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ABSTRACT
We present a numerical approximation technique for the
analysis of continuous-time Markov chains that describe net-
works of biochemical reactions and play an important role in
the stochastic modeling of biological systems. Our approach
is based on the construction of a stochastic hybrid model
in which certain discrete random variables of the original
Markov chain are approximated by continuous deterministic
variables. We compute the solution of the stochastic hybrid
model using a numerical algorithm that discretizes time and
in each step performs a mutual update of the transient prob-
ability distribution of the discrete stochastic variables and
the values of the continuous deterministic variables. We im-
plemented the algorithm and we demonstrate its usefulness
and efficiency on several case studies from systems biology.
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1. INTRODUCTION
A common dynamical model in systems biology is a sys-
tem of ordinary differential equations (ODEs) that describes
the time evolution of the concentrations of certain proteins
in a biological compartment. This macroscopic model is
based on the theory of chemical kinetics and assumes that
the concentrations of chemical species in a well-stirred sys-
tem change deterministically and continuously in time. It
provides an appropriate description of a chemically reacting
system as long as the numbers of molecules of the chemical
species are large. However, in living cells the chemical popu-
lations can be low (e.g. a single DNA molecule, tens or a few
hundreds of RNA or protein molecules). In this case the un-
derlying assumptions of the ODE approach are violated and
a more detailed model is necessary, which takes into account
the inherently discrete and stochastic nature of chemical re-
actions [24, 30, 8, 27, 34]. The theory of stochastic chemi-
cal kinetics provides an appropriate description by means of

a discrete-state Markov process, that is, a continuous-time
Markov chain (CTMC) that represents the chemical popu-
lations as random variables [9, 10]. If n is the number of
different types of molecules, then we describe the state of
the system at a certain time instant by an n-dimensional
random vector whose i-th entry represents the number of
molecules of type i. In the thermodynamic limit (when the
number of molecules and the volume of the system approach
infinity) the Markov model and the macroscopic ODE de-
scription are equal [21]. Therefore, the ODE approach can
be used to approximate the CTMC only if all populations
are large.

The evolution of the CTMC is given by a system of lin-
ear ordinary differential equations, known as the chemical
master equation (CME). A single equation in the CME de-
scribes the time derivative of the probability of a certain
state at all times t ≥ 0. Thus, the solution of the CME
is the probability distribution over all states of the CTMC
at a particular time t, that is, the transient state probabil-
ities at time t. The solution of the CME can then be used
to derive measures of interest such as the distribution of
switching delays [23], the distribution of the time of DNA
replication initiation at different origins [26], or the distri-
bution of gene expression products [35]. Moreover, many
parameter estimation methods require the computation of
the posterior distribution because means and variances do
not provide enough information to calibrate parameters [15].

The more detailed description of chemical reactions using
a CTMC comes at a price of significantly increased com-
putational complexity because the underlying state space is
usually very large or even infinite. Therefore, Monte Carlo
simulation is in widespread use, because it allows to gener-
ate random trajectories of the model while requiring only
little memory. Estimates of the measures of interest can
be derived once the number of trajectories is large enough
to achieve the desired statistical accuracy. However, the
main drawback of simulative solution techniques is that a
large number of trajectories is necessary to obtain reliable
results. For instance, in order to halve the confidence inter-
val of an estimate, four times more trajectories have to be
generated. Consequently, often stochastic simulation is only
feasible with a very low level of confidence in the accuracy
of the results.

Recently, efficient numerical algorithms have been developed
to compute an approximation of the CME [16, 25, 3, 5, 6, 13,
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32, 7, 18]. Many of them are based on the idea of restricting
the analysis of the model during a certain time interval to
a subset of states that have “significant” probability. While
some of these methods rely on an a priori estimation of the
geometric bounds of the significant subset [16, 25, 3], oth-
ers are based on a conversion to discrete time and they de-
cide dynamically which states to consider at a certain time
step [5, 6, 32].

If the system under consideration contains large popula-
tions, then the numerical algorithms mentioned above per-
form poorly. The reason is that the random variables that
represent large populations have a large variance. Thus, a
large number of states have a significant probability, which
renders the numerical approximation of the distribution com-
putationally expensive or infeasible.

In this paper we use a stochastic hybrid approach to effi-
ciently approximate the solution of systems containing both
small and large populations. More precisely, we maintain
the discrete stochastic representation for small populations,
but at the same time we exploit the small relative variance
of large populations and represent them by continuous de-
terministic variables. Since population sizes change over
time we decide dynamically (”on-the-fly”) whether we rep-
resent a population by a continuous deterministic variable
or keep the discrete stochastic representation. Our criterion
for changing from a discrete to a continuous treatment of a
variable and vice versa is based on a population threshold.

For the solution of the stochastic hybrid model, we propose a
numerical approximation method that discretizes time and
performs a mutual update of the distributions of the dis-
crete stochastic variables and the values of the continuous
deterministic variables. Hence, we compute the solution
of a CME with a reduced dimension as well as the solu-
tion of a system of (non-linear) ordinary differential equa-
tions. The former describes the distribution of the discrete
stochastic variables and the latter the values of the con-
tinuous deterministic variables, and the two descriptions
depend on each other. Assume, for instance, that a sys-
tem has two chemical species. The two population sizes
at time t are represented by the random variables X(t)
and Y (t), where X(t) is large and Y (t) is small. Then,
we consider for Y (t) all events Y (t) = y that have signifi-
cant probability, i.e., Pr(Y (t) = y) is greater than a certain
threshold. ForX(t) we consider the conditional expectations
E[X(t) |Y (t) = y] and assume that they change continu-
ously and deterministically in time. We iterate over small
time steps h > 0 and, given the distribution for Y (t) and
the values E[X(t) |Y (t) = y], we compute the distribution
of Y (t+h) and the values E[X(t+h) |Y (t+h) = y]. Again,
we restrict our computation to those values of y that have
significant probability.

To demonstrate the effectiveness of our approach, we have
implemented the algorithm and applied it successfully to
several examples from systems biology. Our most complex
example has 6 different chemical species and 10 reactions.
We compare our results with our earlier purely discrete stochas-
tic approach and with the purely continuous deterministic
approach in terms of running times and accuracy.

