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ABSTRACT
Network virtualization promises a high flexibility by decoupling
services from the underlying substrate network and allowing the
virtual network to adapt to the needs of the service, e.g., by migrat-
ing servers or/and parts of the network. We study a system (e.g., a
gaming application) where network virtualization is used to support
thin client applications for mobile devices to improve their QoS. To
deal with the dynamics of both the mobile clients as well as the abil-
ity to migrate services closer to the client location we advocate, in
this paper, the use of competitive analysis. After identifying the pa-
rameters that characterize the cost-benefit tradeoff for this kind of
application we propose an online migration strategy. The strength
of the strategy is that it is robust with regards to any arbitrary re-
quest access pattern. In particular, it is close to the optimal offline
algorithm that knows the access pattern in advance.

In this paper we present both an optimal offline algorithm based
on dynamic programming techniques to find the best migration
paths for a given request sequence, and a O(µ logn)-competitive
migration strategy MIG where µ is the ratio between maximal and
minimal link capacity in the substrate network for a simplified
model. This is almost optimal for small µ, as we also show that
there are networks where no online algorithm can achieve a ratio
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below Ω(logn/ log logn). In contrast, the optimal solution with-
out migration can only achieve a competitive ratio that is linear in
the network diameter. Our simulations indicate that the competitive
ratio of MIG is robust to the network size, and that the ratio is small
if the request dynamics are limited and the requests are correlated.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms
Algorithms, Design

Keywords
Network Virtualization, Online Algorithms, Competitive Analysis

1. INTRODUCTION
In 2008, the total number of mobile web users outgrew the total

number of desktop computer with respect to Internet users [11] for
the first time. Providing high quality-of-service (QoS) respective
an excellent quality of experience (QoE) to mobile Internet clients
is much more challenging, e.g., due to user mobility. However,
many applications, including such popular applications as gaming,
need a reliable, continuous network service with minimal delay.

Network virtualization [9] is an emerging technology which al-
lows a service specific network to be embedded onto a substrate
network in a dynamic fashion. This includes migration of virtual
nodes and links as well as virtual servers to meet the applications
demands for connectivity and performance. However, to take ad-
vantage of this flexibility it is often necessary to know future appli-
cation demands. Yet, this information is typically not readily avail-
able and therefore neither the network resources can be used in an
optimal manner nor do the users receive the best possible service.

In this paper, we take a first step towards tackling the general
problem by concentrating on a system where thin clients, e.g., on
mobile devices, access Internet services, such as a game server [14]
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via a virtual network. We assume that the distribution of thin clients
and therefore the request pattern changes over time. For instance,
in the early morning, many requests may originate in Asian coun-
tries, then more and more requests come from European users and
finally from the US. In this setting it can be beneficial to migrate
(i.e., re-embed) the service closer to the users, e.g., to minimize
access delays for the users and to minimize network costs for the
providers [13]. Network virtualization allows us to realize such
networks. Figure 1 illustrates our setup.

Figure 1: System architecture: Thin mobile clients accessing
services s1 and s2 along the virtual network.

While moving services close to clients can reduce latency, migra-
tion also comes at a cost: the bulk-data transfer imposes load on the
network and may cause a service disruption. The cost of migration
depends on the available bandwidth in the substrate network [7].
To gain insights into this tradeoff we identify the main costs in-
volved in this system. Intuitively, the benefits from virtualizations
are higher the lower the migration cost are relative to the latency
penalty. Therefore, a predictable access pattern may ease migra-
tion. However, in practice user arrival patterns are hard to predict
and thus, we, in this paper, explicitly incorporate uncertainty about
future arrivals.

The classic formal tool to study algorithms that deal with inputs
(or more specifically: request accesses) that arrive in an online fash-
ion and cannot be predicted is the competitive analysis framework.
In competitive analysis, the performance of a so-called online algo-
rithm is compared to an optimal offline algorithm that has complete
knowledge of the input in advance. In effect, the competitive anal-
ysis is a worst case performance analysis that does not rely on any
statistical assumptions. We apply this framework to network vir-
tualization and propose—for a simplified model where the main
access cost is delay to the server, and the main migration cost is the
available bandwidth between migration source and destination—a
competitive migration algorithm whose performance is close to the
one of the optimal offline algorithm.

