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ABSTRACT

We present a mechanism for achieving network I/O fair-
ness in virtual machines, by applying flexible rate limiting
mechanisms directly to virtual network interfaces. Con-
ventional approaches achieve this fairness by implementing
rate limiting either in the virtual machine monitor or hyper-
visor, which generates considerable CPU interrupt and in-
struction overhead for forwarding packets. In contrast, our
design pushes per-VM rate limiting as close as possible to
the physical hardware themselves, effectively implementing
per-virtual interface rate limiting in hardware. We show that
this design reduces CPU overhead (both interrupts and in-
structions) by an order of magnitude. Our design can be
applied either to virtual servers for cloud-based services, or
to virtual routers.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign C.2.5 [Computer-Communication Networks]: Local
and Wide-Area Networks C.2.6 [Computer-Communication
Networks]: Internetworking

General Terms: Algorithms, Design, Experimentation, Per-
formance

Keywords: Network Virtualization, NetFPGA, Xen

1. Introduction

An important aspect of virtual machine design and im-
plementation is fairness in resource allocation across virtual
machines. Although it is relatively well understood how to
fairly allocate computing resources like CPU cycles, the no-
tion of fairness becomes less clear when it is applied to I/O—
and, in particular, network I/O. A common approach for con-
trolling I/O resource utilization is to implement scheduling
in the virtual machine monitor or hypervisor. Unfortunately,
this approach induces significant CPU overhead due to I/O
interrupt processing.
Various approaches to increase the performance of virtual-

machine I/O have been proposed. Some try to provide new
scheduling algorithms for virtual machines for better net-
work I/O performance. Other techniques use existing sched-
ulers and try to provide system optimizations, both in soft-
ware and in hardware. From the operating system perspec-
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tive, they fall into two categories: the driver-domain model
and those that provide direct I/O access for high speed net-
work I/O.
A key problem in virtual machines is network I/O fairness,

which guarantees that no virtual machine can have dispro-
portionate use of the physical network interface. This paper
presents a design that achieves network I/O fairness across
virtual machines by applying rate limiting in hardware on
virtual interfaces. We show that applying rate limiting in
hardware can reduce the CPU cycles required to implement
per-virtual machine rate limiting for network I/O. Our de-
sign applies generally to network I/O fairness for network
interfaces in general, making our contributions applicable to
any setting where virtual machines need network I/O fair-
ness (i.e., either for virtual servers [9] or virtual routers [20]).
Our goals for the implementation of network I/O fair-

ness for virtual machines are four-fold. First, the rate lim-
iter should be fair: it should be able to enforce network
I/O fairness across different virtual machines. Second, the
mechanism must be scalable: the mechanism must scale as
the number of virtual machines increases. Third, it must
be flexible: because virtual machines may be continually
remapped to the underlying hardware, the mechanism must
operate in circumstances where virtual ports may be fre-
quently remapped to underlying physical ports; this associa-
tion should also be easily programmable. Finally, the mech-
anism must be robust, so that neither benign users nor mali-
cious attackers can subvert the rate-control mechanism.
We achieve these design goals with a simple principle:

push rate limiting as close as possible to the underlying
physical hardware, suppressing as many software interrupts

as possible. Our implementation builds on our previous
work in fast data planes for virtual routers that are built on
commodity hardware [8]. The design suppresses interrupts
by implementing rate limiting for each virtual queue in hard-
ware, preventing the hypervisor or operating system from
ever needing to process the packets or implement any fair-
ness mechanisms. Our evaluation shows that implementing
rate limiting directly in hardware, rather than relying on the
virtual machine hypervisor, can reduce both CPU interrupts
and the required number of instructions to forward packets
at a certain rate by an order of magnitude.
The rest of this paper proceeds as follows. Section 2 pro-

vides background and related work on network virtualization
in virtual machine’s context. Section 4 presents the basic
design of a virtualized network interface card to enable net-
work resource isolation in hardware and freeing CPU from
unwanted packets overhead to do better virtual machine re-
source scheduling; this design is agnostic to any specific pro-
grammable hardware platform. Section 5 presents an imple-
mentation of our design using the NetFPGA platform. Sec-
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tion 6 presents a preliminary evaluation of the virtualized
network interface card; Section 7 discusses limitations and
possible extensions of the current implementation. Section 8
concludes with a summary and discussion of future work.

