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ABSTRACT
Biometric fusion is the approach to improve the biometric system
performance by combining multiple sources of biometric informa-
tion. The binary spectral minutiae representation is a method to
represent a fingerprint minutiae set as a fixed-length binary string.
This binary representation has the advantages of a fast operation
and a small template storage. It also enables the combination of
a biometric system with template protection schemes that require
a fixed-length feature vector as input. In this paper, based on the
spectral minutiae representation algorithm, we investigate the multi-
sample fusion algorithms at the feature-, score-, and decision-level
respectively. Furthermore, we propose different schemes to mask
out unreliable bits. The algorithms are evaluated on the FVC2000-
DB2 database and showed promising results.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Security
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1. INTRODUCTION
Recognition of persons by means of biometric characteristics is

gaining importance due to the high security and user convenience.
Among various biometric identifiers, such as face, signature and
voice, fingerprint has one of the highest levels of distinctiveness
and performance [11] and it is the most commonly used biometric
modality. Most fingerprint recognition systems are based on the
use of a minutiae set. However, the low comparison (or matching)
speed is limiting its application to search large databases. At the
same time, the increasing privacy concerns make minutiae template
protection a crucial task. The spectral minutiae representation is a
method to represent a minutiae set as a fixed-length feature vector,
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which is invariant to translation, and in which rotation and scaling
become translations, so that they can be easily compensated for [18,
21, 20]. These characteristics enable the combination of fingerprint
recognition systems with template protection schemes and allow
for a fast minutiae-based matching as well.

In order to apply the spectral minutiae representation with a tem-
plate protection scheme based on fuzzy commitment and helper
data schemes, such as [7] and [16], we need to quantize the real-
valued spectral minutiae features into binary strings. A fixed-length
binary representation also has additional advantages such as small
template storage and high matching speed. Based on the com-
plex spectral minutiae representation (SMC) [21], the Spectral Bits
binary spectral minutiae representation was proposed in [20] and
showed promising results. Since the recognition performance is
the most important factor for a biometric system, in this paper, we
will investigate methods to improve the recognition performance
by fusing multiple spectral minutiae representations.

Biometric fusion, also known as multibiometrics, is the approach
to improve the biometric system performance by combining mul-
tiple sources of biometric information. Ross et al. [15] describe
five scenarios that are possible to obtain multiple sources of infor-
mation: (1) Multi-sensor systems, where the information from a
single biometric characteristic is obtained from different sensors;
(2) Multi-algorithm systems, where the same biometric data is pro-
cessed using different algorithms; (3) Multi-instance systems, where
multiple units of the same biometric characteristic (for example,
the left and right index fingers) are combined; (4) Multi-sample
systems, where a single sensor is used to acquire multiple impres-
sions of the same biometric characteristic; (5) Multi-modal system,
where different biometric characteristics (such as iris and finger-
print) from the same person are combined. Considering the cost
effectiveness and user convenience, scenarios (1)(3)(5) may not be
preferred. Scenario (2) is a popular cost-effective way to improve
the biometric recognition performance. Prabhakar and Jain tried
several attempts of combining multiple classifiers, and concluded
that the improvement in recognition performance is closely related
to the independence among various classifiers [12]. In this paper,
we focus on the spectral minutiae algorithm and we will not involve
other classifiers in this paper (for instance, a non-minutiae based
classifier). Therefore, we will investigate scenario (4), fusing mul-
tiple enrollment samples, to improve the recognition performance.

Based on the difference in the level of available information, fu-
sion strategies can be applied at image-level, feature-level, score-
level and decision-level [11, 15]. In this paper, we focus on the
procedures after the fingerprint minutiae extraction. Therefore, we
will discuss the fusion strategies at feature-, score- and decision-
level, respectively.

The main contributions of this paper are: (1) based on the method
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Figure 1: Illustration of the complex spectral minutiae representation procedure. (a) a fingerprint and its minutiae; (b) representa-
tion of minutiae points as complex valued continuous functions; (c) the 2D Fourier spectrum of ‘b’ in a Cartesian coordinate and a
polar sampling grid; (d) the Fourier spectrum sampled on a polar grid.

presented in [17], the minutiae quality data are incorporated to en-
hance the Complex Spectral Minutiae Representation (SMC) per-
formance; (2) we investigate the multiple enrollment samples fu-
sion at the feature-, score-, and decision-level respectively; (3) we
investigate and evaluate several mask schemes, and discuss their
application in context with template protection and error correction
schemes.