Related Work. Different hybrid approaches have been
proposed in the literature [12, 31, 29]. As opposed to our
approach, they focus on Monte Carlo simulation and con-
sider the problem of multiple time scales. They do not use
deterministic variables but try to reduce the computational
complexity of generating a trajectory of the model by ap-
proximating the number of reactions during a certain time
step. The closest work to ours is the hybrid approach pro-
posed by Hellander and Lötstedt [14]. They approximate
large populations by normally distributed random variables
with a small variance and use Monte Carlo simulation to
statistically estimate the probability distribution of the re-
maining populations with small sizes. They consider a single
ODE to approximate the expected sizes of the large popu-
lations. As opposed to that, here we consider a set of ODEs
to approximate the expected sizes of the large populations
conditioned on the small populations. This allows us to
track the dependencies between the different populations
more acurately. Moreover, instead of a statistical estima-
tion of probabilities, we provide a direct numerical method
to solve the stochastic hybrid model. The direct numerical
method that we use for the computation of the probability
distributions of the stochastic variables has shown to be su-
perior to Monte Carlo simulation [5]. Another difference is
that the method in [14] does not allow a dynamic switching
between stochastic and deterministic treatment of variables.

Finally, our approach is related to the stochastic hybrid
models considered in [4, 2] and to fluid stochastic Petri
nets [17]. These approaches differ from our approach in that
they use probability distributions for the different values a
continuous variable can take. In our setting, at a fixed point
in time we only consider the conditional expectations of the
continuous variables, which is based on the assumption that
the respective populations are large and their relative vari-
ance is small. This allows us to provide an efficient numeri-
cal approximation algorithm that can be applied to systems
with large state spaces. The stochastic hybrid models in [4,
2, 17] cannot be solved numerically except in the case of
small state spaces.

2. DISCRETE-STATE STOCHASTIC
MODEL

According to Gillespie’s theory of stochastic chemical ki-
netics, a well-stirred mixture of n molecular species in a
volume with fixed size and fixed temperature can be repre-
sented as a continuous-time Markov chain (X(t), t ≥ 0) [9].
The random vector X(t) = (X1(t), . . . , Xn(t)) describes the
chemical populations at time t, i.e., Xi(t) is the number of
molecules of type i ∈ {1, . . . , n}. Thus, the state space of
X is Z

n
+ = {0, 1, . . .}n. The state changes of X are trig-

gered by the occurrences of chemical reactions, which come
in m different types. For j ∈ {1, . . . , m} let uj ∈ Z

n be the
change vector of the j-th reaction type, that is, uj = u−

j +u+
j

where u−
j contains only non-positive entries that specify how

many molecules of each species are consumed (reactants) if
an instance of the reaction occurs and vector u+

j contains
only non-negative entries that specify how many molecules
of each species are produced (products). Thus, if X(t) = x
for some x ∈ Z

n
+ with x + u−

j being non-negative, then
X(t + dt) = x + uj is the state of the system after the oc-
currence of the j-th reaction within the infinitesimal time
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Figure 1: Illustration of the exclusive switch in Ex. 1
(picture is adapted from [22]). The stochastic hybrid
model with only three discrete stochastic states and
two differential equations per state.

interval [t, t+ dt).

As rigorously derived by Gillespie [10], each reaction type
has an associated propensity function, denoted by α1, . . . , αm,
which is such that αj(x) · dt is the probability that, given
X(t) = x, one instance of the j-th reaction occurs within
[t, t+ dt). The value αj(x) is proportional to the number of
distinct reactant combinations in state x. More precisely, if
x = (x1, . . . , xn) is a state for which x+ u−

j is nonnegative
then

αj(x) =















cj if u−
j = (0, . . . , 0),

cj · xi if u−
j = −ei,

cj · xi · xℓ if u−
j = −ei − eℓ,

cj ·
(

xi

2

)

= cj ·
xi·(xi−1)

2
if u−

j = −2 · ei,

(1)

where i 6= ℓ, cj > 0 is a constant, and ei is the vector with
the i-th entry 1 and all other entries 0. We set αj(x) = 0
whenever the vector x + u−

j contains negative entries, that
is, when not enough reactant molecules are available. The
constant cj refers to the probability that a randomly selected
pair of reactants collides and undergoes the j-th chemical re-
action. Thus, if N is the volume (in liters) times Avogadro’s
number, then cj

• scales inversely with N in the case of two reactants,
• is independent of N in the case of a single reactant,
• is proportional to N in the case of no reactants.

Since reactions of higher order (requiring more than two
reactants) are usually the result of several successive lower
order reactions, we do not consider the case of more than
two reactants.

Example 1. We consider a gene regulatory network, called
the exclusive switch [22]. It consists of two genes with a
common promotor region. Each of the two gene products
P1 and P2 inhibits the expression of the other product if a
molecule is bound to the promotor region. More precisely,
if the promotor region is free, molecules of both types P1

and P2 are produced. If a molecule of type P1 (P2) is bound
to the promotor region, only molecules of type P1 (P2) are
produced, respectively. We illustrate the system in Fig. 1.
The system has five chemical species of which two have an
infinite range, namely P1 and P2. If x = (x1, . . . , x5) is
the current state, then the first two entries represent the
populations of P1 and P2, respectively. The entry x3 denotes
the number of unbound DNA molecules which is either zero
or one. The entry x4 (x5) is one of a molecule of type P1

(P2) is bound to the promotor region and zero otherwise.

The chemical reactions are as follows. Let j ∈ {1, 2}.

• We describe production of Pj by DNA → DNA+Pj. Thus,
uj = ej and αj(x) = cj · x3.

• We describe degradation of Pj by Pj → ∅ with uj+2 = −ej

and αj+2(x) = cj+2 · xj.
• We model the binding of Pj to the promotor by DNA +
Pj → DNA.Pj with uj+4 = −ej−e3+ej+3 and αj+4(x) =
cj+4 · xj · x3.

• For unbinding of Pj we use DNA.Pj → DNA + Pj with
uj+6(x) = ej + e3 − ej+3 and αj+6(x) = cj+6 · xj+3.

• Finally, we have production of Pj if a molecule of type Pj

is bound to the promotor, i.e., DNA.Pj → DNA.Pj + Pj

with uj+8(x) = ej and αj+8(x) = cj+8 · xj+3.