1.1 Related Work
The mobile web today provides browser-based access to the In-

ternet or web applications to millions of users connected to a wire-
less network via a mobile device. There exists a vast amount of
related work on the subject, and we refer the reader to the introduc-
tory books, e.g., [24]. In this project, we tackle the question of how

network virtualization can be used to improve the quality of service
for mobile devices.

Network virtualization has gained a lot of attention recently [25]
as it enables the co-existence of innovation and reliability [23] and
promises to overcome the “ossification” of the Internet [10]. For
a more detailed survey on the subject, please refer to [9]. Virtual-
ization allows to support a variety of network architectures and ser-
vices over a shared substrate, that is, a Substrate Network Provider
(SNP) provides a common substrate supporting a number of Diver-
sified Virtual Networks (DVN). OpenFlow [18] and VINI [3] are
two examples that allow researchers to (simultaneously) evaluate
protocols in a controllable and realistic environment. Trellis [4]
provides such a software platform for hosting multiple virtual net-
works on shared commodity hardware and can be used for VINI.

A major challenge in this context is the embedding [19] of
VNets, that is, the question of how to efficiently and on-demand
assign incoming service requests onto the topology. Due to its
relevance, the embedding problem has been intensively studied
in various settings, e.g., for an offline version of the embedding
problem see [16], for an embedding with only bandwidth con-
straints see [12], for heuristic approaches without admission con-
trol see [27], or for a simulated annealing approach see [22]. Since
the general embedding problem is computationally hard, Yu et
al. [17] advocate to rethink the design of the substrate network to
simplify the embedding; for instance, they allow to split a virtual
link over multiple paths and perform periodic path migrations. In
last year’s VISA workshop, Lischka and Karl [15] presented an
embedding heuristic that uses backtracking and aims at embed-
ding nodes and links concurrently for improved resource utiliza-
tion. Such a concurrent mapping approach is also proposed in [8]
with the help of a mixed integer program. Finally, several chal-
lenges of embeddings in wireless networks have been identified by
Park and Kim [20].

In contrast to the approaches discussed above we, in this paper,
tackle the question of how to dynamically embed or migrate vir-
tual servers [21] in order to efficiently satisfy connection requests
arriving online at any of the network entry points, and thus use
virtualization technology to improve the quality of service for mo-
bile nodes. The relevance of this subproblem of the general em-
bedding problem is underlined by the VISA’09 paper by Hao et
al. [13] which shows that under certain circumstances, migration
of a Samba front-end server closer to the clients can be beneficial
even for bulk-data applications.

To the best of our knowledge, this is the first paper to study the
embedding of virtual servers in such a system from a competitive
analysis perspective. The formal competitive migration problem
is related to several classic optimization problems such as facil-
ity location, k-server problems, online page migration or metrical
task systems [6]. For instance, in the field of facility location, re-
searchers aim at computing optimal facility locations that minimize
building costs and access costs (see, e.g., [1] for an online algo-
rithm). In the field of k-server problems (e.g., [6]), an online algo-
rithm must control the movement of a set of k servers, represented
as points in a metric space, and handle requests that are also in the
form of points in the space. As each request arrives, the algorithm
must determine which server to move to the requested point. The
goal of the algorithm is to reduce the total distance that all servers
traverse. In contrast, in our model it is possible to access the server
remotely, that is, there is no need for the server to move to the re-
quest’s position. The page migration problem (e.g., [2]) occurs in
managing a globally addressed shared memory in a multiprocessor
system. Each physical page of memory is located at a given pro-
cessor, and memory references to that page by other processors are
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charged a cost equal to the network distance. At times, the page
may migrate between processors, at a cost equal to the distance
times a page size factor. The problem is to schedule movements
on-line so as to minimize the total cost of memory references. In
contrast to these page migration models, we differentiate between
access costs that are determined by latency and migration costs that
are determined by network bandwidth.

