
10

A Memory-Efficient Pipelined Implementation
of the Aho-Corasick String-Matching
Algorithm

DEREK PAO
City University of Hong Kong
and
WEI LIN, and BIN LIU
Tsinghua University

With rapid advancement in Internet technology and usages, some emerging applications in data
communications and network security require matching of huge volume of data against large sig-
nature sets with thousands of strings in real time. In this article, we present a memory-efficient
hardware implementation of the well-known Aho-Corasick (AC) string-matching algorithm using
a pipelining approach called P-AC. An attractive feature of the AC algorithm is that it can solve
the string-matching problem in time linearly proportional to the length of the input stream, and
the computation time is independent of the number of strings in the signature set. A major dis-
advantage of the AC algorithm is the high memory cost required to store the transition rules of
the underlying deterministic finite automaton. By incorporating pipelined processing, the state
graph is reduced to a character trie that only contains forward edges. Together with an intelligent
implementation of look-up tables, the memory cost of P-AC is only about 18 bits per character for
a signature set containing 6,166 strings extracted from Snort. The control structure of P-AC is
simple and elegant. The cost of the control logic is very low. With the availability of dual-port mem-
ories in FPGA devices, we can double the system throughput by duplicating the control logic such
that the system can process two data streams concurrently. Since our method is memory-based,
incremental changes to the signature set can be accommodated by updating the look-up tables
without reconfiguring the FPGA circuitry.

This work was supported by the Hong Kong University Grant Council GRF research grant no.
9041500, the NSF China (60625201, 60873250) and 973 project (2007CB310701), and Tsinghua
University Initiative Scientific Research Program.
This work is an extension of a previously published short paper by the same authors, “Pipelined
architecture for multi-string matching,” IEEE Computer Architecture Letters, 7, 2, 33-36.
Authors’ addresses: D. Pao, Department of Electronic Engineering, City University of Hong Kong,
Hong Kong. W. Lin and B. Liu, Department of Computer Science and Technology, Tsinghua
University, Beijing, PRC; email:d.pao@cityu.edu.hk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1544-3566/2010/09-ART10 $10.00
DOI 10.1145/1839667.1839672 http://doi.acm.org/10.1145/1839667.1839672

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1839667.1839672&domain=pdf&date_stamp=2010-10-05

10:2 • D. Pao et al.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems; C.2.0 [Computer-Communication Networks]: General—Se-
curity and protection; I.5.5 [Pattern Recognition]: Implementation

General Terms: Algorithms, Design, Performance, Security

Additional Key Words and Phrases: String-matching, deterministic and nondeterministic finite
automaton, pipelined processing, intrusion detection system

ACM Reference Format:
Pao, D., Lin, W., and Liu, B. 2010. A memory-efficient pipelined implementation of the aho-corasick
string-matching algorithm. ACM Trans. Architec. Code Optim. 7, 2, Article 10 (September 2010),
27 pages.
DOI = 10.1145/1839667.1839672 http://doi.acm.org/10.1145/1839667.1839672

1. INTRODUCTION

String matching has been studied extensively in the past 30 years. A string Y of
length s is a sequence of characters c1c2. . . cs. Let � = {Y1, Y2, . . . Yn} be a finite
set of strings called keywords or signatures, and let I be an arbitrary string (the
input stream to the string-matching engine). The string-matching problem is to
locate and identify all the substrings of I which are signatures in �. Pioneering
string-matching algorithms include the methods of Aho and Corasick [1975],
Knuth et al. [1977], and Wu and Manber [1992]. String matching has found
widespread applications in text editors, word processing, bibliographic search,
and pattern recognition. With rapid advancements in Internet technology and
usage, some emerging applications in data communications and network secu-
rity require the matching of a huge volume of data against large signature sets
with thousands of strings. For example, the Snort intrusion detection system
contains more than 6,000 strings in its rule set. These new applications sparkle
renewed interests in the design of high-speed string-matching engines using
FPGA or ASIC.

Sophisticated hardware implementation techniques have been reported in
the literature. Baker and Prasanna [2005] presented a hardware implementa-
tion of the Knuth-Morris-Pratt (KMP) algorithm [Knuth et al. 1977]. Since the
KMP algorithm is designed to match the input stream against a single string,
one matching unit is required per string, and the hardware system is com-
posed of a linear array of matching units. The methods of Clark and Schimmel
[2004], Baker and Prasanna [2006], and Sourdis and Pnevmatikatos [2004] are
based on pre-decoded characters with hardwired logic circuits. The system is
optimized with respect to the given set of signatures and the characteristics of
the FPGA devices. The FPGA is reconfigured when there are changes to the
signature set. However, the long latency required in offline generation of the op-
timized hardwired circuits is considered as a major disadvantage in a network
intrusion detection system that demands fast responses to hostile conditions.
Other implementation techniques based on hashing [Cho and Mangione-Smith
2005; Papadopoulos and Pnevmatikatos 2005; Sourdis et al. 2008]; Bloom fil-
ters [Dharmapurikar et al. 2005; Dharmapurikar and Lockwood 2006; Lu et al.
2006]; and ternary content addressable memory (TCAM) [Yu et al. 2004] have
also been proposed.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:3

Hardware-assisted string-matching engines based on the AC algorithm have
gained much popularity in recent years. An attractive feature of the AC algo-
rithm is that it can solve the string-matching problem in time linearly pro-
portional to the length of the input stream. All the strings in the signature
set are integrated into a single deterministic finite automaton (DFA) such that
the processing time is independent of the size of the signature set. A major
disadvantage of the AC algorithm is the high memory cost required to store
the transition rules of the DFA. Consider a signature set with n strings and
an average length L. The maximum number of states in the AC state graph
is equal to n × L. There are 256 transition edges from each state. If n = 5,000
and L = 20, there are up to 25.6 million transition edges in the state graph.
Implementing such a large transition rule table in embedded devices is not
feasible.

Space–time trade-off in string matching using DFA and nondeterministic
finite automaton (NFA) has been studied extensively. The advantage of DFA
is that the processing time is deterministic. To process one input character,
the automaton only needs to perform one table look-up and makes one state
transition. The disadvantage of DFA is the high memory cost. On the other
hand, NFA is well known for its superior space efficiency over DFA. The state
graph maintained by the NFA is reduced to a tree. The disadvantage of using
NFA is that the automaton can make multiple state transitions for each input
character. If the NFA is implemented using a memory-based approach, mul-
tiple table look-up operations are required for each input character. To avoid
the speed penalty, researchers map the finite automata to hardwired logic cir-
cuits. However, hardwired circuits lack flexibility. Whenever the signature set
is updated, the circuits need to be recompiled.

Previous studies had either focus on (i) reducing the memory space in the
DFA using various techniques, such as compression, encoding, and transition
edge reduction, or (ii) simplification of the logic for implementing NFA with
hardwired circuits. In this article, we present a memory-based pipelined pro-
cessing approach that possesses the advantages of DFA and NFA such that
it can achieve the computation efficiency of DFA and space efficiency of NFA.
The work presented in this article is an extension of our previously proposed
pipelined architecture for string matching [Pao et al. 2008]. We observe a very
subtle property of the NFA for the string-matching problem. Each state in the
state graph represents a distinct substring of a pattern in the signature set.
If we assign a level number to each node in the state graph according to the
length of the substring represented by the corresponding state, we will find
that there can be, at most, one active state on each level at any given time.
We show that by making use of this property, the pipelined architecture can
achieve deterministic processing speed and state graph reduction at the same
time.

Conceptually, each pipeline stage will make one state transition for each in-
put character. In order to achieve a processing speed of one character per cycle,
each table look-up operation should be completed in one cycle. The conventional
approach to implement large look-up tables (LUTs) is based on hashing. How-
ever, collisions are not avoidable for dynamic signature set. When collisions

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:4 • D. Pao et al.

occur, a table look-up operation may require multiple memory accesses. As a
result, the throughput of the system will be degraded. In this article, we present
a space-efficient method to implement the required LUTs such that a look-up
operation is guaranteed to be completed in one cycle.

The performance of the pipelined architecture is evaluated using a signature
set with 6,166 static strings extracted from the Snort database downloaded in
April 2008. The normalized storage cost of our method is only 18 bits per
character (bits/char) in the signature set. Moreover, the control logic of the
proposed method is very simple. If multiport memory modules are available,
we can duplicate the control logic and implement multiple pipelines that share
one copy of the LUTs. Typical FPGAs are equipped with dual-port memories.
Hence, the system can process two independent input streams concurrently
and double the throughput with very little overhead.

The organization of this article is as follows. In Section 2, we define some
terminology and give a formal characterization of the AC automaton. We iden-
tify the major issues in hardware implementation and give a detailed review
of related work. The proposed pipeline system is presented in Section 3. We
discuss the motivation and explain why the proposed pipelined processing ap-
proach can guarantee the elimination of backward transitions in the DFA. In
Section 4, we present how to implement the LUTs using an approach called
direct indexing plus bit-selection (DIBS). The success of DIBS depends on an
intelligent strategy in assigning numeric identifiers (IDs) to states in the DFAs,
and string segments. In Section 5, we present performance evaluation and com-
parison with previously published AC-based methods. Section 6 concludes the
article.

