Using Improved Resource Interfaces to Formally
Describe Adaptability in Embedded Systems

Magnus Persson and Martin Térngren
KTH (The Royal Institute of Technology), Stockholm, Sweden
magnus.persson@md.kth.se, martin@md.kth.se

ABSTRACT

In embedded systems, timing and resource utilization are
vital aspects, having impacts on the deployed software. In
this paper, an extensible formal framework for modeling of
resource usage and adaptability of software components is
introduced. The formalism explicitly supports modeling re-
sources of various types and in different ways; and the tim-
ing requirements that applications have. The models can be
used as a basis for quantitative analysis, and in the exten-
sion as a basis for system synthesis. An example of usage of
the formalism is given.

Keywords

resource interfaces, resource modeling, adaptivity, formal
methods, middleware, QoS, embedded real-time systems,
timed automata, DySCAS, DyLite

1. INTRODUCTION

Real-time requirements often apply to software in embedded
systems. At the same time, as typical embedded systems
are put under considerable cost pressure, the hardware and
software resources available are limited. These two facts to-
gether make well-working resource management necessary to
satisfy performance requirements, either during design-time
(e.g. off-line or fixed priority scheduling) or using an adap-
tive scheme (e.g. run-time negotiation for quality of service).
Additional dynamics such as changing environments, vary-
ing resource availability and user configuration promote the
latter [2,7].

To provide guarantees of performance in these systems, there
is a need for formal descriptions of resource requirements in
adaptable computer systems. However, sufficiently powerful
formalisms with this purpose do not yet exist:

“The existing QoS contract languages are not
equipped with a formal meaning, thus do not
provide a basis for formal proofs, nor can they be
used to perform symbolic computations.” [7, sec-
tion 13.6]

A first step towards such reasoning is to supply formalisms,
which can be used to formulate problems and express re-
quirements such as the design-time configuration problem
or online adaptivity decisions.

As several applications normally share the same system,
these descriptions also have to be composable, i.e. it should
be possible to combine two specifications of separate compo-
nents into a (sensible) specification of the compound com-
ponent consisting of them.

1.1 Related Work

Most other approaches only put emphasis on one of these as-
pects, performing modeling either of timing or on resource
usage. This brief survey focuses mainly on approaches aim-
ing to model both timing issues and resources. More related
work can be found in [18].

The SPEEDS project has defined the HRC component model
[15], based on hybrid automata and providing several dif-
ferent possible views of components. Additionally, a good
theoretical basis for contract composition is provided [4].

MARTE [17] is a UML profile aiming to provide modeling
of embedded systems for UML. MARTE provides constructs
for generalized modeling of non-functional properties, in-
cluding timing and resource usage. The time modeling pro-
vided is based on a solid formalism, but for resources, the
profile relies on external tools to define semantics.

Lusceta [6] is a toolsuite using timed automata to model
QoS management policies, but is less formal for resources.

Hierarchical scheduling, as in e.g. [16], is an interesting par-
allel and possible source for concrete resource models.

2. A PROPOSED FORMALISM

In this paper, we propose a formal framework, building on
the idea of resource interfaces [8] (an extension of timed
interfaces [10]). We will however use a semantically differ-
ent definition in this paper, additionally providing a way to
also model soft deadlines, and use a more generalized way of
modeling the resources. The intention is to make the formal-
ism flexible, and hence it can be instantiated with different
resource models, thus the term formal framework. The for-
malism is further described in an extensive report [18].

A timed automaton [1,3] is used to represent the behavior of
each software component in the embedded system. Timing
requirements are expressed as guard conditions in the timed
automata. One or several software components correspond
to a single task at the operating system or middleware level,
hence also defining a task model for the platform. Fach

state represents a mode of operation of the software compo-
nent and is further annotated with resource metrics based
on special resource models.

2.1 Definition of Timed Automata

The below definition is based on established descriptions of
timed automata, as described in e.g. [1,3]. As the concept
has evolved slightly over time, the formal definition used
below is a synthesis building on both referred papers.

