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ABSTRACT
Supercomputers and clouds both strive to make a large number of
computing cores available for computation. More recently, simi-
lar objectives such as low-power, manageability at scale, and low
cost of ownership are driving a more converged hardware and soft-
ware. Challenges remain, however, of which one is that current
cloud infrastructure does not yield the performance sought by many
scientific applications. A source of the performance loss comes
from virtualization and virtualization of the network in particular.
This paper provides an introduction and analysis of a hybrid su-
percomputer software infrastructure, which allows direct hardware
access to the communication hardware for the necessary compo-
nents while providing the standard elastic cloud infrastructure for
other components.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems

General Terms
Management, Design, Measurement, Performance

Keywords
Supercomputing infrastructure as a service, supercomputer network
models, user-level networking, high performance cloud computing,
high performance computing

1. INTRODUCTION
Huge numbers of processors and massive communication infras-

tructure are characteristics common to both supercomputers and
cloud computing [9] systems. Cost and scale considerations are

.

driving cloud system hardware to be more highly integrated, that
is, to more closely resemble today’s supercomputer hardware. This
trend motivates the effort described in this paper to demonstrate
the feasibility of using of supercomputers as cloud infrastructure.
Our goal is to support the dynamic usage model associated with
cloud computing and at the same time preserve the supercomputer
aspects that support high performance applications.

In many ways datacenters are the “computers” behind cloud com-
puting [31, 11]. The typical approach to datacenter infrastructure
for cloud computing is to build a collection of general purpose com-
mercial servers connected by standard local-area network (LAN)
switching technologies. On top of this an Infrastructure as a Ser-
vice (IaaS) [36] model is constructed where users are given access
to the system’s capacity in the form of virtual servers and networks.
Platform virtualization software such as Xen is thereby widely re-
garded as the key enabler for IaaS, as it provides users with a stan-
dard software environment they know and control, and administra-
tors with a multi-tenancy usage model that achieves high utilization
of the datacenter’s resources.

Both Cloud computing environments and supercomputers are
designed to support multiple independent users who are not the
owners of the machine but use some fraction of it for their jobs.
While comparable in size, however, the infrastructure for scientific
computing is quite different from cloud computing infrastructures.
Supercomputers often rely on customized processing elements and
integrated interconnects to deliver high performance in computa-
tion and communication. Moreover, the supercomputer approach
has been to use hardware-enforced coarse-grain partitioning rather
than virtualization in order to help user applications achieve more
predictable high performance through isolated and dedicated use of
resources. Historically, also supercomputing software was highly
customized to exploit specific hardware features only present on
supercomputer hardware in order to obtain the best possible appli-
cation performance. More recently, however, the trend has been to
adopt standard general-purpose systems software environments in
order to ease application development and facilitate portability.

It might be natural to assume that this trend would imply that
using a typical IaaS such as Amazon’s EC2 for HPC computing
would give scientific users the advantages of elasticity while main-
taining performance. Unfortunately, although underlying software
models have converged, there is evidence that the lack of dedicated
access to the hardware and fine-grained sharing of resources as-
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sociated with virtualization makes performance prohibitively poor.
Napper et. al found significant performance degradation when at-
tempting to run Linpack on EC2 [22]. Want et. al studied the effects
of virtualization on communication in EC2 and found significant
degradation in performance [33]. In particular, and independent of
network contention, CPU virtualization can significantly degrade
performance of communication sensitive applications.

To summarize, a central feature of cloud computing is elastic re-
source provisioning of standardized resources. Specifically, users
can allocate and de-allocate capacity from a large consolidated pool
of third party computing resources as the needs of their applica-
tions change during runtime. Elasticity allows them to dynami-
cally scale, both up and down, their usage and costs with their ac-
tual needs for each phase of computation. To date, cloud com-
puting has focused on commercial models of computing, based
on general-purpose workloads and networking. It has achieved
standardization and high levels of elasticity through virtualization,
but allows little or no direct hardware access, hinders specializa-
tions, and limits predictability and performance. In contrast, sci-
entific computing has exploited specialized infrastructure, includ-
ing non-standard communications networks, to achieve predictable
high performance through direct hardware access and physical ded-
ication but with little or no elasticity.

Elastic resource provisioning, however, and its associated dy-
namic multi-tenancy usage model, constitute a foundation for scal-
ing out computers to true global dimensions (i.e., across companies,
institutions, or even countries), independent of whether the under-
lying architecture is geared towards cloud or supercomputer in-
frastructure. Moreover, even many high-performance applications
could exploit elasticity, since they can grow and shrink resource
usage dynamically based on how their algorithms are proceeding.
Elasticity can therefore provide benefits also to high-performance
systems, which leads us to two hypotheses that underlie this work:

1. Elasticity can be achieved along with the predictability asso-
ciated with high performance computing.

2. General-purpose elastic computing can be supported with di-
rect access to specialized networks.

Our work shows how to validate these hypotheses by adding a form
of dynamic network virtualization to a supercomputing system. To
do so, we propose the construction of an appropriate supercom-
puter software infrastructure that concurrently supports custom and
general-purpose networking protocols in the context of a commod-
ity operating system layer. Specifically, the contributions of this
paper are to:

• introduce communication domains as a basic mechanism for
virtualizing a supercomputer interconnect into dynamically-
sized and user-controlled communications groups thereby en-
abling elasticity without requiring full platform virtualiza-
tion,

• prototype general-purpose networking, in the form of Ether-
net topologies, on top of a supercomputer’s interconnects,
thus enabling a commodity runtime to seamlessly operate
within communication domains,

• allow, concurrently, performance-sensitive applications to di-
rectly exploit the communication facilities.