Finally, it remains to mention that there is an intriguing relation-
ship between server migration and online function tracking [5, 26].
In online function tracking, an entity Alice needs to keep an en-
tity Bob (approximately) informed about a dynamically changing
function, without sending too many updates. The online function
tracking problem can be transformed into a chain network where
the function values are represented by the nodes on the chain, and a
sequence of value changes corresponds to a request pattern on the
chain. In particular, it follows from [5] that already for some very
simple linear substrate networks of size n = Θ(β), where β is the
migration cost, no online algorithm can achieve a competitive ratio
smaller than Ω(logn/ log log n).

1.2 Our Contributions
This paper makes the following contributions: We study a mo-

bile network virtualization architecture where thin clients on mo-
bile devices access a service that can be migrated closer to the
access points to reduce user latency. We identify the main costs
tradeoffs in this system (Section 2) and present a competitive anal-
ysis framework for its analysis (Section 3). We then describe an
optimal offline algorithm for computing the best migration strategy
at hindsight. In particular, we derive the following theorem.

THEOREM 1.1. The optimal offline migration policy OPT can
be computed inO(n3+n2 ∑

t∈Γ |σt|) time, where n is the network
size, σt is the set of terminal requests at time t, and Γ is the set of
rounds in which events occur.

Moreover, we present the online algorithm MIG that performs
close to optimal if the bandwidths in the substrate network do not
differ too much between the different links. Concretely, we show
the following result.

THEOREM 1.2. MIG isO(µ·logn)-competitive, where n is the
network size and µ is the maximal ratio between the bandwidths in
the substrate network. The competitive ratio of an optimal static
strategy (without migration) is linear in the network diameter.

For small µ, this is asymptotically optimal, as it follows from
online function tracking literature [5] that there are networks for
which no online algorithm achieves a competitive ratio lower than
Ω(logn/ log logn). Our formal insights are complemented by
simulation results (Section 4) which indicate that the competitive
ratio of MIG is small even in large networks, especially if the re-
quest dynamics is low and correlation between requests high.

2. ARCHITECTURE
Our setting is based on the virtualization architecture proposed

in [23] for which we are in the process of developing a prototype
implementation. The main roles from this architecture related to
this work are: The (Physical) Infrastructure Provider (PIP), which
owns and manages an underlaying physical infrastructure (called
“substrate”); the Virtual Network Provider (VNP), which provides
bit-pipes and end-to-end connectivity to end-users; and the Service
Provider (SP), which offers application, data and content services
to end-users.

We assume that a service provider is offering a service to mobile
clients which can benefit from the flexibility of network and ser-
vice virtualization. The goal of the service provider is to minimize
the round-trip-time of its service users to the servers, by triggering
migrations depending, e.g., on its (latency) measurements. Con-
cretely, VNP and/or PIP will react on the SP-side changes of the
requirements on the paths between server and access points, and
re-embed the servers accordingly.

Formally, we consider a substrate network G = (V,E) man-
aged by one or multiple substrate providers (PIP). Each substrate
node v ∈ V has certain properties and features associated with it
(e.g., in terms of operating system or CPU power); in particular,
we assume that it has a computational capacity c(v). Similarly,
each link e = (u, v) ∈ E, with u, v ∈ V , has certain properties,
e.g., it is characterized by a bandwidth capacity ω(e), and it offers
the latency λ(e). Links between different PIPs are typically less
well-provisioned or more expensive than links within a PIP.

In addition, to the substrate network, there is a set T of external
machines (the mobile thin clients or simply terminals) that access
G by issuing requests to virtualized services S hosted on a set of
virtual servers by G. Each server s ∈ S has a certain resource or
capacity requirement r(s) that needs to be allocated to s on the sub-
strate node where it is hosted. Henceforth, we will assume that each
server in S offers a different service, and each request is targeted to
exactly one server. That is, we do not consider server replication.

