
42 communications of the acm | november 2010 | vol. 53 | no. 11

practice

Engineers employ many different tactics to focus on the
user when writing software: for example, listening
to user feedback, fixing bugs, and adding features
that their users are clamoring for. Since Web-based
services have made it easier for users to move to new
applications, it is becoming even more important
to focus on building and retaining user trust. We
have found that an incredibly effective—although
certainly counterintuitive—way to earn and maintain
user trust is to make it easy for users to leave your
product with their data in tow. This not only prevents
lock-in and engenders trust, but also forces your
team to innovate and compete on technical merit.
We call this data liberation.

Until recently, users rarely asked
whether they could quickly and eas-
ily get their data out before they put
reams of personal information into a
new Internet service. They were more
likely to ask questions such as: “Are
my friends using the service?” “How
reliable is it?” and “What are the odds
that the company providing the service
is going to be around in six months or
a year?” Users are starting to realize,
however, that as they store more of
their personal data in services that are
not physically accessible, they run the
risk of losing vast swaths of their on-
line legacy if they do not have a means
of removing their data.

It is typically a lot easier for software
engineers to pull data out of a service
that they use than it is for regular us-

The Case
Against
Data
Lock-in

doi:10.1145/1839676.1839691

 Article development led by
 queue.acm.org

Want to keep your users?
Just make it easy for them to leave.

by Brian W. Fitzpatrick and JJ Lueck

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1839676.1839691&domain=pdf&date_stamp=2010-11-01

november 2010 | vol. 53 | no. 11 | communications of the acm 43

ill

u

s
t

r
a

t
i

o
n

 b
y

 g
a

r
y

 n
e

ill

ers. If APIs are available, we engineers
can cobble together a program to pull
our data out. Without APIs, we can even
whip up a screen scraper to get a copy of
the data. Unfortunately, for most users
this is not an option, and they are often
left wondering if they can get their data
out at all.

Locking your users in, of course, has
the advantage of making it more diffi-
cult for them to leave you for a competi-
tor. Likewise, if your competitors lock
their users in, it is harder for those users
to move to your product. Nonetheless,
it is far preferable to spend your engi-
neering effort on innovation than it is
to build bigger walls and stronger doors
that prevent users from leaving. Making
it easier for users to experiment today
greatly increases their trust in you, and

they are more likely to return to your
product line tomorrow.

Locking users in may suppress a
company’s need to innovate as rapidly
as possible. Instead, your company may
decide—for business reasons—to slow
down development on your product
and move engineering resources to an-
other product. This makes your prod-
uct vulnerable to other companies that
innovate at a faster rate. Lock-in allows
your company to have the appearance
of continuing success when, without in-
novation, it may in fact be withering on
the vine.

If you do not—or cannot—lock your
users in, the best way to compete is
to innovate at a breakneck pace. Let’s
use Google Search as an example. It’s a
product that cannot lock users in: users

do not have to install software to use it;
they do not have to upload data to use
it; they do not have to sign two-year con-
tracts; and if they decide to try another
search engine, they merely type it into
their browser’s location bar, and they
are off and running.

How has Google managed to get us-
ers to keep coming back to its search
engine? By focusing obsessively on
constantly improving the quality of its
results. The fact that it is so easy for
users to switch has instilled an incred-
ible sense of urgency in Google’s search
quality and ranking teams. At Google we
think that if we make it easy for users to
leave any of our products, failure to im-
prove a product results in immediate
feedback to the engineers, who respond
by building a better product.

44 communications of the acm | november 2010 | vol. 53 | no. 11

practice

What Data Liberation Looks Like
At Google, our attitude has always been
that users should be able to control the
data they store in any of our products,
and that means they should be able to
get their data out of any product. Period.
There should be no additional mone-
tary cost to do so, and perhaps most im-
portantly, the amount of effort required
to get the data out should be constant,
regardless of the amount of data. Indi-
vidually downloading a dozen photos is
no big inconvenience, but what if a user
had to download 5,000 photos, one at a
time, to get them out of an application?
That could take weeks of their time.

Even if users have a copy of their
data, it can still be locked in if it is in a
proprietary format. Some word proces-
sor documents from 15 years ago can-
not be opened with modern software
because they are stored in a proprietary
format. It is important, therefore, not
only to have access to data, but also to
have it in a format that has a publicly
available specification. Furthermore,
the specification must have reason-
able license terms: for example, it
should be royalty-free to implement.
If an open format already exists for the
exported data (for example, JPEG or
TIFF for photos), then that should be
an option for bulk download. If there
is no industry standard for the data in
a product (for example, blogs do not
have a standard data format), then
at the very least the format should be
publicly documented—bonus points if
your product provides an open source
reference implementation of a parser
for your format.