A timed automaton A is a tuple (X, S, so, C, G, E, I), rep-
resenting a timed language' L4, where

e Y is a finite alphabet,

e S is a finite set of states,

e 50 € S is the starting state

e C is a finite set of clock variables,

e G is a finite set of guard variables of one or several
well-defined types (e.g. boolean, integers),

e ECSXxSXxXYXxCxGx ®(C,G) gives the set of
transitions. An edge (s,s’,0,¢,g,¢) is used to rep-
resent a transition from state s to s’ on input signal
(word) o € 3. The clocks to be reset are given by the
set ¢ C C, guard variables that will receive updated
values are given by the set g C G, and ¢ € ®(C, G) is
the guard expression for the transition,

e I:S — ®(C) assigns invariants to states. Invariants
are guard expressions, but applied to states instead of
transitions.

A guard expression is a logical expression evaluating to ei-
ther true or false, built of clock variables, guard variables
and constants. Guard expressions are evaluated after guard
variables have been updated.

A common operation on automata in general is synchronous
composition, A||B, informally defined as the largest possible
automaton representing the constraints on £ 4 and £z repre-
sented by A and B, taking commonalities in their alphabets
into consideration. Due to space constraints, we refer to the
previously mentioned references for a formal definition.

2.2 Resource Models

In addition to normal timed automata, we annotate each
state of the timed automata with resource metrics, based
on one or several mathematically founded resource mod-
els Ri1,Ra,.... This means, there is a one-to-one map-
ping between the states s; to vectors with resource met-
rics, rs; = (ri,s;,72,s;5---). The resource models need to
be supplied by the user of the modeling framework (or by
a standard library of resource models). As each resource
model is supposed to denote values that are to be compared
with each other, each resource resource model R; forms a
partially ordered set. For two resource metrics, the one that
applies the strictest requirements is considered smaller.

! A timed language is defined as a sequence of words, ordered
by time, each paired with the time at which it occurs.

Further, for each of these resources, two functions need to
be defined: @ and ®. Informally, 74 ®7p denotes a resource
metric that represents an amount of resources that is always
lower or equal to the amount of resources represented by
either ra or rp, while 74 ® rp represents the amount of
resources necessary to accommodate both r4 and rp. It is
also assumed that both these operations are commutative.
Formally, these requirements can be described like follows:

®:R2=R ®: R >R

ra®rg <ra rTAa®rB <rp ra®rp>ra TAQRTrB >TB

ra®rp=rpdra rAa®Qrp =rp®ra

If several terms/factors are needed for the operations, we
use the alternative notation > r and []r.

The conventional definition of synchronous composition of
timed automata is also extended to allow for automata that
are resource-annotated: for a composed state s4)5,:;, the
resulting resource annotation to use is 7.4, ® 73,;.

2.3 Time-Dependent Utility Functions

A common way of formalising soft real-time requirements
is to use utility functions instead of hard deadlines. Based
on the idea described by Jensen [14], the two concepts can
be applied jointly, where utility functions over time U (t)
denote the utility value of a computation, and utility values
equal to —oo denote hard timing requirements. To simplify
implementation together with timed automata, we choose to
instead define the utility functions over the clock variables:
U(C1, C2,... Cn).

These utility functions can be used to choose between alter-
native configurations, using some sort of evaluation criteria,
e.g. absolute or weighted sums, averages, or other mathe-
matical functions.

2.4 Mapping to Architectural Description

We have now defined the modeling abstractions that we
will need, and will now give a mapping to concepts used
in traditional software engineering. A software component
is represented by a single annotated automaton. Timing
constraints are expressed as clock constraints that apply to
the transitions of the automaton. Tasks typically consist
of one or several components, and are hence represented by
synchronously composed automata. These automata share
clocks in case timing constraints are applicable to groups of
tasks (e.g. timing chains). The synchronous composition of
all timed automata represent the entire software system.

Resources (both hardware and software), such as CPUs, net-
works and semaphores, are each represented by a single re-
source model and a resource limit. A networked system
would for example be modeled with one resource for each
CPU and one for the network. Arbitration protocols for
resources may, depending of the level of modeling abstrac-
tion, either be an implicit part of the resource models (which
then have to explicitly take account for any overhead caused
by the arbitration protocol), or be explicitly modeled by a
timed automaton.