In this paper, we will first present the minutiae quality incorpo-
rated complex spectral minutiae representation together with the
Column-PCA feature reduction algorithm in Section 2. Next, in
Section 3, we will briefly review the Spectral Bits quantization
method, and propose several masks schemes. Then, in Section 4,
we will discuss several methods to implement multi-sample fu-
sions. Finally, we will show the experimental results in Section 5
and draw conclusions in Section 6.

2. COMPLEX SPECTRAL MINUTIAE REP-
RESENTATION

2.1 Minutiae Quality Incorporated Complex
Spectral Minutiae Representation

The objective of the spectral minutiae representation is to rep-
resent a minutiae set as a fixed-length feature vector, which is in-
variant to translation and rotation [18]. We assume that the scaling
has already been compensated for on the level of the minutiae sets.
This is for instance possible if minutiae are presented in a standard
like [1], which includes sensor resolution. In Figure 1, the pro-
cedure of the complex spectral minutiae representation (SMC) is
illustrated.

Assume a fingerprint with Z minutiae. First, we code the minu-
tiae locations by indicator functions, which are isotropic two-dimensional
Gaussian kernels in the spatial domain. Then we incorporate the
minutiae orientation by assigning each Gaussian a complex ampli-
tude ejθi , i = 1, . . . , Z. In this way, we represent minutiae points
as complex valued continuous functions, the magnitude of which is
shown in Figure 1(b). In this representation, translation and rota-
tion may exist, depending on how the user has put his finger on the
sensor.

Next, a two-dimensional continuous Fourier transform is per-
formed and only the Fourier magnitude is kept, illustrated in Fig-
ure 1(c). This representation is now translation invariant according
to the shift property of the continuous Fourier transform. In addi-
tion, we incorporate the minutiae quality data as presented in [17]
into SMC. This representation can be computed analytically,

MC(ωx, ωy; σ
2
C) =

∣∣∣∣∣exp
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−ω2

x + ω2
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2σ−2
C
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wi exp(−j(ωxxi + ωyyi) + jθi)

∣∣∣∣∣ , (1)

with (xi, yi, θi, wi) the location, orientation and quality of the i-th
minutia in the fingerprint, and (ωx, ωy; σ

2
C) are the frequencies and

the parameters of the Gaussian kernel function respectively.
Finally, the Fourier spectrum is re-mapped onto a polar coordi-

nate system, illustrated in Figure 1(d). In the radial direction λ,
we use M = 128 samples between λl = 0.05 and λh = 0.58.
In the angular direction β, we use N = 256 samples uniformly
distributed between β = 0 and β = 2π. Since our target appli-
cation is in a high security scenario with reasonable good quality
fingerprints, we choose σC = 0 for the best good performance.
In this case, there is no multiplication with a Gaussian in the fre-
quency domain (an analysis of the selection of the Gaussian param-
eter σ can be found in [18]). According to the rotation properties
of the two-dimensional continuous Fourier transform, now the ro-
tation becomes translation along the new coordinate axis.

2.2 Spectral Minutiae Matching
Let R(m, n) and T (m, n) be the two sampled minutiae spectra,

respectively, achieved from the reference fingerprint and test fin-
gerprint. Both R(m, n) and T (m, n) are normalized to have zero
mean and unit energy. We use the two-dimensional correlation co-
efficient between R and T as a measure of their similarity.

In practice, the input fingerprint images are rotated. Therefore,
we need to test a few rotations, which become the circular shifts
in the horizontal direction. We denote T (m, n − j) as a circularly
shifted version of T (m, n), the final matching score between R and
T is,

S(R,T ) = max
j
{ 1

MN

∑
m,n

R(m, n)T (m, n− j)},

−15 ≤ j ≤ 15. (2)

2.3 Feature Reduction
The spectral minutiae feature is a 32,768-dimensional real-valued

feature vector. This large dimensionality of the spectral minutiae
feature can cause three problems. First, the template storage re-
quirement is very high. Second, the high dimensionality leads to
a computational burden and the matching speed will be limited.
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Figure 2: Illustration of the CPCA transform. (a) the SMC
feature; (b) the minutiae spectrum after the CPCA transform.

