] O. Kounchev, Multivariate polysplines: Applications to Numerical and Wavelet Analysis, Academic Press, San Diego-London, 2001.
[7] Ch. Micchelli, Interpolatory Subdivision schemes and wavelets, Jour. Approx. Theory, 86 (1996), p. 41-71.
[8] G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, 1996.

ABOUT THE AUTHORS

Ognyan Kounchev, Prof., Dr., Institute of Mathematics and Informatics, Bulgarian Academy of Science, tel. $+359-2-9793851$; kounchev@gmx.de

Damyan Kalaglarsky, Institute of Astronomy, Bulgarian Academy of Science, tel. $+359-2-9793851$; damyan@skyarchive.org.