2. Background and Related Work

Many CPU scheduling algorithms in virtual machines fol-
low process scheduling algorithms from operating systems.
For example, Xen [9] has implementations of Borrowed Vir-
tual Time (BVT) and Simple Earliest Deadline First (sEDF).
Recent work [10, 15] has shown that CPU schedulers do not
perform well in the presence of a combination of I/O inten-
sive and CPU intensive applications running together on a
single server. It can result in unfair scheduling of resources
for CPU intensive or network I/O intensive virtual machines.
Virtual machine monitors must maintain both network I/O
fairness and CPU resource fairness in a virtualized environ-
ment while providing the best performance for both CPU-
intensive and network-intensive applications. To enable fair
sharing of CPU and network resources, we offload the task
of network virtualization and fairness from the CPU and en-
force it in the virtualized network interface card.
Network I/O virtualization has been used in both OS vir-

tualization and a non-OS virtualization context. Virtual In-
terface Architecture (VIA) [12] is an abstract model that is
targeted towards system area networks and tries to reduce
the amount of software overhead compared to traditional
communication models. In traditional models, the OS ker-
nel multiplexes the access to hardware peripherals, so all
communication must trap within the kernel. VIA tries to
remove this communication overhead by removing the ker-
nel operations in each communication operation. Similarly,
Remote Direct Memory Access (RDMA) [4] is a data com-
munication model that allows the network interface card di-
rect memory access to application memory without copying
data between kernel and user space.
In OS virtualization, the driver-domain model and the di-

rect I/O model are two approaches for achieving network
I/O performance while maintaining fairness. The driver-
domain model [21, 23] uses a separate virtual machine for
device drivers. This domain runs a mostly unmodified oper-
ating system and simplifies the problem of providing device
drivers to many virtual machines. The driver domain pro-
vides better fault tolerance by isolating driver failures to a
separate domain compared to maintaining device drivers in
hypervisor. On the other hand, the direct I/O model gives
direct hardware access to the guest domains running on the
server [6, 7, 17, 22]. This approach provides near-native per-
formance, but it sacrifices fault isolation and device trans-
parency because it breaks the driver-domain model.
These two approaches [6, 7] provide separate queues to

each virtual machine. They offload the load from the Xen
software and perform multiplexing and demultiplexing in
hardware. Mansley et al. extend the netback and netfront
architecture of Xen to allow domUs to opt for direct I/O
or “fast path” instead of driver domain or “slow path” [17].
CDNA (Concurrent, Direct Network Access) goes further by
combining hardware multiplexing and demultiplexing [22].

Figure 1: Xen Separate Driver Domain.

Figure 2: Dom0 as Driver Domain.

It also assigns each virtual machine to a queue and bypasses
the driver domain to provide direct network traffic I/O.
Many virtual machine monitors (e.g., Xen [9], Microsoft

Hyper-V [2] and L4 [16]) use the driver-domain model to
provide virtualization of I/O devices. In Xen, the driver do-
main can be run separately or in domain 0, as shown in Fig-
ures 1 and 2, respectively. This model provides a safe ex-
ecution environment for the device drivers, which enables
improved fault isolation.
Both of these approaches have various problems. Al-

though direct I/O provides better performance, it can cause
reliability problems [11]. The driver-domain model is pre-
ferred because a separate domain can handle device failures
without affecting the guest domains [24]. Direct I/O also re-
quires the guest OS to have the device-specific driver, which
increases the complexity of the guest OS and thus makes
porting and migration more difficult. The driver-domain
model, on the other hand attempts to keep the guest OS sim-
ple, but it does suffer from performance overhead, as the
driver domain becomes a bottleneck, since every incoming
packet has to be inside the driver domain before it can be
copied to the guest domain.
In both driver-domain model and direct I/O model, inter-

