
Task-Driven Service Discovery and Selection
Kyriakos Kritikos

HIIS, ISTI-CNR
Via G. Moruzzi 1
56124 Pisa, Italy
+39 050 3153117

Kyriakos.Kritikos@isti.cnr.it

Fabio Paternò
HIIS, ISTI-CNR
Via G. Moruzzi 1
56124 Pisa, Italy

+ 39 050 3153066

Fabio.Paterno@isti.cnr.it

ABSTRACT
Services are becoming more and more widely used. When
designing interactive applications based on services one important
issue is how to identify those services most relevant for the
application functionalities. The proposed approach takes as input
a task model, which includes the user's view of the interactive
system, and an ontology capturing the application domain, and
automatically discovers a set of ordered service descriptions for
each system task of the model. The discovered descriptions can be
used in order to invoke a particular service operation that fulfils a
task’s required functionality. In this way, the whole application
functionality can be realized by a set of service operations without
writing a single line of code. As a result, the application
development time is significantly reduced and it is possible to
complete the development of interactive front-ends by integrating
our solution in existing model-based HCI approaches.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
User Interfaces, H.5.2 [Information Interfaces and
Presentation] User Interfaces – User-Centered Design, H.3.5
[Information Storage and Retrieval]: Online Information
Systems – Web-based Services

General Terms
Design, Human Factors, Algorithms.

Keywords
Service Front-Ends, Service Discovery, Interactive Service-Based
Application Design, Semantics

1. INTRODUCTION
Service-orientation is a design paradigm that is adopted in the
design of an increasingly great number of applications. The reason
for this wide adoption lies in the capabilities of services to be
composed into new added-value applications. In this way, a whole
application can be built from scratch or existing intra- or inter-
organizational applications can be integrated together in a
seamless and loosely-coupled way.

The main mechanisms for supporting service integration are the
service discovery and composition processes. The service
discovery process is realized by service discovery algorithms,

which take as input a user-provided service query formulated in a
service description and a set of service advertisements (i.e.
descriptions) stored in a service registry and produce as output a
categorization of the service advertisements based on their
matching degree with the service query. The most prominent
among the service discovery algorithms use a combination of
Information Retrieval (IR) and Semantic Web (SW) techniques in
order to increase the accuracy of the service discovery results.
The service composition process can be realized by various
approaches (see for example [5]).

By exploiting the most promising service discovery and
composition approaches, an interactive application can be
designed and built from scratch without writing a single line of
code. However, such an application needs to interact with the end-
user. A number of HCI approaches have been proposed [1,2,3,6,9]
that remedy this limitation by building service-based applications
with a UI customized according to the context-of-use, i.e. the end-
user’s capabilities, level of expertise, platform, and working
environment [13]. Such work often follows a Model-Driven
Approach (MDA) that starts with high-level descriptions (such as
task models) and ends with the generation of the final UI code.

Unfortunately, a big disadvantage of the above HCI approaches is
the limited automatic support. In particular, as far as functionality
is concerned, the designer has to manually select those services
that are able to fulfil the functionality of the application.

The above limitation can be overcome by using more formal
representations, which capture the semantics of terms, and
reasoning mechanisms that exploit them [13] in order to automate
the various activities that the designer has to perform. To this end,
in this short paper we propose an MDA approach, which is able to
automatically produce a semantically-enriched task model that
can be used to obtain interactive applications with some
application logic implemented through external services. In
particular, our approach starts with the task model of an
interactive application and transforms it into a semantic service
model by associating the task application objects to concepts of an
ontology of the associated application domain. Then this service
model is sent to a semantic service discovery engine as a set of
service queries in order to discover those services that are able to
fulfil the application’s functionality. Finally, the discovery results
are merged into the service model. Our approach provides
designers with useful automatic support. Moreover, the
application development time is reduced, as a part, if not all, of
the application’s functionality is realized through the use of
external services. In addition, our approach can be used in the
above HCI approaches as a particular automated component by
replacing those parts that usually require manual intervention to
fulfil the same goal. In this way, a value-added approach can be
obtained that takes into consideration both UI and functional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AVI ’10, May 25–29, 2010, Rome, Italy
Copyright © 2010 ACM 978-1-4503-0076-6/10/05… $10.00

89

aspects in order to effectively design an interactive and context-
of-use-aware service-based application.

