On-line Consistent Backup in Transactional File Systems

Lipika Deka and Gautam Barua
Department of Computer Science and Engineering
Indian Institute of Technology Guwahati
Guwabhati 781039, India
l.deka @iitg.ernet.in, gb @iitg.ernet.in

ABSTRACT

A consistent backup, preserving data integrity across files
in a file system, is of utmost importance for the purpose
of correctness and minimizing system downtime during the
process of data recovery. With the present day demand for
continuous access to data, backup has to be taken of an
active file system, putting the consistency of the backup
copy at risk.

We propose a scheme to take a consistent backup of an
active file system assuming that the file system supports
transactions. We take into consideration that file opera-
tions include, besides reading and writing of files, directory
operations, file descriptor operations and operations such as
append, truncate, etc. We are putting our scheme into a
formal framework to prove its correctness and we have de-
vised algorithms for implementing the scheme. We intend
to simulate the algorithms and run experiments to help tune
the algorithms.

Categories and Subject Descriptors
E.5 [Data]: Files—Backup/recovery

General Terms
Algorithm, Theory

Keywords

File Systems, Online Backup, Consistency, Transactions

1. INTRODUCTION

Backup is the process of creating a copy of the file system
data called the backup-copy to ensure against its acciden-
tal loss. Traditional backup approaches like tar([22]) and
dump([21]) perform on a unmounted, quiescent file system.
But, with file system sizes touching peta bytes, use of tra-
ditional backup mechanisms means hours or even days of
system downtime. A study in the year 2000 projected the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

APSys 2010, August 30, 2010, New Delhi, India.

Copyright 2010 ACM 978-1-4503-0195-4/10/08 ...$10.00.

cost of an hour’s computer downtime at $2.8 million for
just the energy industry sector, proving traditional backup
techniques to be infeasible in today’s 24/7 computing sce-
nario([24]). Such realizations lead industry and academia to
bring forth a host of on-line backup solutions which performs
backup on active file system.

Although existing on-line backup solutions promises high
system availability but not much has been mentioned on pre-
serving backup-copy data integrity . Arbitrarily taken on-
line backup may destroy data integrity in the backup-copy
as detailed in [18] and highlighted by the following example:
local user and group accounts on Linux are stored across
three files that need to be mutually consistent: /etc/passwd,
/etc/shadow, and /etc/group. Arbitrary interleaving of the
on-line backup program with the related updates to the
three files may lead the backup-copy to have an updated
version of /etc/group and versions of /etc/passwd and /etc/
shadow before they were updated([16]). Recovery from an
inconsistent backup-copy may sometime be more dangerous
than data loss, as such errors may go undetected. We focus
on on-line backup that preserves file system data integrity
and term it on-line consistent backup.

Our broad objective is to understand the problem and
solutions of on-line consistent backup through its theoretical
and practical treatment. The results are obtained assuming
a transactional file system as we need a mode for specifying
consistency information.

In this paper, we informally show that a consistent on-
line backup-copy can be created by employing a specialized
concurrency control mechanism called mutual serializabil-
1ty(MS). In this mechanism, a consistent backup copy is
obtained by ensuring that the backup program is separately
serializable with each user transaction simultaneously. In
the presence of many tried and tested protocols, the need
for a specialized concurrency control protocol arises because
the backup transaction reads the entire file system. The
use of standard concurrency control mechanisms may result
in the backup transaction getting aborted and this will ad-
versely impact performance and backup time.

The remainder of the paper is structured as follows: Sec-
tion 2 presents a review of the existing on-line backup solu-
tions in both the file system and database area, building up
the motivation behind our adopted system model. Section
3 presents our on-line consistent backup protocol. We then
introduce on-line backup algorithms and illustrate the im-
plementation issues and solutions arising from active modi-
fication of the file system name space while the backup copy
is being generated. We conclude in section 4 with a future

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1851276.1851285&domain=pdf&date_stamp=2010-08-30

road map by discussing the analytical, simulation and ex-
perimental approaches.

2. RELATED WORK

In order for the on-line backup process to read a consistent
state of the file system, there must be a way to specify the
consistency requirements of the applications running on the
file system. Current general purpose file system interfaces
provide weak semantics for specifying consistency require-
ments. Hence, we see existing solutions([2, 3, 4, 8, 9, 10, 11,
14]) only achieving weaker levels of backup-copy consistency
i.e. per file consistency or in very specific cases, application
level consistency.