rupts are received by hypervisor, which dispatches them to
the driver domain in case of driver domain model or to the
guest domains in case of direct I/O model. In this work we
preserve the driver-domain model and assign virtual queues
to every virtual machine running on the server. Although this
approach risks exposing the the hypervisor to unwanted in-
terrupts, but we maintain fairness in hardware and also sup-
press interrupts before sending them to the hypervisor.

3. Design Goals

This section outlines the design goals and challenges for
the virtualized network interface card that provides both net-
work I/O fairness that host multiple virtual machines.
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1. Fair. Our main goal is to provide network I/O fair-
ness to all users who share a single physical server.
The design should be scalable enough to provide both
transmit and receive-side fairness to all users on a sin-
gle server. Fair access to the network resources enables
a cloud service provider to allocate a fixed amount of
bandwidth to each user at the server level, so that as
load increases, no user should have access to an unfair
share of resources.

2. Scalable. Increasing CPU processing power [5] with
increasing interconnection bandwidths (e.g, PCIe 2.0)
means that data can be sent to the CPU at increasingly
high rates. These two facts point towards a higher per-
server network bandwidth in cloud infrastructure and
data-center networks. A general rule of thumb of one
virtual machine per thread per processor [19] means
that a single server might host tens of virtual machines.
Therefore, the design should be scalable enough to
handle the bandwidth of an increasing number of vir-
tual machines per server.

3. Flexible. The design should allow the physical server
owner to dynamically change the physical port asso-
ciation of a virtual Ethernet card on the fly. A phys-
ical card might have an unequal number of physical
and virtual Ethernet ports, which means that number
of virtual Ethernet cards that can be maintained on
a single card should not depend on physical Ethernet
ports on the hardware. We assume that new virtual
machines will be created regularly on a server and that
they can have new MAC addresses with each new in-
stance. Similarly, if a virtual machine migrates from
one server to another, it might want to keep its MAC
address as it moves; therefore, the network interface
card should be able to accommodate the newMAC ad-
dress if needed.

4. Programmable. Associating each virtual Ethernet in-
terface should be based on MAC addresses. The vir-
tual network interface card should be programmable
enough to allow the administrator to associate the
physical and virtual interfaces using a simple pro-
grammable interface. It should also enable the ad-
ministrator to associate virtual Ethernet interfaces with
physical ones based on user defined values (e.g, IPv4
addresses).

5. Robust. Design should be robust enough to not intro-
duce any malicious behavior. e.g., Separating phys-
ical interfaces from virtual Ethernet interfaces opens
the possibility of Denial of Service (DoS) attacks on
the VMs on the same physical server. We aim for our
design to be robust enough to withstand any malicious
activity from the users residing on the same physical
server.

The next sections describe the design and implementation
that tries to achieve these goals.

4. Design

Our design assumes multiple users on a server sharing
a physical network interface card, as shown in Figure 3.

Figure 3: Virtualized network interface card with rate limiters.

The higher per-server network bandwidth requirement of
cloud infrastructure and data-center networks makes scala-
bility one of the main issues for our design. We use a CAM-
based design to handle multiplexing and demultiplexing of
high-speed network traffic in hardware for a large number of
virtual machines.
One of our main goals is to maintain network I/O fair-

ness in hardware and suppress unwanted interrupts on the
card before sending packets to the CPU. Achieving this net-
work I/O fairness in hardware can ultimately result in better
performance and better resource scheduling for the server.
Virtualized Ethernet cards available in the market [6, 7] pro-
vide a notion of virtual Ethernet interfaces, as we discuss in
Section 4.1. We also explain how virtual interfaces can be
mapped to the physical interfaces on a card (Section 4.2).
Previous work has shown that multi-queue network inter-
face cards provide better performance than single-queue
cards [14,21]. Because there is no open implementation of a
virtualized network interface card, we first modify the NetF-
PGA [3] NIC implementation to provide a virtualized net-
work interface card. We further modify this implementation
to provide programmability and network I/O fairness, sup-
pressing the interrupts inside hardware before sending them
to the CPU (Section 4.3).