Depending on the chosen parameters, the probability distri-
bution of the exclusive switch is bistable, i.e. most of the
probability mass concentrates on two distinct regions in the
state space. In particular, if binding to the promotor is likely,
then these two regions correspond to the two configurations
where either the production of P1 or the production of P2 is
inhibited.

The Chemical Master Equation. For x ∈ Z
n
+ and t ≥ 0,

let p(x, t) denote the probability that the current population
vector is x, i.e., p(x, t) = Pr(X(t) = x). Let p(t) be the row
vector with entries p(x, t). Given u−

1 , . . . ,u
−
m, u+

1 , . . . ,u
+
m,

α1, . . . , αm, and some initial distribution p(0), the Markov
chain X is uniquely specified if the propensity functions are
of the form in Eq. (1). The evolution of X is given by the
chemical master equation (CME), which equates the change
d
dt
p(x, t) of the probability in state x and the sum over all

reactions of the“inflow”αj(x−uj)·p(x−uj, t) and“outflow”
αj(x) · p(x, t) of probability [20]. Thus,

d

dt
p(x, t) =

m
∑

j=1

(

αj(x−uj)·p(x−uj , t)−αj(x)·p(x, t)
)

. (2)

Since the CME is linear it can be written as d
dt
p(t) = p(t)·Q,

where Q is the generator matrix of X with Q(x,x + uj) =
αj(x) and Q(x,x) = −

∑m

j=1 αj(x). If Q is bounded, then

Eq (2) has the general solution

p(t) = p(0) · eQt, (3)

where the matrix exponential is defined as eQt =
∑∞

i=0
(Qt)i

i!
.

If the state space is infinite, then we can only compute ap-
proximations of p(t) and even if Q is finite, the size of the
matrix Q is often large because it grows exponentially with
the number of state variables. Moreover, even if Q is sparse,
as it usually is because the number of reaction types is small
compared to the number of states, standard numerical so-
lution techniques for systems of first-order linear equations
of the form of Eq. (2), such as uniformization [19], approx-
imations in the Krylov subspace [28], or numerical integra-
tion [33], are infeasible. The reason is that the number of
nonzero entries in Q often exceeds the available memory ca-
pacity for systems of realistic size. If the populations of
all species remain small (at most a few hundreds) then the
solution of the CME can be efficiently approximated using
projection methods [16, 25, 3] or fast uniformization meth-
ods [5, 6, 32]. The idea of these methods is to avoid an
exhaustive state space exploration and, depending on a cer-
tain time interval, restrict the analysis of the system to a



subset of states.

Fast Solution of the Discrete Stochastic Model. Here,
we present a method similar to our previous work [6] that
efficiently approximates the solution of the CME if the chem-
ical populations remain small. We use it in Section 4 to solve
the discrete part of the stochastic hybrid model.

The algorithm, called fast RK4, is based on the numerical
integration of Eq. (2) using an explicit fourth-order Runge-
Kutta method. The main idea is to integrate only those
differential equations in Eq. (2) that correspond to states
with “significant probability”. This reduces the computa-
tional effort significantly since in each iteration step only a
comparatively small subset of states is considered. We dy-
namically decide which states to drop/add based on a fixed
probability threshold δ > 0. Due to the regular structure of
the Markov model the approximation error of the algorithm
remains small since probability mass is usually concentrated
at certain parts of the state space. The farther away a state
is from such a “significant set” the smaller is its probability.
Thus, the total error of the approximation remains small.
Unless otherwise specified, in our experiments we fix δ to
10−14. This value that has been shown to lead to accurate
approximations [6].

The standard explicit fourth-order Runge-Kutta method ap-
plied to Eq. (2) yields the iteration step [33]

p(t+ h) = p(t) + h · (k1 + 2 · k2 + 2 · k3 + k4)/6, (4)

where h > 0 is the time step of the method and the vectors
k1,k2,k3,k4 are given by

k1 = p(t) ·Q, k3 = (p(t) + h · k2

2
) ·Q,

k2 = (p(t) + h · k1

2
) ·Q, k4 = (p(t) + h · k3) ·Q.

(5)

Note that the entries k1(x), . . . , k4(x) of state x in the vec-
tors k1, . . . ,k4 are given by

k1(x)=
m
∑

j=1

(

αj(x−uj)·p(x−uj , t)−αj(x)·p(x, t)
)

,

ki+1(x)=
m
∑

j=1

(

αj(x−uj)·(p(x−uj , t)+h·ki(x−uj)/2)

−αj(x)·(p(x, t)+h · ki(x)/2)
)

for i ∈ {1, 2},

k4(x)=
m
∑

j=1

(

αj(x−uj)·(p(x−uj , t)+h · k3(x−uj))

−αj(x)·(p(x, t)+h · k3(x))
)

.

(6)

In order to avoid the explicit construction of Q and in order
to work with a dynamic set Sig of significant states that
changes in each step, we use for a state x a data structure
with the following components:

• a field x.prob for the current probability of x,
• fields x.k1, . . . ,x.k4 for the four terms in the equation of

state x in the system of Eq. (5),
• for all j with x+ u−

j ≥ 0 a pointer to the successor state
x+ uj as well as the rate αj(x).

We start at time t = 0 and initialize the set Sig as the set of
all states that have initially a probability greater than δ, i.e.
Sig := {x | p(x, 0) > δ}. We perform a step of the iteration
in Eq. (4) by traversing the set Sig five times. In the first
four rounds we compute k1, . . . ,k4 and in the final round

1 choose step size h;

2 for i = 1, 2, 3, 4 do //traverse Sig four times

3 //decide which fields from state data structure

4 //are needed for ki
5 switch i

6 case i = 1: coeff := 1; field := prob;

7 case i ∈ {2, 3}: coeff := h/2; field := ki−1;

8 case i = 4: coeff := h; field := ki−1;

9 x.ki := x.k1;

10 for all x ∈ Sig do

11 for j = 1, . . . ,m with x+ uj ≥ 0 do

12 x.ki := x.ki − coeff · x.field · αj(x);