For example, many modern day file systems([8, 9, 11]) and
disk storage subsystems(|2, 3|) come with a copy-on-write
based snapshot facility that creates a point-in-time, read-
only copy of the entire file system, which then acts as the
source for on-line backup([2, 4, 3, 8, 11]). Another approach
called the “split mirror” technique maintains a “mirror” of
the primary file system, which is periodically “split” to act as
the source for backup([2, 4, 14]). Snapshots are created and
mirrors are “split” after buffers are flushed and a file system
consistency check is conducted. But, file system consistency
check is not capable of ensuring consistency across files.

Application level consistency has been achieved using snap-
shot([9]) and mirroring([14]) solutions by including the ap-
plication to be a part of the snapshot copy or mirror “split-
ting” initiation process. Such methods are only possible
for advanced applications like databases, having well devel-
oped consistency specifying mechanisms like transactions.
A third approach termed continuous data protection main-
tains a backup of every change made to the data([4, 15]),
but again this only manages to achieve per file consistency.

Still other existing on-line file system backup solutions
operate by keeping track of open files and maintain consis-
tency of groups of files that are possibly logically related by
backing them up together. Such groups of files are iden-
tified by monitoring modification frequencies across open
files([23]). Resorting to heuristics and ad hoc concurrency
control mechanisms may result in a consistent backup copy
only by accident.

Recent times have seen a phenomenal growth of unstruc-
tured and semi-structured data i.e. data stored in files, with
files spread across machines, disks and directories and ac-
cessed concurrently by myriad of applications. With vital
data stored in files, among many other management issues,
there is an urgent need for efficient ways to specify and main-
tain the consistency of the data in the face of concurrent ac-
cesses. Recognizing this need, file systems supporting trans-
actions have been proposed by a number of researchers([13,
16, 19, 20]), and it is very likely that Transactional File Sys-
tems will become the default in systems. We have therefore
assumed that file systems support transactions as a mecha-
nism to ensure consistency of concurrent operations.

Now, given a file system with transactions, the natural
next step would be to borrow on-line database backup solu-
tions. Today’s Hot Backup([25]) solution and its ancestor,
the fuzzy dump([6]) facility, work by first backing up a "live"
database and then running the redo log offline on the backup
copy to establish its consistency. Similar approaches for file
systems will incur high performance cost(write latency) and
is space inefficient as each entry in the file system log would
have to record before and after images of possibly entire files.

38

Hence, we need to explore different approaches for achieving
an on-line consistent backup copy of a file system.

[17] suggested a scheme which considers the on-line backup
of a database by a global read operation (we refer to it as
a backup transaction) in the face of regular transactions ac-
tive on the database. This scheme ensures that the backup
transaction does not abort, and active transactions abort if
they do not follow certain consistency rules. The scheme
suggested was shown to be in error in [1] and the authors
suggested a modified form of the algorithm to ensure a con-
sistent backup. Every entity is coloured white to begin with.
When the backup transaction reads an entity, its colour
turns black. A normal transaction can write into entities
that are all white or all black. A transaction that has writ-
ten into an entity that is of one colour and then attempts
to write into another entity of a different colour, has to
abort. Transactions writing into white entities are ahead
of the backup transaction in the equivalent serial schedule,
while the transactions writing into black entities are after the
backup transaction in the equivalent schedule. Each entity
is also given a shade which changes from pure to off when
a black transaction reads or writes the entity (whichever is
allowed on it). Restrictions are placed on reading entities
whose shades are off, by white transactions.

The scheme in [17] lays the foundation of our approach.
But, the scheme was designed for a database and it is as-
sumed that two phase locking is the concurrency control
algorithm. Our approach described in succeeding sections
gives a sounder theoretical basis for identifying conflicts and
this makes our approach independent of any particular con-
currency control algorithm. Due to space restriction this
paper only provides a conceptual explanation of the theoreti-
cal basis of our approach, and formal correctness proofs have
been omitted. Further, we consider a file system as opposed
to a database system, which brings forth issues unique to a
file system. For example, file systems cater to many more
operations besides reads, writes, deletes and insertions of
entities, such as rename, move, copy etc. Files in most pop-
ular file systems like ext2 are not accessed directly, but are
accessed after performing a “path lookup" operation. File
system backup involves backing up of the entire namespace
information (directory contents) along with the data. This
complicates online backup as a file system’s namespace is
constantly changing even as the backup process is travers-
ing it. Moreover, a file system backup does not involve just
the backup of data but also includes the backing up of each
file’s meta-data (e,g inodes of ext2).