4.1 Virtualized Ethernet Card

Virtualized network interface cards (e.g., [6, 7]) provide
packet multiplexing and demultiplexing in hardware instead
of software. Without hardware support, this multiplexing
and demultiplexing occurs in the driver domain; with in-
creasing network bandwidth requirements for server, mul-
tiplexing and demultiplexing in software can easily become
a performance bottleneck. Because physical Ethernet cards
can have many virtual network interfaces, we implement
the packet multiplexing and demultiplexing using the MAC
mapping table and map each virtual network interface in VM
to a physical queue in hardware.
In the NetFPGA reference design for network interface

card, each Ethernet port is mapped to a corresponding Eth-
ernet interface in software. Thus, if a packet arrives on a
physical Ethernet interface, by default it is sent to the soft-
ware interface in Linux kernel, at which point the user pro-
cess handles the packet.
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We have allocated virtual Ethernet interfaces to physical
queues using amapping table, as shown in Figure 3. Because
the number of virtual Ethernet interfaces in software can be
more than the physical ports available on hardware we use
a table that maps physical to virtual Ethernet interface map-
pings so that the packet can be sent to the appropriate queue
in hardware.
Each Ethernet interface must also have its own MAC ad-

dress through which it can be identified to the outside world.
Thus, each virtual Ethernet interface has a 48-bit register that
stores the MAC address for the virtual Ethernet interface.

4.2 Mapping Ethernet Interfaces

On a physical card, the number of physical Ethernet inter-
faces may not be equal to virtual Ethernet interfaces. There-
fore, to identify each virtual Ethernet interface uniquely,
each virtual interface must have a unique MAC address.
MAC addresses for the virtual Ethernet interfaces are main-
tained in a small table. For every incoming packet, its des-
tination MAC address is looked up in the table to see if the
packet belongs to one of the virtual Ethernet interfaces on
the card. If there is a hit in this table, it means the packet is
addressed to one of the virtual machines and is accepted; in
case of a miss, the network interface card drops the packet.
In addition to book-keeping of MAC addresses for virtual

interfaces, this table also maps eachMAC address to the cor-
responding virtual Ethernet interface. This mapping trans-
lates the MAC address to physical queue mapping in hard-
ware. For each incoming packet, if its destination MAC ad-
dress is present in the mapping table, a table lookup returns
the corresponding virtual Ethernet interface to the MAC ad-
dress. Based on this value, the incoming packet is sent to the
appropriate virtual interface in software.
The mapping of physical to Virtual Ethernet interfaces is

dynamic and can be changed by the administrator on the fly.
In addition to redirecting received packets, the mapping ta-
ble has information about outgoing packets. It has a field
that is looked up for every outgoing packet. This field makes
sure that users can send traffic out of the physical interface
through which they are allowed to send traffic out instead of
any other interface.

4.3 Fairness and Interrupt Suppression

Each virtual Ethernet interface’s receive queue has rate
limiters placed on it. Once the packet is forwarded from
the mapping tables stage, it reaches to a token bucket rate
limiter as shown in figure 3. These rate limiters provide a
soft limit to the traffic coming to the CPU and these limits
can be changed by the administrator using a register inter-
face through a user-space program.
Rate limiting before the receive queue of each virtual Eth-

ernet interface can help enforce a fairness policy set by the
administrator. If any of the user tries to send more traffic
than what is allocated than the packets are dropped. This de-
sign ensures that different virtual machine users receive no
more than their allocated share of bandwidth.
In addition to providing network traffic fairness between

the virtual machines, packet dropping in hardware makes
sure that no extra packets go the hypervisor. There are two
reason to drop packets in hardware. First of all bandwidth
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Figure 4: Pipeline for NetFPGA implementation.

