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ABSTRACT

Economic models have long been advocated as a means of
efficient resource allocation, however they are often crit-
icized due to a lack of performance and high overheads.
The widespread adoption of utility computing models as
seen in commercial Cloud providers has re-motivated the
need for economic allocation mechanisms. The aim of this
work is to address some of the performance limitations of
existing economic allocation models, by reducing the fail-
ure/reallocation rate, increasing occupancy and thereby in-
creasing the obtainable utilization of the system. This paper
is a study of high performance resource utilization strategies
that can be employed in Grid and Cloud systems. In par-
ticular we have implemented and quantified the results for
strategies including overbooking, advanced reservation, just-
in-time bidding and using substitute providers for service
delivery. These strategies are analyzed in a meta-scheduling
context using synthetic workloads derived from a production
Grid trace to quantify the performance benefits obtained.

Categories and Subject Descriptors

D.4.7 [Organization and Design|: Distributed systems;
D.4.8 [Performance]: Modeling and prediction—Simula-
tion; C.2.4 [Computer-Communication Networks]: Dis-
tributed systems—Grid Computing, Cloud Computing

General Terms
Performance, Economics, Experimentation

Keywords
Economic Resource Allocation, Cloud Computing, Grid Com-
puting
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Large scale distributed computing has changed with the
adoption of utility computing models by commercial Cloud
providers. Consumers now have a choice over where to sub-
mit tasks, weighing up price against the service levels de-
livered. This environment presents an opportunity to cre-
ate high performance federated architectures that span both
Grid and Cloud computing providers, effectively creating
a global computing infrastructure on demand. High level
meta-scheduling over Cloud providers and possibly over fed-
erated architectures necessitates the use of economic aware
allocation mechanisms driven by the underlying allocation
principles used by Cloud providers.

Proponents of computational economies generally cite allo-
cation efficiency, scalability, incentives, and well understood
mechanisms as reasons for using economics in distributed
systems. However, adoption of economies in production sys-
tems has been limited due to criticisms relating to, amongst
other things, poor performance, high latency, and high over-
heads.

Various strategies can be employed both through allocation
protocols and by participants to increase resource occupancy
and therefore optimize overall utilization. This paper looks
at these strategies as a means to improve the performance
of auction systems in the allocation of resources in a high
performance computing context:

e Overbooking, allocates more resources than are avail-
able on the understanding that some resource requests
will not be used due to “no-shows” or over estimated
resource requirements.

e Second Chance Substitutes, if a provider reneges
on its winning bid due to lack of resources (e.g. failure
or overbooking) the next available bidder is chosen.

e Advanced Time Flexible Reservation, is used to
give the resource providers more flexible scheduling op-
tions.

e Just-In-Time (JIT) bidding (or “sniping”) is em-
ployed to minimize the effect of auction latency by
committing/reserving resources to be allocated by the
resource provider at the last possible moment.



In addition to auctions, these strategies are applicable in
other forms of non-economic and economic resource alloca-
tion. This paper presents analysis of these resource utiliza-
tion strategies within the context of a market based Cloud
or Grid. Each strategy has been implemented within the
DRIVE meta-scheduler [10] and is analyzed using synthetic

Grid workloads obtained by sampling production Grid traces.

The structure of this paper is as follows. Section 2 outlines
potential high utilization strategies. Section 3 provides a
brief overview of the DRIVE architecture. Section 4 quan-
tifies experimental results of the strategies using synthetic
workload traces and focusing on improved allocation per-
formance. Section 5 presents an overview of related work.
Finally future work is described in Section 6 and our contri-
butions are summarized in Section 7.

2. HIGH UTILIZATION STRATEGIES

Economic allocation protocols have been widely studied in
a distributed context with varying results. However, there
has been little study of strategies which can be employed
by participants to maximize occupancy and therefore uti-
lization. In particular, providers may implement strategies
regarding bidding time, and policies relating to oversubscrib-
ing resources. Protocol optimizations can also be used to
reduce overhead and increase allocation efficiency. This sec-
tion starts with a brief overview of economic resource allo-
cation before providing a detailed examination of the allo-
cation strategies that are the focus of this paper.

2.1 Economic Resource Allocation

Resource allocation is one of the most important (and dif-
ficult) tasks in Cloud/Grid systems. However, the task of
spreading a finite group of resources across a user popula-
tion is also inherent in human negotiation and forms the
basis of modern economics. Economies are therefore equally
well suited to distributed resource allocation. In particular
they are typically scalable and adaptable to rapidly chang-
ing market conditions. They provide a well understood class
of protocols used to provide effective decentralized decision
making [33]. And they also provide incentives for participa-
tion in commercial environments.