3. SYSTEM MODEL

Assuming a file system that provides a common transac-
tional interface to all applications running on it, the prob-
lem of creating a consistent backup copy of an active file
system now fundamentally reduces to a concurrency con-
trol problem. But, the problem proves to be challenging as
the backup program reads the entire file system, and this is
further aggravated by the fact that the file system names-
pace may be actively changing even as the backup program
is traversing it, thus posing the danger of complete omis-
sion of sections of the file system hierarchy from the backup
copy([18]). This section outlines our concurrency control
mechanism and discusses implementation issues and possi-
ble solutions for creating a consistent backup copy in the
face of a constantly changing file system.

3.1 Consistent Backup Protocol

A file system transaction is defined to consist of one or
more accesses to a file or set of files, with an access being
either a write to or a read from a file([13]). To ensure file
system data integrity in the presence of concurrent accesses,
a concurrency control mechanism, say, strict two-phase lock-
ing([7]) is employed. It is well established that concurrency
control mechanisms produce serializable schedules of concur-
rent transactions where serializability is the accepted notion
of correctness for concurrent executions([7]).

The backup transaction consists of a sequence of file read
operations. For an on-line backup transaction to read a con-
sistent backup copy, it must be serialized with the concur-
rently executing user transactions. Now, the backup trans-
action is rather unique as it reads every file in the file sys-
tem and treating it like any other transaction for the pur-
pose of concurrency control leads to frequent inter trans-
actional conflicts. Resolving these conflicts may mean ei-
ther the gradual death of all concurrently executing user
transactions as the backup transaction proceeds to lock all
files in accordance with locking protocols or otherwise result
in repeated abortion and restarting of the backup transac-
tion. Hence, we are proposing a backup transaction specific
concurrency control mechanism called mutual serializabil-
1ty(MS) that does not affect the overall performance effi-
ciency. We first revisit two basic concepts in serializability
theory before formally defining the core concept behind our
proposed protocol. Two schedules are equivalent([7]) if the
order of execution of the conflicting operations in the two
schedules are identical. A pair of operations are said to be
conflicting operations([7]) if they belong to different trans-
actions, access the same file and one is an update operation.

Mutually Serializable: A pair of transactions is said to
be mutually serializable if and only if their concurrent execu-
tion schedule is equivalent to some serial schedule. In other
words, the backup transaction is mutually serializable with
a user transaction if and only if their schedule is equivalent
to some serial schedule of the pair.

Given the definition of mutually serializable, we now de-
scribe the mutual serializability protocol. We assert that if
all access operations of user transactions are considered to
be update operations and all operations of the backup trans-
action are read operations, keeping the backup transaction
mutually serializable with every concurrent user transaction
will ensure that the backup transaction will be part of a se-
rializable schedule. The serializable schedule involves user
transactions which continue to use some concurrency control
protocol and which differentiates between read and write
accesses while resolving conflicts among themselves. The
protocol can be formally stated as:

Mutual Serializability: Given a serializable schedule
of user transactions and considering all file operations of
user transaction to be update operations with respect to the
backup transaction, the concurrent execution of the backup
transaction and user transactions is serializable if and only
if the backup transaction is mutually serializable with each
concurrent user transaction.

The essence of the stated protocol is illustrated through
the following simple examples. Consider the following inter-
leaved execution sequence: ready(C'), readi(A), writez(C),
write1(B), ready(A), ready(B), writes(B)

Where, subscripts 1, 2 and b stand for transaction 1,
transaction 2 and the backup transaction respectively and

39

A, B, C are files. We can see that the backup transaction
is part of a serializable schedule and is mutually serializable
to both transaction 1 and transaction 2 simultaneously.