2. CHARACTERIZATION OF THE AC AUTOMATON AND RELATED WORK

2.1 The AC Algorithm

In the basic AC algorithm, the system is modeled as a DFA. Let M(�) = (Q, �,
q0, δ, F) denote the AC automaton for a signature set �, where Q is the set of
states, � is the set of alphabets, q0 is the initial state, δ is the transition function,
and F ⊆ Q is the set of output states. The transition function δ is a mapping
Q×� → Q. The automaton M(�) can be visualized as a state graph G = (Q, E),
where Q is the set of nodes and E is the set of edges. The set of edges E is defined
by the transition function δ, that is, E = {(u, x, v)|u ∈ Q ∧ x ∈ � ∧ v = δ(u, x)},
where u is the current state, x is the input symbol, and v is the next state. The
system starts from the initial state q0. It makes a state transition in each cycle
based on the current state and the input character. A match-result is generated
when the system reaches an output state. In this article, the pair of terms state
and node, and edge and transition are used interchangeably.

Figure 1 shows the AC state graph for a set of two strings � = {apple, past}.
Each node u in the state graph represents a distinct string value U as shown
in the node label, where U is a prefix of some string Y ∈ �. The initial state q0

corresponds to the empty string. To improve readability, backward transitions
to q0 and the input symbols of the transitions are not shown. The input symbol

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:5

q0

a ap app appl apple

p pa pas past

Fig. 1. AC state graph for � = {apple, past}. Backward transitions to q0 are not shown.

of a transition is equal to the last character of the string represented by the
corresponding destination node. A node in the state graph can be assigned a
level number according to the length of the string that it represents. The level
number of q0 is equal to 0 because its state value corresponds to the empty
string. Let Ni denote the set of nodes on level i of the state graph. An edge
e = (u, x, v) is called a forward edge if u ∈ Ni and v ∈ Ni+1. Forward edges are
shown in solid lines in Figure 1. The remaining edges are called cross-edges,
and they are shown in dashed lines. The set of cross-edges can be divided into
two subgroups, namely the failure edges and nonfailure edges. A cross-edge
e = (u, x, v) is a nonfailure edge if v �= q0; otherwise, e is a failure edge. Let Ef ,
Ecn, and Ecf denote the set of forward edges, nonfailure cross edges, and failure
edges, respectively. We have E = Ef ∪ Ecn ∪ Ecf .

We characterize the three types of edges defined earlier in the text. Let u
and v be two distinct states in Q, and U and V denote the strings represented
by u and v, respectively. A forward edge e = (u, x, v) ∈ Ef satisfies the following
properties.

(i) U and V are prefixes of some string(s) in �.
(ii) u ∈ Ni and v ∈ Ni+1 for i ≥ 0.

(iii) U · x = V , where · is the concatenation operation.

A nonfailure cross edge e= (u, x, v) ∈ Ecn satisfies the following properties.

(i) u ∈ Ni, v ∈ Nj and i ≥ j > 0.
(ii) There does not exist any forward edge e= (u, x, w) ∈ Ef for some w ∈ Q.

(iii) There exists a substring y (y can be the empty string) such that y is a
suffix of U and y · x = V .

(iv) There does not exist another suffix z of U such that the length of z is longer
than the length of y, and z · x = V ’ for some node v’ ∈ Q.

The set of alphabets is divided into three disjoint partitions with respect to a
node u. Let � f (u) = {x|x ∈ � ∧ ∃e = (u, x, v) ∈ Ef } , �cn(u) = {x|x ∈ � ∧ ∃e = (u,
x, v) ∈ Ecn}, and �c f (u) = � − � f (u) − �cn(u). For each x ∈ �c f (u), there exists
a failure edge e = (u, x, q0) ∈ Ecf .

Let n be the number of strings in �, L be the average string length, and �

be the set of 8-bit ASCII characters. There are 256 × β ×n × L edges in M(�),
where the value of β is around 0.7 to 0.8. For N = 5,000 and L = 20, there
can be more than 20 million edges in the AC state graph. The storage cost of a

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:6 • D. Pao et al.

straightforward implementation of the AC algorithm is up to 100MB, that is,
1KB per character. Such a high memory cost is prohibitive in ASIC or FPGA
implementation.

Memory cost reduction is the major concern in the studies of hardware im-
plementation of AC algorithm. There are proposals based on LUT compression,
encoding, bit-slice implementation, rule set partitioning, and state graph re-
duction. In general, less than 1% of the transition edges in the AC state graph
are forward edges. Hence, if we can eliminate the cross edges in the state graph,
very substantial savings in memory cost can be achieved. In Section 2.2, we
give an overview of previous approaches for state graph reduction, and other
approaches are discussed in Section 2.3.

2.2 Related Work on State Graph Reduction

The Snort rule set contains several thousand signatures. Aldwairi et al. [2005]
proposed to divide the signature set into multiple groups according to the IP
addresses, protocols, and port numbers in the Snort rule header. The grouping
of strings may not be disjoint, since many of the Snort rule headers contain
wildcard fields. A separate DFA is built for each group of signatures. Some
reduction in memory space can be achieved using this approach. For a signature
set with 1,542 strings, the memory cost is 3.1MB, that is, about 100 bytes per
character in the signature set.

A breakthrough in edge reduction method can be found in Lunteren [2006].
Recall that in a state transition e = (u, x, v) the substring represented by the
destination node v is V = U · x. If v ∈ N1, then U is the empty string. In this
case, the state value of v is independent of the originating state u. If v ∈ Nj

for j > 1, U is not equal to the empty string. This means that the state value
of v depends on the state value of u. Observing this property, all transitions
to a node v ∈ N1 can be replaced by a single entry (*, x, v) in the transition
rule table, where * represents the wildcard. Similarly, all failure edges can
be replaced by a default transition (*, *, q0). The default transition (*, *, q0) is
assigned priority 0, transitions of type (*, x, v) with v ∈ N1 are assigned priority
1, and transitions of type (u, x, v) with u �= * and v ∈ Nj for j ≥ 2 are assigned
priority 2. When looking up the transition rule table with current state u and
input character x, up to three matching transition rules can be found. The
matching transition rule with the highest priority will be applied. In the AC
state graph for a typical character-based signature set, the number of failure
edges and cross edges pointing to nodes in N1 account for about 92% of all
edges. Lunteren also proposed a heuristic scheme to divide the signature set
into multiple disjoint groups and a separate automaton is constructed for each
group of signatures. The total number of edges can be further reduced to about
1.5 edges per character for a signature set with about 2,000 strings, where an
edge requires 36 bits of storage. The performance of the partition scheme is,
however, sensitive to the insertion order, size, and statistical property of the
signature set.

Alicherry et al. [2006] proposed an edge reduction strategy similar to the
idea of Lunteren at more or less the same time. They used TCAM to implement

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:7

the transition rule table. TCAM has been widely used in Internet router to
implement various table look-up and address translation operations, such as
IP address look-up and packet classification [Pao et al. 2006; Zheng et al.
2006]. TCAM supports prioritized table look-up operation and can handle case-
sensitive and case-insensitive strings efficiently by setting the TCAM bit corre-
sponding to the 5th bit of the input ASCII character to*. Alicherry et al. further
pointed out that if the state ID of the destination node w of a transition rule
(u, x, w) is suffixed by the input character x, then all transition edges pointing
to a node v ∈ N2 can be replaced by a single entry in the LUT (*x, y, v) where the
string represented by v is V = “xy”. Thus, the size of the LUT can be reduced
to less than 3% of the original AC state graph. In principle, this approach can
be extended to nodes on level 3 and so on, but the field length of the state ID
will be increased proportionally.

Alicherry et al. [2006] also showed that instead of using the previously de-
scribed state ID assignment strategy, edge reduction can also be achieved by
using multicharacter-based state transitions. Typically, the system will make
a state transition based on two or three input characters. Assume the system
processes three characters per cycle. A signature is divided into chunks (seg-
ments) of three characters. An alphabet in a state transition is replaced by a
chunk of three characters. Hence, the effective number of alphabets in the AC
automaton is substantially increased, and the effective length (in terms of the
number of segments) of a signature is reduced by a factor of 3. In addition to
the state graph reduction, the throughput can be increased. A general problem
with multicharacter-based state transition is the alignment problem. When
the system reads in a chunk of three characters, it may not be aligned with
the corresponding segment of the signature. One way to resolve the alignment
problem is to introduce additional shallow states in the state graph. In general,
the number of shallow states is proportional to the number of signatures. An-
other problem is the handling of signatures whose length are not multiple of 3.
This problem can be resolved by the match-and-verify approach. A signature
is truncated to length that is multiple of 3. When a match-result is reported, a
postmatching module will verify the last one or two characters of the original
signature to confirm the match-result.

