A Service Composition Framework for Market-Oriented
High Performance Computing Cloud

Tran Vu Pham Hani Jamjoom Kirk Jordan
Ho Chi Minh City University of IBM T.J. Watson Research IBM T.J. Watson Research
Technology, Vietnam . Center . Center
t.v.pham@cse.hcmut.edu.vn jamjoom@us.ibm.com kjordan@us.ibm.com
Zon-Yin Shae
IBM T.J. Watson Research
Center

zshae@us.ibm.com

ABSTRACT

Despite the success High Performance Computing (HPC)
across a number of application domains, the adoption of
HPC resources and applications is still limited, primarily
due to its high capital cost, system complexity, application
availability, and service delivery model. Recently, several
research efforts have shown that the emerging Cloud Com-
puting service model can improve on-demand access to HPC
capacity as utility. This paper introduces a framework for
on-demand composing and deploying available HPC applica-
tions as services on HPC clouds. The composition is enabled
by an ontology that describes dependencies and relationships
among HPC software and resources.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems— Distributed Applications

1. INTRODUCTION

Today, there is a wide-spectrum of highly successful applica-
tions running on top of High Performance Computing (HPC)
platforms. Unfortunately, they have been driven by a rel-
atively limited number of research and commercial institu-
tions. While some improvements have been observed with
Grid Computing initiatives, large-scale adoption continues
to be hindered. There are a number of reasons for this slow
adoption, including the high capital cost, system complex-
ity, and the lack of comprehensive resource management and
service models.

At the same time, cloud computing [5,8,11], which is driven
by industry interest, is emerging as a disruptive paradigm
that is giving users easy access to large numbers of soft-
ware applications, platforms and virtualized computational
resources. By enabling a cloud model in HPC, it creates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HPDC'10, June 20-25, 2010, Chicago, Illinois, USA.

Copyright 2010 ACM 978-1-60558-942-8/10/06 ...$10.00.

284

opportunities for new applications that can take advantage
of the underlying computing capability, and accelerates the
adoption of scientific applications from research community
to commercial space. Early experiences showed that HPC
clusters for running scientific applications can be feasibly
provisioned by commercial cloud computing providers [9,
10, 13,16]. These studies point to a trade-off in perfor-
mance and that cloud computing is suitable for a limited
range of scientific applications. There have also been efforts
to develop compute clouds specifically for scientific applica-
tions [13,17]. The use of virtualization together with vir-
tual appliances [15] in scientific clouds enables on-demand
provisioning of homogeneous resources with little effort for
software configuration [6,12].

Motivated by the above challenge, we have developed an
HPC cloud market paradigm. Our model expands on pre-
vious market models (e.g [7,8]) that focus on how to trade
computational resources to include applications, even if they
are still in early stages of development. The market encom-
passes various HPC stakeholders, including research scien-
tists, application developers, independent service providers,
and HPC cloud providers. This creates opportunities for
participants with different roles to interact on different stages
of application lifecycles. To enable the above HPC cloud
market paradigm, we have developed a composition frame-
work for on-demand conversion of applications into services
on HPC clouds. The core of the composition framework
is an ontology, which describes the available applications,
various system components involved and their interdepen-
dencies. The rest of this paper will discuss the proposed
market paradigm and the composition framework in more
detail.

2. HPC MARKET PARADIGM

An HPC market paradigm based on cloud computing model
is adopted to allow the consumption of HPC computational
resources as utility, making it available to a wider commu-
nity at reasonable costs. The orchestration within the mar-
ket is demonstrated below through a scenario from oil and
gas industry. There, large companies usually work in collab-
oration with research institutions to develop new applica-
tions/models and also have their own internal HPC systems
for evaluation of the new applications/models without re-

< HPC Cloud . -

(i N
Research | Y o oo es 5] applications |51 services ; Uses
models ype R
Domain Damain Application Service End-user
Specific Specific Developers Providers Scientists
Scientists Scientists/

Computer

Scientists

Figure 1: Participants with different roles con-
tribute different values to the technology value chain
in the HPC market.

leasing their private datasets to other parties. For small and
medium companies, evaluation of new applications/models
is more challenging as these companies often have limited ac-
cess to HPC systems. Although they may have access to new
applications/models from oil/gas research community, they
do not have their own facility to test the applications/models
with their datasets.