Auctions are an efficient (pareto optimal) means of economic
resource allocation due to their ability to establish market
prices in an open market. There are four main types of auc-
tion protocol; the English, Dutch, Sealed-Bid, and Sealed-
bid second price (Vickrey). The English auction is the com-
mon open outcry, ascending price, multiple bid protocol.
The Dutch auction is an open outcry, descending price, sin-
gle bid protocol. The Sealed-Bid auction is a sealed single
bid, first price protocol in which all bids remain sealed until
they are opened simultaneously. The Vickrey auction is also
a sealed-bid protocol, except that the winning bidder pays
the amount of the second best bid (second price). All four
auction protocols yield the same return in private value auc-
tions, hence selection of an auction protocol depends on par-
ticular properties. The Vickrey protocol is most appropriate
for computational economies as the dominant strategy is for
providers to bid their true value, with results in no coun-
terspeculation, communication overhead is also minimal as
bidders bid their true value in a single sealed bid.
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While auction protocols provide an ideal low communication
mechanism for determining the market price for a good and
for producing optimal allocation they have some limitations
in a high performance scenario due to their inherent latency.
For this reason the worst case performance in an auction
scenario is one composed of frequent short duration jobs.

2.2 Overbooking

There is potential for considerable latency in auction based
resource allocation for a resource provider, from bidding to
resource redemption, this latency greatly impacts utiliza-
tion if resources are reserved while waiting for the result of
the auction. In particular, an auction generally has a single
winner, and multiple m losers. While the winner gains the
eventual contract, there is no such compensation for the m
losers of the auction process, and any resources r put aside
during the auction will decrease the net utilization of the
system by mr. From a providers perspective there is an op-
portunity to increase utilization and profit by participating
in auctions that could exceed capacity in the knowledge that
it is unlikely they will win all auctions on which they bid.
Knowledge of existing bids can also be used in subsequent
valuations, thus incorporating the possibility of incurring
penalties for breaking agreements.

Overbooking has been shown to provide substantial utiliza-
tion and profit advantages [28] due to “no shows” (consumers
not using the requested resources) and over estimated task
duration. Positive incentives reward users who deliver ser-
vices and Negative incentives (penalties) can be used to dis-
courage “bad” behavior. The contract model used in DRIVE
uses penalties to discourage dishonoring an agreement.

While overbooking may seem risky it is a common technique
used in yield management and can be seen in many commer-
cial domains, most notably air travel [26, 31] and bandwidth
reservation [3]. Most airlines routinely overbook aircraft in
an attempt to maximize occupancy and therefore revenue by
ensuring they have the maximum number of passengers on
a flight. Without overbooking full flights often depart with
15% of seats empty [26]. Overbooking policies are carefully
created and are generally based on historical data. Airlines
acknowledge the possibility of an unusually large proportion
of customers showing up, and include clauses to “bump”
passengers to later flights and specify compensation to be
paid [7]. Techniques used in bandwidth reservation have
strong correlation to the type of scenario seen in distributed
resource allocation. Typically network traffic is inconsistent
and bursty by nature, as such consumers do not use all of
their allocated bandwidth all the time. Telecommunications
companies utilize this knowledge when selling bandwidth by
overbooking bandwidth in an attempt to increase revenue,
this technique ensures maximum utilization of the finite net-
work resources deployed [3].

Overbooking attempts to balance the revenue lost due to
unused capacity and the penalties imposed by breaking con-
tracts with consumers. Essentially creating a maximization
equation from which providers can determine the optimal
amount of overbooking. However, the cost of non financial
penalties such as unspecified damage to a providers reputa-
tion are difficult to calculate. Due to the widespread adop-
tion of overbooking techniques there is substantial economic



theory underpinning appropriate strategy [11, 27].

2.3 Second Chance Substitute Providers

In a highly dynamic distributed environment resource state
can change rapidly, limiting available capacity. After an auc-
tion if the winning provider cannot meet their obligations,
it wastes resources to go through the auction process again
when there is sufficient capacity available from non winning
providers. In this case, we can give the losing bidders a
second chance to win the auction, by re-computing the auc-
tion without the defaulting bidder. This optimization will
increase efficiency at the expense of some protocol security,
for example more bid information will be released in a secure
protocol.

Allowing second chance providers can reduce the allocation
failures from overbooking and therefore increase utilization
of the system. One negative aspect of this approach is the
potential for increased consumer cost, as they will now pay
the price of a more expensive bidder. However this cost
could be offset through compensation imposed on a violating

party.