This paper focuses on describing how our prototype system im-
plements both general purpose communication, in the form of an

Ethernet implementation, and direct hardware-based communica-
tion on top of the elasticity provided by communication domains.
The paper is structured as follows: Section 2 discusses how we
designed communication domains as a mechanism for introducing
elasticity on a supercomputing platform. Section 3 shows how we
map a typical Ethernet-based cloud cluster network model on to the
Blue Gene/P supercomputer. Section 4 describes how we provide
concurrent access to the interconnect hardware features in the con-
text of a specific application scenario. Finally, Section 5 presents
our evaluation, followed by related work in Section 6 and a sum-
mary in Section 7.

2. COMMUNICATION DOMAINS
To allow for both elastic and predictable IaaS provisioning on

a single system, we propose a new mechanism, called a commu-
nication domain, that provides an abstraction to flexibly express
communication permissions without restricting direct hardware ac-
cess. By definition, a communication domain is a set of nodes that
are permitted to communicate with one another. A node denotes
a compute element of a supercomputer combining CPU, memory,
and a physical location in the interconnect networks. A node may
belong to more than one domain. Each domain to which a node be-
longs is manifested on the node as an interconnect interface, whose
implementation is unspecified. However, we assume that the con-
solidated nature of the system will result in interconnects that sup-
port communication modes akin to integrated system buses, thus
enabling a wide range of protocol and communication models such
as Ethernet to be explored.

Our implementation of communication domains enables users to
grow or shrink, at any arbitrary time, the number of nodes in a do-
main through a standard resource allocation interface. Critical to
the concept of communication domains is the underlying feature
of a supercomputer: an interconnect that provides a flat uniform
physical communication name space. In this way, every node is as-
signed a unique physical identifier (e.g., its position in the physical
topology of the interconnect), and can potentially reach any other
node by sending a message to the node. We then layer the logi-
cal construct of a communication domain atop, to dynamically and
efficiently construct groups of nodes that have logically restricted
rights to communicate.
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Figure 1: Example of a topology of communication domains.

Note that very similar approaches are currently being proposed
for commercial IaaS infrastructures [17, 24], albeit as a retro-fit
onto commodity interconnects. These approaches attempt to in-
troduce a new ubiquitous identifier for datacenter networks that is
below the standard layer 2 MAC address and encodes a physical
location in the datacenter on top of which a restricted logical MAC



address mapping is constructed. Given the commodity nature of
these systems, software is restricted from anything other than MAC
address access and the extra layer is implemented as extensions to
the commodity switching hardware. While such an approach al-
lows for more dynamic organization of the Ethernet topologies, it
does not permit higher-performance network access, and still re-
stricts software to continue to use Ethernet protocols for communi-
cation.

Communication domains stay in contrast to full platform vir-
tualization, which is the typical mechanism to achieve CPU and
network isolation in cloud computing: virtualization requires a hy-
pervisor to run on each node, and, by design, separates users from
the hardware. We do not preclude full virtualization from our ar-
chitecture, however; rather, we propose to absolve it from its duty
as first-class isolation mechanism, in favor of the more bare-bones
communication domain concept, which also has less (potential)
implications on end-to-end performance. In many ways commu-
nication domains are more closely related to Virtual Private Net-
work (VPN) [34] support in commodity switching hardware. In-
deed, some of today’s cloud IaaS providers have recently begun to
support user VPN management, in order to restrict communication
logically. However, unlike VPN technology, communication do-
mains are not bound to the use of Ethernet or IP protocols and can
be mapped more easily to the distributed nature of supercomputer
interconnects and are designed for fast scalable user control.

The rationale behind communication domains is twofold: achiev-
ing dynamic resource management without sacrificing performance
and predictability. We posit the degree of dynamic flexibility of
communication domains enables us to address both the elasticity
and predictability goals in resource management of our system.

On the one hand, the communication domain allows infrastruc-
ture users to dynamically grow and shrink their resource consump-
tion. A user can create domains and dynamically allocate nodes
into the domains to construct arbitrary permission topologies. For
example, a user might create an isolated communication domain
to restrict communication to only be permitted among those nodes.
Another user might create two domains, placing nodes in either
or both. The nodes in both domains can act as gateways between
the two. In a similar spirit, an IaaS offering can provide well-
known system domains that are publicly accessible, allowing mul-
tiple users to communicate with each other by placing nodes within
them.