of NIC interconnect interface may not be enough to send all
traffic from virtualized NIC to the software e.g. PCI band-
width is much less than 4Gbps bandwidth of NetFPGA card.
Therefore NIC should not be receiving more traffic than it
can push through the interconnect interface. Rate limiter im-
poses this limit and drops any extra packets that can not be
pushed through the interconnect. Secondly, it puts a limit on
bandwidth usage by each VM thus there are no extra inter-
rupts generated for the hypervisor to handle extra traffic for
a specific user.
Inter-virtual machine traffic on the same server can both

be legitimate and illegitimate. Any legitimate virtual ma-
chine user on a server can mount malicious attacks on the
neighbors residing on the same physical server. Its possible
that a user can send a packet with his source MAC address,
destined to another machine on the same server. This kind of
attack will result in wasted CPU cycles for the user that is un-
der attack. One solution can be to simply block inter-virtual
machine traffic, but another solution can be to block inter
virtual machine traffic based on legitimacy of inter-virtual
machine traffic. A simple blocking solution mimics the be-
havior in servers with different NICs and can implemented
by looking up the source and destination MAC addresses
for each outgoing packet. If the destination MAC address
and the source MAC address of packet are matched then the
packet can be dropped; if there is a match for only one of the
addresses, then the packet can be transmitted.

5. Implementation

We implemented this virtual NIC design with a mapping
table and rate limiters for receive-side fairness for virtual
machines. Through this implementation, we wanted to show

76



the feasibility of the design and its ability to maintain net-
work I/O fairness and interrupt suppression.
Figure 4 shows our implementation on a NetFPGA [3]

card, with the possibility of adding rate limiters on the trans-
mit side. Figure 4 also shows the pipeline of the implemen-
tation with new modules for virtualized Ethernet card high-
lighted. We have used the NetFPGA reference implementa-
tion as the base implementation. We have combined “Output
Port Lookup” and “Virtual NIC Lookup” stages into a single
stage and have not implemented transmit-side rate limiters
for the CPU queues which are shown with dotted lines in
figure 4.
There are four rate limiters in hardware to provide receive-

side fairness for the incoming packets to all the virtual ma-
chines running in software. Similarly, transmit-side rate lim-
iters can be used to stop any virtual machine from sending
more than its fair share (Figure 4). Because the packet gen-
eration process is handled by the CPU and each virtual ma-
chine’s CPU cycle scheduling is already being done by Xen
VM scheduler, it should not be possible for a VM process to
get more than its share of CPU cycles allotted by scheduler
and then generate high volumes of traffic. However, a user
might still send traffic from unauthorized physical Ethernet
interface; to counter this, we have an entry in mapping table
that keeps track of outgoing traffic and prohibits any user
from sending at higher than the allotted rate.
We have implemented queue mapping using a single

BlockRAM-based CAM with exact matching. There are 32
entries in CAM; each entry has 3 fields. For each entry, there
is a single MAC address with administrator allocated incom-
ing and outgoing ports for it to access.
The NIC matches the destination MAC address of each

packet against the CAM; if there is a hit in the table, then
the card sends the packet to the corresponding CPU queue,
as determined by the values that are stored in the CAM. Fig-
ure 4 shows the CPU queues after the MAC lookup stages
as “CPU TxN”. If there is a miss, then the packet is dropped
immediately in the “Virtual NIC Lookup” stage.
For packets coming from the CPU, the interface card looks

up the packet’s source MAC address; if there is an entry for
the source MAC address, then the interface card knows that
a legitimate user sent the packet. The interface card then
identifies this user’s outgoing port and the packet is sent out
of the allocated physical port to the particular user.

6. Results

In this section, we present the resource usage of an initial
NetFPGA-based hardware implementation and the perfor-
mance results.

