

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 25, 2024

Towards Clone Detection in UML Domain Models

Störrle, Harald

Published in:
Software and Systems Modeling

Link to article, DOI:
10.1007/s10270-011-0217-9

Publication date:
2013

Link back to DTU Orbit

Citation (APA):
Störrle, H. (2013). Towards Clone Detection in UML Domain Models. Software and Systems Modeling, 12(2),
307-329. https://doi.org/10.1007/s10270-011-0217-9

https://doi.org/10.1007/s10270-011-0217-9
https://orbit.dtu.dk/en/publications/80adcd12-8071-40df-aa9c-5dfcc9617cc5
https://doi.org/10.1007/s10270-011-0217-9

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Towards Clone Detection in UML Domain
Models

Harald Störrle

Department of Informatics and Mathematical Modeling (IMM)
Technical University of Denmark (DTU)

Received: 2010-11-21 / Revised version: 2011-07-03 / Final version: 2011-09-12

Abstract Code clones (i. e., duplicate fragments of code) have been stud-
ied for long, and there is strong evidence that they are a major source
of software faults. Anecdotal evidence suggests that this phenomenon oc-
curs similarly in models, suggesting that model clones are as detrimental to
model quality as they are to code quality. However, programming language
code and visual models have significant differences that make it difficult to
directly transfer notions and algorithms developed in the code clone arena
to model clones.

In this article, we develop and propose a definition of the notion of
“model clone” based on the thorough analysis of practical scenarios. We pro-
pose a formal definition of model clones, specify a clone detection algorithm
for UML domain models, and implement it prototypically. We investigate
different similarity heuristics to be used in the algorithm, and report the
performance of our approach. While we believe that our approach advances
the state of the art significantly, it is restricted to UML models, its results
leave room for improvements, and there is no validation by field studies.

1 Introduction

Code clones (i. e., duplicate fragments of source code), have been identified
as a major source of software quality issues over the last years [9]. As a
consequence, a large body of research has been developed on how to prevent,
or spot and eliminate code clones (see [14] and [26] for excellent surveys).
The problem with code clones is of course that they are linked only by their
similarity, i. e., implicitly rather than explicitly which makes it difficult to
detect them. Therefore, changes like upgrades or patches that are often
meant to affect all clones in a similar way, are frequently applied only to

2 Harald Störrle

one or a few of them. Other clones may accidentally remain unchanged, and
so, code quality deteriorates, and maintenance becomes more costly and/or
error prone.

Domain models—also known as conceptual or analysis level models—
are commonly used in the IT industry, for example in the early phases of
large software development projects, schema integration for databases, and
business process management and optimization. Proponents of the Model-
Driven Development (MDD) paradigm go further and claim that modeling
will eventually replace programming; see for instance Selic’s assertion in [29,
p. 19]: “MDDs defining characteristic is that software developments primary
focus and products are models rather than computer programs”. Even more
clearly, the Model-Driven Architecture (MDA, [22]) attempts to “shift the
focus of software development away from the technology domain toward the
ideas and concepts of the problem domain”, as proclaimed by Booch, Rum-
baugh and others in the “MDA Manifesto” (see [2, p. 3]). Whether one does
believe in this vision or not, there can be no doubt that models play an im-
portant role in many industrial development activities of many organization
today, and that models can reach quite substantial sizes (cf. [31,34]).

If programs are indeed progressively being replaced by models, it comes
as no surprise that phenomena known from source code occur in models,
too. Indeed, experiences with large scale domain models suggest, that the
phenomenon of clones arises in models in a very similar way than it does
in source code. Deissenbck et al. even consider it “obvious” that “the same
[clone-related] problems also occur [...] in model-based development” (cf. [5,
p. 57]). Consequently, the clone issue has to be addressed for models, too:
“detecting clones in models plays the same important role as in traditional
software development” to use the words of [23].

Paraphrasing Baxter1, we tentatively define a model clone as a set of
similar or identical fragments in a model. Obviously, this is a rather unsat-
isfying definition in many ways, but for the time being, we adopt it as our
working definition. Informed by the related work on code clones, we focus
on four major challenges:

1. understand the structure of real clones (Section 2) and derive a practical
definition of model clones from our findings (Section 3);

2. quantitatively analyze the structure of medium to large scale models and
develop heuristics informed by the analysis results (Section 4);

3. derive a formal framework for model clones and develop an algorithm
detect clones in models of realistic size and structure (Section 5);

4. implement the algorithm and heuristics (Section 5.3), balancing preci-
sion and recall against acceptable run time (Section 6).

We conclude with a survey of the related work (Section 7) and a discussion
of our results (Section 8.1). Previous work leading to this article has been
published as [35].

1 “Clones are segments of code that are similar according to some definition of
similarity” op cit. [14, p. 2].

Towards Clone Detection in UML Domain Models 3

CD Information Model

queue copy
reserved by

LeaseMedium

Book

DVD

1

getMedium() : Medium

1
{ordered}

lent: date
\due: date

type: String

author: string

*

1

Medium

Reservation

Prolongation

reserver: Reader
issued: Date

type: String

*
{ordered}

*

Book
title: String
rec_age: Integer
state: State
signature: String

 LMS 0 Model
 Catalog 3 Package
 Medium 4 Class
 Book 8 Class
 DVD 12 Class
 Rating 16 Enumeration
 State 22 Enumeration
 BoardGame 27 Class
 - 28 Association
 Search Catalog 30 Package
 Update Catalog 49 Package
 Lending 69 Package
 Medium 70 Class
 Lease 75 Class
 Prolongation 81 Class
 Reservation 88 Class
 - 92 Association
 Lease Medium 95 Package
 Prolong Lease 152 Package
 Reserve Medium 214 Package

Model Elements Meta classID

Fig. 1 UML Models have two parallel structures: an external, visual representa-
tion as diagrams (left); and an internal, tree-like structure (right).

2 Analyzing model clones

We will use the Library Management System (LMS) case study as our run-
ning example, a small analysis-level model expressed in UML 2.2. The LMS
consists of two subsystems represented as packages named “Catalog” and
“Lending”.Each of them contains Classes, Associations, and sub-Packages
encapsulating UseCase and Activity descriptions of business processes.2

Typical UML tools present such a model using two parallel structures: a
set of views or diagrams, and a containment tree. Fig. 1 shows a schematic
representation of a part of the LMS highlighting these two structures.

Fig. 1 (right) shows the model proper by way of a containment tree aris-
ing from the ownedElement UML meta attribute, Fig. 1 (left) shows both
one possible view of the model as a UML class diagram entitled Information
Model showing a view of elements from both LMS packages.

Looking at the diagram first, we can easily see that there are two oc-
currences of both the two classes named “Book” and “Medium” in the
diagram, which may or may not be clones—just looking at the view can-
not answer this question. The two occurrences of the class named “Book”
show quite different signatures while the two occurrences of the class named
“Medium” coincide in many aspects. Yet, an exhaustive search of the con-
tainment tree to the right shows, that there is only one occurrence of a class
named “Book”. So, the different diagram elements “Book” are just harm-
less separate views of the same model element “Book”, highlighting different
properties. On the other hand, there are two occurrences of classes named

2 We generally write UML meta classes in the way they are written in the UML
Standard [21], i. e., using CamelCaps, e. g., Class or UseCase.

4 Harald Störrle

“Medium” in the containment tree (identifiers 4 and 70), so “Medium” is
definitely a clone candidate. It is still not obvious, though, which reference
in the diagram refers to which model element, or whether they refer to the
same model element or not. Also, there are two classes in the containment
tree (named “BoardGame”, identifier 27), which is not referenced in this
view. To näıve modelers, who are often equating models and diagrams, this
model element will be invisible.

As we have said, most contemporary UML tools provide not just (mul-
tiple) diagram views of the model, but also a more basic view of the
containment-tree of the model elements themselves. If a tool also provides
functions to navigate from one to the other, to identify model elements
without diagrammatic representation, and so on, a keen modeler can ac-
tually find the clones in the example above manually. However, this is a
very tedious process even for small models, and it is limited to clones with
identical names. Thus, this is no practical way to detect clones.

2.1 Model clones through copy/paste

It is well known that most code clones are created by ad-hoc-reuse through
copy/paste: fragments are copied but no explicit link is established between
them. Since this practice is common in modeling, too, it is plausible to
assume that the same holds for models. In fact, something worse happens:
the two parallel structures discussed above are affected in different ways by
editing operations like copy and paste. According to our observations, it
is common practice among industrial modelers to interact with the model
primarily or only through the diagrams, i. e. the model views rather than
through the model proper. This leads to a hazardous feature interaction
between common editing commands: copying a diagram element may either
create only a new (visual) reference to a pre-existing model element, or
also a new copy of the model element. Deleting a diagram element, on the
other hand, is usually implemented as deleting only the visual reference,
but leaving the corresponding model element untouched. So, a modeler may
inadvertently create clones when s/he just wants another visual reference,
or when s/he deletes the visual reference only, instead of both the diagram
element and the model element. Fig. 2 sketches a typical situation.

There, different configurations of views and models are considered, each
of which is shown both through a view (top) and a part of the composition
tree (bottom). A typical tool will create both model elements and diagram
elements when copying, but will only delete a diagram element when delet-
ing. Thus, starting in configuration 1, a user might copy/paste “Book” to
reach configuration 2, thus introducing a (visible) clone (class “Book” with
identifier 3). If the modeler then wants to revert the previous operation but
erroneously uses “delete” instead of “undo”, the diagram element is deleted
while the model element is kept. So, the clone has become invisible to a
casual modeler, and in models of realistic size, it can only be discovered

Towards Clone Detection in UML Domain Models 5

CD View

Book

Catalog 1
 Book 2

Element ID
delete

CD View

Book

Catalog 1
 Book 2
 Book 3

Element ID

Book
copy/paste

CD View

Book

Catalog 1
 Book 2
 Book 3

Element ID

1 2 3

visible clone invisible cloneno clone

Fig. 2 Simple sequences of editing operations can create discrepancies between
the external (top) and the internal structures (bottom) of models.

CD Lendable Items CD Lendable Items

author: String
title: String
rec_age: Integer
state: State
signature: String

Book

title: String
director: String
signature: String
rating: Rating
state: State

DVD

author: String
rec_age: String

Book available
reserved
lent
overdue

State
<<enumeration>>

director: String
rating: Rating

DVD

G
PG
PG-13
R
NC17

Rating
<<enumeration>>

title: float
state: State
signature: String

Medium

available
reserved
lent
overdue

State
<<enumeration>>

G
PG
PG-13
R
NC17

Rating
<<enumeration>>

(a) (b)

Fig. 3 Clones may indicate unfinished modeling work (1/3): an unfinished class
model (left); factoring out commonalities removes clones (right).

again through luck or exhaustive search. Of course, many tools offer dif-
ferent versions of copy and delete, but this still leaves room for individual
mistakes. This way, copy/paste of model fragments is even more prone to
clone introduction than copy/paste of code fragments.3

2.2 Model clones through unfinished modeling

Some clones may be characterized as the remains of unfinished modeling. For
instance, in the process of modeling the LMS, we may model different kinds
of media of the library, and we may model several attributes repeatedly, see
Fig. 3 (a). There are at least three duplicates: properties “title”, “id”, and
“state” occur both identically in classes “Book” and “DVD”. They could be
factored out into a class “Medium” which is a common superclass to both
“Book” and “DVD”, yielding the model shown in Fig. 3 (b).