On the other hand, communication domains also permit raw ac-
cess to physical resources for at least some applications running
on the infrastructure. The communication domain abstraction does
not make any assumptions about the software running on nodes;
thus it naturally permits users to gain access to CPU (and mem-
ory) resources, if this is desired. No restriction is placed on the
software: some users may choose to run virtualization software,
thereby providing a flexible and potentially low-cost standard IaaS
environment that is dynamically composed from some portion of
the supercomputer resources. Other users may choose to run their
performance-sensitive applications on a dedicated set of nodes, in
order to sustain the high and guaranteed delivery of processing
power the applications typically expect. However, more dynamic
application models for high-performance scenarios can be explored.
For instance, a user running a tree-based search algorithm can adapt
the number of nodes used dynamically, based on how the tree search
is proceeding.

Similarly, the nodes within a domain are free to choose to com-
municate using any protocol they like: this could range from MPI

instances which utilize the hardware interface directly to software
implementations of a protocol such as Ethernet. Moreover, while
the communication domain does not imply physical placement with
respect to network interconnects it also does not restrict users from
trading nodes to create pools that do have good placement. By
definition, the communication domain model does not imply phys-
ical topology, and nodes that are dynamically allocated by a user
can have any physical location on the interconnects of the system.
However, the user still has raw access to the nodes in the sense that
she can run arbitrary software, including software that can identify
the nodes’ physical location and determine network proximity or
lack thereof. That way, users or administrators can construct do-
mains and allocate nodes in a way that allows utilization of topol-
ogy information to sustain top network performance. One could
also imagine users that precisely construct services that provide
nodes with good locality for other users that require it. While the
locality guarantees may not be equivalent to having an electrically
isolated block of nodes, it makes it possible to imagine a very large
installation that has many diverse users running applications with
many different requirements.

3. MAPPING A CLOUD NETWORK ONTO
A SUPERCOMPUTER

In this section, we describe how we prototyped an elastic su-
percomputing model by adding a cloud-like networking layer to a
supercomputer. A typical commodity cloud cluster is built out of
hosts that run a commodity OS and are interconnected by a physical
network. The operating systems most often communicate via Eth-
ernet, both among themselves and to the networks exterior to the
cluster. Clusters also tend to have some form of storage infrastruc-
ture, which can range from local disk drives to advanced Storage
Area Network devices and combinations of both. In order to sup-
port such a cluster model we map the common system abstractions
onto the Blue Gene/P supercomputer.

3.1 Blue Gene/P Overview
The basic building block of Blue Gene/P (BG/P) is a node com-

posed of a quad-core processor derived from the embedded Pow-
erPC 440 core, five networks, and a DDR2 memory controller in-
tegrated into a system-on-a-chip. Each node further contains 2
or 4 GB of RAM soldered onto the node for reliability reasons.
The nodes are grouped 32 to a node card, and the node cards are
grouped 16 to a mid-plane. There are 2 mid-planes in a rack, pro-
viding a total of 1024 nodes and, in its larger configuration, a total
of 4 TB of RAM. Multiple racks can be joined together to construct
an installation. The system supports up to 256 racks totaling over
1 million cores and 1 Petabyte of RAM. Blue Gene/P features the
following three key communication networks:
Torus: The torus network [6] is the most important data transport

network with respect to bisectional bandwidth, latency, and
software overhead. Each compute node is part of the three-
dimensional torus network spanning the whole installation
and is identified by its X,Y,Z coordinates. Each node has in-
put and output links for each of its six neighbors, for a total
of 12 links, each with a bandwidth of 3.4 Gbit/s (425 MB/s),
for a total node bandwidth of 40.8Gbit/s (5.1 GB/s). Worst-
case end-to-end latency in a 64 K server system is below 5µs.
Nodes in the network act as forwarding routers without soft-
ware intervention. The torus provides two transmission in-
terfaces, a regular buffer-based one and one based on remote
direct memory access (RDMA).
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Figure 2: Blue Gene communication stack in Linux. We sepa-
rate the low-level links and link-encapsulation from the higher-
level protocols such as Ethernet and TTYs. Additional proto-
cols, such as SCSI, ATA or USB can be layered as well.

Collective: The collective network is an over-connected binary tree
that spans the installation. The collective is a broadcast medium
with node-specific filtering and a complex routing scheme
that allows for sub-partitioning the network to increase the
total bandwidth. The collective link bandwidth is 6.8 Gbit/s
(850 MB/s), and packet delivery is in-order and guaranteed
in hardware.

External Ethernet: Additionally, each node card can have up to
two I/O nodes, which feature the same basic unit as the com-
pute nodes but replace the torus device with an on-die 10 Gbit/s
XFP Ethernet controller. When fully populated each rack has
an external I/O bandwidth of up to 640 Gbit/s.

3.2 Ethernet on Blue Gene/P
To support a standard software environment in a cloud or util-

ity computing model, our prototype currently provides a BG/P-
specific version of the Linux Kernel. The internal network model
we support is a hybrid of Ethernet for legacy applications and a
kernel bypass with direct access to the specialized hardware from
application level. (We will explain details on the direct hardware
in the following Section.) To facilitate Ethernet communication,
the prototype features a set of Linux device drivers that map an
Ethernet-based version of our communication domain model (Sec-
tion 2) onto the dedicated BG/P interconnects. When using the
drivers, each communication domain appears as a separate Ether-
net network. Our initial choice was to abstract at the IP layer and
map protocol specifics to the hardware features, but we quickly
learned that the world speaks Ethernet and not IP. We further sup-
port a kernel bypass with direct access to the specialized hardware
from application level, in order to exploit tight coupling (Section
4).