The recent paper by Song et al. [2008] falls into the same framework that
aims at eliminating edges that point to nodes on levels 0 to 2. Song’s method,
called cached DFA (CDFA), maintains two active states, namely the conven-
tional current state u and a cached state c. The cached state is the destination
state v obtained by following a transition (q0, y, v) with the last input character
y. In each cycle, the system looks up the transition rule table using the cur-
rent state u and the cached state c. It may find two matching transition rules
e1 = (u, x, v1) and e2 = (c, x, v2) for the given input character x. Transition rule
e1 is given higher priority over e2. If no matching transition rule is found, then
q0 is taken as the default next state. By using this approach, all failure edges
and cross edges pointing to nodes on levels 1 and 2 can be removed from the
transition rule table. Song et al. also presented an innovative way to organize
the transition rule table. Each node in the AC state graph is assigned a state
ID and a color code. The transition rule table is organized as three LUTs called

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:8 • D. Pao et al.

TRM-0, TRM-1, and ITT. TRM-0 is used to determine the next value of the
cached state. The state ID is used as the address to access the TRM-1, and the
color code is used to access the ITT. Each entry in the ITT has 256 columns,
indexed by the input character. A state transition involves two steps. In the
first step, the system uses the color code of the current state and the input
character x to look-up the ITT to obtain a potential next state v. In the sec-
ond step, the system looks up TRM-1 using the state value v. Each entry in
TRM-1 stores the ordered pair (x, color code), where x is the input character of
the transition edges that point to node v. The next state value v is accepted if
the input character x matches the value stored in the corresponding entry in
TRM-1. Two nodes in the state graph can share a color code if their possible
transitions are conflict-free. A large signature set is divided into multiple dis-
joint subsets of smaller sizes so as to get a better result in ITT optimization.
Each entry in the ITT occupies 512 bytes or more. Hence, the performance is
very sensitive to the statistical property of the signature set. Song’s method
requires two memory accesses to process one input character. The system can
be sped up by pipelining and interleaving the processing of two input streams
such that an overall throughput of one character per cycle can be maintained.

2.3 Other Approaches to Reduce the Transition Rule Table

Tuck et al. [2004] proposed a bit-map encoding and path compression technique
to reduce the memory cost of the transition rule table. A fundamental limitation
of Tuck’s approach is that if the number of transitions in the state graph
remains unchanged, the achievable reduction of memory cost is limited. Tan
et al. [2006] proposed to use bit-split finite state machines (FSMs), where each
bit-split FSM processed 1 bit of an input byte. Each state in a bit-split FSM can
have only two possible transitions. Hence, a transition rule can be stored in a
very compact format. The signatures are divided into groups of 16 such that the
partial-match of a node can be represented by a bit-vector with 16 bits. Eight
bit-split FSMs are built for each group of 16 signatures. Hence, the system
contains n/2 FSMs. There are practical difficulties and substantial overheads
in implementing a large number of FSMs in hardware.

Dimopoulos et al. [2007] proposed to divide the 256 alphabets into frequent
and infrequent characters based on their frequency counts in the signature
set. A full state graph is constructed for frequent characters, where the tran-
sition rule table for infrequent characters is implemented using CAM. There
can be trade-off in the amount of control logic and memory storage in this
method depending on the threshold used to classify frequent alphabets. Gen-
erally speaking, the complexity of the control logic of this method is relatively
high.

3. PIPELINED IMPLEMENTATION OF THE AC ALGORITHM

State graph reduction is the most effective approach to reduce the hardware
implementation cost. Previously published methods can mostly remove cross
edges pointing to q0 and nodes on levels 1 and 2. The methods of Lunteren
and Song rely heavily on partitioning the signature set into multiple subsets

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:9

q0

a ap app appl apple

p pa pas past

Fig. 2. Reduced state graph maintained by the pipeline system.

in order to get better performance. A separate set of LUTs are required for
each partition. Hence, the amount of control logic goes up with the number of
partitions.

In this section, we present a pipelined processing approach called P-AC
that can remove all cross edges in the AC state graph. The AC automaton is
essentially a DFA. There can be only one active state in the system at any
one time. The system uses distinct states to represent the longest matching
substring found so far when processing the input stream one character at a
time. As a result, there are a large number of cross edges in the automaton.
On the other hand, if the system is modeled as a NFA allowing multiple active
states that represent matching substrings of various length, then all the cross-
edges in the automaton can be removed. There is one very important property
of the NFA for static strings, that is, there can be, at most, one active state on
each level of the state graph. The proposed pipeline architecture exploits this
characteristic to achieve edge reduction. The reduced automaton maintained
by the pipeline system for the signature set � is Mp(�) = (Q,�,q0,δp,F), where
δp(u, x) = v if v = δ(u, x) ∧ u ∈ Ni ∧ v ∈ Ni+1; otherwise, δp(u, x) = φ. The set of
edges corresponding to the reduced transition function δp is Ep = {(u, x, v)|v =
δp(u, x) ∧ v �= φ}. Hence, the state graph maintained by the pipeline is reduced
to a tree that only contains forward edges, as shown in Figure 2.

In the proposed pipelined architecture, a new thread is initiated to trace
along the automaton Mp, starting from the current input character in each
cycle. There is zero or one active state maintained in each pipeline stage. The
active state in stage i represents a matching substring of length i that ends at
the last input character. In each cycle, the input character is sent to all pipeline
stages. The local transition rule table LTi of stage i stores the forward edges
originating from a node belong to Ni to a destination node in Ni+1, that is,
LTi = {e = (u, x, v)|e ∈ Ef ∧ u ∈ Ni ∧ v ∈ Ni+1}. In each cycle, stage i looks up its
local table using its local active state and the input character, and passes the
result to the next stage. Table I shows the active states of the pipeline in the
first eight cycles when processing the sample input stream “appastxyz”. Note
that the active state of stage 0 is always equal to q0. When a thread cannot
proceed further with the current input, it is terminated. In cycle 4, the thread
of stage 3 is terminated, since the input character ‘a’ does not match any of the
forward edges originating from node <app>, but another thread of stage 1 will
pick up the longest matching substring “pa” without involving cross-edges. A
match-result for the string <past> will be generated in cycle 7.

Although the motivation of the pipelined implementation is based on the
concept of NFA, the hardware pipeline is a deterministic system. The overall
system state (state of the pipeline as a whole) is a vector (s0, s1, . . . , sk), where si

is the state of the i-th pipeline stage. For an input character x, there will be one

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:10 • D. Pao et al.

Table I. Active States for the Sample Input “appastxyz”

Active State of the Pipeline Stages
Cycle Input Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

1 ‘a’ <q0>
2 ‘p’ <q0> <a>
3 ‘p’ <q0> <p> <ap>
4 ‘a’ <q0> <p> <app>
5 ‘s’ <q0> <a> <pa>
6 ‘t’ <q0> <pas>
7 ‘x’ <q0> <past>
8 ‘y’ <q0>

and only one next system state, since the state transition of individual pipeline
stages are deterministic. One may say that the pipeline system possesses the
dual property of DFA and NFA.

3.1 Processing Long Signatures

In general, signatures can be longer than the hardware pipeline. Some refine-
ments to the pipeline are necessary in order to handle long strings. Assume
the pipeline has k+ 1 stages numbered from 0 to k, where the last stage is only
used to buffer the search result of stage k− 1. Strings longer than k characters
are referred to as long signatures. A long signature is divided into segments of
length k, except for the last segment whose length can be less than k. Segments
with length k are called full-length segments.

The string-matching engine is consisted of two units: a pipeline unit and an
aggregation unit. The pipeline unit is used to detect pattern segments with up
to k characters. A matched segment represents a partial match of a signature.
The aggregation unit is responsible for combining the partial-match results to
produce the final results.

Consider a signature set with eight strings � = {dos, pos, disk, disks, passwd,
directory, directories, entrance} shown in Table II. Assume k is equal to 4,
strings in the signature set � are divided into 12 segments �k = {s, y, wd, dos,
ies, pos, ance, ctor, dire, disk, entr, pass}. Let the logical segment IDs assigned
to the segments in �k be SA, . . . , SL, respectively. As shown in Figure 3, The
automaton of the pipeline system for the set of segmented strings Mp(�k) is
constructed. A segment detected by Mp(�k) can be a short signature having
k characters or less, and/or part of a long signature. In the latter case, the
detected segment represents a partial-match of a long signature.