Now consider the schedule: ready(A), writei (A), readz(A)
writes(B), ready(B)

We see that the backup transaction is mutually non seri-
alizable with transaction 2 resulting in a schedule which is
not serializable. Notice that in both the schedules the user
transactions are serialized among themselves.

Considering all file accesses by user transactions to be up-
date operations while resolving conflicts with the backup
transaction, does not lead to any loss of concurrency of run-
ning transactions as among these transactions no such re-
strictions are imposed. What this implies is that when the
backup transaction is running, other, active transactions will
have to “slow" down a little to accommodate the backup
transaction. This is a small price to pay to obtain a consis-
tent backup.

Moreover, as opposed to [12] which builds up directly on
[17] and [1]to serialize read only transactions, we observe
that read-only transactions do not effect the consistency of
the backup-copy, hence in our approach they are identified at
their initiation and do not require to enter into contention
with the backup transaction at all. As read-only transac-
tions consist of the bulk of operations in a file system([13]),
this implies further that considering user operations to be
update operations with respect to the backup transaction
does not effect efficiency.

3.2 Implementation Issues

This section sketches our approach for implementing the
concurrency control protocol proposed in the previous sec-
tion. Without loss of generality, we assume that the user
transactions use strict two-phase locking to serialize among
themselves.

The basic idea is as follows: applications run as a se-
quence of atomic transactions and under normal circum-
stances when the backup program is not active, they sim-
ply use strict two-phase locking to ensure consistent op-
erations. Now, once the backup program is activated, all
other transactions are made aware of it by some trigger-
ing mechanism and they now need to serialize themselves
with respect to the backup transaction, while continuing to
serialize among themselves as before. We distinguish trans-
actions as read-only and update transactions. Now, read-
only transactions inherently do not conflict with the backup
transaction. Hence, read-only transactions are identified at
their initiation and do not require to use the concurrency
control mechanism needed for serializing with the backup
transaction.

Our approach reserves a bit called the read bit in each file
descriptor (in the inode) to indicate whether the concerned
file has been read or not by the backup program (this is the
same as colouring the file, as proposed by [17]). If this bit
is 0 it indicates that the file has as yet not been read by
the backup transaction and 1 indicates that it has. This
bit of all files is initialized to 0 before a backup program
starts. But, initializing the read bit of the entire file sys-
tem before every backup may not be very efficient and so
a sequence number of the backup transaction may be used
instead, where the sequence number of the present backup
transaction is one greater then its immediate predecessor.
For ease of discussion, we continue using the read bit. The

)

backup transaction traverses the file system namespace us-
ing traversal algorithms such as depth first traversal, reading
files on its path to the backup-copy and as it reads each file
it sets the read bit to 1.

A user transaction serializes with respect to the backup
transaction by establishing with it a mutually serializable
relationship using a bit called the before-after bit, reserved
in each “live" user transaction’s house keeping data struc-
ture. When a user transaction succeeds to lock its first file
for access, it initializes the before-after bit to 1 if the file’s
read bit is 1 and to 0 otherwise. A 0 stored in the before-after
bit means that the transaction’s mutually serializable order
is before the backup transaction and a 1 indicates that it is
ordered after the backup transaction. On subsequent suc-
cessful locking of a file, the user transaction verifies whether
it continues to be mutually serializable with respect to the
backup transaction by comparing the read bit of the file with
its own before-after bit. The following table enumerates mu-
tually serializable checking .

before-after bit | read bit | mutually serializable
1 1 yes
1 0 no
0 1 no
0 0 yes

If a mutually non serializable operation is detected then the
conflict must be resolved before the execution of the user
transaction can proceed. Now, mutually non serializable
transactions have accessed or tried to access both read(1)
and unread(0) files. Let T}, be the user transaction mutu-
ally non serializable with the backup transaction. One way
of resolving the conflict is to roll back the backup transac-
tion’s “read” of the files marked 1 and presently accessed by
Tme- Rolling back the “reads” of files essentially means to
mark them 0(unread) and to remove them from the backup-
copy. The backup transaction will re-read them later. Un-
fortunately, although this solution does not hamper the ex-
ecution of user transactions , it may lead to a cascading roll
back of backup “reads" as roll backs may render previously
consistent transactions to now be mutually non serializable.
In the worst case scenario, the backup transaction has to be
restarted.