In our architecture we separated the low-level device driver and
packetization engine from the device abstractions such as Ethernet
(see Figure 3.2). High-level drivers can register wire protocols on
the torus and collective. Thus we can multiplex arbitrary proto-
cols over the same underlying network and driver infrastructure. A
unique Ethernet interface is instantiated for each configured com-
munication domain.

In our standard Linux environment we primarily use Ethernet
and a multicast console exported as a TTY. Point-to-point Ethernet
packets are delivered over the torus and multicast packets over the
collective network. We chose a MAC address scheme such that
MAC addresses directly convert into torus coordinates and thus
the torus becomes a very large distributed switch. I/O nodes act
as transparent Ethernet bridges that forward packets between the
external world and authorized compute nodes. I/O nodes are not
members of the torus and instead use the collective to reach the
compute nodes.

BG/P’s networks are reliable, a feature we exploit. For all in-
ternal traffic we eliminate network checksumming. When a packet
leaves the system the bridge on the I/O node inserts the checksum
using the hardware offload engine of the 10 GBit/s adapter. For
the console we rely on guaranteed in-order delivery which signif-
icantly simplifies the implementation of group communication, in
particular in the early stages of a boot with thousands of nodes.

4. EXPLOITING TIGHT COUPLING
Our Ethernet virtualization layer enables the standard network-

ing environment that is typically delivered in today’s IaaS offerings.
However, to provide communication services of high predictability
and performance, as required in typical HPC applications, we also
allow the distributed switching capabilities of BG/P’s tightly inte-
grated interconnect to be used in a more direct way.

Our architecture strives to provide a development path from stan-
dard to specialized technology: on the one hand, it enables extend-
ing existing distributed systems software to produce an environ-
ment compatible enough to host existing large-scale distributed ap-
plications. On the other hand, it permits customizations that exploit
the hardware features of the tightly-coupled interconnect. To proto-
type such a use case, we customized a general-purpose distributed
memory caching system called memcached (memory cache dae-
mon) [15] to utilize the RDMA features of BG/P hardware; we will
describe memcached and our specializations in the following.

4.1 Memcached
Memcached is a distributed memory object caching system of-

ten used to speed up web applications by caching database query
results in memory, with the goal of alleviating database load and
contention [15]. Memcached can be viewed as a generic cache ser-
vice, in which a set of servers located on TCP/IP-accessible hosts
cooperate to implement a unified in-memory cache. The cache is
accessed by application hosts through a client library that commu-
nicates with the servers via TCP/IP. Several client libraries exist. In
our prototype we use the common libmemcached client library, a
C and C++ client library designed to be lightweight and to provide
full access to the server-side methods [2]. The primary operations
of libmemcached are:
memcached_set (set): stores a key-value pair into the cache; keys

can be up to 250 B, data up to 1 MB.
memcached_get (get): queries the cache for a particular key; if

found, returns the corresponding value.
memcached_delete (del): removes a key-value pair from the cache.

Memcached does not provide authentication or security, or re-
dundancy or increased data availability. Rather, memcached pro-
vides a simple, single key-space that can span multiple servers to
cache a data object in the memory of one of the servers. Its primary
goal is to improve performance by alleviating load and contention
on the back-end data repository, typically a data base. A wide range
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of existing Internet services use memcached, including large-scale
web-based services such as Slashdot, LiveJournal, and Facebook.

From our perspective, memcached serves as an accepted sim-
ple building block for distributed service construction. Our goal
is to preserve its interface, while modifying its internals to uti-
lize the features of BG/P and improve its baseline performance.
Specifically, we modified memcached to use torus RDMA to move
data directly between nodes, eliminating protocol stack overheads,
while preserving the interface and semantics of memcached. We
will describe our approach in the following; it has led to a 2.2x–
9.7x increase in the get performance of memcached over the default
TCP/IP based implementation; for 64 KByte buffers, it achieves
80% of the hardware’s theoretical maximum throughput.

4.2 Memcached and Blue Gene/P RDMA
Figure 3 illustrates the two components of memcached; the client

library on the application host and the memcached server on the
server host. In the default implementation the two utilize a protocol
transmitted over TCP/IP to jointly implement the set, get and del
operations1.

Our memcached specialization consists of two parts: our first
performance improvement was to separate the control and data path
of memcached and to use RDMA to transmit the payloads directly
between client and server, effectively eliminating the overhead of
TCP/IP. The second optimization was to split the meta-data struc-
ture of the hash table from the payloads, and to allow clients to
maintain a local copy of the server’s hash table, if the consistency
model permits it. Using the local copy for look-up, clients can di-
rectly access the server’s memory avoiding the overhead and extra
latency of a control message. With our performance optimizations
the mechanics of memcached get, set, and del are as follows:

Get: The get operation retrieves an item from a set of mem-
cached backend servers. The client library first determines the re-
sponsible server based on the key and then initiates a network re-
quest to fetch the item.