2.4 Advanced Reservations

Advanced reservation support in distributed resource alloca-
tion is desirable for performance predictability, meeting re-
source requirements, and providing Quality of Service (QoS)
guarantees [8, 15, 25, 18, 19]. As Grid and Cloud systems
evolve the task planning requirements become more com-
plex, requiring fine grained coordination of interdependent
jobs in order to achieve larger goals. Often tasks require
particular resources to be available at certain times in order
to run efficiently. For example, a task may require tempo-
rary data storage while executing and more permanent stor-
age after completion. This is particularly important when
the task forms an intermediary stage in a workflow. Stor-
age must be available when the task completes and for the
duration of subsequent processing stages. Tasks may also
require coordinated execution due to dependencies between
tasks. In addition to these consumer advantages, providers
also benefit by being given flexibility in terms of task execu-
tion and the opportunity for advanced scheduling techniques
to optimize resource usage.

2.5 Just-In-Time Bidding

All auction protocols have inherent latency in the allocation
process. During this period resource state may change there-
fore invalidating a providers valuation (or bid). In general,
there are two ways to minimize the effect of latency:

e Reducing the duration of the auction. The problem
with this approach is that there is minimal time for
providers to discover the auction and to compute their
bids.

e Bid as late as possible. This has the main advantage
that providers can compute their bids with the most
up to date resource state. It also has the advantage of
requiring resources to be reserved for a shorter time.
The primary problem with this approach is time sen-
sitivity, the auction can be missed if the bid is too late
or experiences unexpected network delays.
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In some environments for example open outcry protocols
used in online auctions, JIT bidding is common and has
additional strategic advantages for combating shrill bidding
and incremental bidding. For sealed bid auctions, JIT bid-
ding traditionally has been seen to have no advantages. As
pointed out in this paper JIT bidding does have significant
advantages for increasing utilization in systems using sealed
bid auctions.

3. DRIVE

DRIVE (Distributed Resource Infrastructure for a Virtual
Economy) [10, 9] is a distributed Web service enabled eco-
nomic meta-scheduler that supports arbitrary economic pro-
tocols using a generic plug-in architecture. DRIVE features
a novel “co-op” architecture, in which core meta-scheduling
services are hosted on participating resource providers as
a condition of joining the VO. This architecture minimizes
the need for dedicated infrastructure and distributes man-
agement roles and functions across participants. This dis-
tributed architecture is possible due to the deployment of
secure allocation protocols which provide security guaran-
tees in untrusted environments. The DRIVE implementa-
tion uses Globus Toolkit 4 (GT4) [14] compliant stateful
WSRF [13] Web services.

Figure 1 shows an overview of the major DRIVE compo-
nents. Each provider is represented by a DRIVE agent,
that implements standard functionality including; reserva-
tions, policies, valuation and the plug-ins for the economic
protocol. The DRIVE Agents use policies and valuation
functions to price goods, policies are also used to make a
range of decisions including load balancing and QoS guar-
antees. The DRIVE marketplace includes a number of inde-
pendent services and mechanisms used for different aspects
of the architecture including resource discovery, security, VO
management, and contract (agreement) management.

DRIVE is independent of the type of task being executed
and can be used to submit jobs in a Grid environment and
VMs or services in a Cloud environment. The lifecycle of
user interaction with DRIVE is shown in Figure 2. In DRIVE
reverse auctions are used to auction consumer tasks, allow-
ing providers to bid on suitable auctions. DRIVE makes use
of a two phase contract model. An initial agreement is cre-
ated as the result of an auction (phase 1), this agreement is
then hardened into a binding contract (phase 2) before the
resources are allocated to the consumer. The main motiva-
tion behind this separation is mitigating latency.

To support advanced reservation DRIVE makes use of a
Reservation Service per resource provider, this service stores
commitments made by providers in a secure manner. Reser-
vation information is specified in the initial task description,
allowing provider consideration during the allocation phase.
The Reservation Service allows future commitments to be
considered prior to negotiating for subsequent allocation, it
also supports arbitrary advanced scheduling techniques to
optimize task execution. When participating in resource ne-
gotiation the DRIVE Agent consults the local Reservation
Service to check whether the task requirements can be met,
any existing reservations are considered by the agent when
valuing the request and scheduling algorithms can be used
to determine the best fit for the task. Local policies control
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Figure 1: High level DRIVE Architecture. The
DRIVE market place is composed of several inde-
pendent services used to provide meta-scheduling
functionality. Trusted Core services require dedi-
cated infrastructure to ensure secure operation for
example VO management and security. Obliga-
tion services are contributed by service providers
for resource discovery, allocation and contract man-
agement. Service providers are represented by a
DRIVE Agent which values resources and partici-
pates in auctions using arbitrary economic proto-
cols.

how this information is used in the valuation process.