Other model types share this phenomenon as Figures 4 and 5 demon-
strate. In Fig. 4 (a), there are two instances of the transitions with triggers
“lease” and “return”, respectively. By introducing a common super state to

3 Also, some tools avoid this problem altogether by enforcing a one-to-one cor-
respondence between model elements and diagram elements as the default (e. g.,
ADONIS, cf. [10]), but there are more ways model clones are created.

6 Harald Störrle

(a) (b)

Medium Life Cycle (a)SM Medium Life Cycle (b)SM

overdue

reserve

lease

after(3wk)
/notify

available reserved

lent

lease

cancel/notify
after(3d)/notify

re
tu

rn

re
tu

rn

overdue

reserve

lease

after(3wk)
/notify

available reserved

lent

cancel \/ after(3d)/notify

re
tu

rn

away

home

Fig. 4 Clones may indicate unfinished modeling work (2/3): an unfinished state
machine model (left); factoring out commonalities removes clones (right).

AD ADAD AD

AD

Lease Media Lease MediumLease Media Lease Medium

Lease

(a) (b)

Lease

[more items
 in batch]

check for pending
reservations

mark medium
as lent

add medium to
reader account

[no more
 items]

check for pending
reservations

mark medium
as lent

add medium to
reader account

[more items
 in batch]

[no more
 items]

Lease

authenticate
reader

authenticate
reader

authenticate
reader authenticate

reader

check for pending
reservations

mark medium
as lent

add medium to
reader account

Reader
Credentials

Reader
Credentials

Reader
Credentials

Reader
Credentials

Fig. 5 Clones may indicate unfinished modeling work (3/3): an unfinished activ-
ity model (left); factoring out commonalities removes clones (right).

states “lent” and “overdue”, these duplicates can be avoided to yield the
state machine shown in Fig. 4 (b). Similarly, there are two transitions with
triggers “cancel” and “after(5d)” that share source- and target-states as
well as their action. They could be merged as shown in Fig. 4 (b). Similar
refactorings can be found in activity diagrams (see Fig. 5), where recurring
fragments of activities can be factored out into independent activities (in
this example “Lease” in Fig. 5 (b), bottom). Observe, that our discussion
explicitly refers to domain models, where we usually consider such dupli-
cates as unwanted redundancies. In design and implementation level models,
on the other hand, there may be more reasons to keep such duplicates even
in a finalized model.

Towards Clone Detection in UML Domain Models 7

2.3 Model clones through language loopholes

While the kinds of model clones discussed in the previous two sections have
some kind of counterparts in code clones, and are likely to appear in all
kinds of modeling languages, the following one is specific for UML-models.
It derives from the way the meta model of UML is defined, and the way
UML models are stored in XMI. Reconsider Fig. 5, and notice the DataFlow-
Nodes named “Reader Credentials”. They occur twice, as parts of the two
Activities “Lease Media” and “Lease Medium”, and there is no way of fac-
toring them out: the UML meta model defines data nodes as being integral
part of an activity. The same is true for individual Actions like “authenti-
cate reader”, or ActivityPartitions. All of these model elements cannot exist
on their own, outside an activity, and thus, they cannot be shared among
different Activities. Therefore, they necessarily occur repeatedly in a model.

Another kind of inevitable duplicates specific to UML are the manifold
meta model elements that carry little information but occur frequently.
Examples are FinalNodes of Activities, Generalizations of Classifiers, and
ValueSpecifications of MultiplicityElements. They all can only exist nested
is their respective container, and they all occur over and over again in models
in largely or completely identical form. A clone detection algorithm must
make sure not to present these elements as clones to the user.

Unfortunately, it is not enough to simply disregard some types of model
elements, because whether or not a model element is considered as a
“proper” modeling concept may depend more on the modeler than on the
modeling language. For instance, the Associations in Fig. 1 discussed above
could be regarded as secondary elements because they lack attributes. But
consider also the Association “reserved by” in Fig. 1 which has many prop-
erties, e. g., role names and constraints, a name, and a reading direction
which indicate that it this is a model element of some domain significance.
Similarly, it is also not enough to disregard “small” model elements, be-
cause relevant model elements can be quite small (e. g., Classes with few
Features), while “big” elements can be rather lightweight (e. g., Multiplic-
ityElements). Also, elements such as FinalNodes may well be considered
meaningful (see Fig. 7).

While the clone types discussed in this section are specific to UML, other
modeling languages invariably have their own idiosyncrasies often leading
to very similar effects.

2.4 Model clones on purpose

While many duplicate code fragments are doubtlessly defects introduced
through mistakes or language loopholes, others might even be introduced
on purpose. For instance, assume that two variants of a model are to be
created to contrast alternative options, successive development stages, or
similarities of competing systems. In those cases, two or more submodes

8 Harald Störrle

CD Leases

(a) (b)

Prolongation Lease

Reader

1

*

1*

1

*

UCD Leasing 1 UCD Leasing 2

Reader

Lease Medium

LeaseHandler

Reader
Lease Media

LeaseHandler

Fig. 6 Small differences of small elements may lead to false positive clone detec-
tions: Associations (left), or Use Cases (right) have few attributes to distinguish
them.

AD Propose new medium

Reader Librarian Accessions Board

search
catalog

propose
change

suggest
new medium

rejected
proposal

already
in corpus

accepted
proposal

Fig. 7 Even “small” nodes such as FinalNode in Activities can carry significant
meaning.

might be created as part of one model. The semantic overlap between the
variants can give rise to duplicate model fragments. A similar situation
arises if a model contains test cases, which come in great numbers that will
frequently show only small differences.

Also, there might be methodological reasons for introducing repetitions,
e., g., the common practice to describe business processes through a Use-
Case and an Activity using the same name. There, the implicit connection
through the shared name is fully on purpose.

3 Defining the notion of “model clone”

Probably the biggest problem with source code clones is defining exactly
what is and what is not a clone (cf. [11]). For model clones, this is at least as
difficult. Our working definition “a model clone a set of similar or identical
fragments in a model” is obviously too vague to be very helpful: what is a
model and how are they best represented? What is a model fragment, and
what properties and size should it have? How should similarity be defined?
So, before we can even start to look at ways to spot model clones, we must
elaborate our intuition, and improve our working definition of model clone.
We start off by looking at the state of the discussion in the code clones
community.

Towards Clone Detection in UML Domain Models 9

3.1 Code clones vs. model clones

If code clones and model clones are indeed comparable as we have argued, it
should be possible to transfer (some of) the notions, techniques, and lessons
learned from code clone research to the model clones arena. However, past
experiences in studying version control of models in contrast to version
control of code also suggest that there are significant differences between
models and code which may be relevant for clones as well. The differences
can be traced down to the following factors.

3.1.1 Language/Tool Integration Programming languages are largely inde-
pendent of a particular development environment: a Java program created
with one IDE can easily be transferred to another, or to a plain text editor.
In the end, a program is just a (set of) text file(s). Models, on the other
hand, are usually very tightly integrated with some tool, and even if we
restrict ourselves to UML, exchanging model data between different model-
ing tools may be difficult or plain impossible. So, ultimately, when speaking
about model clones, it is not sufficient to speak about the modeling lan-
guage, we may have to take into account the CASE tool used to create the
model, too.

3.1.2 Artifact structure The code of a system can easily be represented
as a directory tree of text files, each of which can be considered as a long
string of characters or tokens. Models, on the other hand, often have a
graph-structure stored in a repository, but some tools use other ways of
representing models, and since languages and tools are tightly integrated,
we have to take tool-specific representations into account to some degree.

3.1.3 Identification In source code, elements like types, procedures, and so
on are identified by their names. In general, code fragments are identified
exactly by their textual representation. Copying a text fragments obviously
retains this identity. That is to say, source code clones are identical (to begin
with). In many modeling environments, on the other hand, model elements
have internal identifiers.4 Since these internal identifiers are usually under-
stood as globally unique, a deep copy of a model element will consistently
change the identifiers in the duplicate. Thus, model clones are equal, but
not identical.

3.1.4 Names In domain modeling, using just the right names is very im-
portant for the effectiveness of the model, and so, renaming may occur
frequently, and names may be in a systematic relationship. For instance, if
there is a use case “lend medium” in a Library Management System, then

4 This is the case for most contemporary UML tools, but there are also envi-
ronments like Adonis [10] where model elements are identified by name.

10 Harald Störrle

the activity “lend medium” is probably intended to be a behavioral refine-
ment of the use case, the class “Medium” is likely to play the role in both of
them, and the state “lent” of “Medium” would typically be the result of this
process. Analyzing the grammatical relationships between these names will
require linguistic processing not readily available in many environments.

3.1.5 Concrete Syntax Apart from some experimental programming lan-
guages and environments, source code is presented to the user as a string
of characters. There are whitespaces and indentations, and editors may add
outlining and syntax highlighting, but by and large, source code remains se-
quential text. Models, on the other hand, have a dual structure. Internally,
they are a set of linked meta model class instances. Externally, they are
a set of diagrams where secondary notation and particularly layout play a
pivotal role in understanding and using diagrams as used in visual modeling
languages (cf. [7,37,27]). These two representations may be diverging and
modelers may not be equally aware of both structures all of the time.

3.2 Adapting a clone classification

There are several different ways of defining code clones. The following list
enumerates the most commonly cited clone type classification (see e. g. [14,
26,39]).

Type I: Exact clone A duplicate that is identical except at most changes
to whitespaces and comments.

Type II: Renamed clone A duplicate with consistent changes to identi-
fiers of variables, types, or functions.

Type III: Parameterized clone A duplicate allowing arbitrary changes,
additions or removals of parts. This type of clone is also called “near-miss
clone”.

Type IV: Semantic clone A duplicate in content only that may be due
to code copying, convergent development, or other processes.

This distinction is based both on the algorithms and data structures that
are being used to detect clones, and thus to the degree of recall and pre-
cision one can expect: [14] lists textual, token, and metric comparison, but
also comparison of abstract syntax trees and program dependency graphs.
Obviously, rigid token and string comparison will only ever find identical
copies, while finding syntactically equal copies requires creating an abstract
syntax tree (AST) or parse tree. Finding modified copies requires similarity
metrics and heuristics, including tree-similarity measures.