We replaced the standard TCP/IP implementation of the data
path with an implementation using RDMA. Each server allocates
a large RDMA-addressable memory chunk and exports it for use
over the torus network. All allocations for control structures and
key-value pairs are served from that allocation so that a client can
directly access server memory. The server also publishes the hash
table containing the key-to-item mappings. The server stores its
items in a collision chain with the key and value stored consecu-
tively in memory.

To retrieve an item over RDMA, the client initiates two requests,
1There also exists a UDP-based prototype for the memcached
back-end. However, the libmemcached version we use proved to
be not fully functional for UDP, thus we resorted to the original
TCP/IP implementation.

one for the hash table and a second request for the data. Further
requests may be necessary if the server has a long collision chain.
Depending on the data consistency model, the client can reduce the
number of RDMA accesses by caching the hash table exported by
the server. When a key is referenced but it cannot be found in the
locally cached table, the client re-fetches the table and retries the
lookup. If the key is still not present, the library reports a miss to
the higher layers. When a reference is found in the local cache, the
client fetches the data item without updating the hash table, thereby
avoiding the extra RDMA operation. Since the key and versioning
information can be stored inside the data block, the client can de-
termine if the copied item is stale or still valid. If the item is invalid,
the client re-fetches the hash table and retries the process.

Set: The set operation stores an item in a memcached server.
Memcached supports three variants of this operation to implement
cross-client synchronization. The add operation adds the item if it
does not exist in memcached; the replace operation modifies the
key-value if it exists; and the set operation updates the key inde-
pendent of whether it existed beforehand or not.

All operations require serialization on the server side in order to
perform the existence check (if necessary), allocate memory for the
key-value item, and register the item in the hash table. We extended
memcached with a two-phase protocol, one carrying the control
traffic and the second carrying the data traffic. For the control traf-
fic we use standard TCP/IP messages; such control messages con-
tain an RDMA reference to allow the server to initiate an RDMA
request if item data needs update (i.e., if it is not an add operation).
In this case, the server issues an RDMA fetch from the client, after
allocating the backing store for the item. The two-phase approach
has a higher overhead than the pure RDMA-based one of get, due to
the additional latency; but it reduces the copy overhead on the client
and server for sending and receiving the data through sockets. In
our measurements for payload sizes of 1024 bytes the two-phase
approach has about the same cost as transmitting the payload with
the control message.

Del: The delete operation removes a previously stored item from
the hash table, unlinks it from the collision chain and frees the used
memory. Since we are replicating the hash table in the clients it is
not sufficient to just unlink the item from the hash table since stale
cached copies may still reference the data item. The del operation
therefore first marks the item invalid in the data item, then unlinks
it from the hash table and finally frees the memory.

Coherency and RDMA
The standard implementation of memcached uses a strict coherency
model with full serialization in the server using TCP/IP and a single-
threaded message loop. Maintaining the strict consistency elimi-
nates most optimization potential for RDMA and limits it to the
data path, reducing the overhead of multiple memory copies. We
therefore relaxed the original consistency model and leave it up to
the users of our memcached implementation to develop their own
consistency models atop, which renders them free to apply their
domain-specific knowledge about consistency requirements of par-
ticular workloads.

In our case, we used memcached as a front-end for content-
addressable storage, where each key is a secure hash of its cor-
responding value, thus each key will always have exactly one asso-
ciated data item. This domain-specific knowledge allowed using an
all-or-nothing approach for the data item: Data is either correct or
incorrect, since the fixed binding of key to value eliminates the sit-
uation where a client may read a partially modified item. Similarly,



we can easily resolve conflicts due to staleness of local hash-table
copies: A client may have a stale hash table and fetch an item from
memory which was reused. Since key and value are always paired
we do not need to worry about stale accesses since the client will
be able to detect a conflict.

If a stricter consistency model is required, we propose to use
version numbers and a double-check algorithm that re-fetches the
valid bit after having fetched the complete value data. BG/P’s torus
RDMA engine can handle multiple, ordered, RDMA fetch requests
to different target segments, thus the re-fetch can be piggybacked
onto the original data fetch, avoiding an additional round-trip mes-
sage overhead.

5. PERFORMANCE RESULTS
In this section, we present experimental results we obtained from

our prototype. We will first present a performance validation of
the Ethernet network layer running atop the BG/P interconnects.
We then present a performance validation of our BG/P-customized
memcached implementation.

Note that the following results are preliminary: we did all our
experiments on a contended BG/P system, and at the time of bench-
marking, the largest available allocation size was 512 nodes; also,
although we ran all experiments several times, we did not collect
deviations and only list average results. We are in the process of
trying to bring our prototype up at a new installation and expect
to present an extensive performance study in a subsequent publica-
tion.

5.1 Network Performance
BG/P is architected as a system balanced with respect to compu-

tation and communication. A key design criterion for the system
was to provide network bandwidth sufficient to let all processors
transport data either to peers or to external storage arrays.