4. EVALUATION

The following section analyzes the strategies outlined in Sec-
tions 2.2 — 2.5, using workload data based on a Grid trace
from AuverGrid, a production Grid located in the Auvergne
region of France. The AuverGrid project is part of the
EGEE (Enabling Grids for E-science in Europe) project and
uses LCG (Large hadron collider Computing Grid) middle-
ware on its 475 computational nodes organized into 5 clus-
ters (each has 112, 84, 186, 38, 55 nodes). This trace was
chosen as it was the most complete trace available in the
Grid Workloads Archive [16]. While this is a relatively small
scale Grid the model obtained from the workload can be
scaled up to be used in the analysis of DRIVE. Using the
entire workload as a basis for the following experiments is
infeasible due to the duration (1 year) and cumulative uti-
lization (475 processors). To reduce the size, smaller traces
can be generated by random sampling of the full trace to
produce a synthetic trace.

4.1 Synthetic Workload

To create a high performance synthetic trace, the time based
attributes of the trace have been reduced by a factor of 1000
(i.e a second of real time is 1 millisecond of simulated time).
By reducing each parameter equally we maintain relativity
between parameters and therefore do not effect the distri-
bution. This also has the effect of producing high frequency
short duration jobs, which is the worst case situation for
auction performance. The performance analysis looks specif-
ically at the allocation performance without considering the
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Figure 2: DRIVE Lifecycle.

duration of the jobs. However, this reduction in time ef-
fects the ratio of interarrival time to auction latency which
exaggerates the effect of auction latency in the following ex-
periments. In the reduced format a 30 second auction period
is a much greater percentage of the entire task than in the
original workload, this will result in providers bidding on
more auctions within the period of a single auction than
would be the case in the original workload.

Figure 3 and Table 1 show a summary of the three differ-
ent synthetic workloads used in this analysis. The resulting
workloads, low utilization, medium utilization, and high uti-
lization contain 2111, 4677, and 11014 jobs respectively, with
each spread over almost 9 hours. The average job run time
for each model is approximately 59 seconds with average job
CPU utilization of 93-94%. The workloads aim to represent
increasing overal utilisation and are based on the utilisa-
tion limit of the testbed. The low utilisation model has a
peak of 86.55% overall utilisation which can be completely
hosted in the test bed. The medium model slightly exceeds
the capacity of the testbed with various points above the
available capacity. The high utilisation model greatly ex-
ceeds the available capacity of the testbed with most values
well above 100%. The arrival rate of tasks also increases
with each workload as the number of jobs increases over
the same period of time, the maximum arrival rate of the
medium workload matches the maximum arrival rate seen
in the original trace. The arrival rate for the high utilisa-
tion workload greatly exceeds the arrival rate of the origi-
nal trace, with a maximum arrival rate more than double
the peak arrival rate seen in the original trace. Each trace
typifies the important characteristics of the original trace
by providing similar or greater maximum throughput whilst
mainting the duration of jobs relative to arrival time and
one another.

4.2 Experimental Testbed

In these experiments the testbed is configured with 20 virtu-
alized providers distributed over a 10 machine Grid (5 Win-
dows Vista, 5 Fedora Core) connected by a gigabit Ethernet
network. The machines each have Core 2 Duo 3.0 GHz pro-
cessors with 4 GB of RAM. A single Auction Manager and
Contract Manager are run on 1 host, with each allocated 1

Agreement (Phase 1)



Jobs | Average Maximum Average Run | Average Job | Maximum To-

Arrival Rate | Arrival Rate | Time (ms) CPU (%) tal Utilization

(jobs/hour) | (jobs/hour) (%)
Low 2111 | 234 357 58181 93.02 86.55
Medium | 4677 | 519 814 59128 93.67 178.20
High 11014 | 1223 1892 59579 93.62 424.40

Table 1: Experiment Workload Characteristics.

30 | e 50
45 —G —0 S+0 R+0 R+S+0

Total System Utilization EMA ( %)

Time (hours)

Figure 3: Total system utilization of the three syn-
thetic workload shown using an Exponential Moving
Average (EMA) with 0.99 smoothing factor. The
dashed line indicates the total system capacity of
our testbed.

GB of memory. The 20 providers each have 512 MB of mem-
ory allocated to the hosting container. A sealed bid second
price protocol is used to allocate tasks and each provider
implements a random bidding policy where values range be-
tween 0-100, prices are randomly generated irrespective of
current or predicted load. The distribution is then ana-
lyzed using different bidding behavior such as overbooking,
computing substitute providers, and using advanced reser-
vations.

4.3 Strategy Evaluation

Table 2 outlines the results for each strategy when applied
to each of the workloads. In particular the table outlines the
number of auctions completed, contracts created, and over-
all system utilization. The various strategies are denoted:
Overbooking (O), Second chance substitutes (S), Reserva-
tion (R). We also implement a Guaranteed (G) strategy, a
baseline strategy against which to compare our high utiliza-
tion strategies. Figures 4, 5 and 6 show an Exponential
Moving Average (EMA) of total system utilization for each
of the strategies on the low, medium and high workloads
respectively. Individual system utilization graphs for each
of the strategies on the high workload are presented in Ap-
pendix A.