For model clone detection, this classification of clone types and detec-
tion methods can not be transferred directly, due to the differences between
source code and models we have discussed in the previous Section. For Type
I clones, models do not have whitespaces, but they do have secondary no-
tation. Like whitespaces, secondary notation has no influence on the formal

Towards Clone Detection in UML Domain Models 11

semantics, but they are very important for the pargmatic semantics. Simi-
larly, comments are highly relevant modeling concepts: changes to comments
should be counted as changes to the model. Finally, in source code, rela-
tionships between elements are established by names while the relationships
between model elements are established by internal identifiers. An identical
deep copy of a model element (i.e., including all its parts) will thus auto-
matically create consistent changes in identifiers, that is, a Type II clone.
So model clones of the first type should disregard consistent changes to
identifiers.

With regards to Type II clones, observe that names in programs serve
two purposes: they are identifiers as discussed above, and they are names
with a meaning for humans. In models, however, names only serve the second
purpose, and in domain models, bearing the “right” name is the quintessen-
tial purpose of many elements. So we interpret this clone type as one with
only minor changes to a model fragment, including evolutionary modifica-
tions of names, such as correcting a typing error, or adding a word. For
instance, an Activity named “lease Book” might copied, renamed to “lease
DVD”, and slightly changed accordingly. The model clone equivalent of
Type III clones, on the other hand, have no such restrictions and afford
arbitrary changes. The characterization of Type IV clones can be used for
model clones more or less unchanged.

We thus propose the following classification for model clones. In order
to highlight the analogy to the established classification yet avoid confusion
between code clone types and model clones, we rename the categories from
to A–D.

Type A: Exact model clone A duplicate that is identical apart from
secondary notation (e. g., layout), and internal identifiers.

Type B: Modified model clone A duplicate with evolutionary changes
to the element names, attributes, and parts.

Type C: Renamed model clone A duplicate with substantial changes
allowing arbitrary changes, additions or removals of parts.

Type D: Semantic model clone A duplicate in content only that may
be due to model fragment copying, methodological or language con-
straints, convergent development, or other processes.

Orthogonal to the classification in terms of the kind and degree of
changes, model clones can also be classified in other ways. Secondary clones
are pairs of elements e, e′ that satisfy the definition of a clone, but are each
a part of larger model fragments E and E′, respectively, which in turn are
clones of each other. For instance, if a class is copied and not changed, all
the class properties are secondary clones. Of course, it is preferential to find
the primary clone rather than a secondary clone (that is, the class), or a
(complete) set of secondary clones, but often, finding one element out of a
fragment is enough to direct the attention of a human inspector to a certain
model fragment and resolve the issue manually.

12 Harald Störrle

We will use the term loophole clone for duplicates introduced through
language loopholes as discussed above in Section 2.3. Finally, for the pur-
poses of this paper, we will also distinguish between natural and seeded
clones, that is, clones that have unintentionally been created by a modeler,
and clones that have been planted on purpose.

3.3 Towards a better definition of model clones

As we have argued before, UML models can be regarded as sets of instances
of meta model elements which may have links to other such elements. So,
a first attempt to define model clones might simply be: any model element
e that bears a high degree of similarity to some other model element e′.
However, there are many model elements without names or other unique
features, that occur in high numbers, and that are necessarily very similar:
those duplicates we have called loophole clones (see Section 2.3). For in-
stance, the multiplicities of structural features occur over and over again in
class models and are identical up to their object identifier. So, any similarity
measure should give a high degree of similarity to them, but intuitively, we
would not expect them to be clones. So, detecting true clones will have to
avoid showing these to modelers, as these clone candidates will be considered
as false positives.

On the other hand, model elements like Class or Activity should not be
considered in isolation, as individual model elements. Rather, they are the
roots of (containment) trees of elements. For instance, a Class owns a set
of Properties and Operations, which may own Types, and Parameters in
turn. So, as a second step, we might define model clones as pairs of model
fragments, where a model fragment is a (complete) tree of model elements.
This leads to the following definition.

Definition 1 (Model Fragment, Model Clone) A model fragment is
a set of model elements that is closed under the containment-relationship. A
model clone is a pair of model fragments such that there is a a high degree
of similarity between the fragments.

We will further elaborate and formalize this definition below. Observe,
that this definition includes clones of all sizes, from individual elements
via larger sets of model elements like a Class to large Packages containing
entire subsystems. For an example of how an individual Class really is a set
of model elements, consider the Class named “Book” in Fig. 1. Assuming
that the two diagram elements named “Class” in the diagram refer to the
same model element (with identifier 8) and describe it completely, “Book”
has seven parts: the attributes “title”, “rec age”, “state”, “signature”, and
“type”, two association ends from the associations with identifiers 28 and 92,
and the generalization to “Medium”. Other typical parts of Classes include
Operations, Stereotypes, and possibly even complete behavioral models such
as a StateMachine.

Towards Clone Detection in UML Domain Models 13

Our definition is similar in spirit to the one proposed by Pham et al.,
who define “a fragment f is a set of edges of G [a graph (V,E, T) of vertices,
edges, and a type labeling] which forms a weakly connected subgraph. Two
fragments are called a clone pair if they are sufficiently similar with respect
to a given similarity measure” (see [23]). However, this definition ignores
the tree-substructures induced by the containment-relationship. This may
be a valid assumption for Matlab/Simulink flow models, but is too simplistic
for the far more generic and rich modeling language UML, where the many
small subtrees are really quite characteristic, as we shall see in Section 4.

While our definition reduces the problems discussed above, it does not
completely solve them: Firstly, some loophole duplicates are bigger than
some true clones. For instance, ActivityPartitions often contain many more
elements than Properties, or even Classes. Secondly, there are still many
small similar fragments that would not intuitively be considered clones.
It seems, though, that while these are too small to be harmful in practice,
their presence considerably hampers automatic clone detection by introduc-
ing many false positives (one could call this “noise”), which degrades both
performance and detection quality. Thirdly, there are intentional duplicates
(cf. Section 2.4) that should not be identified as clones either. But in order
to exclude these duplicates from a definition of model clone, we would have
to define a model clone as a pair of harmful, unintentional duplicate model
fragments exhibiting a large degree of similarity. Obviously, this definition
is not helpful in operationalizing clone detection.

The rest of this paper can be seen as testing and validating our definition,
determining good measures for similarity that are fast enough to compute,
and finding a practical threshold for them.

4 Similarity of model elements

Any attempt to defining clones revolves around similarity, and so we will
try to propose useful heuristics for defining similarity. In an approach to
systematically derive such heuristics based on facts, we analyze the structure
of existing models. To the best of our knowledge, this is a novel approach:
no other empirical study of model structures seems to be published.

In the modeling and formal methods communities, it is generally ac-
cepted that models (like UML models) are basically graphs, that is, the
model information is primarily found in the connections, and all connec-
tions are equal. Much of the existing work in these fields incorporates this
intuition, including previous approaches to model clone detection (cf. [19,
15,5,20], and particularly Pham et al.’s model clone definition in [23] quoted
above) which have focused on such kinds of models where this assumption
more or less holds, and, consequently, they are using algorithms based on
graph structure matching. However, this assumption is simplistic (at least
for UML models), as we will show in this section by studying the detail
structure of models. This will lead us to four heuristics for model element
similarity.

14 Harald Störrle

Table 1 Size measures of the sample models used in this Section.

Model No. of Model Meta XMI File No. of
Students Elements Classes [MB] Diagrams

A 5 6,881 93 2.62 74

B 3 4,828 66 1.97 58

C 5 5,379 81 3.13 68

D 3 2,860 59 1.19 34

Total 16 18,893 115 9.12 234

Avg. 4 4,723 78.8 2.28 59

Table 2 Empirical basis for the concrete measurements in this article. AD: Ac-
tivity Diagram, AsD: Assembly Diagram (“Composite Structure”), CD: Class D.,
DpD: Deployment D., IAD: Interaction D., OD : Object D., SMD: State Machine
D., UCD: Use Case D.

Model Number of Diagrams by Type Total
AD CD UCD SMD IAD OD AsD DpD

A 36 3 27 5 2 0 0 1 74

B 33 3 19 1 0 1 0 1 58

C 27 3 23 1 7 6 1 0 68

D 3 3 26 2 0 0 0 0 34

Total 99 12 95 9 9 7 1 2 234

Avg. 25 3 24 2 2 2 0 1 59

4.1 Model Sample

The work reported in this paper is originally based on the author’s experi-
ence from two very large scale industrial projects. Due to legal and technical
constraints, however, we could not use the models from these case studies
directly for this paper. Instead, we used models created by 16 Master’s as
part of their assignment in a requirements engineering class taught by the
author in 2010. The students worked together in four concurrent groups
of three to five participants, each spending around 100 working hours on
devising and creating the models. Altogether, every model represents ap-
proximately 10 to 12 person weeks of modeling effort. All students followed
the same methodology which was taught in that course, and which was al-
most the same methodology that was used in the industrial projects that
lead to our initial observations of the phenomenon of model clones. The
students used MagicDraw 16.0, employing a large portion of UML 2.2 (see
[21]). Table 2 shows some size measures of these models.

Most of the interaction diagrams were in fact sequence diagrams. The
number of model elements is without tool specific elements, profile elements,
and diagram data; together, these items typically account for around 80%
of the data in a model (i. e., equally the model size in terms of XML nodes
and the characters in an XMI file).

Towards Clone Detection in UML Domain Models 15

Table 3 At first sight, the graph representation of a UML domain model has just
the structure intuitively expected from a graph: lightweight nodes, the information
is mainly captured by the links.

Model Model Element avg. Element Attributes per
Elements Links degree Attributes Model Element

A 6,881 7,844 2.28 6,786 0.99

B 4,828 6,162 2.55 4,975 1.03

C 5,379 6,318 2.35 4,618 0.86

D 2,860 2,072 1.45 1,962 0.69

Total 19,948 22,396 - - -

Avg. 4,987 5,599 2.16 4,585 0.89

Median - - - - -

4.2 Analysis of the model graph structure

Table 3 shows some measurements that we have taken on our samples. First
of all, observe that the number of nodes, node attributes, and links are all
roughly in the same order of magnitude. If we consider only samples A
through C, there are between 12 and 22% more links than there are nodes
and between 3% more and 17% less attributes than there are nodes. Also,
the average degree of nodes is 2.39, and the average number of attributes
per node is 0.96. That is to say, on average in samples A to C, model
elements have more than two times as many connections than attributes.
Model D deviates a little more with less links and attributes (-38%, and
-46%, respectively), and smaller degree and average number of attributes.
Also, the model in sample D is much smaller than the other models. All
in all, model D contains much less information than samples A to C, but
that could well be a consequence of the unfinished state of the model (the
students ran into a deadline).

So, at first sight, it would seem that the sample models are indeed graph
structured in an intuitive sense: a more or less homogeneous fish-net like
structure with rather simple nodes, the semantic information being captured
by the links. This would imply that the overall characteristic of a model is
dominated by the graph structure, and so, would make a point in favor of
using graph-algorithms for matching models and for detecting clones, as
previous approaches have in fact done.