We ran two experiments. The first experiment measures the net-
work performance from an external host to one compute node. The
packets travel through one I/O node and get forwarded over the col-
lective network to the compute node using Linux’ bridging mod-
ule. The second experiment measures the performance between
two compute nodes using the torus network. The benchmark appli-
cation is netperf [3] which consists of client and server programs,
each single-threaded.

We measured the network throughput for both setups and var-
ied the packet sizes and the network protocols (TCP and UDP).
The results are listed in Figure 4. We also provide baseline perfor-
mance running both client and server on the same node (but differ-
ent cores) communicating through the loopback interface. In this
scenario Linux just copies the data from the netperf client to the
kernel, processes the packet in the IP stack, and copies the received
packet back to the netperf server. The results show that the IP stack
imposes a significant overhead.

Several factors influence the realized torus TCP and UDP perfor-
mance, which falls significantly short of the maximum 3.4 Gbit/s a
single torus link can provide. First, note that UDP over the loop-
back interface with 8000-byte packets achieves approximately 2.2
Gbit/s. This serves as an upper bound on what one could hope to
achieve, as both the IP protocol processing is minimal and all data
is being transfered via local memory copies. The rest of this dis-
cussion will focus on the 8000-byte packet results.

As indicated in the table, the UDP result between two torus
nodes achieves about 1.1 Gbit/s, or approximately half the loop-
back throughput. Although at this time we do not have a precise

breakdown of the costs, it is worth highlighting some of the details.
Keep in mind that although the upper layers of Linux interact with
our driver as an Ethernet device, the underlying driver must work
with the hardware parameters of the torus. This means that regard-
less of the Ethernet Maximum Transmission Unit (MTU) settings,
our implementation must send and recieve data with torus hardware
packets that are at most 240 bytes. In our experimental environment
we use an MTU size of 9000 bytes, which is larger than any of the
packets we use in our netperf experiments. While this minimizes
the number of Ethernet packets and the Linux overhead associated
with Ethernet packet processing, our torus Ethernet implementa-
tion must still process the individual Ethernet frames in 240-byte
fragments. This processing has overhead that includes interrupt
handling, frame reassembly, and copying that are not present in the
loopback results.

TCP processing adds additional overhead, as the TCP window
size limits the number of bytes that a sender will transmit before
waiting for an acknowledgement. This increases overhead because
it throttles the sender and potentially increases the number of pack-
ets that must be both sent and received. The anomaly of TCP be-
ing faster than UDP for small packets can be attributed to the TCP
packet buffering mechanism in the kernel.

One can certainly imagine optimizations that exploit semantic
knowledge to map TCP/IP communication more effectively to the
capabilities and parameters of the torus interconnect. For example,
given the reliable nature of the torus one could avoid, in certain sce-
narios, the need for acknowledgements altogether. We chose not
to focus on such optimizations. Our goal is a straightforward and
transparent Ethernet-based TCP/IP implementation that makes it
easy for users to initially use the system. As performance becomes
a greater focus, we expect users to exploit the hardware capabilities
directly with application-specific protocols and communication fa-
cilities and only use TCP/IP and Ethernet for non-critical functions.
Furthermore, our model is not bound to a single implementation of
Ethernet and TCP/IP. Alternatives can be easily developed and ex-
plored.

In addition to the previous scenarios, we measured the latencies
for transmitting the data directly using a user-level RDMA layer
and bypassing the kernel. The results are shown in the rightmost
column of Figure 4. The latency results for the loopback tests are
dominated by the cross-processor signalling overhead; the Linux
scheduler places the netperf client and server programs on different
cores. With larger packet sizes, the zero-copy loopback path in the
Linux kernel incurs a lower overhead than the real network devices,
resulting in lower latency.

Overall, the results demonstrate that our Ethernet implementa-
tion provides sufficient end-to-end bandwidth and latencies for general-
purpose use, with external bandwidth of up to 940 Mbit/s and inter-
nal bandwidth of up to 436 Mbit/s for TCP-based communication.
The results also show, however, that protocol-processing overhead
can have significant impact on throughput and latency from a user-
level perspective, and that direct access to RDMA features is nec-
essary for delivering close-to-raw performance at user level.

5.2 Memcached Performance
We evaluated the performance of memcached running on BG/P

using the original TCP/IP-based protocol and also our enhanced
version using torus RDMA. We obtained the results using a modi-
fied version of the memslap micro-benchmark, which is part of the
original libmemcached client library. The benchmark performs a
sequence of memcached get and set operations to read or write a
predefined set of fixed-size items. Our modifications are limited to



Link Size Throughput in Mbit/s Latency
in Bytes TCP UDP in µs

External 200 629.35 198.57 53.5
1000 923.41 812.19 55.8
8000 940.56 1832.11 129.0

Torus 200 210.53 113.67 33.4
(Eth) 1000 373.25 500.67 40.7

8000 436.25 1099.02 162.3
Torus 200 n/a n/a 1.7
(RDMA) 1000 n/a n/a 5.3
Loop 200 422.89 71.18 51.7

1000 806.72 323.92 53.4
8000 1440.28 2186.23 81.4

Figure 4: Network throughput and latency for external, inter-
nal, and node-local communication with varying packet sizes
over Ethernet. Additionally, latency for RDMA over torus
without kernel involvement.
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Figure 5: Throughput of memcached get/set primitives imple-
mented via TCP/IP and BG/P RDMA, for different item sizes

providing support for more detailed measurements of operations.
Both item keys and values are randomly generated.