Adaptability can be modeled in two ways, depending on
when it occurs. Run-time adaptability has to always be

modeled as possibilities to execute the automaton differ-
ently; e.g. giving the execution platform a choice between
two alternative transitions, or by making it possible to de-
lay a certain transition. These different execution patterns
cause different resource utilization and may be used to repre-
sent e.g. different execution frequencies or migrating a soft-
ware component between different processors. Design-time
adaptability can alternatively be modeled as the alternative
use of different timed automata, either alternative represen-
tations for the same software component or of two alterna-
tive components.

2.5 Formalizing the Configuration Problem
We now can use the above description of the system and the
software components, to describe the configuration problem,
i.e. the problem of finding a valid system configuration. This
can conceptually be viewed as iterating over configurations
until a feasible one is found, i.e. one where the applications’
resource demands are met by available resources:

Vri,s € A||BJ|C ... it holds that r; s < 7i max

where ¢ is the resource index, 7; max is the maximum usage
limit for each resource, and, implicitly, the resulting com-
posed timed automaton A[|B||C... is well-defined, in the
sense that it does not represent a deadlock situation.

The above criterion gives a feasibility criterion; given two
feasible configurations, it is also relevant to be able to com-
pare them to each other to find out which is preferable over
the other. To choose between them, some sort of optimiza-
tion criteria, based on the utility functions described above,
needs to be applied.

3. AN EXAMPLE INSTANTIATION

As an example on how the framework can be applied, we
consider the DyLite middleware [19,20], a compact middle-
ware framework supplying simple resource management for
reconfigurable applications on small microcontrollers, devel-
oped during the DySCAS? project [11].

3.1 Resource Models

We describe two resource models used in DyLite:

e CPU time, modeled using real-valued utilization values
and Liu-Layland analysis®, and

e memory usage, modeled as integers.

We also need to give the exact definition of the operations
@® and ® for the two resource models. For both, we use
traditional addition for ® and the minimum operation for
PD:

rcrPU € RCPU = R+ Tmem € Rmem = I\]O

A .
rcpu,A @ rcpu,B = mMinrcpu,a, "CPU,B

2DySCAS means Dynamically Self-Configurable Automotive
Systems.

3DyLite also defines a third: network bandwidth, which is
not covered here.

4All applications are assumed to have appropriate priorities
assigned.

For all these transitions:
Event: switch_region(snext)
Clock constraint: C = D;
Clocks to reset: {C}
Guard: Starget < Snext

switch_region(0) Invariant for
System startup regl(énz 1D’2’ o

Figure 1: A timed automaton representing the
DyLite task model.

QoS mode Resource Usage Deadline Utility

Si TCPU Tmem D; U(C)
1 2,3% 300 B 200 ms 3
2 6,1% 720 B 400 ms 13
3 6,5% 832 B 100 ms 14

Table 1: Example of resource annotations in DyLite.

A
rcpu,A ® TCPU,B = TCPU,A + T'CPU,B
A s
Tmem, A ® Tmem,B = IMIN T"mem, A, "mem,B

AN
T'mem, A & Tmem,B = Tmem, A + T'mem, B

In the actual implementation, there are multiple instances
of the CPU and memory resources (one for each connected
node), but to simplify presentation, we will here limit our-
selves to a single node.

3.2 Models of Components and Tasks

In DyLite, each component exactly corresponds to one op-
erating system thread. For each task, at least one normal
operating mode (QoS region) is defined. For each region,
there is a deadline by which the the application should have
called a special function (switch_region(next_region)) in
the DyLite API, to signal that the code to be run within that
region has finished. The modes are ordered; the assumption
is that a higher ordered mode will always both provide a
better user experience and use more of each resource.

A timed automaton representing this task model is depicted
in Figure 1. The regions are {s_1, so, $1,...,5n}. The set
of clocks consists of a single clock, i.e. C = {C}. For each
outgoing transition, an exact deadline D; for each mode s; is
supplied. Each region from s; and on is also annotated with
resource usage (rcpu, 'mem). Lhe resource usages in so and
s—1 are assumed to be 0. An example of such annotations is
given in Table 1. Finally each region is also annotated with
a fixed utility value U(C) for each state, which applies when
C < D;. Please note that all these restrictions only apply
in the DyLite example and not to the framework in general.