13 if x+uj 6∈ Sig then

14 Sig := Sig ∪ {x+uj};

15 (x+uj).ki := (x+uj).ki + coeff ·x.field·αj (x);

16 for all x ∈ Sig do

17 x.prob :=x.prob+h·(x.k1+2·x.k2+2·x.k3+x.k4)/6;

18 x.k1 := 0;x.k2 := 0;x.k3 := 0;x.k4 := 0;

19 if x.prob < δ then

20 Sig := Sig \ {x};

Table 1: A single iteration step of the fast RK4 algo-
rithm, which approximates the solution of the CME.

we accumulate the summands. While processing state x in
round i, i < 5, for each reaction j, we transfer probability
mass from state x to its successor x + uj , by subtracting
a term from ki(x) (see Eq. (6)) and adding the same term
to ki(x + uj). A single iteration step is illustrated in pseu-
docode in Table 1. In line 20, we ensure that Sig does not
contain states with a probability less than δ. We choose
the step size h in line 1 as suggested in [33]. In line 2-15
we compute the values k1(x), . . . , k4(x) for all x ∈ Sig (see
Eq. (5)). The fifth round starts in line 16 and in line 17 the
approximation of the probability p(x, t + h) is calculated.
Note that the fields x.k1, . . . ,x.k4 are initialized with zero.

Clearly, for the solution of the CME the same ideas as above
can be used for many other numerical integration methods.
Here, we focus on the explicit RK4 method and do not con-
sider more advanced numerical integration methods to keep
our presentation simple. The focus of this paper is not on
particular numerical methods to solve differential equations
but rather on general strategies for the approximate solu-
tion of the stochastic models that we consider. Moreover,
we do not use uniformization methods as in previous work
since uniformization is inefficient for very small time hori-
zons. But small time steps are necessary for the solution of
the hybrid model in order to take into account the dependen-
cies between the stochastic and the deterministic variables.

3. DERIVATION OF THE DETERMINISTIC
LIMIT

The numerical approximation presented in the previous sec-
tion works well as long as only the main part of the prob-
ability mass is concentrated on a small subset of the state
space. If the system contains large populations then the
probability mass distributes on a very large number of states
whereas the information content is rather low since we dis-



tinguish, for instance, the cases of having Xi(t) = 10000,
Xi(t) = 10001, etc. In such cases no direct numerical ap-
proximation of the CME is possible without resorting to
Monte Carlo techniques or discarding the discreteness of the
state space. If all populations are large the solution of X can
be accurately approximated by considering the determinis-
tic limit of X. Here, we shortly recall the basic steps for the
derivation of the deterministic limit. For a detailed discus-
sion, we refer to Kurtz [21].

We first define a set of functions βj such that if N is large
(recall that N is the volume times the Avogadro’s num-
ber) then the propensity functions can be approximated as
αj(x) ≈ N · βj(z), where z = (z1, . . . , zn) = x · N−1 cor-
responds to the vector of concentrations of chemical species
and belongs to R

n. Recall the dependencies of cj on the
scaling factor N as described at the beginning of Section 2.
For constants kj > 0 that are independent of N ,

• cj = kj ·N in the case of no reactants,
• cj = kj in the case of a single reactant,
• cj = kj/N in the case of two reactants.

From this, it follows that except for the case of bimolecu-
lar reactions, we can construct the functions βj such that
αj(x) = N · βj(z).

βj(z) =
αj(x)

N
=







cj
N

= kj if u−
j = (0, . . . , 0),

cj ·
xi

N
= kj ·zi if u−

j = −ei,

cj ·xi ·
xℓ

N
= kj ·zi ·zℓ if u−

j = −ei − eℓ,

where i 6= ℓ. In the case of bimolecular reactins (u−
j =

−2 · ei), we use the approximation

N ·βj(z) = kj ·N ·z2i = kj ·xi ·zi = ( 1
2
cjN)·xi ·zi

= 1
2
cj ·x

2
i ≈ 1

2
cj ·xi(xi − 1) = αj(x),

which is accurate if xi is large, In order to derive the deter-
ministic limit for the vector X(t) = (X1(t), . . . , Xn(t)) that
describes the chemical populations, we first write X(t) as

X(t) = X(0) +

m
∑

j=1

uj · Cj(t),

where X(0) is the initial population vector and Cj(t) de-
notes the number of occurrences of the j-th reaction until
time t. The process Cj(t) is a counting process with in-
tensity αj(X(t)) and it can be regarded as a Poisson pro-
cess whose time-dependent intensity changes according to
the stochastic process X(t). Now, recall that a Poisson pro-

cess Ỹ (t) with time-dependent intensity λ(t) can be trans-
formed into a Poisson process Y (u) with constant intensity

one, using the simple time transform u =
∫ t

0
λ(s)ds, that

is, Y (u) = Y (
∫ t

0
λ(s)ds) = Ỹ (t). Similarly, we can describe

Cj(t) as a Poisson process with intensity one, i.e.,

Cj(t) = Yj

(
∫ t

0

αj(X(s))ds

)

,

where Yj are independent Poisson processes with intensity
one. Hence, for i ∈ {1, . . . , n}

Xi(t) = Xi(0) +
m
∑

j=1

uji · Yj

(
∫ t

0

αj(X(s))ds

)

, (7)

where uj = (uj1, . . . , ujn). The next step is to define Z(t) =
X(t) · N−1, that is, Z(t) = (Z1(t), . . . , Zn(t)) contains the

concentrations of the chemical species in moles per liter at
time t. Thus,

Zi(t) = Zi(0) +
m
∑

j=1

uji ·N
−1 · Yj

(
∫ t

0

αj(X(s))ds

)

, (8)

and using the fact that αj(x) ≈ N · βj(z) yields

Zi(t) ≈ Zi(0)+
m
∑

j=1

uji ·N
−1 ·Yj

(

N ·

∫ t

0

βj(Z(s))ds

)

. (9)

By the law of large numbers, the unit Poisson process Yj

will approach N · u at time N · u for large N · u. Thus,
Yj(N · u) ≈ N · u and hence,

Zi(t) ≈ Zi(0) +

m
∑

j=1

uji ·

∫ t

0

βj(Z(s))ds. (10)

The right-hand side of the above integral equation is the
solution z(t) of the system of ODEs

d

dt
z(t) =

m
∑

j=1

uj · βj(z(t)). (11)

As shown by Kurtz [21], in the large volume limit, where the
volume and the number of molecules approach infinity (while
the concentrations remain constant), Z(t) → z(t) in proba-
bility for finite times t. Note that the chemical concentra-
tions z(t) evolve continuously and deterministically in time.
This continuous deterministic approximation is reasonable
if all species have a small relative variance and if they are
only weakly correlated. The reason is that only in this case
the assumption that Zi(t) is deterministic is appropriate.
Note that for most models this is the case if the population
of species i is large since this implies that E[Xi(t)] is large
whereas the occurrence of chemical reactions results only in
a marginal relative change of the value of Xi(t).