Figure 5 compares get and set throughput of both versions for
three different payload sizes, 1 KByte, 16 KByte and 64 KByte, re-
spectively. The results show that the read operation clearly out-
performs the write operation, independent of the protocol. The
overhead can be attributed to the hash table manipulations. The
RDMA performance is significantly higher than with TCP/IP. For
1 KB payloads get throughput using RDMA outperforms TCP by
an order of magnitude. For large get operations, RDMA reaches
throughput close to the limits of the interconnect (340MB/s out of
a possible 425MB/s), a factor of 2.2 improvement compared with
TCP/IP. The set operation using RDMA consists of a TCP con-
trol packet followed by a remote fetch using RDMA. As expected,
the throughput increases with larger payload sizes. We found that
RDMA almost always pays off, except for the write case with very
small payloads, where the cost of the extra DMA operation out-
weighs the additional copy overhead through TCP/IP.

5.3 Memcached Scalability
In the next experiment we evaluated the scalability of memcached

by varying the number of clients and servers. We ran memslap
again, this time with varying numbers of clients and servers. We
used a unique key to prefix all items of each individual node. We
then averaged the bandwidth for all clients. We determined the
combination for all configurations of power-of-two for clients and

servers up to 512 nodes (at the time of benchmarking the largest
available allocation size was 512 nodes, since the machine is in
active use by many projects).2

Figure 6a and 6b show the throughput for 1K and 64K items in
a 3D graph. We expected two trends: First, with increasing num-
ber of clients per server the throughput per client should decrease.
Second, since the location of clients and servers was chosen at ran-
dom, the increased load on the links for forwarding traffic should
decrease the overall bandwidth. Both trends are clearly visible in
the figure.

In Figure 6c we present the same data but keep the ratio of clients
to server constant and vary the total number of nodes. We normal-
ize the throughput against the case of one server and one client.
With perfect scalability the throughput of each data set would re-
main constant, forming a horizontal line. Obviously this is not the
case and the throughput declines with increasing number of nodes
in the system.

As expected, node locality plays an important role in overall per-
formance. The conclusion we draw is that the node allocation sys-
tem needs to provide an explicit placement mechanism that enables
clients to leverage locality. Furthermore, it is important that nodes
observe communication patterns and potentially relocate the work-
load closer to peers. It implies that the system needs to provide
secure mechanisms for monitoring and to introduce resource man-
agement policies at the installation level, i.e., the datacenter.

6. RELATED WORK
Amazon’s EC2 and Microsoft’s Azure are examples of cloud

computing offerings available today. Although little is published
about the platforms, we do see a trend in the products targeting
cloud computing, such as Rackable’s MicroSliceTMproducts [4],
which, with a total of 264 servers per rack, provides a density that
is 3 to 6 times the density of a normal rack. Such systems still rely
on standard external Ethernet switch infrastructure for connectivity
but we predict that the trends in commercial system integration will
follow a trajectory similar to that of supercomputers.

The Cray XT5 QuadCore [1] supercomputer, which as of Novem-
ber 2008 formed the fastest homogeneous and second fastest over-
all supercomputer installation, shares many properties with Blue
Gene/P, including the 3D torus. Given our understanding of this
platform we believe our system model would be equally applicable
to it.

Hybrid interconnects have been used in both commercial and re-
search general-purpose multi-processor systems composed of mem-
ory and a small number of processors that are interconnected by
a homogeneous consolidated high performance network [32, 28].
Within this class of systems we are not aware of any that did not
impose shared memory. As such all of the systems required oper-
ating system software that managed the machine as a single sys-
tem image [7,20,23]. Creating such functional systems able to run
standard workloads can take a decade or more [20]. An interesting
alternative to constructing a complete OS for shared memory multi-
processors is the construction of a scalable virtual machine monitor
as was explored in the Disco project [13].

Similarly, loosely coupled software systems such as Mosix [10],
Plan9 [25], and Amoeba [21] use standard networks like Ethernet
2Note that for the reported configuration with 512 clients we were
only able to use 448 nodes since the remaining 64 nodes were used
as memcached servers or to host management software such as a
synchronization server. Since the values are averaged the data is
still representative as a trend.
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Figure 6: Throughput in MB/s of memcached get primitives (RDMA version), for 1K and 64K item size and different numbers of
client and servers. The rightmost figure shows how throughput (normalized in this figure) scales with increasing number of clients,
if the client-server ratio remains constant.

to couple nodes at the cost of latency and performance. These sys-
tems place significant focus on caching, fault handling, distributed
resource management, common naming, and sharing of data. Many
of these problems are eliminated due to the tight coupling and low-
latency communication links in a supercomputer. To maintain com-
patibility we take a selective approach; we treat the machines as a
cluster of independent instances, yet exploit the tight coupling and
homogeneity where it is beneficial to the OS and application layers.
We do not create the illusion of a single-system image but provide a
common management infrastructure to permit access to resources.
Systems with interesting characteristics, such as Plan9 [18] can
then be layered on top.