Third, the high dimensionality can lead to a small sample size prob-
lem [14]. In order to cope with these problems, we will apply the
Column Principal Component Analysis (CPCA) feature reduction
method introduced in [19].

The idea of CPCA is to apply the well known Principal Com-
ponent Analysis (PCA) technique to the SMC columns. PCA has
two functions: it decorrelates features and concentrates power. The
CPCA representation is shown in Figure 2(b). We can see that after
CPCA, the power is concentrated in the upper lines. The features
in the lower parts are close to zero, so we can remove them from
the representation. For the CPCA feature reduction, we keep the
top 40 lines, with a feature reduction rate of 69%.

3. QUANTIZATION AND MASKING

3.1 Spectral Bits
In this section, we will first review the quantization method Spec-

tral Bits introduced in [20]. The Spectral Bits quantization is ap-
plied to the real-valued features after the CPCA feature reduction.
First, each real-valued feature is quantized as one bit (1 if the fea-
ture is greater than zero and 0 otherwise, we call it sign bit), shown
in Figure 3(a). Second, since the quantization boundary is zero, and
the features close to zero are unstable and likely to flip, they may
cause errors. Therefore, we will mask out the features of which the
absolute values are below a certain threshold. For the best recogni-
tion performance, we set the threshold to 0.6 after normalizing the
spectra to have a standard deviation (STD) equal to 1. By testing
different thresholds on different fingerprint databases, we found out
that this parameter can be chosen empirically and it will not cause
critical degradation of recognition performance. An example of the
resulting mask bit is shown in Figure 3(b).

3.2 Fractional Hamming Distance (FHD)
After generating sign bit and mask bit vectors, we can compute

a Fractional Hamming distance (FHD) [3] as a measure of the dis-
similarity between two fingerprints spectra R(m, n) and T (m, n),
whose sign bit vectors are denoted {codeR, codeT} and whose
mask bit vectors are decoded {maskR, maskT},

FHD =
||(codeR⊗ codeT) ∩maskR ∩maskT||

||maskR ∩maskT|| . (3)

(a)

(b)

Figure 3: Example of Spectral Bits (SMC spectra after CPCA).
(a) the Sign Bit; (b) the Mask Bit.

3.3 FHD with Different Masks Schemes
As shown in Equation (3), we use the fractional Hamming Dis-

tance (FHD) as the similarity measure between two binary strings.
This is the same measure applied for iris recognition by Daug-
man [3]. For a biometric verification system, we call maskR and
maskT in Equation (3) the enrollment mask and verification mask
respectively.

To combine a biometric system with template protection schemes
based on fuzzy commitment and helper data schemes, such as [7]
and [16], an error correction scheme [9] is needed to correct the bit
errors. However, incorporating masks will introduce complexity to
the error correction scheme, since at the time of encoding, only the
enrollment mask is known, not the verification mask. For this rea-
son, Hao et al. did not incorporate masks when applying template
protection to iris recognition [5]. Bringer et al. proposed a method
to enable masks by enhancing the fuzzy commitment scheme [2].
In this method, the error correction decoding also need to correct
the masks errors.

Including masks in the similarity measurement can improve the
recognition performance. To include masks, and at the same time,
not to complicate the error correction and template protection scheme,
we would like to investigate different mask schemes that can be
easily incorporated to the error correction schemes.

In order to reach this target, we first impose several constraints
on our mask schemes: (1) in case that an enrollment mask is used,
the verification mask will be the same as the enrollment mask, and
the number of masked components should be fixed to avoid the
error correction coding difficulties. (2) In case that a verification
mask will be used, we will not include enrollment mask. In this
case, the verification mask can be incorporated by using erasure
decoding.

Before presenting the mask schemes, we would like to introduce
two components selection algorithms: Largest Components Selec-
tion (LCS) and Reliable Components Selection (RCS).

Largest Components Selection (LCS). LCS is a straightfor-
ward method that has been applied to the Spectral Bits mask selec-
tion. LCS will select the features with the largest absolute values.
The features that are not chosen will be masked out.