4.3.1 Guaranteed Bidding Strategy

In the baseline configuration providers implement a guaran-
teed bidding strategy where every bid by a provider has a
guarantee that there will be sufficient capacity. In this bid-
ding strategy providers include contracts and any potential
future contracts (outstanding bids) when calculating their
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Figure 4: Exponential Moving Average of total sys-
tem utilization over time for the Low workload.
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Figure 5: Exponential Moving Average of total sys-
tem utilization over time for the Med workload.

projected utilization. No bid will be made if the calculated
utilization exceeds the maximum capacity of the provider.

It is evident in each of the graphs that the overall utilization
is extremely low, average utilization is 6.35%, 10.5% and
15.72% and the maximum utilization is 29.65, 43.65, and
53.8 for each of the three sample workloads, these results
are well below the available capacity of the system. In all
three workloads the rejection rate is substantial with only
34.41%, 26.75%, and 16.96% of tasks allocated respectively.
As expected these rejections occur during auctioning and no
contracts are rejected, as no provider should ever bid outside
its means.

These results highlight the issue with bidding only on auc-
tions a provider can guarantee to satisfy. A large number
of tasks are rejected even though there is sufficient available



Auctions Contracts Average System | Max System
Tasks | Failed  Completed | Rejected Substitutes Allocated Utilization Utilization
Low
G 2111 | 1384.67 726.33 0 N/A 726.33 (34.41%) 6.35 29.65
O 2111 0 2111 326.33 N/A 1784.67 (84.54%) 15.03 61.90
S+ 0 2111 0 2111 1.33 375.67 2109.67 (99.94%) 17.71 86.55
R+ 0O 2111 0 2111 204.33 N/A 1906.67 (90.32%) 16.18 66.80
R+S+ 0| 2111 0 2111 0 225.33 2111 (100%) 17.72 86.55
Medium
G 4677 3426 1251 0 N/A 1251 (26.75%) 10.50 43.65
O 4677 0 4677 1537.33 N/A 3139.67 (67.13%) 27.13 82.25
S+ 0 4677 14 4663 675 1489 3988 (85.27%) 34.28 97.90
R+0O 4677 0 4677 1013 N/A 3664 (78.34%) 32.26 92.90
R+ S+ O | 4677 0 4677 75.67 1146.67 4601.33 (98.38%) 39.43 99.05
High
G 11014 9146 1868 0 N/A 1868 (16.96%) 15.72 53.80
O 11014 42 10972 6303 N/A 4669 (42.39%) 39.99 98.35
S+ 0 11014 | 325.33 10688.67 5052.67 2463.33 5636 (51.17%) 48.09 99.00
R+ 0O 11014 | 30.33 10983.67 4843 N/A 6140.67 (55.75%) 56.67 99.00
R+ S+ O | 11014 | 419.67 10594.33 3375.67 3091 7218.67 (65.54%) 68.91 99.05
Table 2: Summary of allocation rate and system utilization for each high utilization strategy.
These results motivate overbooking, as system utilization
s 123 —G —0 S+0 R+O R+S+0 for each of the providers can be increased when factoring in
}E'{ 20 the possibility that only 1 of the bidders will effectively win
5 an auction.
2 60
£ 50 4.3.2  Overbooking Strategy
2 40 As discussed in Section 2.2 the potential benefits of bidding
‘:i 22 beyond provider capacity can result in increased utilization
g 10 and profit, assuming the penalties for breaking contracts are
[ sufficiently small. Using an overbooking strategy providers
0 ) 4 6 3 compute their utilization considering only established con-
Time fhours) tracts and therefore compute bids irrespective of any out-

Figure 6: Exponential Moving Average of total sys-
tem utilization over time for the High workload.

overall capacity. The reason for this is the number of concur-
rent auctions taking place and the latency between submit-
ting a bid and the auction concluding. In this testbed there
is a %th chance of winning an auction (when all providers
bid) so for the duration of the auction all providers have
reserved their resources with only a probability of 0.05 of
actually winning. The advantage of a guaranteed approach
is no auctions are won without sufficient available capac-
ity, ensuring no contracts are ever rejected. Additionally
the burden on the allocation infrastructure is reduced as no
attempts are made to establish contracts which cannot be
honored.