However, closer inspection reveals that the vast majority of the links
are containment relationships, i. e., they belong to the UML meta attribute
ownedMember (85% on average, see Table 4). Only 15% of the links between
nodes contribute to a proper graph structure while 85% are spanning many
small trees that are mainly used to store semantic attributes of the one
node that is the tree root. When adjusting the average degree to cover only
non-aggregation links, it becomes clear that the graph structure is much
weaker, that is, the relative weight of the node attributes is much higher
than that of the non-containment links (approximately 5 times as much).

16 Harald Störrle

Table 4 The graph structure of models is mainly an aggregation tree, plus some
additional connections.

Model Percentage of True Number of Tree
aggregations links roots leaves partitions depth

A 87.7 964 1 4,809 1 11

B 78.3 1335 1 3,162 1 9

C 85.1 940 1 3,882 1 9

D 87.1 268 1 1,269 1 6

Avg. 84.6 877 1 3281 1 8.8

When focusing exclusively on the containment links, on the other hand,
we find that in all samples the model is exactly one tree, that is, there
is exactly one root and there are no nodes that are not connected to the
root. A vast majority of all model elements are leaves (between 65 and 72%
for samples A to C, and 63% on average). This fact further confirms our
earlier observation that models do not have the graph structure intuitively
expected.

To sum it up, UML models are very wide and flat trees. Removing the
overall package structure imposed on the sample models by the method-
ology used, the models are large sets of flat trees. Apart from the con-
tainment structure, model elements have few links to other elements, but
many attributes. What is more, the majority of the tree nodes cannot ex-
ist in isolation (e. g., Multiplicities). That is, they are really just part of a
data structure organizing information that belongs to the respective tree’s
root node, which further increases the relative weight of node attributes
over inter-node links as a carrier of semantic information. In other words,
UML models are loosely connected fat nodes rather than densely connected
graphs of lightweight nodes. The meaning of the sample models is in the
nodes more than it is in the graph structure, and there is no reason to as-
sume this observation does not generalize to all UML models. Therefore,
we design our similarity heuristics as node similarities rather than graph
structure similarities, as previous work has done.

4.3 Similarity heuristics based on element names

Probably the most prominent feature of any model element is its name.
Thus, the simplest possible approach for defining similarity among model
elements is to use the similarity of their names. This is basically also what
a human could do with the model browse and search facilities offered by
typical modeling tools today.

Thus we define the first the heuristic NAME as the similarity of the
names of two elements, according to the edit distance (aka. Levenshtein
distance), or whether adding wildcards at word boundaries or fixing stan-
dard typing mistakes (swapped words in sentences, CamelCaps vs. separate

Towards Clone Detection in UML Domain Models 17

Table 5 Even in domain models, many model elements are not named.

Model Model Elements Named instances per meta class
total named % min avg median max

A 6,881 4,961 72.1 1 72,10 26 403

B 4,828 1,364 28.3 1 28,25 27 456

C 5,379 3,351 62.3 1 62,30 12 346

D 2,860 1,741 60.9 1 60,87 11 204

Avg. 18,893 2,854.25 55.88 – – – 352.25

words) makes the two names match. Model elements that usually do not
carry names are excluded from the comparison (i. e., they have similarity
0).

This is justified, because most elements that matter to modelers are
named, but not all model elements in a UML model (usually) carry names.
In fact, only a little more than half the model elements in our sample are
actually named (56% on average, see the first columns of Table 5 for details).

There is a remarkable difference in this aspect between model B and the
other models, as model B has less than a third of named elements, while the
other models have almost two thirds of named elements. The reason for this
variance is that model B has a higher proportion of activity models than the
others, and that the activity models in model B are also larger than in the
other models. Since activity models often have particularly many unnamed
model elements such as ControlFlows and ControlNodes, this skews the
overall ratio. In practice, the number of activities relative to other models
is typically even higher than in model B; and in the field we have observed
up to 95% of all elements in a model being unnamed.

In Table 5, we show the numbers of named instances of meta classes. The
average and maximum numbers of named model elements per type are only
a small fraction of the total number of model elements. Clearly, comparing
sets of less than 30 elements is no computational challenge, and comparing
less than 500 elements is still very much feasible even for advanced similarity
computations.

Looking at the average, median, and maximum value of the numbers of
named instances per meta class in Table 5, it is clear that there are many
meta classes with a small population and a few bigger ones. This observation
is reinforced by the concept frequency profiles shown in Fig. 8. There, the
sample models are presented by the frequency of model elements by meta
class normalized to the absolute model size in terms of model elements. We
included both named and unnamed model elements.

As one can clearly see, the profiles have both obvious similarities and
differences: sample models A and C show very similar profiles, and sample
model B has the same spikes, though less markedly. Sample model D, on
the other hand, shows a different profile altogether.

18 Harald Störrle

0

50

100

150

200

250

300

350

400

450

A

0

50

100

150

200

250

300

350

400

450

500

B

0

50

100

150

200

250

300

350

400

C

0

50

100

150

200

250

D

Fig. 8 A rough comparison of the concept frequency profiles of the four sample
models: the meta class instances occurring in the model sorted alphabetically
(x-axis, same as in Fig. 9) vs. the normalized frequency (y-axis).

In Fig. 9, we show the same concept frequency profiles, but now overlaid
and coded with different colors. We have also added the names of the meta
classes whose frequencies are recorded. The frequencies have been normal-
ized again to the model sizes. The purpose of this juxtaposition is to show
the individual coincidences and differences in the profile, both with respect
to meta classes and with respect to the absolute (normalized) magnitude.
As one can see, the largest spikes are caused by ControlFlow and Object-
Flow, followed by MemberEnd, AssociationEnd, and Action. The next small
group of spikes belongs to Association, Property, and Partition (called Ac-
tivityPartition in the UML meta model). Only then come model elements
like Class, and Activity; UseCases for instance are so rare in comparison
that they do not show up in these measurements. Observe also, that e. g.
in sample model A, there are more than five times as many Control- and
ObjectFlows than Properties, and again more than five times as many Prop-
erties than Classes. This hardly matches the intuition most modelers have
about domain models.

This observation also means that a large number of the model elements
can be ignored in a name-based similarity. So we can hope to achieve good
detection rates quickly even in very large models. The big drawback of the
heuristic NAME is, of course, that it is sensitive to renaming—and that
is obviously one of the most frequent operations in domain modeling. Also,
other attributes of a model element are not taken into account. However,
most named elements exist in a context of other elements that are also
named. Instead of comparing just the element name, all the names of its
neighbors could be considered, too. This leads to the heuristic NAME-2

Towards Clone Detection in UML Domain Models 19

stateMachine

state

slot

signalEvent

signal

sendSignalEvent

region

receiveSignalEvent

receiveOperationEvent

realizingClassifier

protocolStateMachine

property

profile

primitiveType

port

partition

parameter

package

outputPin

operation

objectFlow

navigableOwnedEnd

model

message

memberEnd

interactionConstraint

interaction

instanceSpecification

inputPin

extensionPoint

expansionRegion

expansionNode

event

enumerationLiteral

enumeration

dataType

dataStoreNode

controlFlow

constraint

connectorEnd

connector

component

comment

collaboration

class

centralBufferNode

callEvent

associationEnd

association

artifact

actor

activity

action

A
B
C
D

Fig. 9 An overlay of the concept frequency profiles of the four sample models
showing the concepts (y-axis) vs. the normalized frequency (y-axis). The overlay
clearly shows where the different sample have peaks for the same concepts, and
how large the differences are.

20 Harald Störrle

that uses not just names, but all kinds of attributes to compare elements,
taking the names of linked elements and parts as the values of the link-
attributes. We expect this heuristic to perform better than NAME at com-
parable runtime. Both of these heuristics have the drawback, however, that
they put a lot of emphasis on the names of model elements which may work
for named elements, but not for others, and it might be too focused on
just one attribute. Therefore we also consider a class of heuristics that are
somewhat broader, and also have a track record.

4.4 Similarity heuristics based on an element index

One of the most successful family of similarity heuristics known from code
clone analysis is based on indexing functions.5 This approach has demon-
strated several attractive features for code clone detection: it yields good
detection rates, it is equally suitable for all clone types, and it is yet one of
the fastest approaches. So it might be a good heuristic in the detection of
model clones, too.

A function h computes suitable indices of two model elements e1 and e2
which can then be compared yielding the similarity. We define the similarity

heuristic INDEX by |h(e1)−h(e2)|h(e1)+h(e2)
, where h is realized as simply adding up all

the characters of the representations of e1 and e2, respectively. All links are
included in this computation, i. e., if the representation includes references
to connected and contained elements, the respective element identifiers are
simply taken as character strings.

Frequently, there are many such references, and thus, it is critical how
long these identifiers are. For instance, the internal identifiers used in Mag-
icDraw, for instance, consist of 40 characters, 8 of which identify the tool
version. In our implementation, we use a very compact representation of
models (see Section 5 below for details), where internal identifiers are usu-
ally small integers, i. e., they are typically between one and four characters
long. Table 6 shows some measurements on our samples, relating the num-
bers of model elements and identifiers, and the number of characters used
in identifiers, names, and the complete model. In our sample, around 8% of
all characters of a file belong to an identifier. In contrast, only just over 2%
of all characters are used for the names of model elements.

So, if long internal identifiers are used, “identical” copies of fragments
may differ in up to 8% of the characters used to represent the copies. Thus,
an index-based similarity function might not work well for XMI models, but
it might work a lot better if shorter identifiers are used.

However, if internal identifiers should wreck index-based similarity, it
might help to replace internal identifiers with the names of the elements re-

5 This approach is often called hash-function-based, but that name is mislead-
ing, of course, for the objective of a hash function is to distribute all inputs evenly
over the key set while for clone detection, it is crucial that |h(e1)− h(e2)| is more
or less proportional to the similarity of e1 and e2.

Towards Clone Detection in UML Domain Models 21

Table 6 Number of identifiers and names, absolute numbers of characters in iden-
tifiers and names, and percentages of identifier and name characters as compared
to overall file characters. ME abbreviates Model Elements.

Number of Characters in
Model Identifiers ME IDs [%] Names [%]

A 14,725 6.881 58,9000 7.8 14,796 2.51

B 10,990 4.828 43,9600 7.7 11,356 2.58

C 11,697 5.379 46,7880 9.3 9,056 1.94

D 3,877 2.860 15,5080 7.2 3,489 2.25

Avg. 10,322.3 4.987 41,289 8.0 9,674.3 2.32

ferred to. So we define the heuristic INDEX-2 as INDEX before, but before
h is applied, all identifiers are replaced by the names of the elements their
refer to (or their type, should there be no name). This similarity function
should perform better than INDEX, both on models with long and short
identifiers. At the same time, it should also be less sensitive to renaming
than NAME.

5 Detecting model clones

5.1 Formal structures of models

We have concluded Section 4.2 with the observation that UML models are
not densely connected graphs of lightweight nodes, but rather loosely con-
nected graphs of heavy nodes, and we have used this observation for propos-
ing similarity heuristics based on nodes rather than on networks.