2. INTERACTIVE APPLICATIONS
DESIGN
The design of an interactive application should take into account
both UI and functional aspects and the implications that one
aspect may have on the other one. In addition, this design should
be performed in parallel following an MDA approach.
Our envisioned MDA approach starts with a task model, which
provides important information, such as all the interactive and
system tasks of the application, and their temporal order and
interactions. As this information concerns both UI and
functionality aspects, which are separable, the task model is
transformed into two parts according to each aspect: an Abstract
User Interface (AUI) and a service model. Each part is processed
in parallel and then the final results are joined together into the
application code. While work for deriving the user interface has
been carried out (e.g. [12]) there are various open issues on how
to integrate existing Web services. In this work we present a
solution for the service discovery and selection part.
The usual path followed for the UI’s model-based design [4] is
that the AUI, an interaction modality independent model, is
transformed into a Concrete User Interface (CUI), which is
further transformed into the Final User Interface (FUI). The CUI
is a UI model dependent on the user’s platform and interaction
modality but independent of the UI implementation language,
while a FUI is an operational UI running on a particular
computing platform either by interpretation or by execution.
The design of the application’s functionality follows a similar
path but has an additional level of abstraction. At the topmost
level, the service model is an abstract representation of the
application’s functionality defined as an orchestration of services
and structured as a hierarchical tree having a similar formation to
the task model. In this hierarchical tree, the higher the level of the
node, the more composite is the service that it represents, while
service operations are represented by the nodes at the lowest level.
Each node is connected with its siblings by temporal operators in
order to preserve the temporal semantics of the initial task model.
A service model is transformed into an enriched service model
when it is populated by the service discovery engine with existing
services that realize the functionality of its nodes. The enriched
service model depends on the pragmatics of the services world.
This means that there may be a part of the application’s
functionality which is not realized by existing services. In
addition, there may be cases where changes to the UI must be
made. For instance, some additional application objects must be
attached to particular interaction tasks in the event that some input
of the associated services is missing.
The product of service concretization on an enriched service
model is a concrete service model. In particular, service
concretization is performed by selecting only one from the
candidate services of particular nodes of the enriched service
model according to functional and context-of-use requirements.
This selection must take place at the leaf nodes of the enriched
service model according to the pragmatics of the services world,
which indicate that it is impossible to discover services that
correspond to higher level nodes as this would require the
description of the temporal semantics of their operations. Indeed,
the majority of the service concretization approaches perform

service selection at the leaf/operation level, i.e. they select one
service from the candidates for each task of the service-based
application. A concrete service model is tightly coupled to the
corresponding CUI as they reference each other’s content and
they are finally transformed into the application code. Moreover,
similar to the case of the enriched service model, there may be
many candidate services for a particular node of an enriched
service model, but none of them satisfies the context-of-use
requirements. In this case, the functionality encapsulated by this
node should be implemented by the developer.
After all parallel reification transformations take place under the
designer’s supervision, the final outcome of the design process is
the application code, which is produced by the developer and
composed of three parts: the FUI, the implemented functionality
code, and the invocation code of the selected services.

3. PROPOSED APPROACH
We propose an approach that takes as input a CTT [11] task
model and a domain model, which are both provided by the
designer, and automatically produces an enriched service model.
The automation is carried out through the use of semantics. In
particular, the domain model is expressed with a domain ontology
and a term-to-ontology concept matching algorithm is used in
order to map a task’s application objects to concepts from the
ontology. In this way, the task description is transformed into a
semantic service query that is sent to a semantic service discovery
engine. The result is a set of semantic service descriptions that are
associated to the particular task. Thus, all the system tasks of a
task model are eventually associated to a set of services that can
be used to realize their functionality. Moreover, each task-
associated set of services is classified into various categories that
characterize the degree of match of the service with the task’s
functionality. In this way, the designer is assisted in selecting the
appropriate service that best suits its functional goals.
The proposed environment is named User-Centered Service
Discovery System and is composed of the following components:
Service Discovery Controller, Transformer, Term Matcher, and
Service Matchmaker. The Service Discovery Controller interacts
with the Model-Based Service Front-End Editor and coordinates
the tasks and I/O of the other components. In the following, we
analyze the functionality of the rest of the components.

3.1 Transformer
The Transformer is responsible for performing three main
transformations. The first transformation concerns the production
of the service model from the task model, while the second one
concerns the production of a set of service queries from the
service model. The third transformation is used to integrate the
service discovery results with the service model, thereby
producing the final, enriched service model.
During the Task-to-Service Model transformation, the given task
model is transformed into a service model by selecting only the
abstract and system tasks, while respecting the hierarchy and the
temporal semantics of the task model. This transformation is
meaningful if the following three assumptions hold: a) the
designer specifies at least the application objects manipulated by
each task; b) the application objects manipulated by interaction
tasks can be considered as input to the remaining system tasks, if
the latter tasks have objects with the same name; c) if a system
task has application objects that match those of previous system
tasks, then these objects can be considered as its input.

90

The transformation is performed in a Depth First Search (DFS)
fashion. Depending on the type of node visited for the first time,
the following cases are considered:

� A cognitive (user), interaction, or an abstract task node with
no children is removed. However, the application objects of
interaction tasks are stored in a Global Object List (GOL).