Reliable Components Selection (RCS). To implement RCS, we
need to estimate the within-class variance based on the multiple en-
rollment samples from the same subject [16]. Assume we have NE



enrollment spectral minutiae representation samples, R1(m, n), . . .,
RNE(m, n), µm,n and σ2

m,n are the mean and variance of each
component at location (m, n). Since the spectral minutiae features
in the same row is uniformly sampled (see Section 2), we assume
that they have equal within-class variance. In this way, we can
make a more reliable estimation of the within-class variance per
line σ2

m by average σ2
m,n. Finally, the reliability factor qm,n of

each component is calculated as

qm,n =
|µm,n|

σm
, (4)

and the components with largest qm,n will be selected in the RCS
scheme.

Based on the constraints imposed on our mask schemes and the
two components selection methods LCS and RCS, we propose three
mask schemes in this paper.

Scheme (I): Enrollment Mask only with Largest Components
Selection (EM-LCS). In the EM-LCS scheme, only the enrollment
mask is applied. A fixed number of components are chosen based
on LCS.

Scheme (II): Enrollment Mask only with Reliable Components
Selection (EM-RCS). In the EM-RCS scheme, only the enrollment
mask is applied. A fixed number of components are chosen based
on RCS.

Scheme (III): Verification Mask only with Largest Components
Selection (VM-LCS). In the VM-LCS scheme, only the verifica-
tion mask is applied. A fixed number of components are chosen
based on LCS. Since the enrollment mask need to be stored in the
database as helper data in template protection based on the Helper
Data scheme, the information from the enrollment mask may cause
sensitive information leakage and lead to privacy risk. Using a
verification-mask-only scheme can avoid this risk.

4. MULTI-SAMPLE FUSION OF THE SPEC-
TRAL MINUTIAE REPRESENTATIONS

In this paper, we will investigate the strategies of fusing multiple
fingerprint samples (obtained from the same sensor) at three dif-
ferent levels: (1) feature-level; (2) score-level; (3) decision-level,
respectively. In Figure 4, we show the various processing modules
of the binary spectral minutiae fingerprint recognition system, to-
gether with the stages where the feature-, score- and decision-level
fusions can be performed. The output after each processing mod-
ules are: (a) minutiae set; (b) real-valued complex spectral minutiae
representations; (c) the minutiae spectra after the CPCA feature re-
duction; (d) the Spectral Bits representation; (e) comparison scores
measured by fractional Hamming Distance.

4.1 Fusion levels and their properties
For the fusion strategies at feature-, score- and decision-level, we

summarize their properties in Table 1.
Information available. The information contained at the feature-

level is richer than the one at the other two levels. In this sense,
feature-level has the advantage.

Storage and speed requirement. When implementing score-
level or decision-level fusion, all the templates derived from the
multiple enrollment samples need to be stored in the database and
compared with the test one during verification/identification. There-
fore, the storage requirement is high and comparison (or matching)
speed is slow. The feature-level fusion can be done in the enroll-
ment stage and only a synthesized template need to be stored in
the database. Therefore, the storage requirement and comparison
speed will remain unchanged.

Figure 4: The various processing modules of the binary spec-
tral minutiae fingerprint recognition system together with the
stages where the feature-, score- and decision-level fusions can
be performed respectively. ME: Minutiae Extractor. SMC:
Complex Spectral Minutiae representation. FR: Feature Re-
duction. Q: Quantization. FHD: Fractional Hamming Dis-
tance.

Table 1: A summary of fusion strategies at different informa-
tion levelXXXXXXXXXProperties

Level
Feature Score Decision

Information available + +/− −
Storage + − −
Speed + − −
Ease of design − +/− +

Template protection + − +/−
Robustness to overfitting +/− + +

Ease of design. Compared with the feature-level fusion, the
score-level and decision-level fusion are easier to study and im-
plement.

Template protection. As with the ’Storage’ and ’Speed’ prop-
erties, if multiple enrollment templates need to be stored in the
database, the template protection procedure also need to be ap-
plied to each of the templates (including error correction encod-
ing/decoding), which will greatly reduce the speed. Moreover, be-
cause of the limited error-correcting capability of error correction
code, fusion at score-level with template protection also needs to
be implemented differently [8].

Robustness to overfitting. The complex spectral minutiae fea-
tures are complicated in relation to the amount of examples avail-
able for training the statistical model. This overfitting problem may
occur during the feature-level fusion. The score- and decision-level
fusions are more robust to the overfitting problem.