Another method of handling the problem is to abort and
restart 1}, “hoping” the backup transaction completes read-
ing the “unread” files accessed by Ty.. The solution seems
quite attractive in a scenario where user transactions do not
have a hard time constraint. But, if concurrency control
mechanisms like a simple two-phase locking is used by user
transactions, an abort may lead to cascading aborts.

A third solution for resolving conflicts is to pause T
when possible. If the transaction has accessed a file already
read by the backup transaction and it then needs to access
another file which the backup transaction has not yet read,
then the transaction could be made to wait and the backup
transaction signalled to read this file immediately.

Thus, one of the conflict resolving techniques or a com-
bination of techniques discussed above have to be employed
depending on issues like the underlying concurrency control
mechanism for user transactions and a transaction’s before-
after bit status, to ensure mutual serializability with the
backup transaction.

There are many other files operations such as append,
truncate, create, unlink, and operations that operate on the

40

file’s descriptor, such as ownership, access permissions etc.
Further, there are a number of file types such as regular files,
directories, special files, etc. (we are using Linux terminol-
ogy and not defining these items,to conserve space). For
most of them, we have shown that they can be treated as
equivalent to an update of an ordinary file. Thus, for exam-
ple, creating a file is equivalent to writing to the directory
under which the file is to be created.

However, special treatment is required when dealing with
directories. Consider two directories d1 and d2 with d2 hav-
ing a child directory d3. Suppose the backup transaction
(BT) reads d1, and then reads d2. Before it can read d3,
another transaction TA moves d3 from under d2 to under
dl. Transaction TA is mutually serializable with respect to
BT with order as “after" and so it is allowed to proceed.
But then d3 will not be in the backup as BT has already
traversed its part of the file system namespace, and there
will be a dangling reference to it in the backed up version
of d2. One way of ensuring correctness is to ensure that all
reads are done “bottom up" by BT. In this example, d3 will
have to be read before d2 and the move of d3 from d2 to d1
by TA will be allowed only after BT has read d2 also. But,
we need to specify conditions that are not dependent on an
implementation and this is work that is in progress.

Overall performance during an on-line backup using our
approach can be considerably improved if conflicts between
user transactions and the backup transaction can be kept
low. Most applications running on a system develop a pat-
tern of file accesses. Storing the history of file accesses and
then using these patterns to direct the backup program away
from active regions effectively reduces contention. File sys-
tem traces collected over a period of time is also likely to
show groups of files that are accessed together and hence
are possibly related. Backup of such groups may be taken
together to improve performance.

Studies show that only about 1% of all files are used
daily([5]). Thus even without using conflict reducing heuris-
tics as discussed above, conflicts will be rare.

4. CONCLUSION AND FUTURE WORK

This paper argues that backups of file systems must en-
sure consistency and for this, a transactional file system
is required. Current techniques of hot backups do not en-
sure consistent backups. Using standard concurrency con-
trol techniques for backup in transactional file systems can
be inefficient as the backup process, considered as a trans-
action, has to access every file in the system. Aborting
this transaction will be expensive, and other transactions
may experience frequent aborts because of this transaction.
We informally show that a simple restriction of considering
every operation of normal transactions (be it a read or a
write) to conflict with a read of the same file by the backup
transaction results in a scheme in which ensuring that the
backup transaction is mutually serializable with every other
transaction results in a consistent backup copy. The backup
transaction does not have to be aborted, and delaying a
conflicting transaction in most cases resolves conflicts. An
outline of an implementation has also been presented.

We intend to formalize our scheme and prove our asser-
tions. We then intend to design an algorithm to implement
the scheme. We will formally consider other operations on
files such as truncate, delete, create, move, link, unlink etc.
We will also handle operations on directories, including mov-

ing and renaming of directories. We will then analyze the
performance of our algorithm by simulation with various ac-
cess patterns of files and we will suggest and evaluate heuris-
tics to improve performance.

5. REFERENCES

(1]

2]

3]

(4]

(5]

[6]

7]

(8]

[

[10]

P. Ammann, S. Jajodia, P. Mavuluri, On-The-Fly
Reading of Entire Databases, In IEEE Transactions
on Knowledge And Data Engineering,Vol. 7, No. 5,
October 1995.

