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ABSTRACT

Practical implementations of cryptographic algorithms are
vulnerable to side-channel analysis and fault attacks. Thus,
some masking and fault detection algorithms must be incor-
porated into these implementations. These additions further
increase the complexity of the cryptographic devices which
already need to perform computationally-intensive opera-
tions. Therefore, the general-purpose processors are usually
supported by coprocessors/hardware accelerators to protect
as well as to accelerate cryptographic applications. Using a
configurable processor is just another solution. This work
designs and implements robust execution units as an exten-
sion to a configurable processor, which detect the data faults
(adversarial or otherwise) while performing the arithmetic
operations. Assuming a capable adversary who can injects
faults to the cryptographic computation with high preci-
sion, a nonlinear error detection code with high error detec-
tion capability is used. The designed units are tightly inte-
grated to the datapath of the configurable processor using
its tool chain. For different configurations, we report the in-
crease in the space and time complexities of the configurable
processor. Also, we present performance evaluations of the
software implementations using the robust execution units.
Implementation results show that it is feasible to implement
robust arithmetic units with relatively low overhead in an
embedded processor.

Categories and Subject Descriptors

C [Computer System Organization]: Special-Purpose
and Application-Based Systems; C.3 [Special-Purpose and

Application-Based Systems]: Smartcards; E [Data]: Data
Encryption; E.3 [Data Encryption]: Public Key Crypto
Systems

General Terms

Security

Keywords

Security, Cryptographic Algorithms, Montgomery, Robust
Arithmetic Operations, Instruction Set Extensions, Com-
puter Architecture

1. INTRODUCTION
Fault attacks are active attacks in which the attacker

forces a cryptographic device to perform faulty operations
in order to extract the secret information. Faults can be
injected by manipulating the working conditions of the de-
vice (supply voltage, working temperature, clock rate, etc.)
or exposing it to some radiation source (white light, laser,
X-ray, ion beam, etc.) [16, 7]. Fault attacks are more ef-
fective than passive attacks since the attacker is capable of
doing much more than just observing the side channel infor-
mation of a properly working device. Furthermore, tamper
resistance is not enough to stop this kind of attacks. There
is a large number of works in the literature dealing with fault
attacks on both private key and public key systems [3, 4, 1,
13].

Cryptographic devices must have tamper- and fault-detec-
tion capabilities against fault attacks. When a cryptographic
device detects a fault attack, it takes the appropriate ac-
tion (reseting the device, erasing the secret key, etc.). Sen-
sors embedded into the device can provide tamper detection.
Also, error detection codes can be used to detect the data
errors which are either maliciously introduced by adversary
or naturally occurred. For example, the works [2, 11, 10]
propose simple error detection schemes using parity bits for
the symmetric cipher implementations. Also, the works [14,
15] add simple error detection circuits into finite field mul-
tipliers to detect faulty computations. However, all these
works are effective against simple error patterns which can
be encountered naturally during computations. Thus, they
may fail to detect more complex error patterns generated by
an intelligent attacker.

Non-linear error detecting codes have certain advantages
over linear error detecting codes for the attack models in
which the attacker cannot have a priori information about
the data. This is because undetected error patterns are com-
pletely data dependent for nonlinear codes. Some system-
atic non-linear error detecting codes have been proposed in
[9]. The use of these codes in cryptographic applications
has been studied in [8, 12]. Later, the work [6] presented a
new class of nonlinear systematic codes which shows similar
error detection properties with the codes in [9]. These codes
are termed ‘Robust codes’ since they show a uniform error
detection capability for different error patterns.



In this work, we design a variety of execution units for a
configurable processor to perform integer addition and mul-
tiplication operations, which are secured against the fault
analysis. While these execution units perform the integer
operations, they also calculate parity information from the
input operands and the results, using the non-linear error de-
tecting code given in [6]. The execution units (i.e. multiplier
and adder) are hence referred as robust arithmetic units.
Also, they issue error signals, if the redundancy checks fail.
In other words, any fault (i.e. an unintended bit flipping
in a register or an execution unit) can be detected with an
overwhelming probability.

We choose the configurable processor, Xtensa’s LX2 [17],
as the underlying platform. We implement the execution
units using Tensilica Instruction Extension Language (TIE),
which is a Verilog-like language. Then, using the Tensilica
tools, we obtain the RTL description of the core processor
with the robust execution units being added to its data path.
The resulting RTL code can be mapped to ASIC or FPGA
implementations easily.