However, models can still be considered as graphs in the mathematical
sense. In order to arrive at a precise and operational definition of model
clone, we now use this fact to formally define models, model fragments, and
thus, model clones. We start with defining a special kind of labeled graph
suitable for representing models.

Definition 2 (Model Graph) A Model Graph is a 10-tuple of the form
〈N, T , type, E, source, link ,A, slot ,V, val〉 such that

– N and E are finite sets of nodes and edges, respectively, with E∩N = ∅;
– T is a domain of types representing the modeling concepts (i.e., the meta

classes of the modeling language);
– type : N → T is a function equipping every node with a type;
– two functions source : E → N and link : E → N defining the origin

and target of each edge;
– A is a domain of attribute names representing the modeling concepts’

properties (i.e., the meta attributes of the modeling language);
– slot : N → 2A is a function associating every node with a set of attribute

names; the same name is used to associate attribute names to edges, i.
e. slot : E → A;

22 Harald Störrle

– V is a domain of values representing the properties’ values (i.e., the
values stored in the slots realizing meta attributes); and

– val : N × A ⇀ V is a partial function associating a value to every
combination of nodes n and attributes a defined on that node, i.e., a ∈
slot(n).

The notation gx is used to access the component x of a graph g, i.e., gE
denotes the edges of g. It is also required that ∀e, e′ ∈ E : (slot(e) = slot(e′)∧
source(e) = source(e′)) =⇒ e = e′ for all model graphs.

Model graphs may represent both complete models and model fragments.
The names slot and link in this definition are motivated by the correspond-
ing UML terminology. The codomain of link is not sufficient to completely
represent relationships whose target is an ordered set of elements, but using
link : E → N∗ instead would make the definitions overly complex without
significant benefit.6 T , A, and V are determined by the underlying meta
model and are included to make the definition self-contained so as to be
applicable to instances of arbitrary meta models, e. g., different versions of
UML and, eventually, languages other than UML.

Fig. 10 shows visually, how a model fragment is translated (we will re-
fer to the first two bars only for the time being). The first step is not a
translation as such, but simply a different view on the same entity: inside
any UML-compliant tool, the model query in Fig. 10 (top left) is already
represented in a data structure very similar to the structure outlined by
the object diagram shown in Fig. 10 (top right). Such an object structure
directly corresponds to a graph in the mathematical sense, as shown in
Fig. 10 (middle). Here, we depict nodes as black filled circles with white
numbers denoting their identity. Nodes are always tagged by a type, shown
in hexagons. Nodes may have any number of slots represented as rectan-
gles with rounded corners attached to them which show the current value
and the name of the corresponding attribute or operation (a Feature, in
UML terminology). Nodes may also be connected by labeled edges which
we represent as directed arcs. Observe that the layout and the identifiers
used in Fig. 10 are consistent to support tracking the elements. We can now
elaborate and make more precise our definition of model clones (Definition
1, p. 12).

Definition 3 (Model Fragment) Given a model graph M, a Model
Fragment F of M is a sub-graph of M , i. e., NF ⊆ NM , EF ⊆ NM ,

6 There are in fact many occurrences of meta attributes and associations with
multiplicity greater than 1 and constraint ordered in the UML meta model.
However, in the samples we have studied in the research leading to this arti-
cle, the only UML meta attributes that ever needs a multiplicity greater than 1
is ownedMember, or one of its specializations like Association.ownedEnd, Inter-
face.ownedAttribute, or Operation.ownedParameter. For these link types, order-
ing is irrelevant.

Towards Clone Detection in UML Domain Models 23

G
ra

ph
 R

ep
re

se
nt

ati
on

Pr
ol

og
 E

nc
od

in
g

M
od

el
 in

 C
AS

E
To

ol CD Information Model

OD (M2) Information Model

Model Graph Information Model

Medium

Book

Lease
\due: date

4

name-‘Medium’,
isAbstract-true

general

11 :Generalization

75 :Class

name = “Lease“
isAbstract = false

92 :Association

ownedMember 77 :Property

multiplicity=*

4 :Class

name = “Medium“
isAbstract = true

74 :PropertyownedMember

8 :Class
name = “Book“

multiplicity=1

ownedMember

ownedMember

75

name-‘Lease’,
isAbstract-false

Class 77

multiplicity-*

Property

92Association

74 Propertyowned
Member

owned
Member

owned
Member multiplicity-1

ownedMember

Class

11
owned
MemberGeneralization

owned
Member

76 :Property

name = “due“
type = date
isDerived = true

owned
Member

*

1

76

name-‘due’
type-‘date’
isDerived=true

Property
owned

Member

8

name-‘Book’
isAbstract-false

Class

general

:-module('Information Model', [me/2]).
 me(class-75, [name-'Lease', ownedMember-ids([76,77])]).
 me(property-76, [name-due, type-date, isDerived-true]).
 me(property-77, [multiplicity-*]).
 me(association-92, [ownedMember-ids([77,74])].
 me(class-4, [name-'Medium', isAbstract-true, ownedMember-ids([74])]).
 me(property-74, [multiplicity-1]).
 me(class-8, [name-'Book', ownedMember-ids([11])]).
 me(generalization-11, [general-id(4)]).

76

75

4

8
11

77
92

74

ID

C

A-V

Legend

graph edge, i.e. reference to a
model element

type tag of graph node, i.e.
meta class C

value tag, i.e. meta attribtute
A with value V

graph node, i.e. model element
with identifier ID

attachment of tag to graph node

Fig. 10 The transformation of a model (top left), its tool-internal data struc-
ture representation as defined by the UML standard (top right), a conceptual
representation as a labeled graph (middle), and finally the resulting Prolog code
(bottom). Note that layout and identifiers are consistent to support tracing. The
Prolog code has been simplified by removing tool-specific information like version,
loaded libraries and stereotypes, and information about the model (UML version,
view type, and so on). The identifiers are the same as in Fig. 1.

24 Harald Störrle

and so on, and F is a model graph in itself according to Definition 1. We
also require that

linkM [{e ∈ EF | slot(e) = ownedMember}] ⊆ EF ,

i. e., F is closed under the containment relationship. We use the abbrevia-
tion f [X] to stand for {f(x) |x ∈ X}.

As we have explained in Section 2 above, there is an element of subjective
interpretation in determining which duplicate fragments actually are or are
not clones. For a human clone detector, it is most important to get most of
the true positives first without a high number of false positives. Since this is
a situation quite comparable to web search, we define a clone only relative
to a threshold, thus yielding a ranking of clone candidates.

Definition 4 (Binding, Similarity, t-clone) Given a model graph M, a
threshold t ∈ [0..1], and two model fragments o and c of M representing an
original and a clone. A Binding β between o and c is a bijective relation β ⊆
oN × cN among the nodes in the fragments o and c. We say the Similarity
sim of a binding β is

sim(β) =
∑

〈e1,e2〉∈β

σ(e1, e2)

for an element-based similarity function σ, that is, the sum of all the element
similarities in a fragment. We say that c is a t-clone of o, if and only if β
is a binding between c and o and σβ ≥ t.

Definitions 4 supersedes Definition 1.

5.2 A clone detection algorithm

Based on the definition of model graph, we may now define a clone detection
algorithm (see Algorithm 1 below). Observe that it is parametric in the
definition of similarity between two model elements: any of the four various
similarity heuristics defined above may be inserted for σ. This way, it is
easier to study and compare the alternative notions of similarity on our
way towards an optimal clone detection algorithm.

5.3 Implementation

In order to evaluate the algorithm and the heuristics, we have implemented
the MQlone tool (pronounced “m clone”). It is based on earlier work on
model matching and querying models (see [30,32,33,38,36]), and reuses
parts of our MQ tool for model querying, which also explains the name.
MQlone transforms XMI files from many contemporary UML CASE tools like
MagicDraw, transforms them into Prolog programs as described in Fig. 10,

Towards Clone Detection in UML Domain Models 25

Algorithm 1: Clone detection algorithm outline

Input: a model graph M , a threshold t, a set RC of relevant concepts
Output: a partial function from pairs of nodes of M to similarity values

find:
Candidates ← {Ct | t ∈ RC}, where
Ct = {〈e1, e2〉 | e1 6= e2 ∧ type(e1) = t = type(e2)};

compare:
Result ← ∅;
while Ct ∈ Candidates do

forall e ∈ Ct do
Ee ← transitive closure of e under ownedMember;

end
forall e1 ∈ Ct , e2 ∈ Ct , e1 6= e2 do

Bindings ← all bindings between Ee1 and Ee2 ;
smax ← 0;
forall β ∈ Bindings do

smax ← max{smax , sim(β)};
end
Result ← Result ∪ 〈e1, e2, smax 〉;

end
Candidates ← Candidates − Ct;

end

select:
Result ← {〈e1, e2, s〉 ∈ Result | s ≥ t};
sort Result by decreasing s;

return Result ;

detects clones in them, and presents the clone candidates back to the user.
MQlone consists of a plug-in to the MagicDraw UML CASE tool written in
Java and an algorithmic core implemented in SWI Prolog [41].

We look at models as knowledge bases, and we represent individual
model elements as individual facts in a knowledge base implemented in
Prolog. There are several advantages of using Prolog to encode models and
model operations. First, any Prolog system is already a powerful and easy to
use repository, allowing for a tight integration of data and functions. This,
in turn, gives rise to rather efficient implementations and avoids a separate
data base (or re-parsing model files every time). Second, the declarative pro-
gramming style is very natural for expressing rules describing the similarity
or difference of model elements. Third, the tight integration between data
and function, the high level of abstraction of Prolog, and the interactive
execution make it very easy to quickly change the system. Thus, we may
experiment with different settings, rules, and algorithms—which is essen-
tial to us, since this whole effort is explorative by nature, and interactive
operation and rapid turnaround are key requirements.

26 Harald Störrle

MagicDrawTM

MQlone

Java-Prolog-
Bridge





select


visualize



create

export

transform
match
 - propose match
 - compute similarity
 - weigh
 - select



Clones

[highlighted]
views

Model Base

Analysis Result

Source Model

Prolog

XMI

Fig. 11 Implementation of MQlone; the numbers in black circles refer to steps in
the main data flow, see Section 5.3 for more details.

The transform of UML models into Prolog fact bases is a very straight-
forward process, see Fig. 10 (bottom): model graph nodes become facts of
the me predicate, and model graph edges are represented by references to
other nodes. If there are several edges in a model graph that start from
the same node and that carry the same slot name, they are joined into one
attribute in the implementation (see the list-valued ownedMember slot of
class-1 in see Fig. 10, bottom).

The actual implementation of matching and similarity deviates a little
from the specification shown in Algorithm 1, mainly for optimization pur-
poses, e. g., for exploiting Prolog’s extremely fast pattern matching capabil-
ities to avoid enumerating pairs of elements with different and/or unsuitable
types. Further optimizations like ordering the constraints reduce the search
space further.