In the area of grid computing, efforts such as VNET/Virtuoso
[30], IPOP [16], and Violin [27] have investigated network over-
lays and virtualization as a means to provide a standardized, scal-
able, and easily accessible interface to communication resources,
which can help to establish virtual distributed environments in a
shared infrastructure. While similar in spirit and goals, the grid
computing approaches target decentralized and heterogeneous grid
architectures, which are loosely connected through wide-area net-
works. Our approach, in contrast, is more focused on the high-
performance, tightly-coupled and comparatively homogeneous in-
terconnect technology found in supercomputers. In addition, our
techniques target hardware-level mechanisms that do not fix com-
munications protocols or require specific systems software such as
TCP/IP or virtual machine monitors.

From a software infrastructure perspective, the original IBM Blue
Gene distribution utilizes Linux in a restricted fashion on the I/O
nodes of the system. Each I/O node runs a stripped down, in-
memory Linux distribution and Blue Gene-specific Linux software
such as tools and libraries. In concert with the external IBM control
system, this software provides an environment for users to develop
and deploy applications on the system. The I/O node software acts
as a bridge between the IBM compute node run time (CNK) and the
external networks and storage systems. The ZeptoOS [5] project
extends this model, enhancing the I/O node software stack [19]
to improve performance and permit application customization and
optimization of I/O operations. In addition, ZeptoOS provides a
robust Linux-based environment for the compute nodes. In partic-
ular, care is taken to mitigate OS interference [12] and overheads
associated with demand paging [35] so that high performance ap-
plications can be deployed on top of Linux on the compute nodes.
Our approach, unlike both the original IBM infrastructure model
and ZeptoOS, focuses on low-level primitives for the development

and deployment of diverse systems software, both open and closed,
and general-purpose and high-performance. We introduce a lower-
level dynamic and elastic allocation system that allows users to load
nodes with arbitrary software. In addition, we provide a prototyped
Linux kernel that exploits the direct access to implement both Eth-
ernet and custom communication protocols on the proprietary in-
terconnects. Our goal, however, is not the development of a single
Linux kernel or distribution but rather an environment for the de-
velopment of both open and closed software stacks.

Finally, distributed hash tables such as memcached are widely
used in peer-to-peer and Internet-scale environments. A major part
of the work is node discovery, naming, and routing due to the dy-
namic nature of the peers. Pastry [26] and Chord [29] use rout-
ing mechanisms that provide a bounded number of hops. Ama-
zon’s Dynamo key-value store [14] provides a highly available dis-
tributed data store through replication with late reconciliation.

7. CONCLUSION
Supercomputers present an interesting point in the design space

with respect to dense integration, low per-node power consump-
tion, datacenter scale, high bisectional network bandwidth, low net-
work latencies, and network capabilities typically found in high-
end network infrastructure. However, an esoteric and highly op-
timized software stack often restricts their use to the domain of
high-performance computing.

By providing a commodity system software layer we can run
standard workloads at significant scale on Blue Gene/P, a system
that scales to hundreds of thousands of nodes. Sharing, however,
requires secure partitioning, allocation, and the ability to freely cus-
tomize the software stack based on each individual’s needs. We
showed that, with communication domains as basic foundation and
a cloud-like network layer atop, such can be achieved also on a su-
percomputer. Furthermore, by exposing specialized features of the
supercomputer such as Blue Gene’s networks, hybrid environments
can utilize the advanced features of the hardware while still lever-
aging the existing commodity software stack. We showed this with
an optimized version of memcached utilizing the RDMA capabili-
ties of Blue Gene.

In addition to demonstrating supercomputers useful for deploy-
ing cloud applications, the infrastructure described in this paper can
also be used to evaluate and analyze cloud infrastructure, manage-
ment, and applications at scales that are incredibly costly on com-
mercial platforms. A single BG/P rack gives us a thousand-node
cloud, and our communication domain mechanisms allows us to



specify interesting overlay topologies and properties. Conversely,
we are also interested in examining ways that this infrastructure can
be used to backfill traditional high-performance computing work-
loads with cloud cycles during idle periods, extracting additional
utilization from existing supercomputer deployments. Backfill pro-
visioning is already an option on several HPC batch-scheduling
systems. We would simply apply these mechanisms to provide sup-
plemental cloud allocations that could be used opportunistically.

Tight integration of computation, storage, networking, powering
and cooling will be one of the key differentiators for cloud comput-
ing systems, a trend that can already be observed today. Different
forces but with similar outcomes have led the HPC community to
build highly integrated supercomputers. We expect that over the
next decade we will see cloud systems that very much resemble the
level of integration we have with Blue Gene. Hence, when design-
ing those commercial systems and software stacks we can learn a
lot from supercomputers that exist today and experiment with fea-
tures and scale.

The infrastructure described in this paper is part of the Kitty-
hawk project [8], which is now open source and available from
http://kittyhawk.bu.edu.
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