Using configurable processors has the following advan-
tages over using coprocessors or hardware accelerators:

• Additional execution units are more tightly coupled to
the processor core. Thus, the communication overhead
with the CPU is less and compromising the sensitive
data is more difficult.

• The operations in the additional execution units can
share the same pipeline with other operations.

We add custom instructions utilizing the designed robust
execution units to the Xtensa LX2 processor instruction set
so that the software implementations can perform robust
addition and multiplication operations. We adopt three
different approaches in the design of the additional execu-
tion units performing the error detection calculations. As
a result, we generate three different configurations for the
Xtensa LX2 processor with hardware error detection sup-
port. Using Tensilica tools, we obtain the space and time
complexities for the ASIC and the FPGA implementations
of all the three configurations and the base LX2 core. The
results show that we can add the robust addition and mul-
tiplication operations to the LX2 instruction set without a
significant increase in space and time complexities.

Also, using robust addition and multiplication instruc-
tions, we developed C implementations of the Montgomery
modular multiplication algorithm, which is commonly used
in cryptographic applications [5]. Then, we evaluate the
performance of these implementations for all configurations
to further test our design.

This paper is organized as follows. Section 2 discusses
the nonlinear error detection codes (robust codes). Section
3 describes the general architecture for the hardware ex-
tensions as well as presents various designs for the robust
addition and multiplication execution units. Section 4 in-
troduces several configurations of the Xtensa LX2 processor
which provide robust arithmetic instructions for software
implementations. Section 5 gives the implementation re-
sults.

2. ROBUST ARITHMETIC CODES
The work [6] presents the robust quadratic codes

C = {(x, w) | x ∈ Z2k , w = x
2 mod p ∈ Fp}

where x is the k-bit data part and w is the r-bit redundancy
part of the code, respectively, where r = ⌈log2(p)⌉. Let ex

denote the error in the data part x and ew denote the error
in the parity part w. Then, an error (ex, ew) in this code
cannot be detected, if

(x + ex mod 2k)2 mod p = w + ew mod 2r ,

= (x)2 mod p + ew mod 2r .

Assume that an attacker has no a priori information for
the data x and its computed redundancy w. If the attacker
generates the error e = (ex, ew), the probability that this
error remains undetected (error masking probability) can
be given by [6]

Q(e) = Q(ex, ew) =
|{x|(x + ex, w + ew) ∈ C}|

|C|
.

If any given code C minimizes Q(e) value for all non-zero
values of x, then this code is called robust code. Overall
robustness is achieved for maxe6=0 (Q (e)) = 2−r . If an
upper limit as maxe6=0 (Q (e)) ≤ ǫ2−r for a code C is given,
then this code is called ǫ-robust. ǫ is a constant number
much smaller then 2r. In [6], it is shown that

ǫ = max(4 , 2k − p + 1)

where k = r.
In this study, we chose k = r = 32, since the word length

in a general-purpose microprocessor is 32. Then, the closest
prime number to 2k = 232 is 232 − 5. Therefore, Q(e) is
calculated as follows:

Q(e) = (2k − p + 1) × 2−k = 3 × 2−31

As we can see from the above equation, the probability of
forming an undetected error by an attacker is approximately
one in a billion. On the other hand, forming an undetected
error for linear codes is quite easy. For instance, in the case
of having a parity length equal to the data length, gener-
ating the same error in both data and parity will yield an
undetected error, ex = ew. Robust code can be defined for
all values of k. However, choosing the prime number p as
close as possible to 2k not only facilitates the calculations
but also minimizes the number of undetected errors.

3. GENERAL ARCHITECTURE
We propose to extend the configurable Xtensa 2 proces-

sor with cryptographic unit to perform robust addition and
multiplication operation whereby errors, malicious or ran-
dom, are detected with a very high probability. Using the
TIE language developed for this processor, one can design
various hardware units to add in parallel to the ALU of the
processor.

The proposed cryptographic unit (specified as robust ex-
ecution zone) is illustrated in Figure 1. The unit has two
parts:

1. The cryptographic register file (CRF) which consists of
sixteen 32-bit registers and some special-purpose reg-
isters used during computation as temporary storage.