Example 1 (cont.). The ODEs of the exclusive switch are
given by

d
dt
z1(t)= k1 · z3(t)− k3 · z1(t)− k5 · z1(t) · z3(t)

+k7 · z4(t) + k9 · z4(t)
d
dt
z2(t)= k2 · z3(t)− k4 · z2(t)− k6 · z2(t) · z3(t)

+k8 · z5(t) + k10 · z5(t)
d
dt
z3(t)=−k5 · z1(t) · z3(t)− k6 · z2(t) · z3(t)

+k7 · z4(t) + k8 · z5(t)
d
dt
z4(t)= k5 · z1(t) · z3(t)− k7 · z4(t)

d
dt
z5(t)= k6 · z2(t) · z3(t)− k8 · z5(t)

where z1(t), z2(t), z3(t), z4(t), z5(t) denote the respective chem-
ical concentrations. Moreover, cj = N−1 · kj for j ∈ {5, 6}
and cj = kj for j 6∈ {5, 6}.

In [1], Ball et al. scale only a subset of the populations in
order to approximate the behavior of the system if certain
populations are large and others are small. Additionally,
they take into account the different speeds of the chemical
reactions. For a selected number of examples, they give
analytical expressions for the distributions in the limit, i.e.,
when the scaling parameter approaches infinity. In the next
section, we will construct a stochastic hybrid model that
is equivalent to the one considered in [1] if we scale the
continuous components and consider the deterministic limit.



4. STOCHASTIC HYBRID MODEL
A straightforward consequence of the CME is that the time
derivative of the populations’ expectations are given by

d
dt
E[X(t)] =

∑m

j=1 uj ·E [αj (X(t))] . (12)

If all reactions of the system involve at most one reactant,
Eq. (12) can be simplified to

d
dt
E[X(t)] =

∑m

j=1 uj · αj (E[X(t)]) . (13)

because the propensity functions αj are linear in x. But in
the case of bimolecular reactions, we have either αj(x) =
cj ·xi ·xℓ for some i, ℓ with i 6= ℓ or αj(x) = cj ·xi ·(xi−1)/2
if the j-th reaction involves two reactants of type i. But this
means that

E [αj (X(t))] = cj · E [Xi(t) ·Xℓ(t)] or

E [αj (X(t))] = 1
2
· cj ·E

[

(Xi(t))
2
]

−E [(Xi(t))] ,

respectively. In both cases new differential equations are
necessary to describe the unknown values of E [Xi(t) ·Xℓ(t)]
and E

[

(Xi(t))
2
]

. This problem repeats and leads to an infi-
nite system of ODEs. As shown in the sequel, we can, how-
ever, exploit Eq. (12) to derive a stochastic hybrid model.

Assume we have a system where certain species have a large
population. In that case we approximate them with contin-
uous deterministic variables. The remaining variables are
kept discrete stochastic. This is done because it is usually
infeasible or at least computationally very costly to solve
a purely stochastic model with high populations since in
the respective dimensions the number of significant states
is large. Therefore, we propose to switch to a hybrid model
where the stochastic part does not contain large populations.
In this way we can guarantee an efficient approximation of
the solution.

Formally, we splitX(t) into small populationsV(t) and large
populations W(t), i.e. X(t) = (V(t),W(t)). Let ñ be the
dimension of V(t) and n̂ the dimension of W(t), i.e. n =

ñ + n̂. Moreover, let D̃ and D̂ be the set of indices that
correspond to the populations in V and W, respectively.
Thus, D̃, D̂ ⊆ {1, . . . , n} and |D̃| = ñ, |D̂| = n̂. We define

ũj and ûj as the components of uj that belong to D̃ and

D̂, respectively. Under the condition that V(t) = v and
W(t) = w, we assume that for an infinitesimal time interval
of length dt the evolution of W is given by the stochastic
differential equation

W(t+ dt) = W(t) +
∑m

j=1 ûj · αj(v,w) · dt. (14)

The evolution of V remains unchanged, i.e.,

Pr(V(t+ dt) = v + ũj |V(t) = v,W(t) = w) = αj(v,w)·dt

The density function h(v,w, t) of the Markov process
{(V(t),W(t)), t ≥ 0} can be derived in the same way as
done by Horton et al. [17]. Here, for simplicity we consider
only the case n̂ = 1 which means that w = w is a scalar.
The generalization to higher dimensions is straightforward.
If w > 0 then the following partial differential equation holds
for h.

∂h(v, w, t)

∂t
+
∂
(

h(v, w, t) ·
∑

j
ûj · αj(v, w)

)

∂w
=
∑

j

αj(v−ũj , w) · h(v−ũj , w, t)−
∑

j

αj(v, w) · h(v, w, t).

If w = 0 then we have probability mass g(v, w, t) in state
(v, w) where

∂g(v, w, t)

∂t
+ h(v, w, t) ·

∑

j
ûj · αj(v, w)

=
∑

j

αj(v−ũj , w) · g(v−ũj , w, t)−
∑

j

αj(v, w) · g(v, w, t).

As explained in-depth by Horton et al., the above equations
express that probability mass must be conserved, i.e. the
change of probability mass in a“cell”with boundaries (v, w−
dw) and (v, w + dw) equals the total mass of probability
entering the cell minus the total mass leaving the cell.

In order to exploit the fact that the relative variance of W is
small, we suggest an approximative solution of the stochas-
tic hybrid model given above. The main idea is not to com-
pute the full density h and the mass function g but only
the distribution of V as well as the conditional expectations
E[W(t) = w |V(t) = v]. Thus, in our numerical procedure
the distribution of W is approximated by the different val-
ues E[W(t) = w |V(t) = v], v ∈ N

ñ that are taken by W(t)
with probability Pr(V(t) = v).