A. Azagury, M.E. Factor, J. Satran, W. Micka,
Point-in-Time Copy: Yesterday, Today and
Tomorrow, In Proceeding of the IEEE/NASA Tenth
Goddard Conference on Mass Storage Systems and
Technologies, April 2002.

C.Y. Chang, Y. Chu, R. Taylor, Performance
Analysis of Two Frozen Image Based Backup/Restore
Methods, In Proceedings of IEEE International
Conference on Electro Information Technology, May
2005.

A.L. Chervanak, V. Vellanki, Z. Kurmas, Protecting
the File System: A Survey of Backup Techniques, In
Proceeding of the Joint NASA and IEEE Mass
Storage Conference, March 1998.

T. Gibson, E.L. Miller, D.D.E. Long, Long-term File
Activity and Inter- Reference Patterns, In CMG98
Proceedings. Computer Measurement Group, Decem-
ber 1998.

J. Gray, Notes on Data Base Operating System, In
Lecture Notes In Computer Science;Vol.60,
Operating System,An Advanced Course, 1978.

J. N. Gray, A. Reuter, Transaction processing:
Concepts and Techniques, Morgan Kaufmann
Publishers Inc., 1993

R.J. Green, A.C. Baird, J.C. Davies, Designing a
fast, On-Line Backup System for a Log-Structured
File System, In Digital Technical Journal, Vol. 8 No.
2 1996.

D. Hitz, J. Lau, M. Malcolm, File System Design for
a File Server Appliance, In proceedings of the
USENIX Technical Conference, San Francisco, CA,
January 1994.

N.C. Hutchinson, S. Manley, M. Federwisch, G.
Harris, D. Hitz, S. Kleiman, S. O’Malley, Lovical vs.
Physical File System Backup, In Proceedings of the
USENIX Technical Conference, San Francisco, CA,
January 1994.

41

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]
22]
23]

[24]

[25]

J.E. Johnson, W.A. Laing, Overview of the Spiralog
File System, Digital Technical Journal, Vol.8, No.2,
1996

K. Lam, V.C.S. Lee, On Consistent Reading of Entire
Databases, In IEEE Transaction on Knowledge and
Data Engineering, Vol.18, No.4, April 2006

B. Liskov, R. Rodrigues, Transactional File Systems
Can Be Fast, In Proceedings of the ACM SIGOPS
European Workshop, 2004.

H. Patterson, S. Manley, M. Federwisch, D. Hitz, S.
Kleiman, S. Owara, SnapMirror: File System Based
Asynchronous Mirroring for Disaster Recovery, In
Proceeding of the Conference on File and Storage
Technologies,Monterey, California, January 2002.

Z. Peterson, R. Burns, Ext3cow: A Time-Shifting
File System for Regulatory Compliance, in ACM
Transactions on Storage, May 2005.

D.E.Porter, O.S. Hofmann, C.J. Rossbach, A. Benn,
E. Witchel Operating Systems Transactions, in
Proceedings of 22nd ACM Symposium on Operating
Systems Principles, October 2009.

C. Pu, On-the-fly, incremental, consistent reading of
entire databases, Algorithimica 1, 3,271-287. 1986

S. Shumway, Issues in On-line Backup, In USENIX
Proceedings of the 5th Conference on Large
Installation Systems Administration, September
1991.

R.P. Spillane, S. Gaikwad, M. Chinni, E. Zadok, C.
P. Wright, Enabling Transactional File Access via
Lightweight Kernel Extensions, In Proceedings of the
7th USENIX Conference on File and Storage
Technologies, February 2009.

S. Verma, Transactional NTFS(TzF),
http://msdn.microsoft.com/en-
us/library/aa365456(VS.85).aspx,

2006.

Dump. Unix System Man Pages

Tar Unix System Man Pages.

Open File Manager: Preventing Data Loss During
Backups Due to Open Files, as White Paper, St.
Bernard Software. November 2003.

Quantifying Performance Loss: IT Performance Eng.
and Measurement Strategies, as Report, META
Group. 2000.

Oracle Backup and Recovery, hitp :

/ Jwww.oracle.com/technology/deploy/availability/
htdocs/BRoverview.htm.