2. The robust execution unit (REU).

The CRF is used to store the temporary results of the arith-
metic operations. The REU includes the circuits perform-
ing robust multiplication and robust addition operations.
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Figure 1: General Architecture

As seen in Figure 1, the REU is tightly integrated into
the processor core. It uses the pipeline structure and in-
terconnection infrastructure. Thus, the instructions added
by the cryptographic unit are executed in the same fash-
ion as the native instructions of the processor core. Fig-
ure 2 shows the functional units inside the REU where data
transfer and arithmetic/logic operations are performed on
32-bit operands. These units perform 32-bit integer addi-
tions and 32-bit integer multiplications with 64-bit results.
While these arithmetic operations are performed, non-linear
residue codes are also calculated from the inputs and the
outputs for fault detection. By this way, the REU enhances
Xtensa 2 processor with robust arithmetic operation capa-
bility, protecting the execution against fault attacks.

We use the error detection capabilities of the robust codes
for k = 32 bit data word in the REU. Let x be an input or
an output operand. Its non-linear residue is calculated as
|x2|p = x2 mod p. We implemented the robust arithmetic
only for the multiplication and addition operations. Nev-
ertheless, these operations are widely used in cryptographic
algorithms and thus, the algorithms using them will become
robust for faults too.

As can be seen from the Figure 2, the data path and the
interconnection structure of robust instruction execution is
the same as those of the existing integer data path of RISC
processor. Therefore, the new instructions are executed in
the same manner as any other native RISC instruction.

Figure 3 shows the pipeline stages for robust addition and
multiplication instructions. Similarly, Figure 4 illustrates
some examples that show pipeline stalls due to data de-
pendences among the robust instructions. For example, two
back-to-back robust multiplication instructions (the first two
instructions in Figure 4) do not cause pipeline stall as long
as they are independent. However, the second and third
instructions in Figure 4 creates two-cycle stall since the lat-
ter needs the parity value from the former, which will be
available two clock cycles later than usual.

3.1 Robust Adder
We add the RADDC (robust addition with carry) instruc-

tion to Xtensa processor to perform the robust addition op-
eration. This instruction works in a similar way to conven-
tional integer addition with carry instruction which is found
in almost every processor except that it checks its output for
errors using non-linear residue codes. The operands of the
RADDC instruction are a, b, and cin while its outputs are
the sum cL and the carry cH . When the RADDC instruc-
tion is executed, two different parity values
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As a result, we check the following equality in the hard-
ware to ensure that the parity values are equal, i.e.
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If the above equality holds, it can be said that the obtained
result does not contain any error. Figure 5 shows the block
diagram of the robust addition operation circuit, which is
implemented and integrated to the datapath of Xtensa 2
processor.

3.2 Robust Multiplier
We also use the non-linear residue codes to detect the

errors in the multiplication operation. The multiplication
operation takes two k = 32 bit inputs, a and b, and pro-
duces the 2k bit output c = ab. Also, the lower and higher
k bit parts of the output are denoted by cL and cH , respec-
tively. When the multiplication operation is executed, two
different parity values
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As a result, we check the following equality in the hard-
ware to ensure that the parity values are equal, i.e.
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If the above equality holds, it can be said that the obtained
result does not contain any error. The block diagram of the
robust multiplication operation circuit is shown in Figure 6.

4. PROCESSOR CONFIGURATIONS FOR

SECURE SOFTWARE
The Montgomery modular multiplication algorithm is im-

plemented in C language by employing the robust addition
and multiplication instructions mentioned previously. In
this implementation, we choose the SOS (separate operand
scanning) method proposed in the literature for the Mont-
gomery modular multiplication algorithm [5]. The C im-
plementation of the robust Montgomery multiplication is
simulated on Xtensa LX2 processor whose instruction set is
extended by the robust multiplication and addition instruc-
tions. Since these instructions are integrated to the data
path of the processor, the software can use them freely like
any native instruction.

We study four different hardware configurations and name
them as Configuration 0, Configuration 1, Configuration 2,
and Configuration 3. These configurations differ from each
other with their robust arithmetic capabilities. The follow-
ing steps are carried out in this work:

• A 32 bit simple processor compilation is implemented
on Tensilica.