4.2 Feature-level fusion
During the Feature-level fusion, the features from multiple sam-

ples are combined to produce a single enrollment template. This
is also known as template consolidation [11]. As shown in Fig-
ure 4, the feature-level fusion can be performed at the modules
“Minutiae Extractor (ME)”, “Complex Spectral Minutiae represen-
tation (SMC)”, “Feature Reduction (FR)”and “Quantization (Q)”.
At each module, the amount of information available is different
(the information available decreases from left to right in the fig-
ure). Fusing at minutiae feature level involves several steps such as
alignment and reliable minutiae selection. Several research works
have been done on this topic [6, 13]. In this paper, we will focus
on the fusion of the spectral minutiae features. This can be done
after the SMC, FR and Q modules. Considering the information



available, implementing fusion after the SMC or FR modules is
preferable over after the module Q. If we choose a linear operation
for the feature-level fusion (for example, an averaging operation),
implementing this fusion after the module SMC or FR is equiva-
lent. In this paper, we will perform the spectral minutiae features
fusion after the CPCA feature reduction (module FR).

In the spectral minutiae representations, the translations between
fingerprint samples become invariant, while the rotations become
the circular shifts in the horizontal direction. Before the feature-
level fusion, we need to first align the spectral minutiae features to
compensate the rotation differences. After the rotation alignment,
we average the aligned spectral minutiae features to generate the
synthesized enrollment (or reference) template.

Assume we have NE enrollment spectral minutiae representation
samples R1, . . . , RNE available for fusion, the procedure of our
spectral minutiae feature-level fusion is as follows.

Step 1: Denote Ri∗ as the enrollment sample with the largest
similarity to all the other samples, that is,

i∗ = arg max
i

NE∑

k=1
(k 6=i)

S(Ri,Rk), i = 1, . . . , NE, (5)

with S(Ri,Rk) calculated following Equation (2).
Step 2: Take Ri∗ as the reference, align all the other enroll-

ment samples to Ri∗ by trying out different circular shifts following
Equation (2). The aligned samples are denoted as R̃1, . . . , R̃NE .

Step 3: Generate the the synthesized enrollment template RS by
averaging R̃1, . . . , R̃NE , that is,

RS =
1

NE

NE∑
i=1

R̃i. (6)

Finally, the synthesized enrollment template RS will be stored in
the database as the reference template for verification/identification.

4.3 Score-level fusion
The score-level fusion is performed at the module "Fractional

Hamming Distance (FHD)", see Figure 4. At this module, the
binary reference templates from multiple enrollment samples are
compared with the test binary template, and then multiple compar-
ison scores are fused. The commonly used score-level fusion tech-
niques are Sum Rule, Max Rule and Min Rule [15]. In Section 5, we
will present the score-level fusion result based on the Max Rule1.

4.4 Decision-level fusion
The decision-level fusion is performed at the final decision mak-

ing module, see Figure 4. The very straightforward decision-level
fusion techniques are AND Rule, OR Rule and Majority Voting [15].
The outliers in a fingerprint database can cause false rejection. To
reduce the recognition errors caused by the outliers, in this paper,
we show the performance of the decision-level fusion based on the
OR Rule in Section 52. It should be noted that the decision-level
fusion based on the OR Rule is equivalent as the score-level fu-
sion based on the Max Rule and their recognition performance is
the same. Therefore, we will show one performance curve in Sec-
tion 5.

1We also tried other techniques such as the Sum Rule fusion. The
Max Rule fusion gives best results in our case.
2We also tried AND Rule and Majority Voting. The OR Rule fu-
sion gives best results in our case.

Table 2: Permutation setting: samples used for multi-sample
enrollment and single-sample verification.

Permutation Enrollment Genuine Verification
P1 1,2,3,4 5,6,7,8
P2 1,3,5,7 2,4,6,8
P3 1,2,7,8 3,4,5,6
P4 1,5,6,7 2,3,4,8
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Figure 5: ROC curves of different multi-sample fusion
schemes.

5. RESULTS
The proposed algorithms have been evaluated on the FVC2000-

DB2 [10] fingerprint database. We apply the same experimental
protocol as in the FVC competition: the samples from finger ID
101 to 110 for the CPCA training and samples from person ID 1 to
100 for test. Each identity contributes 8 samples. The minutiae sets
including the minutiae quality data are extracted by a proprietary
method.