Towards Clone Detection in UML Domain Models 27

Fig. 11 presents an overview over the MQlone system and the data and
control flow for clone detection. The main steps are labeled by numbers in
black circles.












 First, a model is created manually or by generation or transformation.

 Second, the model is exported to the standardized XMI file format using
the built-in facilities of the MagicDraw UML CASE tools.








 The XMI file is transformed into Prolog code. Note, that this is a purely
syntactical transformation. No information is added or removed.









 Next, the clone detection as such happens. It is based on model matching
and similarity, as described above. The result is a prioritized list of pairs
of model elements together with their similarity, and the reliability of
this result.



 Then, the most promising clone candidates are selected, e. g., taking a
quantile or a fixed number of candidates.







 Finally, the result is visualized as a table.

A more convenient visualization is currently being developed.

6 Evaluation

6.1 Method

In order to evaluate the quality of our approach, we ran our implementation
on one of our sample models of the Library Management System (LMS).
First, we selected the sample model that was the biggest and had received
the best grade (model A in the following tables), expecting it to have the
smallest number of natural clones. Indeed, a manual inspection of the re-
maining model did not find any natural model clones. Then we manually
seeded the sample model with clones. To do so, we randomly picked three
typical examples of each of the meta classes UseCase, Class, and Activity in
the sample model. We copied them (and their contained model elements),
changed them to emulate Type A, B, and C model clones, and marked
both the nine original model fragments and the nine copied (and modified)
model fragments manually as originals and clones, respectively. We did this
by attaching comments to the elements, that is, the elements as such were
not changed since the connection between an element and its comments is
established by a link in the comment.

This resulted in 145 model elements being marked as clones and 155
being marked as originals, out of a total of 7181 model elements in the model
after seeding, i. e., approx. 4.2% of the model elements were marked. The
annotation allowed automatic computation of precision and recall. Table 7
shows the result of the seeding process. The sizes of the clones are given
as the number of model elements in the duplicate fragment (i.e., nodes of
the containment tree owned by the main element), and the number of filled

28 Harald Störrle

Table 7 Manual seeding of nine duplicate fragments resulted in 145 model el-
ements being marked as clones. ME standas for Model elements, A stands for
number of element attributes.

Clone Size (ME/A) Changes
Type UseCase Class Activity Name Features

A 7/4 9/68 41/239 no changes no changes

B 3/12 8/68 22/125 small changes small changes

C 1/6 8/72 46/259 different name add/delete

Sum 11/22 25/208 109/623

meta attributes in the fragment. The last two columns show what changes
were applied to copies.

Initially, we ran the clone detection algorithm with a selection quantile
of 50%, thus yielding a mixture of seeded and natural clone candidates. In
order to assess the natural clone candidates, we manually reviewed them,
and annotated those as “natural” that qualified as clones according to our
definition; almost all of them were loophole clones.

6.2 Measurements

As we have explained in Section 3 above, there is an element of subjective
interpretation in determining which duplicate fragments actually are or are
not clones. Manually following up on a clone candidate proposed by a tool
is an expensive process. So, from a practical point of view, a modeler is not
so much interested in eventually obtaining the complete list of all clones. It
is much more helpful to quickly get a short list of very good matches. Then
the modeler can assess them, and repeat the process until he feels satisfied
with the quality, or running out of resources. So, the objective with the
algorithm is not to maximize true positives (i. e., recall), but to minimize
false positive (i. e., precision). Since the sample model very likely did not
contain natural clones prior to seeding, we compute recall and precision only
based on the seeded clones.

We repeated the clone detection, varying the heuristics used, and record-
ing the detection rates. The measurements were conducted on a subnote-
book (Centrino Duo, 1.2GHz, 2GB RAM). The results are shown in Table 8.

The four blocks of Table 8 show results for the four heuristics NAME,
INDEX, INDEX-2, and NAME-2. Each of them is presented for the first
10, 20, and 30 results. For each of these treatments, the first block of lines
shows the precision and recall rates as percentages, and then false and true
positives. A false positive is an element detected as a clone which is not
actually a clone. A Loophole clone is a clone that is generated through a
language loophole as discussed in Section 2.3.

The next block of lines deals with the different kinds of seeded clones.
Recall that we seeded three groups of clones with an increasing amount of
changes, where Type A clones are identical to the originals (modulo internal

Towards Clone Detection in UML Domain Models 29

Table 8 Measurements of clone detection quality: the number of results is set
by the user; black and white boxes in rows Type A-C clone indicate detected and
missed seeded clones, respectively.

Heuristic NAME NAME-2

Results 10 20 30 10 20 30

Precision 60% 50% 67% 100% 80% 67%

Recall 0% 0% 0% 67% 67% 67%

False Positive 4 10 10 0 4 10

True Positives 6 10 20 10 16 20

Loophole Clones 6 10 20 5 9 10

Type A Clones ��� ��� ��� ��� ��� ���
Type B Clones ��� ��� ��� ��� ��� ���
Type C Clones ��� ��� ��� ��� ��� ���

Run Time 5.4s 5.7s 5.5s 5.7s 5.6s 5.7s

Heuristic INDEX INDEX-2

Results 10 20 30 10 20 30

Precision 50% 40% 33% 80% 55% 50%

Recall 44% 56% 56% 44% 56% 56%

False Positive 5 12 20 2 9 15

True Positives 5 8 10 8 11 15

Loophole Clones 0 1 3 1 4 5

Type A Clones ��� ��� ��� ��� ��� ���
Type B Clones ��� ��� ��� ��� ��� ���
Type C Clones ��� ��� ��� ��� ��� ���

Run Time 5.5s 5.5s 5.7s 5.6s 5.7s 5.7s

identifiers), Type B clones have been somewhat changed, including the name
and structure, and Type C clones have been substantially changed including
replacing the name, and deleting/adding substantial parts of the structure.
In each group, we seeded a UseCase, a Class, and an Activity with all their
transitive parts. Detected and missed seeded clone are shown as black and
white boxes in the table, respectively. So, for instance, ��� means that
both the seeded UseCase and Activity clones were not detected, but the
seeded Class clone was correctly identified.

The last line presents the run time. We here show the average of three
subsequent runs to cancel out any effects due to garbage collection and
similar factors.

6.3 Detection quality

The heuristic NAME (top left) has an acceptable precision, but a poor
recall: it fails to discover any of the seeded clones. All the clones it does
discover are loophole clones, i.e., they are implied by the modeling language.
For all practical purposes, thus, this heuristic is useless.

30 Harald Störrle

The heuristic INDEX (bottom left) performs worse in terms of precision,
but detects a fair number of seeded clones (recall of seeded clones is around
50%). It detects only few loophole clones (≤ 10%), and has only slightly
elevated numbers of false positives among the first 20 hits as compared to
the heuristic NAME.

The heuristic INDEX-2 (bottom right) exhibits the same recall, but an
increased precision as compared to INDEX. It detects less false positives (in
particular when looking at the first 10 matches), but finds slightly elevated
numbers of loophole clones.

The heuristic NAME-2 (top right) performs much better than all the
other heuristics in terms of false positives and precision. It also outperforms
the other heuristics in terms of recall. The number of detected loophole
clones is larger than for the INDEX heuristic, but slightly smaller than
that of the NAME heuristic.

As expected, Type C clones are less often discovered than Type A and
B clones, although the heuristic INDEX discovers one Type C clone, while
the heuristic NAME-2 does not. Also, small clones are less often discov-
ered than larger clones: recall that the triplets of black and white boxes
represent UseCase, Class, and Activity clones, in that order, and we have
seen before, that the instances of these three meta classes have a similar
ordering with respect to their average size (see again Table 7). Thus it is no
surprise, that INDEX and INDEX-2 discover none of the UseCase clones,
but they do discover a Type C Class clone. The Type C Activity clones,
on the other hand, are not discovered. We attribute this also to the large
size of Activities: Since the element indices simply add up, differences are
bound to cancel each other out with increasing numbers of elements. Thus,
index based similarities turn into size metrics for large model fragments. It
is also remarkable, that NAME-2 does discovers both Type A and Type
B UseCase clones among the first ten hits, but not Type A and Type B
Activity clones. We attribute this, again, to the larger size of Activities as
compared to Classes and UseCases: the relative weight of names decreases
with an increasing number of other, unnamed elements.

Our expectation that INDEX-2 would perform better than INDEX was
confirmed, but to a much smaller extent than we expected. The hypothe-
sis that index based similarities would be less sensitive to renaming than
NAME-2 was indeed confirmed: both INDEX and INDEX-2 detected
some Type C clones (i. e., duplicates with new names), while NAME-2 did
not detect these clones. Conversely, the index based similarities did not de-
tect the smallest clones while NAME-2 did. This is due to the large number
of small elements that are rather similar to these small clones.

6.4 Detection runtime

In source code clone detection, runtime is a crucial aspect of the usefulness
of an algorithm. Since models, too, can reach quite substantial sizes in

Towards Clone Detection in UML Domain Models 31

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

0

1000

2000

3000

4000

5000

6000

7000

8000

D B C A

ME

named ME

Runtime [s]

Model Size
[Model Elements]

Runtime
[s]

Model

Fig. 12 Runtime measurements for the heuristic NAME-2 on unseeded models
(cf. Section 4).

practice, we have also studied the runtime of our algorithm. In the detection
quality experiment described in the previous section, the heuristic NAME-2
performed best in terms of quality, while being only slightly worse in terms
of runtime. Thus, we focused on the heuristic NAME-2 and disregard the
runtime behavior of the other heuristics.

We have measured the detection duration of our algorithm on the orig-
inal models studied above (see Section 4). Since they have both different
sizes and structures, they can both inform us about the relationship between
size and runtime, and help assess the influence of model structure on the
runtime. Fig. 12 summarizes our measurements.

Observe that the time measured for model A is smaller than the time
measured in the previous experiment (see Table 8). This is because the
seeded version of model A is about 25% larger than the unseeded version
which we used here.

6.5 Interpretation of findings

We have studied four sample UML domain models and found some surpris-
ing results. While the representation of models we use might be understood
as a graph in the mathematical sense, thus putting our approach in the same
box as graph based approaches of the past, such an interpretation does not
adequately reflect the vast number of types of nodes, and the large number
of complex attributes that they may have. According to our sample, mod-
els are not graphs with lightweight nodes and a dense connection structure
where the model information is mainly in the edges. Rather, UML domain
models can be seen as sets of heavy nodes that carry the majority of the
information, plus a few links. Also, many model elements are not named,

32 Harald Störrle

and tool-specific details of the internal representation (e. g., of identifiers)
influence the suitability of clone detection algorithms significantly.