• A robust adder is designed and implemented on Ten-
silica TIE language.

• A robust multiplier is designed and implemented on
Tensilica TIE language.

4.1 Configuration 0
Configuration 0 means a simple 32-bit Xtensa LX2 mi-

croprocessor which does not contain any protection against
fault injection attacks. In this configuration, the embedded
processor has the following hardware resources.

• 16-bit MAC with 40 bit Accumulator

• Multiplication instructions MUL16, MUL32, accumu-
lated MUL32, MULUH, and MULSH

• Pipeline length 5

• Widths of Cache and Memory Interface

– Width of Instruction Fetch Interface 32 bit

– Width of Data Memory/Cache interface 32 bit



Figure 3: Robust Addition And Multiplication Pipeline Structure
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Figure 4: Robust Instruction Behavior at CPU Pipeline

– Width of PIF interface 32 bit

– Width of Interface to instruction cache 32 bit

• Instruction Cache size / Line size (Bytes) 4096 /16

• Data Cache / Line size (Bytes) 4096 / 16

• System RAM size 128k

• System Rom size 16k

4.2 Configuration 1
In this configuration, the robust addition and multiplica-

tion instructions are added to Xtensa LX2 microprocessor.
The hardware circuits performing these instructions are de-
picted in Figure 5 and Figure 6. These circuits are described
in TIE language which is developed for Xtensa LX2 micro-
processors and integrated to the datapath of the processor
core.

The robust addition and multiplication are called as fol-
lows.

(cL, cout) = RADDC (a, b, cin)
(cL, cH) = RMUL (a, b)

The Configuration-1 protects the cryptographic computa-
tion against faults occurred during the execution of integer
multiplication and addition operations. It does not protect
temporary values while they are in the registers. Therefore,
this configuration provides only limited protection against
fault attacks.

4.3 Configuration 2
As mentioned previously, configuration 1 can detect only

the errors that occur during the execution of multiplication
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and addition operations. It, however, cannot detect the er-
rors which the attackers may insert before or after the ex-
ecution of these operations. Nevertheless, the inputs and
outputs of these operations are vulnerable to fault injection
attacks when they are held in the registers or in the memory.

As a remedy to this problem, the robust arithmetic in-
structions of Configuration 2 take the previous parity values
calculated for their input operands as additional inputs and
return their outputs together with the updated parity val-
ues. The robust addition and multiplication operation are
implemented as follows.
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As seen above, these robust instructions not only take a and
b but also the parity values as input. Similarly, they return
the updated parity values together with the operation re-
sults. Thus, Configuration 2 can keep track of the parity
values throughout the entire execution of a cryptographic
algorithm. The hardware circuits performing the robust in-
structions are depicted in Figure 7 and Figure 8. These
circuits are described in TIE language which is developed to
Xtensa LX2 microprocessors and integrated to the datapath
of the processor core.

Contrary to Configuration 1, Configuration 2 protects the
data not only during the arithmetic operations but also
when stored in the register file or memory. Therefore, it
provides better protection. On the other hand, Configura-
tion 2 has a larger complexity than Configuration 1.

4.4 Configuration 3
In Configuration 3, only the instructions whose hardware

organization is depicted in Figure 9 are used. Robust mul-
tiplication and addition operations are implemented in soft-
ware by using these instructions. The a, |a2|p, b and |b2|p
variables are used as arguments to the functions implemented
in software. The results of multiplication and addition op-
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Table 1: Clock Cycle Comparison for Montgomery

Implementation

Configurations 2048-bit 1024-bit 512-bit

Configuration 0 350, 858 97, 004 30, 260
Configuration 1 154, 076 42, 022 13, 675
Configuration 2 190, 687 51, 511 16, 263
Configuration 3 1.942.406 490, 029 125, 464

erations and error conditions in performed operations are
controlled. In addition to arithmetic results
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and addition functions are defined as follows:

C = RADDC

(

a,
∣

∣a2
∣

∣

p
, b,

∣

∣b2
∣

∣

p
, cin

)

C = RMUL

(

a,
∣

∣a2
∣

∣

p
, b,

∣

∣b2
∣

∣

p

)