The point is that users should be in
control of their data, which means they
need an easy way of accessing it. Provid-
ing an API or the ability to download
5,000 photos one at a time does not ex-
actly make it easy for your average user
to move data in or out of a product.
From the user-interface point of view,
users should see data liberation merely
as a set of buttons for import and export
of all data in a product.

Google is addressing this problem
through its Data Liberation Front,
an engineering team whose goal is to
make it easier to move data in and out
of Google products. The data libera-
tion effort focuses specifically on data
that could hinder users from switch-
ing to another service or competing

product—that is, data that users cre-
ate in or import into Google products.
This is all data stored intentionally via
a direct action—such as photos, email,
documents, or ad campaigns—that us-
ers would most likely need a copy of if
they wanted to take their business else-
where. Data indirectly created as a side
effect (for example, log data) falls out-
side of this mission, as it is not particu-
larly relevant to lock-in.

Another “non-goal” of data libera-
tion is to develop new standards: we al-
low users to export in existing formats
where we can, as in Google Docs where
users can download word processing
files in OpenOffice or Microsoft Office
formats. For products where there is
no obvious open format that can con-
tain all of the information necessary,
we provide something easily machine
readable such as XML (for example,
for Blogger feeds, including posts and
comments, we use Atom), publicly
document the format, and, where pos-
sible, provide a reference implementa-
tion of a parser for the format (see the
Google Blog Converters AppEngine
project for an examplea). We try to give
the data to the user in a format that
makes it easy to import into another
product. Since Google Docs deals
with word processing documents and
spreadsheets that predate the rise of
the open Web, we provide a few differ-
ent formats for export; in most prod-
ucts, however, we assiduously avoid
the rat hole of exporting into every
known format under the sun.

The User’s View
There are several scenarios where us-
ers might want to get a copy of their
data from your product: they may have
found another product that better suits
their needs and they want to bring their
data into the new product; you have an-
nounced that you are going to stop sup-
porting the product they are using; or,
worse, you may have done something to
lose their trust.

Of course, just because your users
want a copy of their data does not nec-
essarily mean they are abandoning your
product. Many users just feel safer hav-

a	 http://code.google.com/p/google-blog-converters-
appengine/wiki/BloggerExportTemplate; and
http://code.google.com/apis/blogger/docs/2.0/
reference.html#LinkCommentsToPosts.

It is preferable
to spend your
engineering effort
on innovation than
it is to build bigger
walls and stronger
doors that prevent
users from leaving.
Making it easier for
users to experiment
today greatly
increases their
trust, and they
are more likely
to return to
your product
line tomorrow.

practice

november 2010 | vol. 53 | no. 11 | communications of the acm 45

ing a local copy of their data as a backup.
We saw this happen when we first liber-
ated Blogger: many users started export-
ing their blogs every week while continu-
ing to host and write in Blogger. This
last scenario is more rooted in emotion
than logic. Most data that users have on
their computers is not backed up at all,
whereas hosted applications almost al-
ways store multiple copies of user data
in multiple geographic locations, ac-
counting for hardware failure in addi-
tion to natural disasters. Whether users’
concerns are logical or emotional, they
need to feel their data is safe: it’s impor-
tant that your users trust you.

Case Study: Google Sites
Google Sites is a Web site creator that
allows WYSIWYG editing through the
browser. We use this service inside of
Google for our main project page, as it is
really convenient for creating or aggre-
gating project documentation. We took
on the job of creating the import and ex-
port capabilities for Sites in early 2009.

Early in the design, we had to de-
termine what the external format of a
Google Site should be. Considering that
the utility Sites provides is the ability to
create and collaborate on Web sites,
we decided that the format best suited
for true liberation would be XHTML.
HTML, as the language of the Web, also
makes it the most portable format for
a Web site: just drop the XHTML pages
on your own Web server or upload them
to your Web service provider. We want-
ed to make sure this form of data por-
tability was as easy as possible with as
little loss of data as possible.

Sites uses its internal data format to
encapsulate the data stored in a Web
site, including all revisions to all pages
in the site. The first step to liberating
this data was to create a Google Data
API. A full export of a site is then pro-
vided through an open source Java cli-
ent tool that uses the Google Sites Data
API and transforms the data into a set of
XHTML pages.

The Google Sites Data API, like all
Google Data APIs, is built upon the
AtomPub specification. This allows for
RPC (remote procedure call)-style pro-
grammatic access to Google Sites data
using Atom documents as the wire for-
mat for the RPCs. Atom works well for
the Google Sites use case, as the data fits
fairly easily into an Atom envelope.

Figure 1 is a sample of one Atom en-
try that encapsulates a Web page within
Sites. This can be retrieved by using the
Content Feed to Google Sites.

We have highlighted (in red) the ac-
tual data that is being exported, which
includes an identifier, a last update time
in ISO 8601 format, title, revision num-
ber, and the actual Web-page content.
Mandatory authorship elements and
other optional information included in
the entry have been removed to keep the
example short.

Once the API was in place, the sec-
ond step was to implement the trans-
formation from a set of Atom feeds
into a collection of portable XHTML
Web pages. To protect against losing
any data from the original Atom, we
chose to embed all of the metadata
about each Atom entry right into the
transformed XHTML. Not having this

metadata in the transformed pages
poses a problem during an import—it
becomes unclear which elements of
XHTML correspond to the pieces of the
original Atom entry. Luckily, we did not
have to invent our own metadata em-
bedding technique; we simply used the
hAtom microformat.

To demonstrate the utility of micro-
formats, Figure 2 shows the same sam-
ple after being converted into XHTML
with hAtom microformat embedded:

The highlighted class attributes map
directly to the original Atom elements,
making it very explicit how to recon-
struct the original Atom when import-
ing this information back into Sites.
The microformat approach also has the
side benefit that any Web page can be
imported into Sites if the author is will-
ing to add a few class attributes to data
within the page. This ability to reimport

Figure 1. Atom entry encapsulating a Web page within Sites.

<entry xmlns:sites=”http://schemas.google.com/sites/2008”>
 <id>https://sites.google.com/feeds/content/site/...</id>
 <updated>2009-02-09T21:46:14.991Z</updated>
 <category scheme=”http://schemas.google.com/g/2005#kind”
 term=”http://schemas.google.com/sites/2008#webpage”
 label=”webpage”/>
 <title>Maps API Examples</title>
 <sites:revision>2</sites:revision>
 <content type=”xhtml”>
 <div xmlns=”http://www.w3.org/1999/xhtml”>
 ... PAGE CONTENT HERE ...
 </div>
 </content>
</entry>

Figure 2. Atom entry converted into XHTML.

<div class=”hentry webpage”
 id=”https://sites.google.com/feeds/content/site/...”>
 <h3>
 Maps API Examples
 </h3>
 <div>
 <div class=”entry-content”>
 <div xmlns=”http://www.w3.org/1999/xhtml”>
 ... PAGE CONTENT HERE ...
 </div>
 </div>
 </div>
 <small>
 Updated on
 <abbr class=”updated” title=”2009-02-09T21:46:14.991Z”>
 Feb 9, 2009
 </abbr>
 (Version 2)
 </small>
</div>

46 communications of the acm | november 2010 | vol. 53 | no. 11

practice

a user’s exported data in a lossless man-
ner is key to data liberation—it may take
more time to implement, but we think
the result is worthwhile.

Case Study: Blogger
One of the problems we often encoun-
ter when doing a liberation project is ca-
tering to the power user. These are our
favorite users. They are the ones who
love to use the service, put a lot of data
into it, and want the comfort of being
able to do very large imports or exports
of data at any time. Five years of jour-
nalism through blog posts and photos,
for example, can easily extend beyond
a few gigabytes of information, and at-
tempting to move that data in one fell
swoop is a real challenge. In an effort
to make import and export as simple as
possible for users, we decided to imple-
ment a one-click solution that would
provide the user with a Blogger export
file that contains all of the posts, com-
ments, static pages, and even settings
for any Blogger blog. This file is down-
loaded to the user’s hard drive and can
be imported back into Blogger later
or transformed and moved to another
blogging service.