As we have outlined before, the simplest possible approach is to look for
name similarities, like we did with the heuristics NAME. This is also what
a human could do with search facilities offered by typical modeling tools,
so this heuristic also serves as a kind of null hypothesis. Clearly, all other
heuristics perform significantly better than this, so we can claim that the
approach offered by this article is better than the naive approach to clone
detection. It is also much more cost-effective than manual inspection, and it
is easily repeatable as a regression check after model evolution. As Table 8
shows, elaborating on the similarity heuristics to encompass more informa-
tion for each comparison seems to improve the detection quality (compare
NAME with NAME-2, and INDEX with INDEX-2, respectively).

Our expectation that INDEX-2 would perform better than INDEX
was confirmed, but to a much smaller extent. However, the expectation that
INDEX-2 would perform better than NAME-2 was not confirmed. Using
shorter strings as identifiers considerably reduces the noise of an index-
based clone detection algorithm, but generally speaking, index-based clone
detection does not perform as well for model clones as it is reported to do
for source code clones. Probably the most remarkable observation is the
detrimental effect the model fragment size seems to have on the detection
quality. This definitely requires further investigation.

All the heuristics proposed are fast enough for practical purposes on
medium sized models. The runtime seems to grow approximately at the
same rate as the input (roughly 1s per 1000 model elements), but more ex-
periments with larger models and models developed with different method-
ologies will be needed to derive more reliable conclusions.

6.6 Threats to validity

We have argued that code clones are actually occurring in practical settings,
and that they are potentially damaging. However, most of our argument is
only based on plausibility and subjective observations. Also, since this is
a new area of research, there is not yet a large body of literature on this
topic we can refer to support our point of view. Roy & Cordy described
this as: “more empirical studies with large scale industrial and open source
software systems are required.” (cf. [26, p. 87]). However, there have been
some practical studies on the role of code and model clones, and also this
paper is founded on studying a set of realistic models. But there is definitely
a need for establishing beyond doubt that model clones exist as a substantial
modeling problem in practice. This could be achieved only through large
scale field studies.

The generalizability of the findings reported in this paper is limited by
the number and the nature of the models used to develop and validate our
approach. The model sample was not created in an industrial but in an

Towards Clone Detection in UML Domain Models 33

academic environment. However, judging by personal experience, students
are quite comparable to domain modelers in industry with respect to the
levels of expertise and motivation. Also, the work reported in this paper
is originally based on the author’s experience from two very large scale
industrial modeling projects.7 That is to say, while we cannot offer evidence
from proper case studies to support our claims, we have at least anecdotal
evidence from massive industrial projects (see [34] with a few details on one
of them).

Also, the sample may be considered too small and too homogeneous: we
use only four models, and they are all created with the same methodology,
thus exhibiting structural similarities. Larger sample bases will have to be
studied before we can be more confident about the applicability in other
contexts than MSc-level education.8 Obviously, it is very difficult to get
access to industrial models, a problem that has hampered progress in the
field for a long time.

Finally, one might object to seeding clones manually as we have done.
Our main objective was to introduce a wide variety of clones rather than
introducing a realistic and representative profile of clones: as we have said
before, there are no published results available that would inform us on
such profiles. Since the primary purpose of the work reported in this article
is to develop algorithms, however, we think manual seeding with constant
frequencies across all categories is not just acceptable, but actually essential.

For future work involving “natural” clones, keep in mind that despite
our present efforts, there is no universally accepted operational definition of
code clone, let alone model clone, and ultimately, it is up to human judgment
what is and is not a (model) clone. Thus, manually finding a comprehensive
and universally accepted list of all clones in a model of realistic dimensions
is not just excessively costly and time consuming: it is effectively impossible
to do for arbitrary models.

7 Related work

The core concept underlying our approach is that of matching models, model
fragments, and model elements. In version control, matching is typically
computed between two subsequent versions of the same model. So, one can
expect the two models to be roughly the same size. Also, they are usually
created using the same model and share the vast majority of the model
element identifiers. That means, if two elements from the different models
have the same identifier, they can be considered to be identical, even if
their meta class has changed (e. g., refining Action to CallActivityAction,

7 Due to legal and technical constraints, however, we could not use the models
from these case studies directly for this paper.

8 Observe, however, that most existing work in this area lacks empirical vali-
dation altogether; those that do report on empirical results at all employ similar
sample sizes (e. g., [9] have n = 5).

34 Harald Störrle

or Class to Component). That means that the matching is extremely easy,
and so, similarity computation can focus on individual model elements, a
very cheap process. On the other hand, the use case version control needs
very fast matching computations to be practical.

In model querying, matching is typically computed between one large
model (the model base) and one very small model (the query). Model iden-
tifiers can not be used for matching, of course, but by cleverly choosing the
first element of our query submodel which we try to match with the model
base will speed up the process enormously. For ad-hoc querying (that is, an
interactive process), all that really matters is the latency between delivering
two subsequent query results. Since a user is in this loop, response times in
the low second range are acceptable. Also, recall is not really an issue, as
long as the high-precision results are presented to the user first. When using
queries as heads of transformations, however, the overall duration for com-
puting all matches is relevant, and too big recall may trigger transformation
rules too often, with very detrimental effects.

In model clone detection, matching has rather different constraints,
though. If a clone is potentially any submodel, theoretically, all of expo-
nentially many submodels of a model have to be matched with the whole
model. Also, identifiers can not be used to support matching, for even a
value copy of a model element will receive a new object identifier. So, al-
ready matching of elements needs to compute a similarity measure between
them. Obviously, this is a very expensive strategy. It is not clear which of
the several classes of algorithms known for code clone detection might be
the best for model clone detection of UML models.

As we have mentioned before, there is a large body of work on code
clones: [14] provides a survey of the field, and [3] gives a very recent overview
of the state of the art. Clones in models, in contrast, have received much
less attention. Only in the last few years have there been investigations into
this topic. They can broadly be divided into four classes. First, there are
approaches to find clones in Matlab/Simulink flow graph models: CloneDe-
tective [6,5] and ModelCD [23,20], both of which use graph isomorphy algo-
rithms. This is adequate for Matlab/Simulink models, but not for the much
richer and much more diverse model structures found in UML.

Second, there are approaches that explore model matching for version
control of models. Alanen and Porres [1] study set-theory-inspired operators
on models. Kolovos et al. on the other hand have proposed the Epsilon Merge
Language (EML, [13]) using a identifier-based matching process, while Kel-
ter et al. [12] uses the Similarity Flooding algorithm in their SiDiff tool.
All of these approaches, however, are very much locked onto the UML (in
particular, class models) and its technical infrastructure (i. e., MOF/XMI),
which restricts its applicability. Also, in version control one can reasonably
expect most model elements to have the same unchanged internal identifier
in two versions that are to be merged. Thus it is easy to find a high-quality
mapping to seed a matching algorithm. In clone detection, however, the
problem is to find the mapping in the first place.

Towards Clone Detection in UML Domain Models 35

Many graph- and tree-matching algorithms (see [24] for a survey). For
instance, Similarity Flooding [16] is a fixed point computation that may take
many iterations. Given the large number and size of potential mappings
between duplicate fragments, it is unlikely that such algorithms will be
applicable to clone detection. To use the words of the inventors of Similarity
Flooding: “This approach [Similarity Flooding] is feasible for small schemas,
but it does not scale to models with tens of thousands of concepts.” (cf. [17,
p. 3]). The heuristics we propose, however, appear to scale linearly.

Third, there have been approaches that have explored graphs and graph
grammars as the underlying data structure of all types of models (cf.
the PROGRESS system, [18,28]). These approaches have developed graph
matching algorithms that could be used for clone detection, but, to our
best knowledge, have not been studied under this angle and are currently
not pursued any more. Also, as we have clearly shown in Section 4, UML
domain models possess a structure that is a graph technically, but bears
little similarity with the common intuition of a graph. Rather than rela-
tively dense and homogeneous networks of light weight nodes, UML domain
models are trees of heavy-weight nodes with some additional non-tree con-
nections. Generic graph algorithms do not exploit this fact and thus miss a
valuable opportunity.

Fourth, there are various approaches dealing with matching of individual
UML model types such as interactions [15,25] or state charts [19]. In contrast
to the approaches mentioned above, this article deals with all types of UML
models, including class models and flow-like models such as activities.

The most important difference between our approach and the related
work, however, is the fact that our approach is targeted to and works on
domain models, that is, artifacts created in the analysis or requirements
elicitation phase. In contrast, all the approaches mentioned above work on
design or implementation models, that is, models that are oriented to the
underlying target architecture and technology, or that are the implementa-
tion (in the case of the Matlab/Simulink models). While we can not prove
it at this point, personal experience suggests that the structure and charac-
teristics of domain models differ greatly from models at later stages in the
development process.

8 Discussion

8.1 Summary

Code clones are a substantial problem for code based development, and
model clones are increasingly becoming a problem for model based devel-
opment. However, currently, there is not much published work on model
clones, and next to no work on UML model clones.9 Therefore, this arti-
cle started out analyzing actual model clones in UML domain models, and

9 An earlier stage of the work reported in this article has been published as [35],
but the present article has little in common apart from the basic ideas.

36 Harald Störrle

proposed a terminological framework, a pragmatic definition, and a clone
classification schema adapted from work on source code clones. We devel-
oped a clone detection algorithm and model element similarity heuristics
based on a detailed examination of actual model structures. Given that
many algorithms are proposed based on intuitions or analytical arguments
alone, we think this is a particularly sound approach that increases the va-
lidity of our approach. We also provided formal definitions of models, model
fragments, and model clones, and implemented our approach in the MQlone

tool (pronounce as “m clone”). The detection quality and runtime of our al-
gorithm and heuristics were validated experimentally. Finally, we surveyed
the related work, and discussed our observations.

8.2 Scope and limitations of approach

All models used in this study are UML 2.2 domain models that were devel-
oped using the MagicDraw modeling tool and applying the same method-
ology as part of student’s classwork. The approach applies to all kinds of
UML models while similar approaches cover only a single model type (e. g.,
UML State machines, or Matlab/Simulink models). Our approach is likely
to generalize to (with decreasing confidence): other versions of UML, other
modeling levels (i.e., design and implementation models), other modeling
methodologies, and models of industrial origin. Probably the greatest limi-
tation to our work is the lack of validation with truly representative clones
and truly representative models. Such models, however, are extremely dif-
ficult to obtain with the intent to publish.

Our approach may not work as well for MOF-based modeling languages
other than UML, and very likely, it will be unusable for modeling languages
from completely different conceptual realms (such as ARIS, ADONIS, or
IDEF), since the MOF/XMI representation is exploited in many places.
The approach works well for small and medium sized models, but no tests
have been run on large and very large models, partly since such models are
difficult to obtain, partly because as of now, our implementation is only a
prototype and so any performance results would not be very reliable and
conclusive anyway.

This work was originally intended only as a research vehicle allowing
us to experiment with different algorithms and parameters. And in fact,
our approach is less than perfect in terms of precision and recall, but that
seems to be the state of the art: “CloneDetective represents the state-of-the-
art [...but the most] important limitations are its inaccuracy and low degree
of completeness in detection” (see [23, p. 276]).