3.3 Resource Constraints and Algorithm for
Self-Configuration

For each resource, maximum resource levels are given. These
are simply:

FePUmax = lim n(¥2 — 1) ~ 0.69 (Liu-Layland border)

n— o0

JAN . .
T'mem,max = amount of memory on the node in question

Using these borders, the reconfiguration algorithm [12, 13]
implemented within DyLite is able to search for a feasible
configuration, optimizing the sum of all utility values.

4. ALTERNATIVE INSTANTIATION WITH
OTHER RESOURCE MODEL

There are many other possible resource models. Below, a
couple of easily imaginable examples are given.

The first one is based on the hyperbolic bound [5], which
gives the utilization limit as []}_, (U + 1) < 2, and provides
an alternative resource model for processor utilization, with
a more exact boundary:

A
rcpu € Repu— Ry 7cPUmax = 1

rcpu,a @ repu,B = (repu,a +1) - (repu,p +1) — 1
If DyLite had used easily exchangeable resource models, this

alternative and more exact resource model could have trans-
parently replaced the classical Liu-Layland analysis.

Other possible resource models can be defined over intervals
([ra,rs], where 7y > rq and rq, 7, € Ry), functions over time
(r(t), e.g. as in [9]), n-tuples ((rq,7s,...)) etc.

5. DISCUSSION

In this paper, a proposed formal framework has been intro-
duced, able of describing both the real-time requirements
that apply to a software component, and the resources that
the task will consume. An example of how the formalism can
be applied to an existing implementation of a resource-aware
middleware has also been provided. Online adaptability can
be modeled by using alternative transitions between states
in the automata describing applications. Offline adaptabil-
ity can additionally be represented by providing alternative
automata to choose among during the system design.

5.1 Future Work

There are several lines of possible future work:

e Integrating support in tools for development of em-
bedded systems, i.e. making it possible to directly in
an architectural tool specify resources, tasks, timing
constraints and modes, verify and analyse the system.

e Extending existing timed automata analysis tools (e.g.
UPPAAL [21]) to support the formalism. This can
probably be performed by generating additional au-
tomata for each resource, constricting any transition
that would imply too high resource usage, using con-
straints solving.

e Evaluation in actual design work. What are the im-
plications on design-time and run-time overheads to
deploy the formalism? Is it a suitable abstraction for
designers? Can modeling be done efficiently?

e How are models of the same system using different re-
source models related? How can translations between
different framework instantiations be built?

e Further development of suitable algorithms for config-
uration optimization and optimization criteria, both
for off-line design work and online decision evaluation.

6. REFERENCES

[1] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, Apr.
1994.

[2] R. J. Anthony, P. Ward, D. Chen, J. Hawthorne,

M. Pelc, A. Rettberg, and M. Térngren. A middleware
approach to dynamically configurable automotive
embedded systems. In Proc. of The First Annual
International Symposium on Vehicular Computing
Systems, Dublin, Ireland, July 22 — 24 2008.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial
on Uppaal. In M. Bernardo and F. Corradini, editors,
Formal Methods for the Design of Real-Time Systems:
4th International School on Formal Methods for the
Design of Computer, Communication and Software
Systems (SFM-RT 2004), volume 3185 of LNCS, pages
200-236, Bertinora, Italy, Sept. 13—-18 2004. Springer
Verlag. an updated version of this paper is available
from http://www.it.uu.se/research/group/darts/
papers/texts/new-tutorial.pdf.

[4] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca,
R. Passerone, and C. Sofronis. Multiple viewpoint
contract-based specification and design. In Formal
Methods for Components and Objects, volume 5382 of
LNCS, pages 200-225, 2008. revised paper, presented
at 6th International Symposium FMCO 2007,
Amsterdam, Netherlands, Oct. 24—-26.

[5] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate
monotonic analysis: the hyperbolic bound. IEEE
Transactions on Computers, 52:933-942, 2003.

[6] L. Blair, G. S. Blair, A. Andersen, and T. Jones.
Formal support for dynamic QoS management in the
development of open component-based distributed
systems. IEE Proc. Software, 148(3):89-97, June 2001.