In this strategy the key factor to consider is the ratio of
auction latency to interarrival time. If the auction latency
was reduced or the frequency of tasks being submitted was
reduced, the number of tasks allocated and total utilization
would improve as bidders have a clearer picture of utilization
when bidding on subsequent auctions.
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standing bids. In the high workload sample max system
utilization approaches the maximum available capacity. The
average utilization and percentage of tasks allocated for all
three workloads is more than double that of the guaranteed
strategy showing the value of overbooking. However, there is
still substantial underutilization of the system when viewed
across all providers.

In each workload very few auctions fail (e.g 42/11014 in the
high workload) as providers only reach close to maximum ca-
pacity for a short period of time. The issue with overbooking
however is the number of auctions completed that are then
unable to be converted into contracts, this approaches 60%
of all tasks in the high workload, 33% in the medium work-
load, and 15% in the low workload. The number of contracts
unable to be established effects system performance as the
auction and contract negotiaton processes are wasted and
can be considered pure overhead. One way to optimise this
process is to reuse the existing auction information rather
than re-executing the whole auction process.

4.3.3 Second Chance Substitutes and Overbooking
In the event of a rejected contract, a losing bidder can be
offered a second chance to seamlessly satisfy the auction.
Allowing second chance substitutes reduces the contract fail-
ures due to the overbooking strategy and therefore increases
utilization of the system.



S+0 R+S+0
Average Depth | Average Depth
Low 1.46 1.23
Medium 2.29 2.04
High 2.55 2.76

Table 3: Average number of substitutes considered.

Average utilization is shown to be improved from the over-
booking strategy by up to 26% (low - 17%, med - 26%, high
- 20%) and task allocation is increased to 99.94%, 85.27%,
and 51.17% for the low, medium, and high workloads re-
spectively. These results show a large improvement from
the previous strategies. Interestingly the depth of substitute
providers needed to be consulted is less than 3 on average
for each workload (Table 3) indicating that there is sufficient
reserve capacity in the system. This information could be
used to define policies regarding the maximum number of
subsitute providers able to be consulted.

4.3.4 Reservations and Overbooking

Reservations are widely used in large scale distributed and
parallel systems as a means of coordinating resource usage,
reservations have been shown to increase performance and
provide flexibility. In the AuverGrid workload trace there is
no explicit execution windows so in order to test this strat-
egy and analyze the effect on allocation and utilization we
define an execution window for each task as 50% of the
task duration. This provides a reasonable approximation
of a reservation window allowing providers room to sched-
ule tasks (sensitivity analysis is shown in Section 4.4). In
this experiment providers implement a simple First Come
First Served scheduling policy. There are better techniques
for scheduling reservations, such as backfilling [20], however,
FCFS is sufficient to provide comparability for these exper-
iments.

Each provider again uses an overbooking strategy in this
experiment due to the considerable utilization improvements
seen over guaranteed bidding. Each task is submitted with
a flexible reservation window, defining start time, end time
and duration. The end time has been extended by 50% of
the duration.

As the density of the workload increases the improvement
gained by using reservations is greater than that of comput-
ing substitutes. For the low and medium workloads (90.32%
and 78.34%) the auction performance is less than that of us-
ing substitutes, however in the dense high workload the im-
provement exceeds the gains made using substitutes peaking
at 55.75% of all tasks allocated. The same pattern is seen
in average utilisation as it is proportional to the number of
tasks allocated.

4.3.5 Reservations, Substitutes, and Overbooking

The final configuration combines the use of reservations with
the ability to compute substitute providers and overbook
resources. As expected this combination gives the best re-
sults for each of the workloads, with 100% of low work-
load tasks allocated, 98.38% of the medium workload allo-
cated and 65.54% of high workload allocated. In the low
and medium workload no auctions fail as providers are not
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fully utilised for long periods of time, 75.67 contracts are re-
jected in the medium workload due to short periods of fully
utilised providers. Due to the nature of the high workload
which consistently exceeds the capacity of the test bed, 65%
of tasks allocated represents very high degree of workload
allocation, close to the maximum obtainable allocation.

4.3.6  Just-In-Time Bidding

Auction latency effects the bidding process due to agents
bidding without absolute knowledge. In each of the pre-
vious experiments (except guaranteed bidding) the number
of contracts rejected by providers is large. This occurs as
providers bid to host a task, but by the time the auction
completes the providers state has changed and required re-
sources are unavailable.

Auction Latency

To analyze the effect of auction latency on allocation per-
formance we use a series of symmetric workloads allocated
over a 10 host virtualized testbed. Table 4 details each
of the workloads used, each has increasing individual job
resource requirements (and therefore increasing maximum
system utilization). The total system utilization for each
workload is shown in Figure 7. In these workloads tasks
are submitted every 5 seconds for a duration of 2 minutes
each. Individual task utilization ranges from 20% of a single
provider allowing 5 tasks to be hosted simultainously on a
single host through to 50% which allows only 2 tasks to be
hosted on a single provider simultainously. When using 20%
tasks all tasks can be hosted using only 50% of total cumu-
lative provider capacity, increasing task utilisation increases
the total system capcity used by the workload up to 50%
which exceeds the total capacity of the testbed.