5. IMPLEMENTATION RESULTS
This section outlines the results of hardware and software

implementations. Table 1 enumerates the execution times
of the C implementations of the Montgomery multiplication
algorithm for the four hardware configurations mentioned
previously. Montgomery implementation running on Con-
figuration 0 does not perform error detection calculations
neither in software nor in hardware. However, it is not the
fastest in Table 1. This is because LX2 base core does not
have a long multiplication instruction which can generate 64
bit results. Its multiplication instruction just takes 32 bit
input operands and generates 32 bit multiplication result.
Nevertheless, other configurations have robust multiplica-
tion units which can generate 64 bit results. Configuration
2 is slower than Configuration 1 since it is more complicated.
Configuration 2 robust operations must take the parity data
of the previous operations as additional inputs, and give the
updated parity data as additional outputs. Configuration 3
is the slowest since it has to perform error detection by the
simplest robust operation units.

Table 2 summarizes speed and area information obtained
for ASIC implementation. This table shows that the instruc-
tion extensions do not affect the processor speed 1. However,
it causes some increase in the area. The configuration with
the highest space requirement is Configuration 2. Then,
Configuration 3 and 1 follows it, in this order.

Table 3 summarizes speed and space information obtained
for FPGA implementation. As seen on the table maximum
execution periods exhibit variations as a result of additional
instructions. The fastest configuration is Configuration 0,

1The tool chain does not provide a reliable estimate for crit-
ical path delay in ASIC realization. For this, FPGA realiza-
tions provide a more realistic estimates

which is the default configuration. Then, Configuration 3, 2
and 1 follow it in this order. Moreover, the number of gates
used differs in each configuration. Increase in the number of
gates is in synchronization with area figures in ASIC imple-
mentation. In this case Configuration 2 has the maximum
number of gates. Configuration 1 and 3 follows it, in this
order.

When we observe the values presented in Table 1 and
Table 2 it can be seen that Configuration 1 has better re-
sults in comparison to the default and other configurations.
Although there is an increase in the area, there is also a
two-fold increase in speed because of reduced number of in-
structions. Other configurations do not have this. However,
when we look into the maximum clock periods obtained from
FPGA compilations, Configuration 1 is almost two times
slower than the default configuration. Although Configura-
tion 3 appears as the fastest in all of the robust configu-
rations, it takes too many clock cycles to produce a result
with all the necessary instructions. Optimal area and speed
performances have been achieved in Configuration 2, which
also provides the best protection.

6. CONCLUSION AND FUTURE WORK
We designed and implemented a robust execution unit

in an embedded processor that allows efficient and secure
execution of cryptographic algorithms. We estimated the
area overhead of the robust zone for the ASIC implementa-
tion. We also provided area usage on an FPGA device after
placement-and-routing for the full design including an em-
bedded base processor and robust execution unit. Since the
number and organization of the subsystems in the robust
execution unit are carefully designed, we observed only a
moderate area overhead while no deterioration in maximum
applicable clock frequency is reported in ASIC. Although
FPGA realizations incur some penalty in maximum allow-
able clock frequency, overall execution time is not affected
in some robust configurations. Robust execution units also
provide faster execution of modular multiplication which is
the most time-consuming operations in many cryptographic
applications. Our results show that it is possible to incor-
porate a powerful robust error detection circuitry into an
embedded processor core transparently with an acceptable
cost in area. The proposed error detection capability bene-
fits many cryptographic applications that uses basic arith-
metic operations.

Acknowledgment

This work is supported by the Scientific and Technologi-
cal Research Council of Turkey (TUBITAK) under project
number 105E089 (TUBITAK Career Award).



Table 2: Speed and Area Information for ASIC Implementation

Configurations CPU Speed Base CPU Area TIE Area Total Area

Configuration 0 350MHz 66, 000 0 66, 000
Configuration 1 350MHz 66, 000 33, 071 99, 071
Configuration 2 350MHz 66, 000 36, 604 102.604
Configuration 3 350MHz 66, 000 22, 564 88, 564

Table 3: Speed and Gate Information for FPGA Implementation

Configurations Max Period Slice Lut RAM16b DSP48s

Configuration 0 21.206ns 6.949 18, 176 80 0
Configuration 1 37.189ns 9, 468 26, 452 80 6
Configuration 2 31.011ns 9, 494 27, 492 80 6
Configuration 3 29.674ns 7, 741 22, 775 80 1
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