Table II shows the set of signatures and the corresponding set of segments
with k = 4. The assignment of physical IDs will be discussed in Section 4. In this
section, our discussion is based on the logical segment IDs. A long signature is
represented by a sequence of segment IDs. For example, the segment sequence
for “directory” is SISHSB, where SI, SH and SB are the IDs of the segments
“dire,” “ctor,” and “y,” respectively. An aggregation string for a long signature
is defined as follows. Let Y be a long signature, and SY = S1S2. . . St−1St be
the corresponding segment sequence. The aggregation string AY for signature
Y is equal to S1S2. . . St−1St if St is a full-length segment; otherwise, AY is
equal to S1S2. . . St−1. Let A be the set of aggregation strings with respect to the

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:11

Table IIA. Sample Signature Set

Pattern ID Signature Length Group Segment Sequence Aggregation String
1 disk —
2 disks LS1 SJSA SJ

3 directory LS1 SISHSB SISH

4 directories LS3 SISHSD SISH

5 entrance LS0 SKSG SKSG

6 passwd LS2 SLSC SL

7 dos —
8 pos —

Table IIB. Set of Segments Corresponds to the Sample Signature Set

Logical Physical Logical Physical
Segment Segment ID Segment ID Segment Segment ID Segment ID

s SA 10 ance SG 5
y SB 11 ctor SH 6

wd SC 10 dire SI 2
ies SD 9 disk SJ 1
dos SE 7 entr SK 3
pos SF 8 pass SL 4

signature set �, that is, A = {AY | Y ∈ �∧ length(Y) > k}. An AC automaton
M(A) is constructed for A using Lunteren’s approach, as shown in Figure 4.
The set of long signatures is divided into k disjoint length groups, LS0 to LSk−1,
where LSi = {Y |Y ∈ �∧ length(Y) > k∧ length(Y) modulo k = i}. An output
state in M(A) is unconditional if it corresponds to a long signature in LS0;
otherwise, it is conditional if the output state corresponds to the aggregation
string of a long signature in LSi for 1 ≤ i < k. When the aggregation unit reaches
an unconditional output state, a match-result for a long signature in LS0 is
generated. When the aggregation unit reaches a conditional output state, a
match-result is generated only if the pipeline unit has found the corresponding
partial-length suffix segment.

The organization of the pipeline system is depicted in Figure 5 with k = 4.
When pipeline stage Pi detects a segment, the segment ID is passed to the
corresponding partial-match unit PMi in the aggregation unit. Pipeline stage
P4 is simply a register that holds the table look-up results of stage P3. PM4

is responsible for traversing the automaton M(A) for aggregation of partial-
matches. Similar to the pipeline unit, the aggregation unit maintains up to k
independent threads that traverse M(A) concurrently. However, a full-length
segment for a given thread may be detected in every k cycles. Hence, the ag-
gregation unit can interleave the processing of the k threads by using a shift
register with k buffer slots. As shown in Figure 5, the next state value deter-
mined by PM4 is fed back to the first buffer slot B1 of the shift register. PM4

maintains two LUTs (TA0 and TA1) for traversing the AC automaton M(A).
Each PMi for 1 ≤ i< k maintains a LUT CMi for verifying the match of a long
signature in LSi.

The number of states in M(A) is determined by the number of full-length
segments, which is roughly equal to nL/k, where n is the number of strings, L

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:12 • D. Pao et al.

q0

a an anc ance

p pa pas pass

c ct cto ctor

d

di
dir dire

dis disk

do dos

e en ent entr

i ie ies

po pos

s

w wd

y

1

6

2

7

8

4

10 (SA)

9

11 (SB)

1 1 5 (SG)

2

4

5

6

7

8

9

2

3

4

7 (SE)

6

9 (SD)

5

8 (SF)

6 (SH)

2 (S I)

1 (SJ)

3 (SK)

4 (SL)

10 (SC)

0

Fig. 3. Mp(�k) for the sample signature set. The number next to a node represents the assigned
physical state ID (physical segment ID), and the logical segment ID is placed inside the bracket.

q0

SISHSI

SJ

SK

SL

SKSG

0-00-0100 1-00-0001

1-01-0010

0-00-0101 1-00-0101

1-10-0010

0-00-0000

Fig. 4. State graph for the aggregation of partial-matches. The binary number next to a node
corresponds to the physical state ID.

is the average string length, and k is the length of a full-segment. The alphabet
set of M(A) is made up of the segment IDs. For k equals to 4 or larger, the
number of distinct full-length segments (i.e., the size of the alphabet set) is
comparable to the number of states in M(A). In the extreme case where the
size of the alphabet set is equal to the number of states (i.e., all the full-length
segments are distinct), M(A) is reduced to a tree. There will not be any cross
edges in the state graph because there does not exist any segment α such that
α appears in two strings. In a practical scenario, 40% to 60% of the full-length

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:13

P0

LT0

P1

LT1

P2

LT2

P3

LT3

P4

Matched
strings

o/p

Aggregation unit

input

PM1

CM1

PM2

CM 2

PM3

CM3

PM4

TA0
TA1

B1 B2 B 3 B4

Pipeline unit

Fig. 5. Organization of the pipeline system.

Table III. Logical Organization of Look-Up Tables TA0, TA1, CM1, CM2 and CM3

TA0 TA1
Input Next state Pattern Current state Input Next state Pattern
SI <SI> — <SI> SH <SISH> —
SJ <SJ> “disk” <SK> SG <SKSG> “entrance”
SK <SK> —
SL <SL> —

CM1 CM2 CM3

State Input Pattern State Input Pattern State Input Pattern
<SJ> SA “disks” <SL> SC “passwd” <SISH> SD “directories”
<SISH> SB “directory”

segments are distinct for text-based signature set. The expected number of
cross edges is no more than 50% of the number of states in the state graph.

The logical organization of Tables TA0 and TA1, and CM1 through CM3 for
the sample signature set is shown in Table III. Assume the input stream I =
“directory . . . ” Initially, the state value of B1 to B4, and P0 to P4 are equal to
q0. In cycle 5, P4 detects the segment “dire” and the segment ID SI is sent to
PM4. PM4 looks up TA0 to determine the next state <SI>. In cycle 9, P4 will
detect the segment “ctor” and sends the segment ID SH to PM4. At this time,
the state value stored in B4 is equal to <SI>. PM4 finds a matching entry in
TA1 and determines the next state to be <SISH>. In the next cycle, the state
value <SISH> will be shifted into B1, and P1 will reach state <y>. PM1 will then
use the state value of B1 and the segment ID SB received from P1 to look up its
local CM1 table and generates a match-result for the string “directory.”

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:14 • D. Pao et al.

3.2 Handling Case-Sensitive and Case-Insensitive Signatures

The complexity of the state graph will be largely increased if case sensitive
strings and case insensitive strings are included in the same DFA. There are
two general approaches to handle case sensitivity. In the first approach, two
independent DFAs are constructed for the case-sensitive signatures and the
case-insensitive signatures, respectively. Strings in the case-insensitive signa-
ture set are converted to lower case letters. The two DFAs are run in parallel.
Uppercase letters in the input stream are converted to lowercase before passing
to the input interface of the DFA for case-insensitive signatures.

The second approach is based on the match-and-verify strategy [Lu et al.
2007]. All the signatures and the input data stream are converted to lowercase
letters. Case sensitivity is verified after a matching string has been found. In
the ASCII code, the 5-th bit for a lowercase letter is equal to 1, where the
5th bit for an uppercase letter is equal to 0. The original value of the 5th
bit of each byte of input data is extracted and stored in a bit-vector. There
is a control bit associated with the match-result that indicates whether the
matched string is case sensitive or not. If the matched string is case sensitive,
the system compares the extracted bit-vector with the corresponding bit-vector
of the signature to confirm the match-result.

The first approach offers an implicit partitioning of the signature set, divid-
ing the signatures into two subsets. In general, signature set partitioning may
help to reduce the total memory cost, but the cost of the control logic will be
doubled, since the system needs to operate two independent DFAs. The second
approach will incur some postprocessing requirement and additional cost in the
control logic. Both approaches are viable in the proposed pipelined architecture
while implementation of the first approach can be simpler.

4. IMPLEMENTATION OF THE LUTS

The LUTs can be implemented using hardware hashing [Ramakrishna et al.
1997]. However, if a conventional hardware-hashing scheme is used, we cannot
guarantee the hash function is collision-free. When collisions happen in the
hash table, the system will take multiple cycles to resolve the collisions and
the whole pipeline will be slowed down. In this section, we present a method
to implement the LUTs such that single cycle look-up operation can be guar-
anteed.

The system maintains three types of LUTs, namely the transition rule ta-
bles LT0 to LT3 for the pipeline unit, the transition rule tables for the aggre-
gation unit TA0 and TA1, and the conditional match Tables CM1 through CM3.
The information maintained in the previously mentioned tables are listed in
Table IV.