In order for the machines in T to access the servers S, a fixed
subset of nodes A ⊆ V serve as Access Points where machines in
T can connect to G. Due to the movement of machines in T , the
access points can change frequently, which may trigger the migra-
tion algorithm. We define Rt to be the multi-set of requests at time
t, where rt ∈ Rt is a tuple (a ∈ A, s ∈ S) specifying the access
point and the requested service. Our main objective is to shed light
onto the trade-off between the access costs Costacc of the mobile
clients to the current service locations and the server migration cost
Costmig: while moving the servers closer to the requester may re-
duce the access costs and hence improve the quality of service, it
also entails the overhead of migration.

We can identify the following main parameters which influence
the access and migration costs. A major share of Costacc is due to
the request latency, i.e., the sum of the requests’ latencies to the cor-
responding servers. Observe that the routing of the requests occurs
along the shortest paths (w.r.t. latency) on the substrate network. In
addition, the access cost depends on the server load, that is, the ac-
cess cost depends on the capacity c(v) of the hosting node v and the
resource demands c(s) of the servers s hosted by v. The correlation
between load and delay can be captured by different functions, and
is not studied further here. In this paper, we assume that requests
are relatively small, and hence, we do not explicitly model band-
width constraints in Costacc. In conclusion, at time t and for some
function f ,

Costacc(t) =
∑
Rt

f (delay(rt), load(rt)) .

In contrast to the requests, which are rather light-weight, the
server state is typically large, and hence the traffic volume of mi-
gration cannot be neglected. The main cost of migration are ser-
vice outage periods and the migration itself. The migration cost
Costmig of a virtual server s ∈ S, or the outage period, hence
depends to a large extent on the available bandwidth ω(p) on the
migration path p : src  dst (along the substrate network) be-
tween migration source node src and destination node dst, and the
size size(s) of the application s to be migrated. Another major cost
factor is the transit costs, namely the number k of PIPs on the path.
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In summary:

Costmig(t) =
∑
s∈S

f(ω(p), k, size(s))

for some function f , where the migration cost is zero if src = dst.
Our model so far lacks one additional ingredient: terminal dy-

namics (or mobility). A conservative approach is to assume arbi-
trary request setsRt, whereRt is completely independent ofRt−1.
However, for certain applications it may be more realistic to assume
that the mobile nodes move “slowly” between the access points.
Note that while users typically travel between different cities or
countries at a limited speed, these geographical movements may
not translate to the topology of the substrate network. Thus, rather
than modeling the users to travel along the links of G, we consider
on/off models where a user appears at some node v1 ∈ V at time
t, remains there for a certain period ∆t, before moving to another
arbitrary node v2 ∈ V at time t+ ∆t.

Traditional models may assume that ∆t is exponentially dis-
tributed. However, in our formal analysis we assume a worst-case
perspective and consider arbitrary distributions for ∆t. Often, it
is reasonable to assume some form of correlation between the in-
dividual terminals’ movement. For example, in a planetary-scale
substrate network, demographic aspects have to be taken account in
the sense that during a day, first many requests will originate from
Asian countries, followed by an active period in Europe and finally
America. However, as it is rather hard to describe and characterize
such movement accurately we, in this paper, perform a worst case
analysis (w.r.t. latency) that does not use any statistical assump-
tions.

To what extent the system can benefit from virtual network sup-
port and migration depends on several factors, e.g., how frequently
the thin clients change the access points. Given rapid changes it
may be best to place the server in the middle of the network and
leave it there. On the other hand, if the changes are slower or can
be predicted, it can be worthwhile to migrate the server to follow
the mobility pattern. This constitutes the trade-off studied in this
paper.

3. COMPETITIVE ANALYSIS
As already discussed, competitive analysis asks the question:

How well does the system perform compared to an optimal of-
fline strategy which has complete knowledge of the entire request
sequence in advance? In the following, we present an online mi-
gration strategy that is “competitive” to any other online or offline
solution for virtual network supported service migration. In order
to focus on the main properties and trade-offs involved in the vir-
tualization support of thin clients, we assume a simplified online
framework for our formal analysis. We assume a synchronized set-
ting where time proceeds in time slots (or rounds).1 In each round
t, a set of σt terminal requests arrive in a worst-case and online
fashion at an arbitrary set of access nodes A.