Assume that at time t we have the approximation p(t) of
the discrete stochastic model as described in Section 2, that
is, for all states x that have a probability that is greater
than δ we have p(x, t) > 0 and for all other states x we have
p(x, t) = 0. At time t the expectations of one or more popu-
lations reached a certain large population threshold. Thus,
we switch to a hybrid model where the large populations
(index set D̂) are represented as continuous deterministic

variables W(t) while the small populations (index set D̃)
are represented by V(t). We first compute the vector of
conditional expectations

Ψv(t) := E[W(t) = w |V(t) = v] =
∑

x:x̃=v
w · p(x, t).

Here, x̃ is the subvector of x that corresponds to D̃. We
also compute the distribution p(t) of V(t) as

r(v, t) :=
∑

x:x̃=v
p(x, t).

Now, we integrate the system for a small time interval of
length h > 0. This is done in three steps as described below.
We will write Ψv(t

′) for the approximation of E[W(t′) =
w |V(t′) = v]. The i-th element of the n̂-dimensional vector
Ψv(t

′) is denoted by ψv(i, t
′). The value r(v, t′) denotes the

approximation of Pr(V(t) = v) where t′ ∈ [t, t + h). The
vector r(t′) contains the elements r(v, t′).

(1) Update distribution. We first integrate r(t) for h
time units according to a CME with dimension ñ to approx-
imate the probabilities Pr(V(t+ h) = v) by r(v, t+h), that
is, r(t+ h) is the solution of the system of ODEs

dr(v, t′)

dt′
=
∑

j
αj

(

v − ũj ,Ψv−ũj
(t′)

)

· r(v − ũj , t
′)

−
∑

j
αj(v,Ψv(t

′)) · r(v, t′)

with initial condition r(t). Note that this equation is as

Eq. (2) except that the dimensions in D̂ are removed. More-
over, the population sizes w are replaced by the conditional
expectations Ψv(t

′).

(2) Integrate. For each state v with r(v, t) > δ, we com-
pute an approximation Φv(t+h) of the conditional expecta-



tion

E[W(t+ h) |V(t′) = v, t′ ∈ [t, t+ h)],

that is, we assume that the system remains in state v during
[t, t+h) and that the expected numbers of the large popula-
tions W change deterministically and continuously in time.
Thus, the n̂-dimensional vector Φv(t+h) is obtained by nu-
merical integration of the ODE

d
dt′

Φv(t
′) =

∑m

j=1 ûj · αj(v,Φv(t
′))

with initial condition Φv(t). The above ODEs are similar to
Eq. (12) except that for t′ ∈ [t, t+h) the value E[αj(X(t′))]
is approximated by αj(v,Φv(t

′)). For instance, if the j-th
reaction is a bimolecular reaction that involves two popula-
tions with indices i, ℓ in D̂ then E[αj(v,W(t′)) |V(t′) = v]
is approximated by cj · φv(i, t

′) · φv(ℓ, t
′) where the two last

factors are the elements of the vector Φv(t
′) corresponding

to the i-th and ℓ-th population. Thus, in this case the cor-
relations between the i-th and the ℓ-th populations are not
taken into account which is reasonable if the two populations
are large. Note that the correlations are taken into account
when at least one population is represented as a discrete
stochastic variable. If, for instance, i ∈ D̃ and ℓ ∈ D̂, then
we use the approximation cj ·vi ·φv(ℓ, t

′) where vi is the entry
in vector v that represents the size of the i-th population.

(3) Distribute. In order to approximate E[W(t+h) |V(t+
h)] by Ψv(t + h) for all states v, we have to replace the
condition V(t′) = v, t′ ∈ [t, t + h) by V(t + h) = v in the
conditional expectation Φv(t+h) that was computed in step
2. This is done by “distributing” Φv(t+h) according to the
change in the distribution of V(t) as explained below. The
idea is to take into account that V enters state v from v′

during the interval [t, t + h). Assume that [t, t + h) is an
infinitesimal time interval and that q(v′,v, h), v 6= v′ is the
probability to enter v from v′ within [t, t+ h). Then

P (V(t+h)=v) =
∑

v′ 6=v

q(v′,v, h) · P (V(t)=v′)

+(1−
∑

v′ 6=v

q(v,v′, h)) · P (V(t)=v).
(15)

Thus, we approximate E[W(t + h) |V(t+ h) = v] as
∑

v′ 6=v

Φv′ (t+h) · q(v′,v, h) · P (V(t)=v′|V(t+h)=v) (16)

+ Φv(t+h) · (1−
∑

v′ 6=v

q(v,v′, h)) · P (V(t)=v|V(t+h)=v).

Obviously, we can make use of the current approximations
r(t) and r(t+ h) to compute the conditional probabilities
P (V(t)=v′|V(t+h)=v). For a small time step h, q(v′,v, h) ≈
h ·αj(v

′,Ψv′(t)) if v′ = v+ ũj and q(v
′,v, h) ≈ 0 otherwise.

Using Eq. (16), we compute the approximation Ψv(t+ h) ≈
E[W(t+h)|V(t+h) = v] as

Ψv(t+ h) =
∑

j Φv−ũj
(t+h) ·

p(v−ũj ,t)

p(v,t+h)
· αj(v−ũj ,Ψv−ũj

(t)) · h

+Φv(t+h) ·
p(v,t)

p(v,t+h)
(1−

∑

j
αj(v,Ψv(t)) · h).

(17)

Note that the first sum runs over all direct predecessors
v−ũj of v.