8.3 Outlook

Future work will focus on four areas. First, the proposed definition of model
clones will have to be discussed and refined. Second, MQlone can be tuned

Towards Clone Detection in UML Domain Models 37

by a large number of parameter settings that have not yet been fully ex-
plored. Third, we want to explore more algorithms, e. g., extending the
compared fragments, specializing the algorithm and heuristics for different
clone and/or model element types, stacking different algorithms, or using
semantic name matching. Also, the experiments so far showed several ways
of improving the existing approach, e. g., by removing unavoidable clones.
Furthermore, preliminary results not reported in this article indicate that
weighing similarity results by the size of the compared model fragments
may substantially improve the accuracy of clone recognition.

The most challenging task, however, will be to collect a body of rep-
resentative and comprehensive UML models with clones, and study clone
structures occurring in practices, as these structures determine the quality
of any model clone detection approach. At this point, we have eleven do-
main models from four case studies created by students, with a predictable
growth of eight to twelve models and one to three case studies every winter
term. Also, we are acquiring models from other colleagues. We would like
to take this opportunity to invite the reader to forward any domain models
they might have to the author for further study.

References

1. Alanen, M., and Porres, I. Difference and Union of Models. In Proc.
6th Intl. Conf. Unified Modeling Language (�UML�’03) (2003), P. Stevens,
J. Whittle, and G. Booch, Eds., vol. 2863 of LNCS, Springer Verlag, pp. 2–17.

2. Booch, G., Brown, A., Iyengar, S., Rumbaugh, J., and Selic, B. An
MDA Manifesto. MDA Journal 5 (May 2004), 2–9. available from bptrends.

com/publicationfiles/05-04COLIBMManifesto-Frankel-3.pdf.
3. Cordy, J. R., Inoue, K., Koschke, R., and Jarzabek, S., Eds. Proc. 4th

Intl. Ws. Software Clones (IWSC) (2010), ACM. also appeared as 29(2) of
ACM SIGSOFT SE Notes.

4. Costagliola, G., and Ko, A., Eds. Proc. IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’11) (2011), IEEE Com-
puter Society. to appear.

5. Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M., and
Schaetz, B. Model Clone Detection in Practice. In Cordy et al. [3], pp. 57–
64. also appeared as 29(2) of ACM SIGSOFT SE Notes.

6. Deissenboeck, F., Hummel, B., Schaetz, B., Wagner, S., Girard, J.,
and Teuchert, S. Clone Detection in Automotive Model-Based Develop-
ment. In Proc. IEEE 30th Intl. Conf. Software Engineering (ICSE) (2008),
IEEE Computer Society, pp. 603–612.

7. Fish, A., and Störrle, H. Visual qualities of the Unified Modeling Lan-
guage: Deficiencies and Improvements. In Proc. IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’07) (2007), P. Cox and
J. Hosking, Eds., IEEE Computer Society, pp. 41–49.

8. Proc. IEEE 31st Intl. Conf. Software Engineering (ICSE). In Proc. IEEE 31st
Intl. Conf. Software Engineering (ICSE) (2009), IEEE Computer Society.

9. Juergens, E., Deissenboeck, F., Hummel, B., and Wagner, S. Do code
clones matter? In ICSE’09 [8], pp. 485–495.

38 Harald Störrle

10. Junginger, S., Kühn, H., Strobl, R., and Karagiannis, D. Ein
Geschäftsprozessmanagement- Werkzeug der nächsten Generation - ADONIS:
Konzeption und Anwendungen. Wirtschaftsinformatik 42, 5 (2000), 392–401.

11. Kapser, C., Anderson, P., Godfrey, M., Koschke, R., Rieger, M.,
Van Rysselberghe, F., and Weißgerber, P. Subjectivity in clone judg-
ment: Can we ever agree? Tech. Rep. 06301, Internationales Begegnungs-
und Forschungszentrum für Informatik Schloß Dagstuhl, 2007. Final report
on seminar 06301 “Duplication, Redundancy, and Similarity in Software”,
available at http://drops.dagstuhl.de/opus/volltexte/2007/970.

12. Kelter, U., Wehren, J., and Niere, J. A Generic Difference Algorithm for
UML Models. In Proc. Natl. Germ. Conf. Software-Engineering 2005 (SE’05)
(2005), K. Pohl, Ed., no. P-64 in Lecture Notes in Informatics, Gesellschaft
für Informatik e.V. pp. 105–116.

13. Kolovos, D. S., Paige, R. F., and Polack, F. A. C. Merging mod-
els with the Epsilon Merging Language (EML). In 9th Intl. Conf. Model
Driven Engineering Languages and Systems (MoDELS’09) (2006), O. Nier-
strasz, j. Whittle, D. Harel, and G. Reggio, Eds., no. 4199 in LNCS, Springer
Verlag, pp. 215–229.

14. Koschke, R. Survey of research on software clones. In Duplication, Redun-
dancy, and Similarity in Software (2006), A. Walenstein, R. Koschke, and
E. Merlo, Eds., no. 06301 in Dagstuhl Seminar Proceedings, Intl. Conf. and
Research Center for Computer Science, Dagstuhl Castle.

15. Liu, H., Ma, Z., Zhang, L., and Shao, W. Detecting duplications in
sequence diagrams based on suffix trees. In 13th Asia Pacific Software Engi-
neering Conf. (APSEC) (2006), IEEE CS, pp. 269–276.

16. Melnik, S., Garcia-Molina, H., and Rahm, E. Similarity flooding: A
versatile graph matching algorithm and its application to schema matching.
In Proc. 18th Intl. Conf. Data Engineering (ICDE’02) (2002), IEEE, pp. 117–
128.

17. Mork, P., and Bernstein, P. A. Adapting a Generic Match Algorithm to
Align Ontologies of Human Anatomy. In Proc. 20th Intl. Conf. Data Engi-
neering (ICDE’04) (2004), IEEE Computer Society, pp. 787–791.

18. Nagl, M., and Schürr, A. A Specification Environment for Graph Gram-
mars. In Proc. 4th Intl. Ws. Graph-Grammars and Their Application to Com-
puter Science (1991), H. Ehrig and G. Kreowski, H.and Rozenberg, Eds.,
vol. 532 of LNCS, Springer Verlag, pp. 599–609.

19. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., and Zave,
P. Matching and merging of statecharts specifications. In Proc. 29th Intl.
Conf. Software Engineering (ICSE) (2007), IEEE Computer Society, IEEE
Computer Society, pp. 54–64.

20. Nguyen, H., Nguyen, T., Pham, N., Al-Kofahi, J., and Nguyen, T.
Accurate and efficient structural characteristic feature extraction for clone
detection. In Proc. 12th Intl. Conf. Fundamental Approaches to Software
Engineering (FASE) (2009), Springer, pp. 440–455.

21. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, V2.2
(formal/2009-02-02). Tech. rep., Object Management Group, Feb. 2009.

22. MDA Guide Version 1.0.1. Tech. rep., Object Management Group, June 2003.
available at www.omg.org/mda, document number omg/2003-06-01.

23. Pham, N. H., Nguyen, H. A., Nguyen, T. T., Al-Kofahi, J. M., and
Nguyen, T. N. Complete and accurate clone detection in graph-based mod-
els. In ICSE’09 [8], pp. 276–286.

Towards Clone Detection in UML Domain Models 39

24. Rahm, E., and Bernstein, P. A. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal 10 (2001), 334–350.

25. Ren, S., Rui, K., and Butler, G. Refactoring the scenario specification: A
message sequence chart approach. In 9th Intl. Conf. Object-Oriented Infor-
mation Systems (2003), no. 2817 in LNCS, Springer, pp. 294–298.

26. Roy, C. K., and Cordy, J. R. A Survey on Software Clone Detection. Tech.
Rep. TR 541, Queen’s University, School of Computing, 2007.

27. Schrepfer, M., Wolf, J., Mendling, J., and Reijers, H. A. The impact
of secondary notation on process model understanding. In The Practice of
Enterprise Modeling (PoEM) (2009), A. Persson and J. Stirna, Eds., Springer
Verlag, pp. 161–175.

28. Schürr, A. Introduction to PROGRESS and an Attribute Graph Grammar
Based Specification Language. In Proc. 15th Intl. Ws. Graph-Theoretic Con-
cepts in Computer Science (WG’89) (1989), M. Nagl, Ed., vol. 411 of LNCS,
Springer Verlag, pp. 151–165.

29. Selic, B. The pragmatics of Model-Driven Development. IEEE Software 20,
5 (Sept./Oct. 2003), 19–25.

30. Störrle, H. A PROLOG-based Approach to Representing and Querying
UML Models. In Intl. Ws. Visual Languages and Logic (VLL’07) (2007),
P. Cox, A. Fish, and J. Howse, Eds., vol. 274 of CEUR-WS, CEUR, pp. 71–
84.

31. Störrle, H. Large Scale Modeling Efforts: A Survey on Challenges and
Best Practices. In Proc. IASTED Intl. Conf. Software Engineering (IASTED-
SE’07) (2007), W. Hasselbring, Ed., Acta Press, pp. 382–389.

32. Störrle, H. A logical model query interface. In Intl. Ws. Visual Languages
and Logic (VLL’09) (2009), P. Cox, A. Fish, and J. Howse, Eds., vol. 510,
CEUR, pp. 18–36.

33. Störrle, H. VMQL: A Generic Visual Model Query Language. In
Proc. IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC’09) (2009), M. Erwig, R. DeLine, and M. Minas, Eds., IEEE
Computer Society, pp. 199–206.

34. Störrle, H. Structuring very large domain models: experiences from indus-
trial MDSD projects. In Wasowski et al. [40], pp. 49–54.

35. Störrle, H. Towards clone detection in UML domain models. In Wasowski
et al. [40], pp. 285–293.

36. Störrle, H. Expressing Model Constraints Visually with VMQL. In
Costagliola and Ko [4]. to appear.

37. Störrle, H. On the Impact of Layout Quality to Unterstanding UML Dia-
grams. In Costagliola and Ko [4]. to appear.

38. Störrle, H. VMQL: A Visual Language for Ad-Hoc Model Querying. J.
Visual Languages and Computing 22, 1 (Feb. 2011).

39. Tiarks, R., Koschke, R., and Falke, R. An Assessment of Type-3 Clones
as Detected by State-of-the-Art Tools. In Intl. Ws. Source Code Analysis and
Manipulation (2009), IEEE Computer Society, pp. 67–76.

40. Wasowski, A., Truscan, D., and Kuzniarz, L., Eds. Proc. 8th Nordic Ws.
Model Driven Engineering (NW-MODE10). Appeared as Proc. 4th Eur. Conf.
Sw. Architecture (ECSA’10): Companion Volume, I. Gorton, C.E. Cuesta,
M.A. Babar (eds.) (2010), ACM.

41. Wielemaker, J. SWI Prolog 5.6.46 Reference Manual. Tech. rep., University
of Amsterdam, Dept. of Social Science Informatics, 2007. available at www.

swi-prolog.org.