6.1 Resource Usage

For the resource usage of our implementationwe used Xil-
inx ISE 9.2 for synthesis. The resource usage reported here
is for a design with 32-entry CAM and with four virtual in-
terfaces on the card. Adding more virtual Ethernet inter-
faces will mean adding more queues on the NetFPGA card
which means more resource usage. Here we are using four
rate limiters on each Ethernet queue for receive side fairness
therefore we only need a four entry table.

Resource V2Pro 50 Utilization % Utilization

Slices 15K out of 23,616 63%
Total 4-input LUTs 21.5K out of 47,232 45%

Route Thru 2K out of 47,232 4.3%
Flip Flops 15K out of 47,232 31%

Block RAMs 116 out of 232 50%
Eq. Gate Count 8,176 K N/A

Table 1: Resource utilization for the Virtualized NIC with four rate
limiters

Figure 5: Experimental Setup

Our existing implementation, uses 21,500 four-input
Look-Up-Tables (LUTs) of the 47,232 available. This makes
4-input LUT utilization to be 45% of available resources on
the Virtex-II Pro NetFPGA. Table 1 provides various other
statistics about resource usage. This resource usage will in-
crease once we increase the number of queues in hardware
and add rate limiters to those queues; it will decrease if we
have less than 32 entries in the CAM.

6.2 Performance

We first show that our simple virtualized network card im-
plementation works by assigning each virtual network inter-
face a specific MAC address that can be used by the vir-
tual machine. Current implementation has four queues in
hardware and four interfaces in the software. In this exper-
iment, we simply show that what is the maximum amount
of traffic that can be sent from the outside servers to the vir-
tual machines on server. Although the PCIe interface has
much higher bandwidth than PCI interface, the 1x4 Gbps
NetFPGA [3] card only has PCI interface; therefore, we
have done measurements on NetFPGA card connected to the
server through PCI interface.
Figure 5 shows our experimental setup, which consists of

2 1U servers with Intel Quad Core processors and 4GB of
RAM on each machine. Each machine has one NetFPGA
card. It is a single source-sink topology where source is di-
rectly connected with the sink. All four ports of the source
node are connected directly to the four ports of the sink node.
We used the NetFPGA-based packet generator [13] to gen-
erate high speed network traffic. On the receiver side, we
had NetFPGA card with virtualized network interface card,
as discussed in Section 5.

6.2.1 Packet Demultiplexing

Wemeasured packet-receive rates in the Xen hypervisor to
obtain a baseline measurement for forwarding speeds of the
PCI-based NetFPGA NIC card. Figure 6 shows total receive
rate when the packet generator floods one, two, and four
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queues of the network interface card. As we increased the
number of queues from one to four, the total packet receive
rate remained the same, and the bandwidth was distributed
evenly across different virtual machines. Interestingly, this
flooding showed fairness in the number of packets received
by more than one queues. When we flooded two and four
queues, the cumulative rate remained the almost same, and
all queues received packets at equal rate. This shows that the
virtualized NICs achieve fairness even when all hardware-
based rate limiters are disabled.
Figure 7 shows the per-queue receive rate in packets per

second that can be achievedwhen the NetFPGA card is in the
PCI slot. When we increase the number of receive queues
that are being flooded, the forwarding rate per port is de-
creased: the forwarding rate is inversely proportional to the
number of queues.
These two figures show the inherent fairness in the virtual-

ized network interface card. When all users are using the net-
work at full capacity, traffic is equally shared among them.
We are able to get equal shares for all the users mainly be-
cause of virtualized queues, and by representing each queue
in software as a separate network interface. It also shows
that with the PCI 32-bit version working, we can achieve a
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Figure 8: Reduction in Hardware Interrupts to CPU

maximum speed of about 90,000 packets per second with
64-byte sized packets. While each queue is receiving pack-
ets at approximately 23,500 packets per second.