In general, the set of signatures is stored in an array and an individual
signature is referenced by the array index. Hence, if there are n signatures,
the pattern ID is within the range of 1 to n. In principle, there is a one-to-one
mapping of state ID to pattern ID, that is, one can find out the pattern ID
from the state ID via another LUT. However, using this approach will make
the implementation of TA0, TA1, and CM1 to CM3 very difficult.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:15

Table IV. Information Maintained in Different Look-Up Tables

Look-up table Search key Output information
LT0 input character next state of Mp(�K), segment ID, pattern ID
LT1 to LT3 current state of Mp(�K), next state of Mp(�K), segment ID, pattern ID

input character
TA0 segment ID next state of M(A), pattern ID
TA1 current state of M(A), segment ID next state of M(A), pattern ID
CM1 to CM3 state ID of M(A), segment ID pattern ID

In this article, we implement the LUTs using an approach based on direct
indexing plus bit-selection (DIBS). In order to achieve good memory efficiency,
we need to do a careful assignment of state IDs, segment IDs, and pattern IDs.
What we want to achieve is to overlay the three number spaces such that the
state ID is the same as the segment ID and pattern ID that the node may
represent. First, we discuss the implementation of Tables LT0 through LT3.
One can observe that if the transition rules of Mp(�k) are divided into multiple
tables, the state IDs of nodes on N1 can be independent of the state IDs of nodes
on N2. The state ID is used as a base address, and a bit-selection scheme is used
to determine an offset value from the input character. The transition rule at
the location equal to the sum of the base address and offset is retrieved. If the
input character is equal to the expected value, the transition rule is fired and
the retrieved next state value is passed to the next pipeline stage. Otherwise,
a null value (i.e., 0) is passed to the next pipeline stage.

We illustrate our design using the sample signature set shown in Table II.
The number next to a node in Figure 3 represents the assigned physical state
ID. Table LT0 can be implemented using a 256-entry array indexed by the input
character. Each entry in LT0 contains three fields, ns represents the next state
value, the o/p flag is used to indicate if the next state is an output state or not,
and bs is a bit-select mask vector used to control the bit-select circuit when
accessing the LUT of the next pipeline stage. If o/p is equal to 1, then the ns
value that represents the pattern ID will be sent to the output interface in the
next cycle. The organization of the control logic for a LUT is depicted in Figure
6. Suppose the bs mask has 8 bits, b7. . . b1b0. If all the bits in the bs mask are
equal to 0, then the offset value generated by the bit-select circuit is equal to
0. Assume g bits of the bs mask, bs1, bs2, ... bsg, are equal to 1, where s1 < s2
. . . < sg ≤ 7. Let the value of the input character be i7. . . i1i0. The offset value
produced by the bit-select circuit is equal to 0..0isg. . . is2is1.

The contents of LT0 through LT3 for the sample signature set are depicted
in Figure 7. Note that the address assignment for the transition rules in Ta-
bles LT1 through LT3 are based on the assigned physical state IDs shown in
Figure 3. For example, physical state ID of node <a> is equal to 1 and the tran-
sition edge (<a>, ‘n’, <an>) is stored at location 1 in LT1. Transitions (<d>, ‘i’,
<di>) and (<d>, ‘o’, <do>) are stored at locations 2 and 3 in LT1, where the physi-
cal state ID of <d> is equal to 2. Similarly, physical state ID of <do> is equal to 5
and the transition edge (<do>, ‘s’ <dos>) is stored at location 5 in LT2. Table LTi

stores the transition edges that are originating from nodes on level i. Since
Tables LT0 through LT3 are implemented on separate physical memory

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:16 • D. Pao et al.

State ID

Bit-select circuit

bs mask

i/p ns o/p bs

i/p ns o/p bs

Lookup table

+
address

comparator

Input character

Memory
data register

M
U
Xφ

Next stage

Fig. 6. Control logic for a LUT using DIBS.

 LT0 LT1 LT2 LT3

 ns o/p bs i/p ns o/p bs i/p ns o/p bs i/p ns o/p
‘a’ 1 0 0000 0 * 0 0 0000 * 0 0 0000 * 0 0
‘b’ 0 0 0000 1 n 1 0 0000 c 1 0 0000 e 5 0

‘c’ 6 0 0000 2 i 2 0 0001 r 3 0 0000 r 6 0
‘d’ 2 0 0010 3 o 5 0 0000 s 4 0 0000 e 2 0

‘e’ 7 0 0000 4 a 8 0 0000 o 2 0 0000 k 1 1
 5 o 9 0 0000 s 7 1 0000 s 4 0

 6 t 4 0 0000 t 6 0 0000 r 3 0
‘i’ 8 0 0000 7 n 6 0 0000 s 9 0 0000 * 0 0

 8 e 7 0 0000 s 5 0 0000 * 0 0
‘p’ 4 0 0010 9 d 10 0 0000 s 8 1 0000 * 0 0

 10 * 0 0 0000 * 0 0 0000
‘s’ 10 0 0000 11 * 0 0 0000

 12
‘w’ 9 0 0000
‘x’ 0 0 0000
‘y’ 11 0 0000

Fig. 7. LUTs LT0 through LT3 for the sample signature set.

modules, the physical state IDs for nodes on different levels are totally in-
dependent. However, physical state IDs for nodes on the same level must be
distinct. In general, terminal states on levels 1 to 3 are assigned state IDs on
the higher end. By doing so, the null transition rules, for example, rules 10 and
11 of LT1, rules 10 of LT2, and rules 7 to 9 of LT3, need not be stored in the
physical LUTs. This will help to reduce the physical size of the LUTs.

Only the least significant 4 bits of the bs mask are shown in Figure 7, and
the most significant 4 bits of the bs mask are always equal to 0 in this example.
If ns is equal to 0, it represents the null value. Note that LT3 does not contain
the bs mask, since no table look-up operation is required in stage P4. Let’s
consider the operation of stage P1. In each cycle, the current state is set to the
ns value received from P0. If the received o/p flag is set to 1, then the value of

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:17

current state is sent to the output module. Assume the ns value received from
P0 is equal to 2 (corresponds to state <d>). The fanout of node <d> in Mp((�k) is
equal to 2. In this case, a memory block of 2 entries is allocated in LT1 to store
the forward edges originating from node <d>. If the state ID of <d> is equal
to 2 and the size of the memory block allocated to the node is equal to 2, then
the state ID value 3 will not be available for other node on same level in the
state graph. That is to say the state space allocated to node <d> contains two
points {2, 3}. The input characters of the two forward edges originating from
<d> are equal to ‘i’ (ASCII code = x69) and ‘o’ (ASCII code = x6F), respectively.
These two characters can be distinguished by the second least significant bit.
Hence, the lower 4 bits of the bs mask is equal to 0010. On receiving an input
character x, it extracts the second least significant bit of x to form the offset
value.

The size of the memory block allocated to a node is always a power of 2. For a
node u with fanout greater than 1, a heuristic algorithm is used to compute the
bit-select mask with the smallest number of bits set to 1. If there are g bits in
bs that are equal to 1, then the size of the memory block allocated to node u in
the LUT is equal to 2g. The state value of a node is always an integral multiple
of the size of the memory block allocated to it. Hence, the memory address used
to access the local LUT is obtained by performing a logical-OR operation of the
state ID with the offset value produced by the bit-select circuit. If the input
character x is equal to the expected input retrieved from the LUT, the retrieved
ns, o/p, and bs are passed to the next pipeline stage; otherwise, null values are
passed to the next pipeline stage.

The assignment of state ID in Mp(�k) is to facilitate efficient implementation
of TA0, TA1, and CM1 to CM3. Discussion on the state ID assignment strategy
will be delayed after the presentation of the design of the other LUTs. There are
a few important properties of M(A) one must be aware of in deriving a memory-
efficient implementation of the LUTs. First, the fanout of q0 is proportional to
the number of strings in the signature set (i.e., in the range of thousands).
Except q0, most of the other states have fanout equal to 0 or 1. Only a small
number of states may have higher fanout. Second, recall that the automaton
of the aggregation unit M(A) is implemented using Lunteren’s approach. The
system maintains two transition rule tables, TA0 and TA1. These two tables
are searched in parallel. If match-results are found in both tables for a given
input (the segment ID received from the pipeline unit), priority will be given to
the match-result of TA1. All failure edges pointing back to q0 are implicit in the
state graph. That is to say, if the system searches the two tables and does not
find any matching entry, then q0 is taken as the default next state. There are a
relatively large number of terminal nodes in M(A). No transition rules for these
terminal nodes need to be stored in TA1 because the only possible next state is
q0, but the state ID of a terminal node may be used to reference the CM tables.

TA0 can be implemented using the same approach of LT0 provided that the
segment IDs involved in all the forward edges of the initial state of M(A) are
numbered in the range 1 to f + �, where f is the fanout of q0, and � is equal
to the number of signatures with length equal to 4 and the corresponding
four-character signature is not the first segment of a long signature. By doing

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:18 • D. Pao et al.