With the HPC market paradigm, the problems of small and
medium companies can be solved in the following ways:
(1) they can get access to HPC computational resources;
(2) they can use the applications/models, even if they are
under development, with their own datasets; (3) they are
still in control of their valuable datasets. This model also
creates opportunities for other parties involved. For re-
searchers, their research applications/models are more vis-
ible to industry. Hence, the chance of their adoption is in-
creased. They can also use HPC development platforms pro-
vided in the cloud for developing applications/models. This
is difficult in the pre-cloud era, where HPC computational
resources are still expensive to acquire and run. In addi-
tion, researchers will be able to receive early feedback from
industry. For HPC computational resource providers, their
resources can sustain higher utilization, thus be more com-
petitive in the market. There may be independent service
vendors, whose interest is on providing value-added services.
They assemble different pieces (e.g. applications, models,
operating systems, etc.) into readily accessible services and
resale them to others in need. The chain in which different
pieces are put together to create new value is referred to as
a technology value chain, which is summarized in Figure 1.

3. SERVICECOMPOSITION FRAMEWORK

The service composition has been explored by many re-
searches for Grid services and Web services, in which ser-
vice interfaces are well defined using Web Service Descrip-
tion Language. However, Cloud Computing services are not
necessary in form of Grid or Web services. Particularly in
the system being introduced, the services could be software
applications, platforms or computing infrastructures. Ser-
vice composition is the process of creating a new service by
assembling different software components (e.g. applications,
APIs, libraries and operating systems) and hardware infras-
tructures. The software components themselves can be (part
of) other available services.

285

-~

-
composition
reqguest (via GUI)

updated knowledge

e delivery

Knowiedge Composition |servics) Packaging fequest
Base: |ourrent Agent [sPeC Engine
knowledge
service| update]
Service Composition relevant detail nep:

services service

Service Service Service

Discovery Catalog Delivery

Figure 2: Cloud service composition architecture

3.1 Cloud Service Composition Architecture
The overall architecture of the Service Composition sub-
system is described in Figure 2. The composition process
is initiated by the user. The request could be for turning
an application into a service or for creating a service plat-
form, which consists of a set of applications, APIs and an
operating system. A simple request could only be the ap-
plication name. The service composition engine will use its
knowledge to find the remaining components to assemble the
service. A complex request may consist of many other ser-
vice attributes such as requirements on hardware capability,
service quality, and so on.

The composition request is handled by the Composition
Agent. The agent parses the request and uses knowledge
provided by the Knowledge Base to iteratively resolve all de-
pendencies. It interacts with Service Discovery to retrieve
information about existing relevant services. The compo-
sition will only be successful if all the required components
(required APIs, compatible operating systems and hardware
infrastructures) exist. The result of a successful composition
delivered by the Composition Agent is a new service specifi-
cation which details the required components of the services
and the dependencies among them for deployment. This
specification is used to update the Knowledge Base for later
use. It is then forwarded to the Packaging Engine for pack-
ing all the software components into a software package.
Newly created software package, together with the service
specification, is then registered in the Service Catalog and
forwarded to Service Delivery for provisioning the service.

3.2 Knowledge Base

The Knowledge Base provides the knowledge of the existing
services, software applications, hardware and their inter-
relationships for the Composition Agent to reason about
during compositions. An ontology has been developed us-
ing Web Ontology Language (OWL) [2] for capturing the
knowledge needed. The classes of the ontology that can be
used to describe components directly involved in composi-
tion processes and their hierarchy are shown in Figure 3.
In addition to the classes of entities and their hierarchy, the
current version of the ontology also provides mechanisms for
capturing the various types of relationship exist among the
entities, including:

Thing
T~y

SystemEntity

ServiceEntity Type

Hardwareinfrastructure Hardware

SystemPlatform Software
Py
sa / isa
5 lnas Paal Saas
Libeary) API OperatingSystern

Figure 3: Hierarchy of terms in the ontology

e Dependency: refers to the type of relationship between
two components in which one component must exist for
the other to function.

o Compatibility: if a component is compatible with an-
other component, they will be able to work together
in one system setting.

e (Conflict: if the two components are said to be conflict
with each other, they will not function when they are
put together in one system. Conflict relationship is
symmetric, which means if A conflicts with B then B
also conflicts with A.

o Whole-part: the type of relationships between two com-
ponents, in which one component is a part of the other.
Whole-part relationship is transitive.

e Type: grouping of instances that have the same set of
functionality. Instances of the same type should not
co-exist within a system. A type can be further de-
scribed by subtypes to better reflect the dependencies.