� Leaf-node system tasks are renamed as operation type tasks,
while higher-node system tasks are renamed as service. The
following checks are performed:

o If an object name matches a GOL object name,
then an input node is created, which is a copy of
the GOL object, and attached to the task node.

o If there are two copies of the same object, and this
object matches a GOL object, then the first copy
will be attached as an input node and the second as
an output node to the task node.

o If an object name is not matched, then an output
node is created, which is a copy of it, and is
attached to the task node.

� If a node is an abstract task with system task descendants,
then it is renamed as service.

Depending on a non-root node’s placement, the following two
cases has to be considered when removing it: a) if the node is the
left-most or rightmost child of its parent, then its right or left
temporal operator also has to be removed, respectively; b)
otherwise, we have to remove this node’s right operator and
connect its left sibling with its right one with its left operator.
During the revisiting of a node, the number of its children must be
checked. If this number equals to one, then this node is replaced
by its sole child. If this number is zero, then this node is removed.
The Service Model-to-Service Queries transformation produces a
service query for each operation task of the service model. Each
query is represented by a service description with one operation,
where the service is named after the parent and the operation is
named after this operation task, while the I/O parameters are
named after the input and output objects of this task.
During the Service Model and Discovery Results-to-Enriched
Service Model transformation, the service discovery results
produced for the generated service queries are merged into the
service model. In particular, for each operation task that
corresponds to a particular service query, its discovery results are
enclosed within its description. These results are represented by
the candidate services’ names, URIs, and full descriptions.

3.2 Term Matcher
The Term Matcher component is responsible for enriching the
generated service queries with the appropriate semantics by
mapping their I/O parameters to concepts of the domain ontology.
This mapping is performed by using the approach analyzed in [8].
According to this approach, the relatedness between an I/O
parameter and an ontology concept is calculated by computing the
name similarity of this parameter not only with this concept but
also with this concept’s related ontology terms (its super-
concepts). The name similarity between two terms is assessed by
the Google distance metric [7], which uses the relative frequency
with which the compared terms appear on the Web and is well-
founded on information distance and Kolgomorov complexity.

3.3 Service Matchmaker
The Service Matchmaker component is responsible for matching
the semantic service queries with the service advertisements
stored in its registry. For realizing this component’s functionality,
we have selected OWLS-MX [10], a prominent hybrid (i.e.
semantic and IR) service matchmaker written in Java. The
rationale of this selection is that this service matchmaker is able to
match semantic service descriptions, produces categorized service
discovery results with high accuracy, and provides a ranking of
the service advertisements in each result category based on the
textual IR similarity of the ranked service with the service query
in terms of their I/O parameters. In this way, the designer is
assisted in selecting the first proposed service of the best category
to realize the functionality of the corresponding system task.

4. CASE STUDY
In this section, the functionality of our proposed approach is
illustrated by presenting a case study, which is drawn from the
Web Shopping application domain and concerns the ordering of a
particular book by a user. The task model pertaining to this case
study is given in Figure 2. We start by analyzing the task model
and then we explain the various models produced by our system.

Figure 2. The task model analyzing the book ordering
application
The task model’s root abstract task, named “Book Ordering”,
represents the user’s main goal and is realized by sequentially
executing five tasks, namely: “Book Search”, “Book Selection”,
“Book Order”, “Email Confirmation”, and “Application Close”.
The “Book Search” task concerns the procedure of searching for a
book and is decomposed into three sequential tasks. The first task,
named “Send Book Query”, is an interaction task used to retrieve
the book search parameters of the user’s query (the author’s name
and the book’s title). The second task, named “Book Finder”, is a
system task that searches for the books (output) that match the
user query terms (input). The third task is a system task that
shows the details of the discovered books (input).
The “Book Selection” is an interaction task that interrupts the
“Book Search” task and enables the user to select the book that he
desires. This task is followed by the “Book Order” optional
abstract task. The latter task represents the steps followed for
ordering the selected book and is decomposed into two tasks,
namely “Send Order Details” and “Order Book”. The first task is
interactive and enables the user to provide the ordering details
(user name, tel. number, credit card number, and quantity). It is
followed by the second task that is a system task that performs the
actual book ordering (its output is the actual order).
The “Email Confirmation” is an abstract optional task concerning
the procedure of sending a confirmation email to the user’s mobile
phone. It is decomposed into two tasks, namely “Acquire Order
Info” and “Email Sender”. The first task is interactive and allows
the user to request for getting the order details, while the second
one is a system task that sends the order details (input) to the

91

user’s mobile phone. The “Application Close” is the last child of
the root “Book Ordering” task. It is interactive and enables the
user to close the interactive application.
The above task model is given as input to the Transformer
component of our system, which transforms it to a service model
that is depicted in Figure 3, where the service tasks are
represented with the abstract task symbol and the operation tasks
are represented with the system task symbol. As can be easily
seen, the interactive tasks of the task model have been removed,
while the abstract tasks with only one system task child have been
replaced by this child. In a next step, the Transformer produces a
set of four (OWL-S) service queries out of the service model.
These four queries are then given to the Term Matcher
component, which enriches them by mapping their I/O concepts to
the concepts of the domain ontology. Next, the enriched service
queries are sent to the Service Matchmaker, which matches them
one by one and produces their discovery results. Finally, all the
discovery results are merged into the service model by the
Transformer in order to produce the enriched service model.