Table V. Format of State ID for M(A)

Terminal Conditional State ID Access table
State Output State T CT AD CM1 CM2 CM3 TA1 Remark
yes yes 1 00 00a9 · · · a0

√ √ √ ×
01 00a9 · · · a0

√ × × ×
10 00a9 · · · a0 × √ × ×
11 00a9 · · · a0 × × √ ×

no a13a12 a11a10a9 · · · a0 × × × × a11a10 �=00
no yes 1 00 00a9 · · · a0

√ √ √ √
01 00a9 · · · a0

√ × × √
10 00a9 · · · a0 × √ × √
11 00a9 · · · a0 × × √ √

no 1 a13a12 a11a10a9 · · · a0 × × × √
a11a10 �= 00

so, we can use the segment ID as the array index to access Table TA0. The
remaining LUTs (i.e., TA1 and CM1 to CM3) can be implemented using the
DIBS approach. However, there are additional constraints in the assignment
of state ID in M(A) and the IDs of full-length segments. A state ID can be used
as the base address to access TA1 and some of the CM tables if the node is a
conditional output node. However, the size of TA1 is much larger than the CM
tables. We do the state ID assignment in such a way that only the lower-order
bits of the state ID will be used to access a CM table. A state in M(A) can be
related to more than one CM table. We define the CM-group (CMG) attribute
of a state in M(A) as follows. If state u is not a conditional output state (i.e.,
not related to any CM table), then its CMG is equal to −1. If u is related to
multiple CM tables, then CMG of u is equal to 0. If u is related to exactly one
CM table, then CMG of u is equal to the table number (i.e., 1 to 3).

The state ID for M(A) contains three fields, T-CT-AD, as shown in Table V.
Field T is used to represent if the node is a terminal node or not. The CT field
can have four possible values 00, 01, 10, and 11. The field size of AD depends on
the number of nodes in M(A) and the sizes of the CM tables. Let the length of
the AD field be a bits. The size of the largest CM table should be less than 2a−2,
and the sum of the number of nodes in M(A) and the size of the largest CM
table should be less than 2a+2. For example, in the case-insensitive signature
set used in the performance evaluation with 3,635 strings, the number of nodes
in M(A) is 13,100, and the sizes of the CM tables are about 600 to 700 entries.
In this case, the AD field will have 12 bits. If the current state is a terminal
state, then the next state will always be q0, and there is no need to look up
Table TA1. If the current state is a nonterminal state, then the values of CT
and AD fields will form the base address for accessing Table TA1. If the two
most significant bits of AD are equal to 0, then the least significant 10 bits of
the AD field will be used as the base address to access one or more of the CM
tables, depending on the value of CT.

We are now ready to present the heuristic strategy for the segment ID as-
signment. Segments of different lengths are used to access different LUTs.
Hence, the segment ID assignment for different length groups can be done in-
dependently, except for segments that correspond to short signatures because
the IDs of these segments should be the same as their respective pattern IDs.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:19

Let τ4 be the set of signatures of length 4, and τ3 be the set of signatures of
length less than 4. Segments in τ4 are assigned physical IDs starting from 1
and onward. Segments in τ3 are assigned segment ID starting from n and down-
ward subject to the address block size constraint. In the previous example, the
physical segment ID of “disk” is equal to 1, and the segment ID of “dos” and
“pos” are equal to 7 and 8, respectively.

The ID assignment for full-length segments is most critical because it will
affect the memory efficiency of Table TA1, the largest table in the system. We
first construct M(A) using the logical segment IDs. The logical segment IDs
involved in TA0 are then collected. For each segment in this group that has
not been assigned a physical segment ID, it is assigned the smallest ID value
that is available. Next, we determine the list of nodes in M(A) that have fanout
greater than 1, except q0. The list is ordered by the fanout value in decreasing
order. For each node in this list, we determine the group of logical segment
IDs associated with that node. We try to assign consecutive physical IDs to the
segments in the same group. By using this assignment strategy, the number of
bits required in the bit-selection operation will be minimized.

The ID assignment for segments with length 1 to 3 is less critical because it
will only affect the CM tables whose sizes are relatively small. In addition, the
number of short segments associated with a conditional output node in M(A) is
usually very small. The assignment of physical ID values to segments shorter
than 4 is mainly constrained by the construction of Tables LT1 through LT3.

After the assignment of the physical segment ID, the bit-select mask vector
and the required block size of each node in the state graph will be computed.
The amount of state space (address block size) allocated to a node in M(A) is
equal to the maximum of the required block size for the Tables TA1 and CM1

through CM3. An address allocation vector is maintained for each of the four
tables. If an address block [a, b] is allocated to a node u with CMG = 0, then
the corresponding address range of the allocation vector of all the four tables
is marked. If an address block [a, b] is allocated to a node u with CMG = j
where j > 0, then only the allocation vector of TA1 and CM j will be marked.
The assignment of state ID to nodes in the state graph is carried out in the
following order.

(i) internal node, output state, CMG = 0
(ii) terminal node, output state, CMG = 0

(iii) internal node, CMG = 0
(iv) terminal node, CMG = 0
(v) internal node, output state, CMG > 0

(vi) terminal node, CMG > 0
(vii) internal node, output state, CMG < 0

(viii) internal node, nonoutput state, CMG < 0
(ix) terminal node, output state, CMG < 0

The lower order
log n� bits of the ID of an output node correspond to the
associated pattern ID. Hence, the lower order
log n� bits of the state ID for

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:20 • D. Pao et al.

Table VI. Contents of TA0, TA1, and the CM Tables for the Sample Signature Set

TA0 TA1

Address Next Address Segment Next
(segment ID) state bs CMG (binary) ID state o/p bs CMG
1 (SJ) 1-01-0010 0..0 1 00-0000 * 0-00-0000 0 0..0 −1
2 (SI) 0-00-0100 0..0 −1 00-0001 empty empty — — —
3 (SK) 0-00-0101 0..0 −1 00-0010 empty empty — — —
4 (SL) 1-10-0010 0..0 2 00-0100 6 (SH) 1-00-0001 0..0 0

00-0101 5 (SG) 1-00-0101 1 0..0 −1

CM1 CM2 CM3

Address Segment Pattern Segment Pattern Segment Pattern
(binary) ID ID bs ID ID bs ID ID bs
01 11 (SB) 3 0..0 — — 0..0 9 (SD) 4 0..0
10 10 (SA) 2 0..0 10 (SC) 6 0..0 — — 0..0

an output node must be distinct. This constraint is not difficult to fulfill, since
less than 10% of the nodes in M(A) are output nodes. An allowable physical
segment ID and state ID assignment for the sample signature set is shown in
Table VI. The last entry in TA1 corresponds to a transition to an output state
in M(A). The last 4 bits of the state ID represent the pattern ID, that is, the
pattern ID for “entrance” is equal to 5 (or 0101 in binary). Note that the CMG
field is only used in the segment ID assignment process, it is not required in
the physical LUTs. The bit-select mask values for all table entries are equal to
‘0’ in this example. The bs mask stored in TA0 and TA1 is used to access table
TA1 to determine the next state in M(A). The bs mask used to access a CM
table is stored in the corresponding CM table. A CM table is divided into two
physical partitions, CMbs and CMdata. The CMbs partition stores the bs masks
and the CMdata partition stores the segment ID and pattern ID pairs. The look-
up operation of the CM table involves two steps. First, the system reads the bs
mask from CMbs. Second, the system searches CMdata with the segment ID and
the bs mask obtained in step 1. The access to CMbs and CMdata can be pipelined
without affecting the operation of the other parts of the system.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed method using a
signature set extracted from the Snort rule set in April 2008. All static strings
defined in the rule set are included in the performance evaluation. In the
extracted signature set, 1,221 strings contain binary data. The binary data ac-
counts for 14% of the total byte count of the signature set. Patterns that contain
only binary data are placed in the case-sensitive set. Membership of patterns
that contains both text and binary data depends on the case-sensitivity
requirement on the text component. The statistical information of the
case-sensitive and case-insensitive signature set are summarized in Table VII.

We evaluated the total number of rules in all LUTs for different values of k,
as shown in Table VIII, and found that the smallest number of rules is obtained
when k is equal to 4. Hence, our detailed performance evaluation of P-AC is
based on k = 4.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:21

Table VII. Statistics of the Snort Signature Set

Case Insensitive Case Sensitive
Number of signatures 3,635 2,531
Maximum length 109 122
Average length (character) 19.5 11.6
Total number of characters 70,732 29,229

Table VIII. Total Number of Entries in All Look-Up Tables
for Different Pipeline Lengths

Signature set k = 3 k= 4 k = 5 k = 6
Case insensitive 34,539 32,505 33,044 34,526
Case sensitive 19,426 17,517 18,089 18,967

In this section, we assume two separate hardware pipelines are built to pro-
cess case-sensitive signatures and case-insensitive signatures independently.
For the processing of case-insensitive signatures, all the strings are converted
into lowercase letters. Before the input stream is matched against the case-
insensitive signatures, all letters in the input stream are also converted to
lowercase. In the construction of Tables LT1 through LT3, four parallel mem-
ory modules are used so that better memory efficiency can be achieved by the
bit-selection method. Consider an extreme case where the fanout of a node is
equal to 4. Let the input characters of the four transition rules be x01, x02, x04
and x08. If only one memory module is used, we need to allocate an address
block of size 8 to the node, that is, the bit-select mask is 0000-0111. If four
parallel memory modules are used, then the node can be assigned an address
block of size 1, since the four transition rules can be stored at the same address
on different memory modules. In general, the use of multiple memory modules
can reduce the number of bits required in the bit-select mask and improve
the memory efficiency. In this study, Tables LT1, LT2, and LT3 are implemented
using four parallel memory modules. The four memory modules can have differ-
ent sizes, as shown in Figure 8. The address (state ID) allocation for nonoutput
nodes follows the strategy shown in Figure 8. For output nodes, the state ID
allocation is constrained by the requirement that the state ID should be equal
to the pattern ID. This constraint can be fulfilled quite easily, since only a few
percents of strings in the signature set have length shorter than or equal to 4.