6.2.2 Hardware Interrupt Suppression

As shown previously that in virtualized NIC cards, assign-
ing separate queues to each VM, provides equal share of net-
work traffic to each VM. But the problem comes in when we
consider the number of interrupts sent to hypervisor because
of traffic of each VM. If one of the four user is flooding
the network and three users are using bandwidth within their
limits the number of interrupts sent to hypervisor from user
flooding the card will be much more higher then users stay-
ing within their limits. Here we show that by rate limiting in
hardware we are effectively suppressing the user interrupts
as well thus providing the hypervisor and dom0 ability to
serve equal amount of CPU resources to each VM.
To measure the effectiveness of this implementation we

measured the decrease in interrupts per second by decrease
in packets received by the Xen Hypervisor. We measured the
interrupts in hardware using open source tool Oprofile [18].
Figure 8 shows the results for this particular experiment.

Here we flooded a single virtual Ethernet card with maxi-
mum possible traffic to the card. For the smallest size pack-
ets the number of interrupts per second was almost equal to
the number of packets per second received by the server.
As the packet size is increases from 64 bytes to 1518

bytes, the number of interrupts per second drops. This drop
in interrupts per second does not guarantee fair resource
sharing on the CPU secondly for smaller packet sizes num-
ber of interrupts per second is too large.
To measure the effectiveness of the rate limiter in decreas-

ing the number of interrupts per second, we decreased the
amount of traffic received by each user to approximately
24,000 packets per second for 64B sized packets. Then we
flooded the single queue with NetFPGA packet generator at
approximately 1Gbps with 64B sized packets. Despite this
higher rate from the packet generator, the virtualized net-
work interface card only forwarded packets that were al-
lowed for the particular single queue. As shown in Figure 8,
this directly resulted in a decrease in the number of interrupts
per second to the hypervisor.
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Figure 9: Unhalted CPU Cycles per second while flooding.

 0

 100

 200

 300

 400

 500

 600

 700

 0  200
 400

 600
 800

 1000
 1200

 1400
 1600

In
st

ru
ct

io
ns

 R
et

ire
d 

pe
r s

ec
on

d 
(’0

00
,0

00
 in

st
ru

ct
io

ns
)

Packet Size (bytes)

CPU Instruction usage while flooding Four queues and Single queue(Without Rate Limiter)

Four Queues
Single Queue

Single Queue(Rate Limit)
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This essentially shows that a simple rate limiter can reduce
the number of interrupts to the hypervisor and dom0 and can
stop a user from taking unfair advantage of CPU resource in
the hypervisor and domain0 for that user.

6.2.3 CPU Resources

To measure the effect of excessive packets on the CPU we
measured number of CPU cycles required to process each
packet and instructions taken by the CPU to process those
packets. For this experiment we used Xen and dom0 ker-
nel with debug information, which resulted in overall lower
packet capturing rate for the kernel. But the packet per sec-
ond behavior was similar as shown in previous experiments.
We measured the number of unhalted CPU cycles on a

2.66 GHz Intel Xeon processor and number of instructions
executed to capture the packets. First, we flooded all four
ports of the network interface card with the network traffic
and measured the number of unhalted CPU cycles per sec-
ond and number of instructions executed per second, while
all four queues were flooded. We repeated this process for
different packet sizes.
As shown in Figure 7, the per-port receive rate decreases

when we increase the number of queues being flooded. The
same thing is happening here, number of CPU cycles to han-

dle each machine’s packets are distributed for different vir-
tual machines. Figure 9 shows the number of CPU cycles
being spent to serve the packets for a single queue without
rate limiting, is almost equal to the number of cycles being
spent when all four ports are getting equal network traffic
share.
Then we limited the amount of traffic that can be sent us-

ing single virtual queue equal to 24,000 packets per second
for 64-byte packets using rate limiters. After putting a limit
on what traffic can be sent to a single virtual machine using
the rate limiters, the number of cycles spent to serve a single
queue’s traffic decreased. Apart from the smallest packets,
we see more than four times decrease in number of unhalted
CPU cycles for larger packet sizes.
We repeated this same experiment and measured the num-