The relationships are expressed in OWL as object proper-
ties. The ontology also has mechanisms for capturing hard-
ware requirements for software to operate. For example,
to achieve optimal performance, a software application may
need a hardware infrastructure with certain number of pro-
cessors, clock speed, amount of memory, etc.

Figure 4 shows an example of using the ontology to model
Madagascar [1], which is an open-source software package
for multidimensional data analysis and reproducible com-
putational experiments (often used in seismic research). In
this model, three different types are introduced: Python
Interpreter, C Compiler and Linux OS. Others are specific
software instances.

This model implies that if there is another C compiler, say
GCC v.3.4.3, it then can be used with the Madagascar v.0.9.8,
but only either of GCC v.3.4.4 or GCC v.3.4.3 can be used in
one system setting. However, it is not the same for Python
Interpreter, where there is a declaration of compatibility.
Compatibility relationship is used to specify the instances

286

Inz’t;;rt]er Fedora v.10
is Of Type
is Of Type
depends| . 2
is Compatible
With Python depends
4 v.2.6
Madagascar
v.0.9.8 Linux OS
depends depends
is OF T)
C compiler il ype V%C4C4

Figure 4: Using ontology to model Madagascar and
its dependencies

of a particular type that are compatible with another in-
stance. For example, figure 4 says that among the instances
of type Python Interpreter only Python v.2.6 can be used
with the Madagascar package.

3.3 Reasoning

The reasoning process is carried out by the Composition
Agent when receiving a user request for a service. The user
is expected to know only what he/she wants from the ser-
vice. The Composition Agent needs to work out how to get
the service for the user. The knowledge captured in models
stored in the Knowledge Base is used to address the user’s
need. Firstly, the agent extracts from the related models
all dependencies related to the user’s request. Then, the
agent following the dependency graph to select all the re-
quired system components. Secondly, once the set of all
the system components have been identified, the agent pro-
duces a set of hardware requirements that can satisfy all the
identified software components, based on the specifications
of the software components in the Knowledge Base. Then,
it searches against the Knowledge Base for suitable hard-
ware infrastructures. The infrastructures are then matched
against available services.

The current prototype was developed using Java. OWL-
API [3] and Pellet [4] were used as tools for ontology pro-
cessing and reasoning, respectively. During the composition,
temporary solutions are stored in directed acyclic graph data
structures. A solution graph is initialized with the requested
component(s). Starting from these intial components, the
reasoner will follows the dependencies declared in the Knowl-
edge Base to identify the necessary components for deploy-
ment of the requested components. Once identified, compo-
nents at the dependency targets are added to the solution
graph one by one, as long as all the associated constraints
are satisfied. The temporary solution graph becomes the
final solution when all the dependencies are successfully re-
solved.

4. RELATED WORK

A number of market models have been introduced in HPC.
In these market models, HPC computational resources are
the main objects. In our paradigm, the market is extended

for exchanging of compute models, applications and com-
posed cloud services. This extension provides opportunities
for participants beyond HPC resource providers, to include
application developers, modelers, and independent service
vendors. Their collaborations can create extra values in the
market.

To some extent, our service composition framework is analo-
gous to Web Service compositions. The distinctions are that
in our approach, the objects of the composition are software
components and the composition is the process of assembling
the components together, constrained by their relationships.
In contrast, Web Services composition focuses on how to as-
semble services together, starting with a given set of inputs
and conditions, to produce the expected set of outputs, con-
strained by the matching of service inputs, outputs and their
operating conditions.

The problem with software dependency addressed in this
paper is close to the one in software management. There
have been solutions such as RPM for the Linux operating
systems and, a more general approach, Solution Deploy-
ment Descriptor (SDD) by OASIS [14]. In our solution,
the dependencies—relationships in general—are described
at a coarse level, assuming that the users who contribute
the software components may have only partial knowledge
of their whole target deployment environments. This high
level way of describing relationships allows quick resolution
of the dependencies.