Figure 3. The service model produced from the task model

Figure 4. The first enriched service query’s discovery results
The discovery results pertaining to the first enriched service query
are shown in Figure 4. As can be seen, two result categories have
been produced having their results sorted according to their
textual similarity with the user query (Figure 4, left side).

5. ACKNOWLEDGEMENTS
This work was carried out during the tenure of an ERCIM “Alain
Bensoussan” Fellowship Programme and was supported by the
ServFace (http://www.servface.eu) ICT EU project.

6. CONCLUSIONS
In this paper, we have presented a solution to the design of
interactive-based applications that takes into consideration both
UI and functional aspects. This approach automatically transforms
an initial task model to an enriched service model. The latter
model specifies the way services can be combined in order to
realize the functionality of the application. This model assists the
designer by indicating which system tasks are associated to
existing services and enables him to select the highest ranked
service from the sorted service candidate list that is provided

inside the model’s description for each system task. In this way,
from-scratch implementation of these tasks is not needed so the
application development time is reduced. In addition, this model
can be used by service composition engines to perform the service
concretization. Finally, the proposed system can contribute to the
development of interactive front-ends.

7. REFERENCES
[1] K. Arabshian, C. Dickmann, and H. Schulzrinne. Ontology-

Based Service Discovery Front-End Interface for GloServ. In
ESWC, volume 5554 of LNCS, pages 684–696, Heraklion,
Crete, Greece, 2009. Springer.

[2] K. Breiner, O. Maschino, D. Görlich, and G. Meixner.
Towards automatically interfacing application services
integrated into an automated, model-based user interface
generation process. In MDDAUI Workshop at IUI, Sanibel
Island, Florida, USA, 2009. Ceur.

[3] G. Broll, S. Siorpaes, M. Paolucci, E. Rukzio, J. Hamard, M.
Wagner, and A. Schmidt. Supporting Mobile Service
Interaction through Semantic Service Description Annotation
and Automatic Interface Generation. In Semantic Desktop
and Social Semantic Collaboration Workshop in ISWC,
Athens, GA, USA, 2006. ISSN 1613-0073.

[4] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, and J. Vanderdonckt. A Unifying Reference
Framework for multi-target user interfaces. Interacting with
Computers, 15(3):289–308, June 2003.

[5] F. Casati, S. Ilnicki, L.-j. Jin, V. Krishnamoorthy, and M.-C.
Shan. Adaptive and dynamic service composition in eflow.
In CAiSE, pages 13–31, Stockholm, Sweden, 2000. Springer-
Verlag.

[6] A. Celentano, S. Faralli, and F. Pittarello. The situation lens:
Looking into personal service composition. In ER
Workshops, pages 165–174, Barcelona, Spain, 2008.
Springer-Verlag.

[7] R. L. Cilibrasi and P. M. B. Vitanyi. The Google Similarity
Distance. IEEE Trans. on Knowl. and Data Eng., 19(3):370–
383, 2007.

[8] J. Gracia and E. Mena. Web-Based Measure of Semantic
Relatedness. In WISE, pages 136–150, Auckland, New
Zealand, 2008. Springer-Verlag.

[9] D. Khushraj and O. Lassila. Ontological Approach to
Generating Personalized User Interfaces for Web Services. In
ISWC, volume 3729 of LNCS, pages 916–927, Galway,
Ireland, 2005. Springer.

[10] M. Klusch, B. Fries, and K. Sycara. OWLS-MX: A hybrid
Semantic Web service matchmaker for OWL-S services.
Web Semantics: Science, Services and Agents on the World
Wide Web, 7(2):121 – 133, 2009.

[11] F. Paternò. Model-Based Design and Evaluation of
Interactive Applications. Springer-Verlag, 1999.

[12] F. Paternò, C. Santoro, and L. D. Spano. Support for
authoring service front-ends. In EICS, pages 85–90,
Pittsburgh, PA, USA, 2009. ACM.

[13] N. Partarakis, C. Doulgeraki, A. Leonidis, M. Antona, and C.
Stephanidis. User interface adaptation of web-based services
on the semantic web. In UAHCI, pages 711–719, San Diego,
CA, USA, 2009. Springer-Verlag.

92