One mistake we made when creat-
ing the import/export experience for
Blogger was relying on one HTTP trans-
action for an import or an export. HTTP
connections become fragile when the
size of the data you are transferring be-
comes large. Any interruption in that
connection voids the action and can
lead to incomplete exports or missing
data upon import. These are extremely
frustrating scenarios for users and,
unfortunately, much more prevalent
for power users with lots of blog data.
We neglected to implement any form
of partial export as well, which means
power users sometimes need to resort
to silly things such as breaking up their
export files by hand in order to have
better success when importing. We
recognize this is a bad experience for
users and are hoping to address it in a
future version of Blogger.

A better approach, one taken by ri-
val blogging platforms, is not to rely
on the user’s hard drive to serve as the
intermediary when attempting to mi-
grate lots of data between cloud-based
Blogging services. Instead, data lib-
eration is best provided through APIs,
and data portability is best provided by

lenge. An extensive photo collection,
for example, which can easily scale into
multiple gigabytes, can pose difficulties
with delivery given the current transfer
speeds of most home Internet connec-
tions. In this case, either we have a cli-
ent for the product that can sync data
to and from the service (such as Picasa),
or we rely on established protocols and
APIs (for example, POP and IMAP for
Gmail) to allow users to sync incremen-
tally or export their data.

Conclusion
Allowing users to get a copy of their
data is just the first step on the road to
data liberation: we have a long way to
go to get to the point where users can
easily move their data from one prod-
uct on the Internet to another. We look
forward to this future, where we as en-
gineers can focus less on schlepping
data around and more on building in-
teresting products that can compete
on their technical merits—not by hold-
ing users hostage. Giving users control
over their data is an important part of
establishing user trust, and we hope
more companies will see that if they
want to retain their users for the long
term, the best way to do that is by set-
ting them free.

Acknowledgments
Thanks to Bryan O’Sullivan, Ben Col-
lins-Sussman, Danny Berlin, Josh
Bloch, Stuart Feldman, and Ben Laurie
for reading drafts of this article.	

 Related articles
 on queue.acm.org

Other People’s Data
Stephen Petschulat
http://queue.acm.org/detail.cfm?id=1655240

Why Cloud Computing Will Never Be Free
Dave Durkee
http://queue.acm.org/detail.cfm?id=1772130

Brian Fitzpatrick started Google’s Chicago engineering
office in 2005 and is the engineering manager for the
Data Liberation Front and the Google Affiliate Network.
A published author, frequent speaker, and open source
contributor for more than 12 years, Fitzpatrick is a
member of the Apache Software Foundation and the Open
Web Foundation, as well as a former engineer at Apple
and CollabNet.

JJ Lueck joined the software engineering party at Google
in 2007. An MIT graduate and prior engineer at AOL,
Bose, and startups Bang Networks and Reactivity, he
enjoys thinking about problems such as cloud-to-cloud
interoperability and exploring the depths and potentials of
virtual machines.

© 2010 ACM 0001-0782/10/1100 $10.00

building code using those APIs to per-
form cloud-to-cloud migration. These
types of migrations require multiple
RPCs between services to move the
data piece by piece, and each of these
RPCs can be retried upon failure auto-
matically without user intervention. It
is a much better model than the one
transaction import. It increases the
likelihood of total success and is an
all-around better experience for the
user. True cloud-to-cloud portability,
however, works only when each cloud
provides a liberated API for all of the
user’s data. We think cloud-to-cloud
portability is really good for users, and
it’s a tenet of the Data Liberation Front.

Challenges
As you have seen from these case stud-
ies, the first step on the road to data
liberation is to decide exactly what us-
ers need to export. Once you have cov-
ered data that users have imported or
created by themselves into your prod-
uct, it starts to get complicated. Take
Google Docs, for example: a user clear-
ly owns a document that he or she cre-
ated, but what about a document that
belongs to another user, then is edited
by the user currently doing the export?
What about documents to which the
user has only read access? The set of
documents the user has read access
to may be considerably larger than the
set of documents the user has actually
read or opened if you take into account
globally readable documents. Lastly,
you have to take into account docu-
ment metadata such as access control
lists. This is just one example, but it
applies to any product that lets users
share or collaborate on data.

Another important challenge to
keep in mind involves security and
authentication. When you are making
it very easy and fast for users to pull
their data out of a product, you drasti-
cally reduce the time required for an
attacker to make off with a copy of all
your data. This is why it’s a good idea to
require users to re-authenticate before
exporting sensitive data (such as their
search history), as well as over-commu-
nicating export activity back to the user
(for example, email notification that
an export has occurred). We are explor-
ing these mechanisms and more as we
continue liberating products.

Large data sets pose another chal-