ber of instructions per second. The number of instructions
spent per second with single queue being flooded was al-
most equal to when all four queues were bombarded using
the packet generator, as shown in figure 10.
After enabling the rate limiter, we reduced the single

queue’s forwarding rate. Figure 10 shows the results of en-
abling the rate limiter and setting a lower rate limit on a sin-
gle queue. We observe a decrease in the instructions per
second spent by the Xen Hypervisor and dom0 for a single
virtual machine user that is is more than a factor of four, for
all packet sizes except 64-byte packets.
These experiments show two benefits of locating rate lim-

iters in the virtual network interface card itself. First, us-
ing rate limiters, we can send through only that traffic to the
server and to the virtual machines that they can handle in
software, without excessively increasing the number of un-
halted CPU cycles and instructions spent on the packets.
Second, rate limiters in the virtual network interface cards

do a nice job of stopping the hypervisor and the driver do-
main in spending extra CPU cycles for unwanted traffic. Al-
though the Linux traffic shaper can be used in dom0 to limit
traffic to domU, using this technique will still mean that hy-
pervisor and dom0 must receive and process the packets be-
fore discarding them. Using rate limiters can handle such
unpredictability in hardware, thus allowing the Xen sched-
uler to more efficiently schedule the VMs themselves.

7. Future Work

Our proof-of-concept uses four queues, which is equal to
the number of physical input ports available on the card. In
our future work, we plan to increase the number of virtual
Ethernet cards on the physical card, which can be done by
increasing the number of CPU queues on the physical card,
as well as making changes to the software.
All virtual network interface cards belong to a single

broadcast domain. We intend to modify this constraint so
that an administrator can dynamically change the broadcast
domain of a network interface card. Our current implemen-
tation also has limited capabilities for collecting statistics
about incoming and outgoing traffic for each virtual network
interface card. network interface card. We plan to enhance
our design to enable an administrator collect such statistics.
We have used source and destination MAC addresses to as-
sociated queues to virtual machines. In a future design, we
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intend to make this association possible by hashing on dif-
ferent packet fields.
In future work, we plan to both virtualize the rate limiter

and make output queueing more flexible. Our current design
applies separate token bucket rate limiters to each receive
queue; thus, adding more virtual network interfaces also re-
quires a larger number of rate limiters. This scaling situation
becomes even worse if we want to implement transmit-side
fairness using rate limiters. We are working on a solution to
virtualize the rate limiter so that we can use only a single rate
limiter for all queues. Our current design also does not fully
exploit the resources available on the network interface card
for output queues. The current design has a fixed number of
output queues; if, for example, there only two users using
the network interface card the, we should be able to provide
bigger queues to the 2 users instead of wasting that space.

8. Conclusion

Operating system virtualization is appears in both cloud
services [1] and router virtualization [20]. Until recently,
however, network virtualization for virtual machines oc-
curred entirely in software. Recent solutions achieve bet-
ter performance by using hardware to multiplex and demul-
tiplex the packets, before sending them to operating sys-
tem. Moreover, network virtualization for operating systems
means following existing models that have proven to be use-
ful, such as providing fault isolation with a separate driver
domain.
This paper takes a step towards providing a fast, flexi-

ble, and programmable virtualized network interface card
that can provide high-speed network I/O to virtual machines
while maintaining the driver domain model. In addition to
providing packet multiplexing and demultiplexing in hard-
ware for virtual machines, assigning each virtual machine to
a single queue in hardware and using the network traffic rate
limiters in hardware achieves network I/O fairness andmain-
tains good performance by suppressing interrupts in hard-
ware. This hardware-based approach reduces the interrupts
that are sent to the hypervisor, as well as the number of in-
structions and number of CPU clock cycles spent to process
each packet. Although many more functions can be added to
the proposed virtual network interface card, this paper rep-
resents a first step towards providing hardware-assisted net-
work I/O fairness for virtual machine environments.
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