Example 1 (cont.). In the exclusive switch the expected
number of molecules of type P1 and/or P2 may become high,
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Figure 2: Probability distribution of the exclusive
switch in Ex. 1.
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c5 · ψv1
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c6 · ψv1
(2, t)

c8

Figure 3: The discrete stochastic part of the stochas-
tic hybrid model of Ex. 1.

depending on the chosen parameters. If, for instance, c1 =
c2 = c9 = c10 =0.5, c3 = c4 = c7 = c8 = 0.005, c5 = c6 = 0.01,
and we start initially without any proteins, i.e. with prob-
ability one in state y = (0, 0, 1, 0, 0), then after 500 time
units most of the probability mass is located around the states
x = (92, 2, 0, 1, 0) and x = (2, 92, 0, 0, 1) (compare the plot
in Fig. 2, left). Note that x3 = 0, x4 = 1, x5 = 0 refers to
the case that a molecule of type P1 is bound to the pro-
motor and x3 = x4 = 0, x5 = 1 refers to the case that a
molecule of type P2 is bound to the promotor. Since for
these parameters the system is symmetric, the expected pop-
ulations of P1 and P2 are identical. Assume that at a cer-
tain time instant, both populations reach the threshold from
which on we approximate them by continuous deterministic
variables (we consider the unsymmetric case later, in Sec-
tion 5). The remaining discrete model then becomes finite
since only P1 and P2 have an infinite range in the origi-
nal model (n̂ = 2, ñ = 3). More precisely, it contains only
3 states, namely the state v1 where the promotor is free
(x3 = 1, x4 = x5 = 0), the state v2 where P1 is bound to
the promotor (x3=0, x4=1, x5=0), and the state v3 where
P2 is bound to the promotor (x3 = x4 = 0, x5 = 1), see also
Fig. 1. For i ∈ {1, 2} let Wi(t) be the population size of Pi.
The differential equations which are used to approximate the
conditional expectations Ψvj

(t+ h), j ∈ {1, 2, 3} are

dφv1
(i,t′)

dt′
= ci − c2+i · φv1

(i, t′)− c4+i · φv1
(i, t′)

dφv2
(i,t′)

dt′
= −c2+i · φv2

(i, t′) + (c7 + c9) · (2− i)
dφv3

(i,t′)

dt′
= −c2+i · φv3

(i, t′) + (c8 + c10) · (i− 1+)

where φv(1, t
′) and φv(2, t

′) are the elements of the vector
Φv1

(t′). Note that each of the 3 states v1,v2,v3 has a sys-
tem of two differential equations, one for P1 and one for
P2. The transition rates in the discrete stochastic part of
the model are illustrated in Fig. 3. Thus, after solving the
differential equations above to compute Φvj

(t+h) we obtain
the vector Ψvj

(t+ h) of the two conditional expectations for
P1 and P2 from distributing Φv1

(t+h), Φv2
(t+h), Φv3

(t+h)
among the 3 states as defined in Eq. (17). For the parame-
ters used in Fig. 1, left, the conditional expectations of the



pset purely stochastic stochastic hybrid purely determ.

ex. time |Sig | error pop. thres. ex. time |Sig | m1 m2 m3 ex. time m1

1a 11h 46min 8 · 105 7 · 10−5 50 15sec 4 · 102 0.005 0.2 0.30 1sec 0.03

100 1min 50sec 3 · 103 0.004 0.2 0.30

1b 7min 43sec 5 · 104 7 · 10−7 50 1min 19sec 6 · 103 0.01 0.19 0.30 1sec 0.03

100 2min 50sec 3 · 104 0.01 0.19 0.30

2 4h 51min 2 · 105 4 · 10−5 50 25sec 4 · 102 0.06 0.08 0.09 1sec 0.45

100 28sec 6 · 102 0.06 0.07 0.09

3 2min 21sec 7 · 105 6 · 10−5 50 18sec 6 · 103 0.02 0.08 0.16 1sec 0.05

100 1min 41sec 4 · 104 0.01 0.05 0.12

Table 2: Results for the exclusive switch example.

states v2 and v3 accurately predict the two stable regions
where most of the probability mass is located. The state v1

has small probability and its conditional expectation is lo-
cated between the two stable regions. It is important to point
out that, for this example, a purely deterministic solution
cannot detect the bistability because the deterministic model
has a single steady-state [22]. Finally, we remark that in this
example the number of states in the reduced discrete model
is very small. If, however, populations with an infinite range
but small expectations are present, we use the truncation de-
scribed in Section 2 to keep the number of states small.

If at time t a population, say the i-th population, is repre-
sented by its conditional expectations, it is possible to switch
back to the original discrete stochastic treatment. This is
done by adding an entry to the states v for the i-th dimen-
sion. This entry then equals ψv(i, t). This means that at
this point we assume that the conditional probability distri-
bution has mass one for the value ψv(i, t). Note that here
switching back and forth between discrete stochastic and
continuous deterministic representations is based on a pop-
ulation threshold. Thus, if the expectation of a population
oscillates we may switch back and forth in each period.

5. EXPERIMENTAL RESULTS
We implemented the numerical solution of the stochastic hy-
brid model described above in C++ as well as the fast solu-
tion of the discrete stochastic model described in Section 2.
In our implementation we dynamically switch the represen-
tation of a random variable whenever it reaches a certain
population threshold. We ran experiments with two differ-
ent thresholds (50 and 100) on an Intel 2.5GHz Linux work-
station with 8GB of RAM. In this section we present 3 exam-
ples to that we applied our algorithm, namely the exclusive
switch, Goutsias’ model, and a predator-prey model. Our
most complex example has 6 different chemical species and
10 reactions. We compare our results to a purely stochastic
solution where switching is turned off as well as to a purely
deterministic solution. For all experiments, we fixed the cut-
ting threshold δ = 10−14 to truncate the infinite state space
as explained in Sec. 2.

Exclusive Switch. We chose different parameters for the
exclusive switch in order to test whether our hybrid ap-
proach works well if

1) the populations of P1 and P2 are large (a) or small (b),
2) the model is unsymmetric (e.g. P1 is produced at a higher

rate than P2 and degrades at a slower rate than P2),

3) the bistable form of the distribution is destroyed (i.e.
promotor binding is less likely, unbinding is more likely).