5. CONCLUSION

In this paper, we have introduced a market-oriented para-
digm for HPC cloud deployments. A major distinction be-
tween the proposed market paradigm and previous propos-
als is the introduction of new resource dimensions, which we
believe improves the collaboration between different parties.
Additionally, we have detailed a framework for composing
different software components, available on the open mar-
ket, into services that can be deployed in the HPC cloud.
We believe that our proposed approach of providing access
to HPC resources and applications as on-demand cloud ser-
vices, enabled by the automatic composition, is important
for accelerating the usage and commercialization of HPC
resources.

Undoubtedly, there is a number of challenges with the pro-
posed market model that we do not address in this paper.
While we expect many of the technical challenges to be over-
come with today’s technologies, a robust licensing and cost-
ing model needs to be established to ensure wide-scale adop-
tion of HPC clouds.

6. REFERENCES

[1] Madagascar.
http://www.reproducibility.org/wiki/Main_Page;
accessed December 04, 2009.

[2] OWL - Web Ontology Language.
http://www.w3.0org/2004/OWL/; Accessed December
10, 2009.

[3] Owl api. http://owlapi.sourceforge.net/; Accessed
December 10, 2009.

[4] Pellet: Owl 2 reasoner for java.

287

[5]

(6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

http://clarkparsia.com/pellet/; Accessed December
10, 2009.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia. Above the
Clouds: A Berkeley View of Cloud Computing. UC
Berkeley, Feb 2009.

R. Bradshaw, N. Desai, T. Freeman, and K. Keahey.
A scalable approach to deploying and managing
appliances. In TeraGrid 2007, Madison, WI, USA,
June 2007.

R. Buyya, D. Abramson, J. Giddy, and H. Stockinger.
Economic models for resource management and
scheduling in grid computing. Concurrency and
Computation: Practice and Experience,
14(13-15):1507-1542, 2002.

R. Buyya, C. S. Yeo, and S. Venugopal.
Market-oriented cloud computing: Vision, hype, and
reality for delivering it services as computing utilities.
In Proc. The 10th IEEE International Conference on
High Performance Computing and Communications
(HPCC-08), Dalian, China, 2008.

E. Deelman, G. Singh, M. Livny, B. Berriman, and
J. Good. The cost of doing science on the cloud: the
montage example. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages
1-12, Piscataway, NJ, USA, 2008. IEEE Press.

C. Evangelinos and C. Hill. Cloud computing for
parallel scientific hpc applications: Feasibility of
running coupled atmosphere-ocean climate models on
amazon’s EC2. In Cloud Computing and its
Applications (CCA-08), Chicago, IL, USA, Oct 2008.
B. Hayes. Cloud computing. Commun. ACM,
51(7):9-11, 2008.

K. Keahey and T. Freeman. Contextualization:
Providing one-click virtual clusters. In eScience 2008,
Indianapolis, IN, USA, Dec 2008.

K. Keahey and T. Freeman. Science clouds: Early
experiences in cloud computing for scientific
applications. In Cloud Computing and Its Applications
2008 (CCA-08), Chicago, IL, USA, Oct 2008.

OASIS Solution Deployment Descriptor (SDD) TC.
Solution deployment descriptor specification 1.0.
Technical report, September 2008. Available at:
http://docs.oasis-open.org/sdd/v1.0/0s/sdd-spec-v1.0-
os.pdf.

C. Sapuntzakis, D. Brumley, R. Chandra,

N. Zeldovich, J. Chow, M. S. Lam, and

M. Rosenblum. Virtual appliances for deploying and
maintaining software. In LISA ’03: Proceedings of the
17th USENIX conference on System administration,
pages 181-194, Berkeley, CA, USA, 2003. USENIX
Association.

T. Sterling and D. Stark. A high-performance
computing forecast: Partly cloudy. Computing in
Science and Engineering, 11(4):42—49, 2009.

L. Wang, J. Tao, M. Kunze, A. C. Castellanos,

D. Kramer, and W. Karl. Scientific cloud computing;:
Early definition and experience. In 10th IEEE
International Conference on High Performance
Computing and Communications, pages 825-830,
Dalian, China, 2008.