In principle, using two or more memory modules can also help to improve the
memory efficiency of TA1. However, in the Altera Startix II FPGA devices used
in this study, there are a small number of large memory modules with 512Kbits
capacity, and a larger number of memory modules with smaller capacity, for
example, 512 bits and 4Kbits. The size of TA1 fits into a 512Kbits SRAM module,
so the use of parallel memory modules will not offer any real improvement.
Table IX shows the number of transition rules and the physical size of each
LUT. We can see that using the DIBS method to implement the LUTs incurs
an overall overhead of 25% and 34% for the case-insensitive and case-sensitive
signature set, respectively.

Table X lists the field widths of the LUTs. The overall amount of memory
required for the LUTs for the case-insensitive and case-sensitive signature sets

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:22 • D. Pao et al.

RAM 1 RAM 2 RAM 3 RAM 4

Low address

High address

Nodes with fanout ≥ 4

Nodes with fanout ≥ 3

Nodes with fanout ≥ 2

Nodes with fanout ≥ 1

Fig. 8. Organization of LUT with four parallel memory modules.

Table IX. Number of Rules and Physical Size of Look-Up Tables in P-AC

Case-Insensitive Signature Set
Table LT0 LT1 LT2 LT3 TA0 TA1 CM1 CM2 CM3 Total
Transition rules 75 1,243 5,131 6,984 1,697 13,662 718 671 627 30,808
Physical table size 256 2,112 6,913 7,599 1,896 17,614 742 692 657 38,481

Case-Sensitive Signature Set
Table LT0 LT1 LT2 LT3 TA0 TA1 CM1 CM2 CM3 Total
Transition rules 208 1,694 3,516 4,109 1,323 4,007 461 485 391 16,194
Physical table size 256 3,015 4,528 4,508 1,536 6,415 489 504 413 21,661

are 1.18Mbits and 0.6Mbits, respectively. The overall normalized memory cost
of P-AC is about 18 bits/char. The control logic in P-AC is very simple. The
comparators and bit-select circuits for one pipeline system can be implemented
using less than 1,000 four-input LUTs. (The LUT in this context refers to the
basic logic circuit building block in FPGA devices.) Since dual-port memories
are available in today’s FPGA, we can duplicate the control logic and process
two data streams at the same time. Hence, the system throughput can be
doubled with little overhead. With two independent pipelines for case-sensitive
and case-insensitive signatures, the total cost of the control logic is about 4,000
LUTs.

A comparison with some other AC-based string-matching methods is sum-
marized in Table XI. The memory cost of P-AC, BFPM [Lunteren 2006], and the
TCAM-based method of [Alicherry et al. 2006] are evaluated using the same sig-
nature set. In the BFPM method, both the case-sensitive and case-insensitive
signature sets are divided into eight groups. The number of transition rules per
character is about 2.2. With 36-bit transition rules, the memory cost for BFPM
is about 79 bits/char. The hardware cost of bit-split FSM is obtained from Jung
et al. [2006]. The performance of CDFA is obtained from Song et al. [2008],
and the performance of split-AC is obtained from Dimopoulos et al. [2007]. For
the split-AC method, there can be trade-off between memory cost and control
logic. The chip area for a FPGA logic cell is approximately the same as 12 bytes

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:23

Table X. Field Sizes (Number of Bits) of the Look-Up Tables

Case-Insensitive Signature Set Case-Sensitive Signature Set
Table i/p ns/pid o/p bs Total i/p ns/pid o/p bs Total
LT0 — 8 1 6 15 — 8 1 8 17
LT1 8 12 1 6 27 8 11 1 7 27
LT2 8 13 1 6 28 8 12 1 6 27
LT3 8 13 1 — 22 8 13 1 — 22
TA0 — 15 — 9 24 — 12 — 9 21
TA1 13 15 1 9 38 12 13 1 9 35
CM1 8 13 — 2 23 8 12 — 3 23
CM2 12 13 — 2 27 12 12 — 6 30
CM3 13 13 — 5 31 12 12 — 7 31

Table XI. Comparison of AC-Based Methods

Signature Memory Control Logic Speed
Method Set (chars) (per char) (LUT/char) (char/cycle)
bit-split FSM 16.7K 184 bits 0.27 1 (note 1)
split-AC 24K 65 bits 2.5 1 (slower clock)

189 bits 0.5
BFPM (16 groups) 100K 79 bits data not available 1
TCAM (2 char/cycle) 100K 76 bits TCAM + 41

bits SRAM
not applicable Up to 2 (max

266MHz clock)
TCAM (3 char/cycle) 100K 24 bits TCAM + 10

bits SRAM
not applicable Up to 3 (max

266MHz clock)
CDFA (4 groups, 2-way
associative)

29K 49.6 bits data not available 1 (interleave 2
data streams)

CDFA (4 groups, 8-way
associative)

29K 26.4 bits data not available 1 (interleave 2
data streams)

P-AC 100K 18.1 bits 0.04 2 (2 concurrent
data streams)

Note: Up to 4 char/cycle is possible, but the hardware cost will also be increased substantially.

of memory [Sourdis and Pnevmatikatos 2008]. Hence, the actual hardware cost
for the two sets of implementation parameters shown in Table XI are more or
less the same.

From Table XI, we can see that P-AC has a clear performance advantage over
the other methods. The memory cost of P-AC is lower than BFPM and CDFA
(four groups, 8-way associative) by 75% and 30%, respectively. Moreover, the
throughput of P-AC is two times that of CDFA.

The Altera Stratix II EP2S60 FPGA contains 2×512Kbit RAM blocks,
255×4Kbit RAM blocks, and 329×512 bit RAM blocks. The small memory
blocks can be cascaded to form larger memory arrays. The total memory ca-
pacity of the EP2S60 is about 2.5Mbits. In our proposed P-AC method, the
signature set is only divided into two groups, namely the case-sensitive signa-
tures and case-insensitive signatures. Hence, there are two sets of LUTs, where
TA1 has a larger size compared to the other tables. The total memory required
by P-AC is about 1.8Mbits. The two 512Kbit RAM blocks are used to implement
TA1 of the two pipelines, and the remaining tables can be implemented using
the smaller size RAM blocks. The control logic (including the duplicated copy

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:24 • D. Pao et al.

to enable concurrent processing of two data streams) consumes about 7% of the
logic elements available in the EP2S60. The 512bit, 4Kbit and 512Kbit memory
blocks can operate at 500MHz, 550MHz, and 420MHz, respectively. We have
simulated the critical path of the pipelines. Pipeline stages with four parallel
LUTs constructed using 500/550MHz memory blocks can operate at 270MHz.
Pipeline stages with LUTs constructed using the 420MHz 512Kbit memory
block can operate at 253MHz. Hence, the overall system clock frequency is
equal to 253MHz.

5.1 Dimensioning of LUTs

In a practical deployment of the string-matching engine, the engineer needs
to decide on the data field sizes and memory allocations based on some design
targets. Let nbe the target number of strings to be supported by the system, and
L is the expected average string length. The total number of characters in the
signature set m = n× L. The expected number of distinct k-character segments
is estimated using the equation S = fd × m/k, where the factor fd depends
on the statistical property of the signature set. Based on the experiences in
our evaluation, fd is about 0.4 for the case-insensitive signature set, which is
dominated by text-based strings, and fd is about 0.56 for the case-sensitive
signature set, where 40% of the strings contain binary data. For pure binary
data signature sets, the expected value of fd can be in the range of 0.8 to 0.9.

For the pipeline unit, the length of the bs-mask (hence the bit selection
circuit) and comparator circuits are no more than 8 bits as long as we are doing
character-based string matching. The size of LT0 is fixed at 256. The sizes of
LT1 to LT3 will increase progressively. The number of entries in LT3 is equal
to S, and the physical table size can be set to 1.5 ×S to account for possible
overhead due to the DIBS method.

For the aggregation unit, the number of states is given by m/k, that is, the
number of 4-character segments. The size of the ns field is upper-bounded by
log (m/k). The size of Table TA0 is equal to n. The size of the bs-mask is upper-
bounded by log S. About 50% of the segment IDs are distinct, so the allocation
for Table TA1 can be set at 1.5 × m/k. Assume the lengths of the signatures are
uniformly distributed, the size of CM1 to CM3 can be set at n/4.

The previous recommended table sizes are only for the nominal cases. If
the system is implemented on FPGA, the engineer may try to utilize all the
memory blocks available in the device to make provision for spare capacity to
accommodate future expansion of the signature set.