Thus the embedding problem is equivalent to the following syn-
chronous game, where an online algorithm ALG has to decide on
the migration strategy in each round t, without knowing about the
future access requests. Concretely, in each round t ≥ 0:

1. The requests σt arrive at some access nodes A.

2. The online algorithm ALG decides where inG to migrate the
servers S. If positions are changed, it pays migration costs
Costmig(t).

1Note that while this assumption simplifies the analysis, it is not
critical for our results.

3. The online algorithm ALG pays the requests’ access costs
Costacc(t) to the corresponding servers.

Note, that we allow ALG to migrate the virtual servers for all the
requests of the current time slot t. However, as we assume that a
request is much cheaper than a migration, and if there are not too
many requests arriving concurrently, our results also apply for a
scenario where the last two steps are reordered.

We aim at devising competitive algorithms ALG that minimize
the strict competitive ratio ρ: Let ALGt(σ) be the migration and
access costs incurred by ALG in round t under a request arrival
sequence σ (a sequence of access points), that is,

ALGt(σ) = Costacc(t) + Costmig(t).

Let OPT(σ) be the optimal cost of an offline algorithm OPT for
the given σ, that is, OPT has a complete knowledge of σ and can
hence optimize the sever locations “offline”. ρ is the ratio of the
costs of ALG and OPT. Thus, our objective is to minimize:

ρ = max
σ

∑
t ALGt(σ)

OPT(σ)

For an online algorithm that uses randomization, we consider the
expected costs against an oblivious adversary without access to the
outcome of the random coin flips of the algorithm.

In the remainder of this paper, let σt denote the set of request
issued in round t. We make the following simplifications for our
analysis: (1) We focus on a single substrate provider (i.e., we do
not consider multiple PIPs). (2) There is only one server. (3) We
neglect the load on the infrastructure nodes. (4) The access costs
Costacc(t) are given by the total number of hops between mobile
client and server, that is, we consider the shortest path insideG and
add one hop for the access link which may be wireless. Henceforth,
for any two nodes u, v ∈ V on the topology, let Costacc(u, v) de-
note the shortest hop distance between u and v. (5) The migration
cost Costmig(t) is given by the bandwidth constraint of the small-
est edge capacity on the migration path. Let Costmig(u, v) denote
the migration cost on a path from u to v. (The path will be clear
from the context.) Thus, Costmig(u, v) = maxe size(s)/ω(e)
where size(s) is the size of the migrated server s and e is a link on
the migration path from u to v.

Note, our migration cost model corresponds to a tree metric, that
is, for any given migration strategy, there is an algorithm achieving
the same performance by migrating only along the minimal Steiner
tree (w.r.t. link latency due to bandwidth constraints). To see this,
assume that the migration graph contains a cycle. Consider two
arbitrary nodes u and v on that cycle, and let the two paths from
u to v be denoted by p1 and p2. Then, the migration cost on a
path from u to v is given by the weakest link on the corresponding
path. Thus, if the link with lowest bandwidth on p1 has lower or
equal capacity than p2, using migration on p2 does not come at an
extra cost. (Note that for load-balancing reasons in scenarios with
multiple parallel migrations, this may change.)

3.1 Optimal Offline Algorithm
The competitive analysis compares the performance of a given

online algorithm to an optimal offline strategy. In the following,
we present an optimal migration strategy OPT for the case that the
request sequence σ is given in advance. As stated above, this serves
as a reference for evaluating our online protocol. OPT is based on
dynamic programming techniques. It exploits the fact that migra-
tion exhibits an optimal substructure property: Given that at time t,
the server is located at a given node u, then the most cost-efficient
migration path that leads to this configuration consists solely of op-
timal sub-paths. That is, if a cost minimizing path π to node u at
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time t leads over a node v at time t′ < t, then there cannot be a
cheaper migration sub-path that leads to v at time t′ than the corre-
sponding sub-path in π.