We test our algorithm in a verification setting. In the single-
sample enrollment case, for genuine comparisons, we used all the
possible combinations. For imposter comparisons, we chose the
first sample from each identity. Therefore, we generate 100×(

8
2

)
=

2800 genuine comparisons and
(
100
2

)
= 4950 imposter compar-

isons in total.

5.1 Results of Multi-Sample Fusions
To test different multi-sample fusion schemes proposed in Sec-

tion 4, we set up a multi-sample enrollment and single-sample ver-
ification system. We use the Fractional Hamming Distance shown
in Equation (3) as the classifier. For generating more test cases,
we implemented four permutations. In each permutation, NE = 4
enrollment samples are used for multi-sample fusions and the other
four samples for genuine verification. For imposter verification, we
chose the first sample from each identity to compare with the mul-
tiple enrollment samples (or the synthesized enrollment template in
the feature-level fusion case). The permutation setting is shown in
Table 2. In total, we will generate 100 × 4 × 4 = 1600 genuine
comparisons and 100× 99× 4 = 39600 imposter comparisons.

For comparison, we also present the results of the single-enrollment
scheme (both with and without incorporating minutiae quality data).
The ROC curves of each scheme are shown in Figure 5. From the
two single-enrollment results, we can see that the recognition per-
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Figure 6: ROC curves of different mask schemes.

formance improved about 20% in terms of the Equal Error Rate
by incorporating minutiae quality data. This improvement is con-
sistent with the results shown in [17], where the minutiae qual-
ity data are incorporated in two other spectral minutiae representa-
tions. For the multi-sample fusion results, we can see that all the
three multi-sample fusion schemes received significant improve-
ments compared with the single-enrollment scheme. The OR Rule
decision-level fusion and the Max Rule score-level fusion are equiv-
alent and their performances are shown with one curve. They out-
performed the feature-level fusion since they are more robust to
outliers and the overfitting problem.

5.2 Results obtained with different Quantiza-
tion Mask Schemes

The main reason to investigate the different mask schemes is for
the integration of template protection schemes. As we discussed
in Section 4, the feature-level fusion is most suitable for template
protection schemes. In this paper, we evaluate the different mask
schemes combined with the feature-level fusion algorithm. The
results of four mask schemes are shown: 1. original mask schemes
using both enrollment and verification masks; 2. EM-LCS; 3. EM-
RCS; 4. VM-LCS. The number of masked out components are set
as 5500 for EM-LCS and VM-LCS, and 5000 for EM-RCS. The
ROC curves of each scheme are shown in Figure 6 (the curve of
"Both masks" is the same as the "Fusion at feature-level" curve in
Figure 5). We can see that the performance differences between
the four schemes are not significant. For the privacy concerns as
we discussed in Section 3, we recommend the VM-LCS scheme
for template protection.

6. DISCUSSION AND CONCLUSION
In this paper, we investigated the multi-sample fusions of the

spectral minutiae representations. We also proposed different mask
schemes applied to the similarity measure of binary representa-
tions in context with template protection. Our main conclusions
are: (1) Multiple enrollment samples can be used to train a sta-
tistical model of the biometric characteristics. By applying multi-
sample fusions, we can obtain a more accurate representation of
the biometric characteristics and improve the recognition accuracy.
(2) The performance of the fusion at feature-level can be degraded
due to outliers and the overfitting problem and its recognition per-
formance can be lower than the one from score- or decision-level
fusion. However, feature-level fusion has advantages on template

storage requirement and comparison speed. It is also the most suit-
able solution when incorporating template protection. (3) When us-
ing fractional Hamming Distance, to incorporate template protec-
tion and error correction scheme, we can apply one-mask schemes
(enrollment- or verification-mask only), which showed comparable
performances as the one using both masks. (4) To prevent the sensi-
tive information leakage, using the verification-mask-only scheme
will be the best choice.

To apply the spectral minutiae representation with a template
protection scheme based on the Helper Data Scheme [4], an error
correction scheme is needed. Furthermore, to enhance the recog-
nition performance, we can incorporate other fingerprint features
such as singular points. Investigating the possible error correction
codes and other methods to enhance recognition performance will
be our future work.
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