6. CONCLUSION AND FUTURE WORK

Hardware implementation of the AC algorithm using FPGA or ASIC has re-
ceived much attention in the past few years. A major issue in the design of
string-matching engine based on the AC algorithm is the prohibitive memory
requirements. In this article, we show that by incorporating pipelined process-
ing, all cross edges in the AC state graph can be removed. This offers very
substantial reduction of the memory cost in the hardware implementation.
We have derived an intelligent strategy to assign physical IDs to states and

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:25

string segments such that the LUTs can be implemented with good efficiency,
and the look-up operation is guaranteed to complete in one cycle. Our design
is memory-based. Incremental changes to the signature set can be accommo-
dated by updating the contents of the LUTs without the needs to reconfigure
the FPGA.

The control structure of the pipeline system is simple and elegant. If dual-
port memories are available, we can duplicate the control logic to allow the
pipeline system to process two data streams concurrently. By doing so, the sys-
tem throughput is increased to two characters per cycle. We have detailed the
design of our method using a signature set extracted from the Snort database.
The signature set contains 6,166 strings with close to 100K characters. The
memory cost of our method is only 18 bits/char, while the cost of the control
logic is only 0.04 LUT/char. The pipelines can operate at 253MHz when imple-
mented on the Stratix II FPGA device.

A fundamental property of AC-based string-matching method is that the
whole pattern set needs to be stored in embedded memory. Hence, the memory
cost cannot be lower than 8 bits/char. For antivirus systems, such as ClamAV,
the number of strings in the virus database is over 82 thousands, and the
average pattern length is about 102 bytes. The overall size of the ClamAV
pattern set exceeds 8Mbyte, which is more than 80 times the size of the Snort
pattern set. If a string-matching engine is to be built for the ClamAV pattern
set using the AC-based approach, over 20Mbyte of embedded memory will
be required. The required memory resource is well beyond the capacity of
today’s FPGA devices. In a related study by the first author [Pao et al. 2010],
a hybrid architecture for matching the ClamAV pattern set was developed,
where P-AC was one of the major building blocks. The hybrid architecture
has two major processing pipelines, namely the P-AC and the QSV. QSV is a
checksum-based approach that uses quick sampling of fixed-length prefix plus
on-demand verification of variable-length suffix. The overall memory cost of
the hybrid architecture for the ClamAV pattern set is about 1.4Mbyte (i.e., only
1.4 bits/char).

Specification of intrusion patterns and virus using regular expression is gain-
ing popularity. In a future study, we will investigate hardware architectures to
accelerate the matching of regular expressions.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Xing Wang for his assistance in carrying
out the hardware performance evaluation. The authors are grateful to the
anonymous referees for their constructive comments and advice that helped to
improve the presentation of this article.

REFERENCES

AHO, A. V. AND CORASICK, M. J. 1975. Efficient string matching: An aid to bibliographic search.
Comm. ACM. 18, 6, 333–340.

ALDWAIRI, M., CONTE, T., AND FRANZON, P. 2005. Configurable string matching hardware for speed-
ing up intrusion detection. ACM SIGARCH Comput. Archit News 33, 1, 99–107.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

10:26 • D. Pao et al.

ALICHERRY, M., MUTHUPRASANNA, M., AND KUMAR, V. 2006. High-speed matching for network
IDS/IPS. In Proceedings of the IEEE International Conference on Network Protocols. IEEE, Los
Alamitos, CA, 187–196.

BAKER, Z. K. AND PRASANNA, V. K. 2005. A computationally efficient engine for flexible intrusion
detection. IEEE Trans. VLSI Syst. 13, 10, 1179–1189.

BAKER, Z. K. AND PRASANNA, V. K. 2006. Automatic synthesis of efficient intrusion detection
systems on FPGAs. IEEE Trans. Depend. Secure Comput. 3, 4, 289–300.

CLARK, C. R. AND SCHIMMEL, D. E. 2003. Efficient reconfigurable logic circuits for matching com-
plex network intrusion detection patterns. In Proceedings of the International Conference on
Field-Programmable Logic and Applications. Springer, Berlin, 956–959.

CHO, Y. H. AND MANGIONE-SMITH, W. H. 2005. A pattern matching co-processor for network se-
curity. In Proceedings of the IEEE Design Automation Conference. IEEE, Los Alamitos, CA,
234–239.

DHARMAPURIKAR, S., KRISHNAMURTHY, P., SPROULL, T. S., AND LOCKWOOD, J. W. 2004. Deep packet
inspection using parallel Bloom filters. IEEE Micro 24, 1, 52–61.

DHARMAPURIKAR, S. AND LOCKWOOD, J. 2006. Fast and scalable pattern matching for network in-
trusion detection systems. IEEE J. Sel. Areas Comm. 24, 10, 1781–1792.

DIMOPOULOS, V., PAPAEFSTATHIOU, I., AND PNEVMATIKATOS, D. 2007. A memory-efficient reconfig-
urable Aho-Corasick FSM implementation for intrusion detection systems. In Proceedings of the
IEEE International Conference on Embedded Computer Systems: Architectures, Modeling and
Simulations. IEEE, Los Alamitos, CA, 186–193.

JUNG, H. J., BAKER, Z. K., AND PRASANNA, V. K. 2006. Performance of FPGA implementation of
bit-split architecture for intrusion detection systems. In Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing. IEEE, Los Alamitos, CA.

KNUTH, D., MORRIS, J., AND PRATT, V. 1977. Fast pattern matching in strings. SIAM J. Comput. 6,
323–350.

LU, H., ZHENG, K., LIU, B., AND SUN, C. 2007. A robust approach for matching mixed case-sensitive
and case-insensitive patterns. In Proceedings of the International Conference on Networking and
Services. Springer, Berlin.

LU, H. B., ZHENG, K., LIU, B., ZHANG, X., AND LIU, Y. H. 2006. A memory-efficient parallel string
matching architecture for high-speed intrusion detection. IEEE J. Sel. Areas Comm. 24, 10,
1793–1804.

LUNTEREN, J. 2006. High-performance pattern-matching for intrusion detection. In Proceedings
of the 25th Conference on Computer Communication (INFOCOM’06). IEEE, Los Alamitos, CA,
1–13.

PAO, D., LI, Y. K., AND ZHOU, P. 2006. Efficient packet classification using TCAMs. Comput.
Networks 50, 18, 3523–3535.

PAO, D., LIN, W., AND LIU, B. 2008. Pipelined architecture for multistring matching. IEEE Comput.
Archit. Lett. 7, 2.

PAO, D., WANG, X., WANG X., CAO, C., AND ZHU, Y. 2010. String searching engine for virus scanning.
IEEE Trans. Comput. To appear.

PAPADOPOULOS, G. AND PNEVMATIKATOS, D. 2005. Hashing + memory = low cost, exact pattern
matching. In Proceedings of the IEEE International Conference on Field—Programmable Logic
and Applications. IEEE, Los Alamitos, CA, 39–44.

RAMAKRISHNA, M. V., FU, E., AND BAHCEKAPILI, E. 1997. Efficient hardware hashing functions for
high—performance computers. IEEE Trans. Comput. 46, 12, 1378–1381.

SONG, T., ZHANG, W., WANG, D., AND XUE, Y. 2008. A memory efficient multiple pattern
matching architecture for network security. In Proceedings of the IEEE INFOCOM, 673–
681.

SOURDIS, I. AND PNEVMATIKATOS, V. 2004. Pre-decoded CAMs for efficient and high-speed NIDS
pattern matching. In Proceedings of the 12th IEEE Symposium on Field-Programmable Custom
Computing Machines. IEEE, Los Alamitos, CA.

SOURDIS, I., PNEVMATIKATOS, V., AND VASSILIADIS, S. 2008. Scalable multigigabit pattern matching
for packet inspection. IEEE Trans. VLSI Syst. 16, 2, 156–166.

TAN, L., BROTHERTON, B., AND SHERWOOD, T. 2006. Bit-split string-matching engines for intrusion
detection and prevention. ACM Trans. Archit. Code Optim. 3, 1, 3–34.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

A Memory-Efficient Pipelined Implementation of the Aho-Corasick • 10:27

TUCK, N., SHERWOOD, T., CALDER, B., AND VARGHESE, G. 2004. Deterministic memory-efficient string
matching algorithms for intrusion detection In Proceedings of the 23rd Conference on Computer
Communications (INFOCOM’04). IEEE, Los Alamitos, CA, 2628–2639.

WU, S. AND MANBER, U. 1992. Fast text searching: Allowing errors. Commun. ACM 35, 10, 81–93.
YU, F., KATZ, R. H., AND LAKSHMAN, T. V. 2004. Gigabit rate packet pattern-matching using TCAM.

In Proceedings of the IEEE International Conference on Network Protocols. IEEE, Los Alamitos,
CA, 174–183.

ZHENG, K., HU, C., LU, H., AND LIU, B. 2006. A TCAM-based distributed parallel IP lookup scheme
and performance analysis. IEEE/ACM Trans. Network. 14, 4, 863–875.

Received September 2008; revised September 2009; accepted March 2010

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 10, Pub. date: September 2010.