OPT essentially fills out a matrix opt[time][node] where opt[t][v]
contains the cost of the minimal migration path that leads to a con-
figuration where the server satisfies the requests of time t from node
v. Assume that initially, the service is located at node v0. Thus, ini-
tially, opt[0][u] = Costmig(v0, u) +

[∑
v∈σ0

Costacc(v, u)
]

as
the migration origin is v0, and as a request needs to travel on the
access link from the terminal to v and from there to u (w.l.o.g., we
assume that the cost Costacc contains the first wireless hop from
terminal to substrate network).

For t > 0, we find the optimal values opt[t][u] by considering
the optimal migration paths to any node v at time t− 1, and adding
the migration cost from v to u. That is, in order to find the optimal
cost to arrive at a configuration with server at node u at time t:

min
v∈V

[
opt[t− 1][v] + Costmig(v, u) +

∑
w∈σt

Costacc(w, u)

]

where we assume that Costacc includes the first (wireless) hop of
the request from the terminal to the substrate network, and where
Costmig(v, v) = 0 ∀v.

We have the following runtime result.

THEOREM 3.1. The optimal offline migration policy OPT can
be computed in O(n3 + n2 ∑

t∈Γ |σt|) time, where Γ is the set of
rounds in which events occur.

PROOF. Note that we can constrain ourselves to optimal offline
algorithms where migration will only take place in “active” rounds
Γ with requests. This is useful in case of sparse sequences with few
requests. The opt[·][·]-matrix contains |Γ| · n entries. In order to
compute a matrix entry, we need to consider each node v ∈ A from
which a migration can originate; for each such node, the access
cost from all the requests in σt need to be computed. Both the
shortest access paths and the migration costs can be looked up in a
pre-computed table (pre-computation in time at most O(n3), e.g.,
by Floyd-Warshall’s algorithm) and require a constant number of
operations only, which implies the claim.

Finally, we remark that OPT can be generalized for arbitrary cost
functions and multiple PIPs.

3.2 QoS without Migration
In order to compare the benefits of migration to a static scenario,

we derive the competitive ratio of fixed strategies.

LEMMA 3.2. A system without migration yields a competitive
ratio of

ρ ∈ Θ(Diam(G)),

where Diam(G) is the network diameter of substrate network G.

PROOF. Clearly, ρ ∈ O(Diam(G)) because for each request,
the optimal offline algorithm pays at least 1, and an online algo-
rithm pays at most Diam(G) + 1. On the other hand, we can fix
any online algorithm with server at position v. Then there exists a
location u such that Costacc(v, u) ≥ Diam(G)/2. If the request
sequence σ consists of requests originating from u only, the online
algorithm pays at least (Diam(G)/2 + 1) · |σ|, while the offline
algorithm may place the server at u and pay |σ|.

In a fixed scenario, the best location for hosting s is in the network
center, i.e., the location which minimizes the distance traveled by
the requests, namely at node u for which

u := arg min
v∈V

max
w∈V

Costacc(v, w).

Note, since there is no migration in the fixed scenario, the com-
petitive ratio does not depend on any bandwidth constraints (i.e., on
link weights). This indicates that in networks with highly hetero-
geneous links or with links whose capacity changes quickly over
time, a fixed solution without migration may be appealing.

3.3 Online Migration
In this section we describe our online algorithm MIG for com-

petitive migration. The basic idea of MIG is to strike a balance
between the request latency cost CostMIG

acc and the migration cost
CostMIG

mig it incurs, and to continuously move closer to a possible
optimal position. The intuition is that after a small number of mi-
grations only, either MIG is at the optimal position, or an optimal
offline algorithm OPT must have migrated as well during this time
period. Either way, OPT cannot incur much smaller costs than MIG.
In other words, by using MIG for moving to good locations in the
network, a possible offline algorithm that migrates less frequently
cannot have much lower access costs than MIG; on the other hand,
an offline strategy with frequent migrations will have a cost similar
to CostMIG

mig .
Let us first consider a scenario with constant bandwidth capac-

ities, i.e., ω(e) = ω ∀e ∈ E and identify its migration cost
β = 1/ω.