Workload Job Size Maximum System
(relative to one host) Utilization

W1 20% 48%

W2 25% 60%

W3 33% 79.2%

W4 50% 120%

Table 4: Synthetic workload characteristics for auc-
tion latency.

Figure 8 shows the number of contracts rejected for each
workload when increasing the auction duration. The graph
also includes the auction failure percentage for workload
W4 as this workload exceeds provider capacity and there-
fore some auction must fail. As expected when the auction
duration (latency) is less than the period in which tasks are
submitted no contracts are rejected for any of the workloads.
For workload W4 nearly a quarter of the auctions fail be-
cause the providers do not have sufficient capacity. For each
of the workloads the rejection percentage increases with the
increase in auction duration highlighting the effect of auc-
tion latency. The number of auction failures exhibited in
workload W4 decrease due to increased underutilization of
the system.

JIT Bidding

Having demonstrated the negative effect of auction latency
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Figure 8: Contract (and Auction) rejection rate for
each of the synthetic workloads.

on the workloads in table 4, we conducted a series of ex-
periments to investigate the effect of bidding closer to the
auction closing time on the various strategies outlined in Sec-
tions 2.2 - 2.5. Figure 9 and Figure 10 show the increased
allocation when bidding closer to the close of the auction
for the medium and high utilization workloads respectively.
For both workloads the number of tasks allocated increases
by approximately 10% for each strategy up until a point
of saturation - at which point bids are not being received
before the auction closes. The two strategies employing sec-
ond chance subsitutes in both workloads do not exhibit as
much of an improvement, as auctions will not fail as long
as alternative substitutes are available. Table 5 shows the
average number of substitutes considered for each strategy
as JIT bidding gets closer to the auction close. Although the
utilization improvements are smaller for the second chance
strategies, the number of substitutes consdidered decreases
as bidding occurs closer to the auction close. This is bene-
ficial as it reduces the overhead required to compute second
chance providers.

4.4 Reservation Window

The results shown in the previous section use an artificial
flexible reservation window defined as 50% of the job du-
ration. Figure 11 presents a sensitivity analysis that shows
the effect of altering this articifial window as a percentage
of job duration for each of the workloads/strategies using
reservations. The low workload with reservations and sec-

80

Time Before S+ 0 R+S+0
Auction Close | Average Depth | Average Depth
Medium

30 seconds 2.29 2.04

10 seconds 1.81 1.69

3 seconds 1.68 1.49
0.5 seconds 1.13 1.23
High

30 seconds 2.55 2.76

10 seconds 1.98 2.16

3 seconds 1.77 1.74
0.5 seconds 1.19 1.29

Table 5: Average number of second chance substi-
tute providers considered as JIT bidding gets closer
to auction close.
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Figure 9: JIT Bidding for each strategy on the
medium workload.

ond chance substitutes is not included as there are only 1.3
rejections without any reservation window. As expected the
rejection rate decreases for each strategy with an increased
reservation window. For all combinations the greatest de-
crease occurs between not having reservations and a 10%
reservation window, this is indicitive of the short duration
jobs and the finely packed schedules the providers are oper-
ating with. Even a minimal increase in job reservation win-
dow gives the flexibility to greatly increase allocation. The
strategies with both reservations and substitutes decrease
more gradually than those with only reservations, this is
probably due to the fact that the reservation and substitute
series are closer to maximum utilisation and therefore have
fewer oportunities to improve auction performance. As the
degree of time flexibility increases, we expect all algorithms
tend to 100%, the rate of increase depends on the workload.

5. RELATED WORK

Computational economies have long been “posited” to allo-
cate resources in both centralized and decentralized systems.
The earliest published market was the futures market [30]
in 1968, which allowed users to bid for compute time on a
shared departmental machine. Over time these architectures
were extended from single processor economies through to
distributed computational economies with the introduction
of systems such as Spawn [32] and Enterprise [17].

There are many current examples of mature economically
enabled brokers, meta-schedulers and distributed architec-
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Figure 10: JIT Bidding for each strategy on the high
workload.
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Figure 11: Allocation percentage when altering the
reservation window as a percentage of job duration.

tures such as Nimrod/G [6], DRIVE and SORMA [21]. A
range of economic protocols have been deployed in each of
these systems, all offer different approaches to contracts, se-
curity and architecture.