[7] B. Bouyssounouse and J. Sifakis, editors. Embedded
Systems Design: The ARTIST Roadmap for Research
and Development. Number 3436 in LNCS. Springer
Verlag, 2005.

[8] A. Chakrabarti, L. de Alfaro, T. A. Heinzinger, and
M. Stoelinga. Resource interfaces. In Embedded
Software (Proc. from Third International Conference
EMSOFT), volume 2855 of LNCS, pages 117-133,
Philadelphia, PA, USA, Oct. 13-15 2003.

[9] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and
E. Wandeler. Interface-based rate analysis of
embedded systems. In RT'SS ’06: Proc. of the 27th
IEEE International Real-Time Systems Symposium,
pages 25—34, Washington, DC, USA, 2006. IEEE
Computer Society.

[10] L. de Alfaro, T. A. Heinzinger, and M. Stoelinga.
Timed interfaces. In Proc. of Embedded Software
(EMSOFT), pages 108-122, Grenoble, France, Oct.
7-9 2002.

[11] DySCAS Consortium. DySCAS project website.
http://www.dyscas.org.

[12] L. Feng, D. Chen, M. Persson, T. Naseer Qureshi, and
M. Toérngren. Dynamic configuration and quality of
service in automotive embedded systems. Technical
Report TRITA MMK 2008:12, ISSN 1400-1179,
ISRN/KTH/MMK /R-08/12-SE, Stockholm, 2008.

[13] L. Feng, D. Chen, and M. Térngren. Self configuration
of dependent tasks for dynamically reconfigurable

http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

[14]

[15]

automotive embedded systems. In Proc. of 47th IEEE
Conference on Decision and Control (CDC), pages
3737-3742, Canciin, Mexico, Dec. 9 — 11 2008.

E. D. Jensen. Eliminating the ‘hard’/‘soft’ real-time
dichotomy. Computing €& Control Engineering
Journal, 8(1):15-19, Feb. 1997.

B. Josko, Q. Ma, and A. Metzner. Designing
embedded systems using heterogeneous rich
components. In Proc. of the INCOSE International
Symposium, Utrecht, Netherlands, June 2008.

T. Nolte, M. Nolin, and H. Hansson. Hierarchical
scheduling of CAN using server-based techniques. In
L. Almeida, editor, Proc. of the 3rd International
Workshop on Real-Time Networks (RTN’04) in
congunction with the 16th Euromicro International
Conference on Real-Time Systems (ECRTS’04), pages
27-30. Universidade de Aveiro, Campo Universitario
de Santiago, 3810-193 Aveiro, Portugal, ISBN
972-789-136-5, June 2004.

Object Management Group (OMG). A UML profile
for MARTE: Modeling and analysis of real-time
embedded systems.

(18]

(19]

20]

(21]

M. Persson. A timed automata formalism for modeling
resource management and quality of service in
real-time contexts. Technical report, Stockholm,
Sweden, 2009.

M. Persson, J. Garcia, L. Feng, D. Chen,

T. Naseer Qureshi, and M. Térngren. DyLite: Design,
implementation and experiences. Technical Report
TRITA MMK 2009:06, ISSN 1400-1179,
ISRN/KTH/MMK/R-09/06-SE, Stockholm, Sweden,
2009.

J. Séderberg, D. Scholle, J. Lovqvist, L. Krantz,

M. Persson, J. Garcia, C. Pihl, J. Granath, J. Tang,
I. Driike, V. Friesen, and M. Térngren. D3.3 DySCAS
demonstrator application and specification. Dyscas
project deliverable, 2008. project no.
FP6-IST-2006-034904.

UPPAAL. http://www.uppaal.com.

	Introduction
	Related Work

	A Proposed Formalism
	Definition of Timed Automata
	Resource Models
	Time-Dependent Utility Functions
	Mapping to Architectural Description
	Formalizing the Configuration Problem

	An Example Instantiation
	Resource Models
	Models of Components and Tasks
	Resource Constraints and Algorithm for Self-Configuration

	Alternative Instantiation with Other Resource Model
	Discussion
	Future Work

	References