The algorithm MIG divides time into epochs. In each epoch MIG
monitors, for each node v, the cost of serving all requests from this
epoch by a server kept at v. We denote this counter by Lv . MIG
keeps the server at a single node w till Lw reaches β. In this case,
MIG migrates the server to a node u chosen uniformly at random
among nodes with the property Lu < β. If there is no such node,
MIG does not migrate the server, and the epoch ends in that round;
the next epoch starts in the next round and the counters Lv are reset
to zero.

LEMMA 3.3. MIG is O(logn)-competitive in networks with
constant bandwidth.

PROOF. Fix any epoch E and let β denote the migration cost. If
OPT migrates the server within E , it pays β. Otherwise it keeps it
at a single node paying the value of the corresponding counter at
the end of E . By the construction of MIG, this value is at least β,
and thus in either case OPT(E) ≥ β.

The migrations performed by MIG partition E into several
phases. According to our migration strategy, the access cost of
MIG in each phase is at most β. Below, we show that the expected
number of migrations within one epoch is at mostHn, whereHn is
the n-th harmonic number. The number of phases is then Hn + 1,
and hence MIG(E) ≤ β ·Hn + β · (Hn + 1) = β ·O(logn). This
yields the competitiveness of MIG.

Let {vi}ni=1 be the sequence of nodes in order their counters
reach the value β (with ties broken arbitrarily). Assume that in a
phase MIG keeps the server at node vi and let Ti be the expected
number of server migrations till the end of E . If i = n, then the
current phase is the last one in E , and thus Tn = 0. Otherwise,
i < n, and at the end of this phase, MIG chooses a next place for
the server uniformly at random from the set {vj : i < j ≤ n}.
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Hence, we obtain the recursive formula

Ti = 1 +

n∑
j=i+1

1

n− i · Tj .

By a simple induction, one can show that Ti = Hn−i. Thus, if
MIG starts E with the server at node vk, the expected number of
migrations in E is Hn−k ≤ Hn.

For networks with general bandwidths, MIG can be adopted in
such a way that it migrates when the counter of the current location
v reaches mine ω(e), that is, when Lv ≥ mine ω(e). Thus, the
cost of the optimal algorithm in each epoch is at least mine ω(e),
while the cost of MIG is at most maxe ω(e). Thus, by the same
arguments as in the proof of Lemma 3.3, we immediately obtain
the following result.

THEOREM 3.4. MIG isO(µ·logn)-competitive in general net-
works, where µ = maxe,e′∈E ω(e)/ω(e′).

4. SIMULATION
Although the main focus of this paper is on the formal and worst-

case competitive analysis, we briefly report on our preliminary sim-
ulation results on “average-case”, randomized access distributions.
We ran experiments on a simple linear substrate network consisting
of n substrate nodes are arranged in a chain. We assumed that the
duration for which a terminal remains at a specific access point is
exponentially distributed (with parameter λ), after which a new ac-
cess point is chosen uniformly at random from the set of all access
points.

The simulations show that the higher the correlation among the
requests is, the more a system will benefit from our migration strat-
egy. Moreover, even for relatively high degrees of mobility, MIG
outperforms the optimal static solution (without migration), espe-
cially in large networks where the available bandwidth does not
differ too much between links. Interestingly, the observed compet-
itive ratio is small even for relatively large networks, see Figure 2.
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Figure 2: Competitive ratio of MIG for different network sizes.
In this simulation, we used ω(e) = 1/20 ∀e and considered
one request with exponentially distributed sojourn time (with
λ = 1/50). The total runtime is 1000 rounds.

Figure 3 shows three traces of the competitive ratio over time for
a network with n = 100. The figure illustrates that the larger the
correlation of the requests is, i.e., the more requests travel together,
the higher the migration benefits.
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Figure 3: Competitive ratio of MIG over time. In this simu-
lation, we used ω(e) = 1/20 ∀e and considered one request
with exponentially distributed sojourn time (with λ = 1/50).
The network size was n = 100. In the first experiment, a sin-
gle client moves along the topology in a uniform and random
fashion. In the second and third experiment, correlation is in-
creased by moving five and ten clients simultaneously (and per-
fectly correlated) along the network.