Overbooking has been developed in computational domains
as a way to increase utilization and profit [28, 4]. In [28]
overbooking is used to compensate for “no shows” and poorly
estimated task duration. In [4] backfilling is combined with
overbooking to increase provider profit, overbooking deci-
sions are based on SLA risk assessment generated from job
execution time distributions.

GARA (Globus Architecture for Reservation and Alloca-
tion) [15] was one of the first projects to define a basic ad-
vanced reservation architecture supporting QoS reservations
over heterogeneous resources. Since this time other sched-
ulers have evolved to support advanced reservations, such as
Catalina [1], Moab/Maui [12], Sun Grid Engine [29], Plat-
form Load Sharing Facility (LSF) [23] and Portable Batch
System (PBS) Pro [22]. Reservation aware schedulers have
been shown to improve system utilization due to the addi-
tional flexibility specified by some consumers, additionally
these architectures have realized various reservation aware
scheduling algorithms [20].

Various papers have looked at Last minute bidding and
“sniping” in the context of open outcry online auctions [24,
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2]. Typical motivation for last minute bidding is to combat
“shill bidders” (fake bidders raising the price) and incremen-
tal bidding (bidding in increments rather than bidding ones
true value or proxy bidding). Just-In-Time (JIT) bidding for
sealed bid auctions was proposed in our earlier work [5] as a
means of reducing the effect of auction latency in distributed
auctions. However, no quantifiable analysis was performed
at the time.

The first use of second chance substitutions in a two phase
contract structure was in our previous paper [5] and was pre-
sented as a means of reducing coallocative failures. We have
adapted and generalized this mechanism to directly sup-
port overbooking to increase utilization. As pointed out for
JIT there was no quantifiable analysis of the second chance
mechanism performed at the time.

The general focus of prior work has been on economic effi-
ciency. In particular existing systems using auctions suffer
from significant latency and consequently reduced utiliza-
tion. In addition techniques such as advanced reservation,
have in general been approached from a consumers perspec-
tive rather than concentrating on the flexibility given to
providers, an exception to this is our previous work with
Netto and Buyya in [20].

The four utilization techniques presented have not been col-
lectively examined from the view of improving auction per-
formance in any prior work.

6. FUTURE WORK

In this paper we have analyzed the performance side of the
strategies from Sections 2.2 — 2.5, however, the economic
aspects are just as important for Cloud and Grid based
systems. We aim to explore the economic performance of
these strategies analyzing profit margins using different bid-
ding and penalty models. We have evaluated these strate-
gies with respect to a single class of economic allocation,
however strategies such as overbooking, second-chance sub-
stitution and Just-In-Time bidding are just as applicable in
other domains. We aim to explore more general use of these
techniques as a means of increasing allocation performance.

7. CONCLUSIONS

The emergence of commercial cloud providers has re-motivated
the need for efficient, responsive and economically enabled
resource allocation within high performance computing. Out-
sourcing workload amongst viable resource providers is seen
as increasingly complex due to the different allocation mod-
els supported. Using high level meta-schedulers to provide
transparency over Grid/Cloud providers, abstracting differ-
ent allocation protocols and execution methods is effective,
however meta-schedulers must support the allocation prin-
ciples used by underlying providers.

Economic allocation has been stereotyped as a low perfor-
mance allocation solution due to the overheads and latency
in the allocation process. This paper has presented several
economic strategies that can be employed in a distributed
computational economy to increase occupancy and optimize
utilization. Specifically our contributions are:
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e The implementation and testing of various occupancy
and utilization enhancing economic strategies in a meta-
scheduling context,

e A number of synthetic workloads developed from real
workload traces, used to produce severe allocation con-
ditions for auctions, and

e Quantified the performance benefits of using the high

occupancy scheduling strategies in a variety of work-
load scenarios.
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APPENDIX

A.

WORKLOADS

This appendix outlines complete system utilization for each
of the strategies presented in Section 2.2 - 2.5 using the
high utilization workload. Figure 12 shows the total system
utilization represented by the synthetic high workload. Fig-
ures 13, 14, 15, 16, and 17 show the total utilization across
all 20 providers over the period of the high utilization work-
load. The graphs show the utilization increasing as each
strategy is added approaching the maximum capacity of the
testbed.
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Figure 12: Total system utilization of the high work-
load, the dashed line indicates the total capacity of
the testbed.
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Figure 13: Total system utilization using the Guar-
anteed strategy on the high workload.
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Figure 14: Total system utilization using the Over-
booking strategy on the high workload.
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Figure 15: Total system utilization using the Second
Chance Substitutes and Overbooking strategies on
the high workload.
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Figure 16: Total system utilization using Reser-
vations and the Overbooking strategy on the high
workload.
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Figure 17: Total system utilization using Reserva-
tions, Second Chance Substitutes and Overbooking
strategies on the high workload.
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