The following table lists the parameter sets (psets):

pset c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
1a 5 5 0.0005 0.0005 0.1 0.1 0.005 0.005 5 5
1b 0.5 0.5 0.0005 0.0005 0.1 0.1 0.005 0.005 0.5 0.5
2 5 0.5 0.0005 0.005 0.1 0.1 0.005 0.005 5 0.5
3 0.5 0.5 0.0005 0.0005 0.01 0.01 0.1 0.1 0.5 0.5

We chose a time horizon of t = 500 for all parameter sets.
Note that in the case of pset 3 the probability distribution
forms a thick line in the state space (compare the plot in
Fig. 2, right). We list our results in Table 2 where the first
column refers to the parameter set. Column 2 to 4 list the
results of a purely stochastic solution (see Section 2) where
“ex. time” refers to the execution time, |Sig | to the average
size of the set of significant states and “error” refers to the
amount of probability mass lost due to the truncation with
threshold δ, i.e. 1 −

∑

x∈Sig
p(x, t). The columns 6-10 list

the results of our stochastic hybrid approach and column
5 lists the population threshold used for switching in the
representations in the stochastic hybrid model. Here, “m1”,
“m2”, “m3” refer to the relative error of the first three mo-
ments of the joint probability distribution at the final time
instant. For this, we compare the (approximate) solution of
the hybrid model with the solution of the purely stochas-
tic model. Since we have five species, we simply take the
average relative error over all species. Note that even if a
species is represented by its conditional expectations, we can
approximate its first three moments by

E[W(t)i] ≈
∑

v
(Ψv(t))

i · r(v, t)

where the i-th power of the vectors are taken component-
wise. Finally, in the last two columns we list the results of a
purely deterministic solution as explained in Section 3. The
last column refers to the average relative error of the ex-
pected populations when we compare the purely determin-
istic solution to the purely stochastic solution. Note that
the deterministic solution of the exclusive switch yields an
accurate approximation of the first moment (except for pset
2) because of the symmetry of the model. It does, however,
not reveal the bistability of the distribution. As opposed to
that, the hybrid solution does show this important property.
For pset 1 and 3, the conditional expectations of the 3 dis-
crete states are such that two of them match exactly the two
stable regions where most of the probability mass is located
(see also Example 1 in Sec. 4) . The remaining conditional



model purely stochastic stochastic hybrid
purely
determ.

ex. time |Sig | error
pop.
thres.

ex. time |Sig | m1 m2 m3
ex.
time

m1

Goutsias 1h 16min 1 · 106 4 · 10−7 50 8min 47sec 1 · 105 0.001 0.07 0.13 1sec 0.95
100 48min 57sec 6 · 105 0.0001 0.0003 0.001

p.-prey 6h 6min 5 · 105 1 · 10−7 50 8min 56sec 2 · 104 0.06 0.15 0.27 1sec 0.86
100 1h 2min 8 · 104 0.04 0.11 0.23

Table 3: Results for Goutsias’ model and the predator-prey model.
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Figure 4: Expected populations in Goutsias’ model.

expectation of the state where the promotor region is free
has small probability and predicts a conditional expectation
between the two stable regions. The execution time of the
purely stochastic approach is high in the case of pset 1a, be-
cause the expected populations of P1 and P2 are high. This
yields large sizes of Sig while we iterate over time. During
the hybrid solution, we switch when the populations reach
the threshold and the size of Sig drops to 3. Thus, the aver-
age number of significant states is much smaller. In the case
of pset 1b, the expected populations are small and we use
a deterministic representation for protein populations only
during a short time interval (at the end of the time hori-
zon). For pset 2, the accuracy of the purely deterministic
solution is poor because the model is no longer symmetric.
The accuracy of the hybrid solution on the other hand is
independent of the symmetry of the model.

Goutsias’ Model. In [11], Goutsias defines a model for
the transcription regulation of a repressor protein in bac-
teriophage λ. This protein is responsible for maintaining
lysogeny of the λ virus in E. coli. The model involves 6
different species and the following 10 reactions.

1: RNA →RNA+M 6: DNA.D →DNA+D

2: M →∅ 7: DNA.D+D→DNA.2D

3: DNA.D →RNA+DNA.D 8: DNA.2D →DNA.D+D

4: RNA →∅ 9: M+M →D

5: DNA+D→DNA.D 10: D →M+M

We used the following parameters that differ from the origi-
nal parameters used in [11] in that they increases the number
of RNA molecules (because with the original parameters, all
populations remain small).

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
0.043 7e-4 71.5 3.9e-6 0.02 0.48 2e-4 9e-12 0.08 0.5

Table 3 shows the results for the Goutsias’ model where
we use the same column labels as above. We always start
initially with 10 molecules of RNA, M, and D, as well as 2
DNA molecules. We choose the time horizon as t = 4. Note
that the hybrid solution as well as the purely deterministic

solution are feasible for much longer time horizons. The
increase of the size of the set of significant states makes the
purely stochastic solution infeasible for longer time horizons.
As opposed to that the memory requirements of the hybrid
solution remain tractable. In Fig. 4 we plot the means of
two of the six species obtained from the purely stochastic
(stoch), purely deterministic (determ), and the hybrid (hyb)
solution. Note that a purely deterministic solution yields
very poor accuracy (relative error of the means is 95%).

Predator Prey. We apply our algorithm to the predator
prey model described in [9]. It involves two species A and
B and the reactions are A→ 2A, A+B → 2B, and B → ∅.
The model shows sustainable periodic oscillations until even-
tually the population of B reaches zero. We use this example
to test the switching mechanism of our algorithm. We choose
rate constants c1 = 1, c2 = 0.03, c3 = 1 and start initially
with 30 molecules of type A and 120 molecules of type B.
For a population threshold of 50, we start with a stochas-
tic representation of A and a deterministic representation of
B. Then, around time 1.3 we switch to a purely stochastic
representation since the expectation of B becomes less than
50. Around time t = 6.1 we switch the representation of A
because E[A(t)] > 50, etc. We present our detailed results
in Table 3. Similar to Goutsias’ model, the deterministic so-
lution has a high relative error whereas the hybrid solution
yields accurate results.

6. CONCLUSION
We presented a stochastic hybrid model for the analysis of
networks of chemical reactions. This model is based on a
dynamic switching between a discrete stochastic and a con-
tinuous deterministic representation of the chemical popu-
lations. Instead of solving the underlying partial differen-
tial equation, we propose a fast numerical procedure that
exploits the fact that for large populations the conditional
expectations give appropriate approximations. Our exper-
imental results substantiate the usefulness of the method.
As future work we plan to include a diffusion approximation
for populations of intermediate size.
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