5. DISCUSSION AND EXTENSIONS

5.1 Generalization and Optimization
For the sake of our analysis, we have considered a simplified

model for the access and migration costs. While we express the first
one as a function of number of hops, the latter is mainly based on
the transfer cost (computed as the ration between the virtual server
size and the migration path bottleneck bandwidth). In a general
setting, both metrics are composed of two components: the trans-
mission cost and service cost for the required information. The
service cost depends on the total machine load, where the virtual
server is hosted (application queuing delay), and the transmission
cost depends on the length of the considered network path (be it for
access or migration), the machine load, and the number of traversed
infrastructure providers PIPs. The last dependency introduces also
a business dimension to the cost computation, expressed via SLAs
between PIPs, which provision interfaces only for certain types and
sizes of resources. At the same time, in our competitive analy-
sis framework, we can instantiate different optimization problems,
in which we incorporate different possible objective functions and
constraints. Examples are: minimize the overall access cost under
migration cost constraints, or minimize the migration cost under
delay constraints, or resource constraints with respect to infrastruc-
ture capabilities. Each instance of such an optimization may lead
to specialized algorithms which can be derived for the particular
problem being addressed.

5.2 Multiple Servers and Replication
So far, we have constrained our design space to systems in which

a single virtual server is migrated on an underlying network infras-
tructure graph. However, in the long run, we envision a system
in which multiple virtual servers can be accessed in parallel by
the active clients. Moreover, for large network systems, we want
to allow virtual server replication as an additional mechanism to
server migration. Within this context, various questions must be
addressed. An on/off substrate node model, in which each infras-
tructure node may host a virtual server is no longer sufficient. Node
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storage capacity has to be considered and influences the cost of mi-
gration/access of/to a given virtual server. Given certain storage
resources in the system and migration/access cost as a function of
the node load, the overall system must carefully balance the num-
ber of replicas of each virtual server that exists at any given time,
and decide whether a new replica should be instantiated or an exist-
ing replica should be migrated. Also, the competition for resources
among different virtual servers must be addressed. To this end,
service utility functions which encompass general QoS/QoE and
popularity metrics must be incorporated in the overall optimization
framework.

5.3 Mobility and Prediction
Our competitive analysis method and OPT and MIG algorithms

optimize the placement of the virtual server based on rounds, af-
ter observing the active user requests in that round. Our analysis
highlights the merits of the algorithm both on a per round basis and
over longer periods of time, when requests are completely random.
However, when request locations are correlated in time, our ap-
proach can be further optimized by the use of additional estimation
and prediction mechanisms. Thus, a careful study of user mobil-
ity patterns and request location updates may enhance our virtual
server location decisions. Time window based mechanisms which
incorporate the location of a given request in the recent past and
extrapolate possible future requests can be incorporated in our sys-
tem, either on individual or aggregate basis. Furthermore, user mo-
bility data and activation patterns can be studied and incorporated
as request mobility estimation models in our framework. While
we perceive such methods as independent of our migration analy-
sis methodology, they are a desirable addition to our framework for
the case of large, global systems with stringent resource and QoS
constraints.

6. CONCLUSION
At the heart of network virtualization lies the ability to react to

changing environments in a flexible fashion. Competitive analysis
is the classic mathematical framework to design and study proto-
cols for such systems. This paper proposed an online algorithm
that dynamically migrates a server to the locations of highest de-
mand.

When is migration efficient? Our formal analysis and our sim-
ulations suggest that our migration strategy is particularly efficient
in scenarios where requests are correlated, as MIG is able to iden-
tify good migration strategies online. Our algorithm achieves a
good competitive ratio in systems with low request dynamics but
remains efficient also for higher dynamics. In addition, while our
formal analysis suggests a logarithmically increasing competitive
ratio in the network size, our simulation experiments indicate that
MIG scales well in case of randomized access patterns. Compared
to a static solution without dynamic migration, MIG is naturally
better for larger networks, especially if edge capacities do not dif-
fer too much and as long as the request dynamics is limited and still
exhibits an exploitable structure.
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