skip to main content
10.1145/1839778.1839792acmconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
research-article

Adaptive surface reconstruction based on implicit PHT-splines

Authors Info & Claims
Published:01 September 2010Publication History

ABSTRACT

We present a new shape representation, the implicit PHT-spline, which allows us to efficiently reconstruct surface models from very large sets of points. A PHT-spline is a piece-wise tricubic polynomial over a 3D hierarchical T-mesh, the basis functions of which have good properties such as non-negativity, compact support and partition of unity. Given a point cloud, an implicit PHT-spline surface is constructed by interpolating the Hermitian information at the basis vertices of the T-mesh, and the Hermitian information is obtained by estimating the geometric quantities on the underlying surface of the point cloud. We use the natural hierarchical structure of PHT-splines to reconstruct surfaces adaptively, with simple error-guided local refinements that adapt to the regional geometric details of the target object. Unlike some previous methods that heavily depend on the normal information of the point cloud, our approach only uses it for orientation and is insensitive to the noise of normals. Examples show that our approach can produce high quality reconstruction surfaces very efficiently.

References

  1. M. Aigner and B. Jüttler. Robust fitting of implicitly defined surfaces using Gauss-Newton-type techniques. The Visual Computer, 25:731--741, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-based surface reconstruction algorithm. In SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 415--421, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and the medial axis transform. Computational Geometry: Theory and Applications, 19:127--153, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Bloomenthal. An implicit surface polygonizer. pages 324--349, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Bloomenthal and B. Wyvill, editors. Introduction to Implicit Surfaces. Morgan Kaufmann Publishers Inc., 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J.-D. Boissonnat. Geometric structures for three-dimensional shape representation. ACM Trans. Graph., 3(4):266--286, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans. Reconstruction and representation of 3d objects with radial basis functions. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 67--76, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. F. Chazal and A. Lieutier. Topology guaranteeing manifold reconstruction using distance function to noisy data. In SCG '06: Proceedings of the twenty-second annual symposium on Computational geometry, pages 112--118, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. Curless and M. Levoy. A volumetric method for building complex models from range images. In SIGGRAPH '96: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 303--312, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Deng, F. Chen, and Y. Feng. Dimensions of spline spaces over t-meshes. J. Comput. Appl. Math., 194(2):267--283, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Deng, F. Chen, X. Li, C. Hu, W. Tong, Z. Yang, and Y. Feng. Polynomial splines over hierarchical t-meshes. Graph. Models, 70(4):76--86, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. K. Dey and S. Goswami. Provable surface reconstruction from noisy samples. Comput. Geom. Theory Appl., 35(1):124--141, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing surfaces by volumetric regularization using radial basis functions. IEEE Trans. Pattern Anal. Mach. Intell., 24(10):1358--1371, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):43--72, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones. Adaptively sampled distance fields: a general representation of shape for computer graphics. In SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 249--254, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Gross and H. Pfister. Point-Based Graphics (The Morgan Kaufmann Series in Computer Graphics). Morgan Kaufmann Publishers Inc., 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruction from unorganized points. In SIGGRAPH '92: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, volume 26, pages 71--78, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Hornung and L. Kobbelt. Robust reconstruction of watertight 3d models from non-uniformly sampled point clouds without normal information. In SGP '06: Proceedings of the fourth Eurographics symposium on Geometry processing, pages 41--50, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. B. Jüttler and A. Felis. Least-squares fitting of algebraic spline surfaces. Adv. Comput. Math., 17(1-2):135--152, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Kazhdan. Reconstruction of solid models from oriented point sets. In SGP '05: Proceedings of the third Eurographics symposium on Geometry processing, page 73, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In SGP '06: Proceedings of the fourth Eurographics symposium on Geometry processing, pages 61--70. Eurographics Association, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Kojekine, I. Hagiwara, and V. Savchenko. Software tools using csrbfs for processing scattered data, 2003.Google ScholarGoogle Scholar
  23. X. Li, J. Deng, and F. Chen. Surface modeling with polynomial splines over hierarchical t-meshes. Vis. Comput., 23(12):1027--1033, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163--169, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Manson, G. Petrova, and S. Schaefer. Streaming surface reconstruction using wavelets. In SGP '08: Proceedings of the Symposium on Geometry Processing, pages 1411--1420, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. M. Mount and S. Arya. Ann: A library for approximate nearest neighbor searching. http://www.cs.umd.edu/mount/ann/.Google ScholarGoogle Scholar
  27. B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Subramanian. Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In SIGGRAPH '05: ACM SIGGRAPH 2005 Courses, page 78, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Nagai, Y. Ohtake, and H. Suzuki. Smoothing of partition of unity implicit surfaces for noise robust surface reconstruction. In SGP '09: Proceedings of the Symposium on Geometry Processing, pages 1339--1348, Aire-la-Ville, Switzerland, Switzerland, 2009. Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-level partition of unity implicits. ACM Trans. Graph., 22(3):463--470, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Ohtake, A. Belyaev, and H.-P. Seidel. A multi-scale approach to 3d scattered data interpolation with compactly supported basis functions. In SMI '03: Proceedings of the Shape Modeling International 2003, page 153. IEEE Computer Society, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. V. Savchenko, E. A. Pasko, O. G. Okunev, and T. L. Kunii. Function representation of solids reconstructed from scattered surface points and contours. Computer Graphics Forum, 14:181--188, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  32. T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and T. Lyche. T-spline simplification and local refinement. ACM Trans. Graph., 23(3):276--283, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and t-nurccs. In SIGGRAPH '03: ACM SIGGRAPH 2003 Papers, pages 477--484, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. X. Song and F. Chen. Adaptive surface reconstruction based on tensor product algebraic splines. Numerical Mathematics A Journal of Chinese Universities English Series, 2(1):90--99, 2009.Google ScholarGoogle Scholar
  35. X. Song, B. Jüttler, and A. Poteaux. Hierarchical spline approximation of the signed distance function. In SMI'10: Proceedings of Shape Modeling and International, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. Taubin. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 13(11):1115--1138, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. G. Turk and J. F. O'Brien. Shape transformation using variational implicit functions. In SIGGRAPH '99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pages 335--342, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G. Turk and J. F. O'brien. Modelling with implicit surfaces that interpolate. ACM Trans. Graph., 21(4):855--873, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. H. Yang, M. Fuchs, B. Jüttler, and O. Scherzer. Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In Shape Modeling International, pages 247--252. IEEE Press, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. Yang and B. J. üttler. Evolution of t-spline level sets for meshing non-uniformly sampled and incomplete data. The Visual Computer, 24:435--448, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Z. Yang and T.-w. Kim. Moving parabolic approximation of point clouds. Computer-Aided Design, 39(12):1091--1112, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. H.-K. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level set method. In IEEE Workshop on Variational and Level Set Methods in Computer Vision, pages 194--201, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Adaptive surface reconstruction based on implicit PHT-splines

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SPM '10: Proceedings of the 14th ACM Symposium on Solid and Physical Modeling
            September 2010
            220 pages
            ISBN:9781605589848
            DOI:10.1145/1839778

            Copyright © 2010 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 September 2010

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader