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ABSTRACT
Square root laws are theorems about imperfect steganogra-
phy, embedding which fails to preserve all statistical proper-
ties of covers. They show that, in various situations, capac-
ity of covers grows only with the square root of the available
cover size. In a paper given at this conference last year [14],
we showed an important caveat: when the sender’s and re-
cipient’s shared embedding key determines the embedding
path, its length must be at least linear in the size of the hid-
den payload to avoid their enemy exhausting over all possible
sets of locations. It was left open to show that a linear key
is sufficient.

There is no necessity, however, for the recipient to know
exactly which locations were changed during the embedding
process. In this paper we remove that condition, allowing
the embedder to combine more than one cover location to
convey one bit of payload. As long as the embedder lives
beneath the classic square root law bound, we can do more
than prove the sufficiency of a linear key: we can even show
that asymptotically perfect steganographic security is possi-
ble with no key at all. Furthermore, by computing Stegano-
graphic Fisher Information, we can show that the keyless
embedding tends to perfect security at least as fast as the
“ideal” embedding, which requires an unfeasibly large key to
spread payload uniformly at random over the cover. Finally,
we show asymptotic perfect security of a simple matrix em-
bedding, which allows payload capacity of order

√
n log n to

be achieved.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
information hiding ; H.1.1 [Models and Principles]: Sys-
tems and Information Theory—information theory
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Security, Algorithms
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1. INTRODUCTION
The square root law is a collection of mathematical results

about imperfect steganography, which is when the embed-
ding fails to preserve exactly all statistical properties of cov-
ers. They apply in different mathematical models, with the
common theme that the capacity of covers grows only with
the square root of the available cover size. Such theorems
can be found, for example, in [10, 12] in the case of multiple
independent covers and [5] in the case of single covers under
the assumption that the source is a Markov chain satisfying
certain conditions.

In a paper published at this conference last year [14], we
showed an important limitation to the simplest square root
law for single covers, whose elements consist of indepen-
dent and identically distributed (i.i.d.) elements, whereby
the sender and recipient are required to share a large enough
secret key to make it impossible for their enemy to guess
the embedding locations used: it was shown that a secret
key of size at least linear in the hidden payload is required,
otherwise detection is asymptotically certain no matter how
slowly the payload size grows with the cover size. We dubbed
the result, and the paper,“the square root law requires a lin-
ear key.” It was conjectured, but not proved, that a secret
key linear in the payload is sufficient; at that stage, all that
could be proved was that a key of order m logm bits, where
m indicates the payload size, is sufficient.

This paper changes the hypotheses very slightly, allow-
ing the embedder to combine more than one cover location
to convey one bit of payload. This means that the recipi-
ent, and hence the enemy, need not know the exact locations
which were changed. In this situation we can go even further
than proving the sufficiency of a linear key, in fact showing
that no key is required for steganographic security as long
as the embedder lives below the square root law bound. (A
cryptographic secret key would still be needed to keep the
content of the payload from the enemy.) This parallels a
result by Ryabko [16], which applies in the very different
context of perfect steganography. The results in [16] demon-
strate that no stego key is needed even when embedding an
asymptotically maximum capacity payload, though the case
of perfect steganography is completely different and the ca-
pacities are linear in the cover size.

The paper proceeds as follows. We outline our notation
(Subsect. 1.1) and prove a useful convergence result from



pure probability theory (Subsect. 1.2). In Sect. 2 we reca-
pitulate the classic square root law for i.i.d. covers, along
with its caveat about key length, as described in [14]. We
examine options for locating the payload without informing
the recipient (or enemy) exactly where it can be found, and
prove new results about an old embedding scheme for which
no steganographic key is required at all, in Sect. 3. The
rate of convergence to perfect security is related to Stegano-
graphic Fisher Information [13, 4], and we examine this in
Sect. 4: we are able to prove that the keyless embedding
is equally secure as uniform embedding requiring unfeasibly
large keys, so that no security is lost. The keyless embed-
ding also adapts naturally to a more efficient encoding, al-
lowing payload size superlinear in the number of embedding
changes via matrix embedding [8], and this is examined in
Sect. 5. Finally, Sect. 6 closes the paper with a discussion
of the new results’ significance, and possible extensions.

1.1 Notational Conventions
We will use uppercase Roman letters for random variables,

and sets; lowercase and Greek letters are for realisations of
random variables, constants, and functions. Uppercase calli-
graphic letters will be used for probability distributions (and
sometimes for sets) and uppercase boldface for matrices.
X ⊕ Y indicates the symmetric difference (exclusive-or

union) of sets X and Y , and P(X) the powerset (set of
all subsets) of X. Expectation and variance of a random
variable are written E[X] and Var[X]; when we want to
emphasise that X has distribution P, we use a subscript:
EX∼P [X]. I(A) is an indicator random variable, which takes
value 1 if A is true and 0 otherwise. Note that E

ˆ

X I(A)
˜

=
E[X|A]Pr(A).

Vectors will be written (x1, . . . , xn), or equivalently xn
1 ;

these will be column vectors for the purpose of matrix mul-
tiplication. The notation ψ(n) ∼ φ(n) indicates that ψ and
φ are asymptotically equal: ψ(n)/φ(n) → 1 as n→ ∞. Logs
are to natural base unless otherwise indicated.

We will use Knuth’s notation [9] for the falling Pochham-
mer symbol nk = n(n−1) · · · (n−k+1), so that the binomial
coefficients are

`

n
k

´

= nk/k!. Note that, for 0 < x < y,

„

x− k + 1

y − k + 1

«k

<
xk

yk
<

„

x

y

«k

. (1)

1.2 Convergence Lemma
Our results will often involve the asymptotic expectations

of certain sequences of random variables, and we begin with
some relevant lemmas from pure probability theory. First,
a useful bound for the logarithm function:

Lemma 1. If 0 < a < 1 < b and a ≤ x ≤ b then

x− 1 − 1
2a

(x− 1)2 ≤ log x ≤ x− 1 − 1
2b

(x− 1)2.

Proof. For the lower bound, differentiate the difference
log x− (x−1)+ 1

2a
(x−1)2; it has a local maximum at a and

a local minimum, with value zero, at 1, hence it is positive
for x ≥ a. The upper bound is symmetrical.

Next, some conditions for convergence of expectations of
logarithms of random variables, and their asymptotic lim-
its. This is a tricky because the logarithm is not uniformly
continuous on the positive reals.

Lemma 2. Let Yn be a sequence of positive random vari-
ables. Consider the following conditions:

(C1) E[Yn] = 1 for all n;

(C2) Var[Yn] 6= 0 for all n;

(C3) for any ǫ > 0, as n→ ∞

E
ˆ

(Yn − 1)2 I(|Yn − 1| ≥ ǫ)
˜

Var[Yn]
→ 0;

(C4) there exists a lower bound 0 < l < 1 such that l ≤ Yn,
for all n.

Under (C1)–(C3),

lim sup
E[log Yn]

Var[Yn]
≤ −1

2
. (2)

If also (C4), lim inf E[log Yn]
Var[Yn]

≥ − 1
2

and hence

E[log Yn] ∼ − 1
2
Var[Yn]. (3)

Proof. (C2) is needed to make the quotients well-defined.
Take any ǫ > 0. First, consider

Zn =
log(Yn) − (Yn − 1) + 1

2(1+ǫ)
(Yn − 1)2

Var[Yn]
.

Note that Zn ≤ 0 if Yn ≤ 1+ ǫ, by Lemma 1, and regardless
of Yn we have

Zn ≤ 1

2(1 + ǫ)

(Yn − 1)2

Var[Yn]
,

because of the inequality log x ≤ x− 1. Therefore

E[log Yn]

Var[Yn]
+

1

2(1 + ǫ)

= E[Zn]

= E
ˆ

Zn I(|Yn − 1| ≤ ǫ)
˜

+ E
ˆ

Zn I(|Yn − 1| > ǫ)
˜

≤ 0 +
1

2(1 + ǫ)

E
ˆ

(Yn − 1)2 I(|Yn − 1| > ǫ)
˜

Var[Yn]

→ 0.

We used (C1) at the first equality, and (C3) for the final
limit. Therefore, for sufficiently large n,

E[log Yn]

Var[Yn]
≤ − 1

2(1 + ǫ)
+ ǫ,

proving (2).

Second, consider

Zn =
log(Yn) − (Yn − 1) + 1

2(1−ǫ)
(Yn − 1)2

Var[Yn]
.

This time, Zn ≥ 0 if Yn ≥ 1− ǫ. And for other values of Yn,
now using (C4),

Zn ≥
„

1

2(1 − ǫ)
− 1

2l

«

(Yn − 1)2

Var[Yn]
.



Therefore the same calculations give

E[log Yn]

Var[Yn]
+

1

2(1 − ǫ)

= E[Zn]

= E
ˆ

Zn I(|Yn − 1| ≤ ǫ)
˜

+ E
ˆ

Zn I(|Yn − 1| > ǫ)
˜

≥ 0 +

„

1

2(1 − ǫ)
− 1

2l

«

E
ˆ

(Yn − 1)2 I(|Yn − 1| > ǫ)
˜

Var[Yn]

→ 0.

For sufficiently large n,

E[log Yn]

Var[Yn]
≥ − 1

2(1 − ǫ)
− ǫ,

proving (3).

(C3) ensures that the contribution of the tails of Yn to its
variance is not too large. It is related to the so-called Lin-
deberg condition, which implies a generalised central limit
theorem (CLT) [3, VIII.4, Th. 3]. In the case of the CLT,
Lindeberg’s condition is implied by an easier-to-verify con-
dition (Lyapounov’s condition [3, VIII.10.17]) on some of
the moments of the random variables; in our case (C3) is
implied by an analogous condition, also easier to check in
practice:

Lemma 3. As long as E[Yn] = 1, the condition

E
ˆ

(Yn − 1)4
˜

Var[Yn]
→ 0.

is sufficient for (C3).

Proof. We break down E
ˆ

(Yn − 1)2 I(|Yn − 1| ≥ ǫ)
˜

into
slices of width ǫ:

E
ˆ

(Yn − 1)2 I(|Yn − 1| ≥ ǫ)
˜

=
∞
X

k=1

E
ˆ

(Yn − 1)2 I
`

kǫ < |Yn − 1| ≤ (k + 1)ǫ
´˜

≤
∞
X

k=1

`

(k + 1)ǫ
´2

Pr(|Yn − 1| ≥ kǫ)

(a)
≤

∞
X

k=1

(k + 1)2ǫ2
E
ˆ

(Yn − 1)4
˜

k4ǫ4

= E
ˆ

(Yn − 1)4
˜ 1

ǫ2

∞
X

k=1

(k + 1)2

k4
,

where (a) is Markov’s inequality. The sum is convergent,
and this implies the required result.

2. SQUARE ROOT LAWS
Square root laws are generally asymptotic results, show-

ing that the probability of correct detection rises to one if
payload increases asymptotically faster than

√
n, where n is

the cover size, and that it falls to zero if payload increases
asymptotically slower. Hence the “rate”

√
n is the critical

point, and we say that capacity follows a square root law.
We begin by recapitulating one result from [14] (with some
slight re-wording), to set the scene for our novel work.

Theorem 1. Suppose that the cover consists of n pixels
(X1, . . . , Xn) each drawn from a finite alphabet X , inde-
pendent and identically distributed each with mass function
p(x). Suppose that a payload of size m causes exactly m
pixels to be replaced with those of the same alphabet, but
distributed with mass function q(x), and that this pixel se-
lection is made uniformly from all

`

n
m

´

possibilities. Finally,
suppose that p(x) 6= 0 and q(x) 6= 0 for all x ∈ X , and there
exists y ∈ X such that p(y) 6= q(y).

(i) If m/
√
n → ∞ then, for sufficiently large n, covers

and stego objects can be distinguished with arbitrarily
low error rate.

(ii) If m/
√
n→ 0 then, for sufficiently large n, any detec-

tor must have arbitrarily high error rate.

We have called the cover elements “pixels”, but they could
be equally another representation of the cover such as trans-
form domain coefficients. On embedding, some of the pixels
are altered. It will not matter, for our purposes, exactly
what embedding function is used, as long as the change at
each embedding location is independent of the others (this
covers many practical embedding schemes). We will say
more about the embedding operation later.

The proofs of (i) and (ii) are quite different. For (i), we
merely need to construct a detector with the stated per-
formance; it turns out that simply counting the number of
pixels with value y is sufficient, which can be proved using
tail inequalities. For (ii), we compute the Kullback-Leibler
(KL) divergence between the distribution of covers and stego
objects, and show that it tends to zero under the condition
m/

√
n → 0. This can be difficult, especially in the case of

Theorem 1 where the embedding causes a weak dependence
between the pixels of the stego image. (Some square root
laws also contain a case (iii), when m/

√
n → r, a positive

constant called the root rate. We will not pursue such cases
in this work, but our analysis in Sect. 4 is related to it.)

We highlight two of the preconditions for Theorem 1.
First, the cover has been modelled as i.i.d. elements on a
finite alphabet, and that will be the model used in the rest
of this paper too. A finite alphabet is very reasonable, but
i.i.d. elements make a poor model for the practice of stegano-
graphy in digital media. However, this model illustrates the
square root law without the complicated analysis required
in [5]. We are confident that the same results will hold for
richer cover models, such as the Markov chains analysed
in [5], though new abstractions will be probably be required
before such a proof can be constructed.

Second, we assumed that them embedding locations which
convey the payload (presumably of m bits, though other
bases could be used), were uniformly selected from all pos-
sibilities. We will call this ideal embedding, because there
is no information leaked to the enemy about the likelihood
of any particular locations being used for embedding. How-
ever, it is far from ideal in practice, because the sender and
recipient need to agree on m locations chosen from n possi-
bilities, so they need to distinguish n!/(n−m+1)! different
possible embedding paths, which itself would need m logm
bits of information in the case when m ∼ √

n: their secret
embedding key has to be longer than the hidden message!
This is unsatisfactory, so in [14] we examined the case when
the number of embedding paths is drawn from a smaller set
of K possibilities, with the following result:



Theorem 2. Suppose that the cover consists of n pixels
(X1, . . . , Xn), independent and identically distributed each
with mass function p(x). Suppose a payload of size m which
will cause exactly m pixels to be replaced with mass function
q(x). Suppose that the sender, recipient, and attacker share
knowledge of a set K of secret keys, each of which generates a
path of length m determining the payload locations, but only
the sender and recipient know which key is used. Finally,
suppose that there exists y such that p(y) 6= q(y).

If (log |K|)/m → 0, as m → ∞, and m → ∞ as n → ∞,
then, for sufficiently large n, covers and stego objects can be
distinguished with arbitrarily low error rate.

Since the sender and recipient need log |K| bits of secret
information to determine the embedding path, this shows
that a secret key sublinear in the message size will lead to
asymptotically perfect detection, no matter how slowly the
payload size itself grows. It is proved by constructing such a
detector, which simply exhausts over all possible embedding
paths and looks for an outlier in the number of y pixels
observed.

Note that Theorem 2 is analogous to part (i) of Theorem 1:
it shows that capacity cannot grow beyond a certain rate
(in this case, it cannot grow at all). The analogue of (ii),
showing that a linear embedding key is sufficient to ensure
asymptotic perfect security (assuming the payload size keeps
below the square root law bound) was not proved in [14] and
was the motivation for the work reported in this paper.

In this paper we will concentrate on analogues of part (ii)
of Theorem 1, showing that various embedding schemes are
asymptotically secure. The analogues of part (i) also hold,
but will not be our focus. Note that the results in [14] make
the assumption that payload is proportional to the number
of changes. It is by relaxing that assumption, using embed-
ding schemes for which it does not hold, we are able to prove
asymptotic perfect security, even without an embedding key
at all.

So before we continue to novel results, we will need to
make a slight change to the terminology. There is an impor-
tant difference between embedding locations used to convey
payload, and those changed in the embedding of payload.
In the case of simple bit replacement, for example, only half
of those locations used will need to be changed, on average,
because the others already contained the correct bit; in the
presence of source coding at the embedder, such as matrix
embedding [8], it is entirely possible that many locations
are used, conveying many bits of payload, but only a small
number have to be changed.

We will therefore alter our meaning of q, in this paper,
to be the mass function of pixels changed by embedding. It
makes no difference to the validity of the square root laws,
but it affects the more subtle analysis of asymptotic rates
we will undertake in Sect. 4.

We will also be more concrete about some possible em-
bedding functions. Let us assume that the sender makes
public some parity function P :X → {0, 1}. This could sim-
ply be the least significant bit of a pixel value, or something
more complicated which varies according to position. In the
embedding schemes we will devise, the parity function will
either be used to extract one bit of payload from a single
location, or to make up codewords from which bits can be
extracted. If the embedder needs to change the parity value
of a location we will assume that they can always do so, and

it is the result of these modifications which produces pixels
distributed according to q.

It will turn out that properties of q(X)/p(X), where X
is a random variable representing a single cover symbol (i.e.
has mass function p(x)), are important to the asymptotic
performance of embedding. Note that

E

»

q(X)

p(X)

–

=
X

x∈X

p(x)
q(x)

p(x)
= 1

and, because the domain of X is finite, all the moments
of q(X)/p(X) are finite. We will define constants for the
central moments of this random variable:

µk = E

»„

q(X)

p(X)
− 1

«k –

=
X

x∈X

p(x)

„

q(x)

p(x)
− 1

«k

.

3. STEGANOGRAPHY WITH NO KEY
We now explore ways in which the steganographer can

communicate with their recipient without the latter know-
ing the precise location of the embedding changes. Com-
munication using such a non-shared selection channel has
already been studied, and we consider whether the litera-
ture is helpful. Then we outline a very simple embedding
scheme, which spreads one bit of payload across up to

√
n

locations.

3.1 Wet Paper Codes
Wet paper codes are an example of embedding using side

information. The usual setup is that certain embedding lo-
cations are “wet” and cannot be changed by the embedder,
but the recipient does not know which were the wet loca-
tions when they receive the message [7]. This is a stronger
requirement than needed for our situation, which is only
that the recipient (and hence enemy) not know the location
of the payload, but it is useful to examine whether practical
wet paper codes allow us to prove a square root law in the
presence of a small embedding key.

The simple construction in [7] is to use a pseudorandom
binary matrix D, of size m × n, to communicate m bits
of information in n locations: D can be shared with the
recipient either by making it public or by using the pseu-
dorandom number generator seed which created D as the
secret embedding key. Create a column vector cn1 with ele-
ments ci = P (xi), the parity values of the elements of the
cover, and write the payload as a vector of bits pm

1 ; the stego
object is created by flipping some of the parity values of the
cover so that the vector of its parity values, sn

1 , satisfies the
simultaneous linear equations

Dsn
1 = pm

1 . (4)

Thus the embedding relies on solving (4) for sn
1 , over binary

arithmetic, subject to the condition that at wet locations we
force si = ci. For suitably chosen pseudorandom matrices
D, and fewer than n −m wet pixels, it is shown that this
is possible with high probability. Extraction of the hidden
payload is simply computing the product (4) for the given
stego object, and we can see that the recipient never finds
out which locations had actually been altered.

We need only designate about n−m pixels as wet to en-
sure that there are no more than m embedding changes,
and therefore the changes will not grow at an asymptoti-
cally higher rate than for simple bit replacement; we already



know that fewer than O(
√
n) changes are asymptotically un-

detectable, so it appears that we have recovered a simple
square root law, with at most a small secret embedding key
to determine D.

However, how do we know that solutions to (4) do not bias
the likely embedding change locations? The enemy must be
assumed to know the embedding procedure, and even if D

was generated by a small secret key, the enemy could per-
haps exhaust over different possible D matrices. Can we
prove that they cannot then predict the likely locations of
some of the changes? A lot depends on the algorithm used
to solve (4), and Böhme has already shown that there can be
weaknesses which are potentially exploitable by steganaly-
sis [2]. This makes it difficult to prove a proper square root
law about standard random matrix wet paper codes, and
we know of no result about any other wet paper code con-
struction which proves that the enemy gains no information
about the location of changes. Instead, we will turn to what
amounts to the trivial wet paper code, with D a matrix with
blocks of 1s on the diagonal and zero elsewhere, for which a
proof is relatively easy to construct.

3.2 A Simple Solution
Let us consider a very simple form of embedding, which

spreads one bit of payload amongst many locations, yet al-
lows the recipient to recover the hidden message without
knowing exactly which bits have been altered. To our knowl-
edge this was first described in [1].

Algorithm 1. Divide a cover of size n, (x1, . . . , xn), into
m groups of ⌊n/m⌋ pixels each, with any remainder pixels
left unused. In each group G, compute the sum of the pari-
ties:

P

xi∈G P (xi) (mod 2); if this matches the next payload
bit, do nothing, otherwise choose one of the pixels from the
group, uniformly at random, and alter it to flip its parity
value.

The recipient recovers the embedded payload by comput-
ing

P

xi∈G P (xi) (mod 2) in each group. They need to know
the parity function, and the division of the cover into groups,
but neither of these need be kept secret from the enemy.

Now we show that this algorithm is asymptotically per-
fectly secure as long as m/

√
n → 0. Note that we cannot

use the original square root law proof, because the enemy
has extra information about the location of the changes if
they know the groups: they know that exactly zero or one
changes have been made in each group. With extra analysis,
however, we can prove that this additional information does
not alter the asymptotic perfect security of the embedding.

Theorem 3. Suppose that the cover consists of n pixels
(X1, . . . , Xn) each drawn from a finite alphabet X , inde-
pendent and identically distributed each with mass function
p(x), and that Algorithm 1 is applied to embed a payload of
size m. Suppose that altered pixels have mass function q(x).
Finally, suppose that p(x) 6= 0 and q(x) 6= 0 for all x ∈ X .

If m/
√
n → 0 then, for sufficiently large n, any detec-

tor must have arbitrarily high error rate, even if they have
knowledge of the groups and the parity function.

Proof. Consider one group of k = ⌊n/m⌋ pixels which,
for sake of simplicity, we shall call (X1, . . . , Xk). With no
embedding, the pixels are i.i.d. with distribution p(x); call
this joint distribution P. With embedding, there is probabil-
ity 1/2 that they have the same distribution, and, for each

j = 1 . . . k, probability 1/2k that pixel j has been altered
and now has distribution q(x); call this joint distribution Q.

Now define Ri = q(Xi)/p(Xi). Note that Ri are inde-
pendent and identically distributed. In Sect. 2 we showed
that, with expectations taken over Xk

1 ∼ P, E[Ri] = 1 and
Var[Ri] = µ2, some finite constant.

Now we compute the KL divergence

D1 = DKL(P ‖ Q)

= −E

»

log

„Q(Xk
1 )

P(Xk
1 )

«–

= −E

»

log

„ 1
2

Q

i p(Xi) + 1
2k

P

j q(Xj)
Q

i6=j p(Xi)
Q

i p(Xi)

«–

= −E

»

log

„

1

2
+

1

2k

k
X

j=1

Rj

«–

.

Write Yk = 1
2

+ 1
2k

P

j Rj . We wish to apply Lemma 2 to
determine the asymptotics of D1.

We can check (C1),

E[Yk] =
1

2
+

1

2k

k
X

j=1

E[Rj ] = 1,

and compute the variance

Var[Yk] =
1

4k2

k
X

j=1

Var[Rj ] =
µ2

4k
.

As long as p and q are not identical mass functions (in which
case D1 = 0 and there is nothing to prove), µ2 > 0 and so
Var[Yk] > 0, verifying (C2).

To verify (C3) we use Lemma 3:

E
ˆ

(Yk − 1)4
˜

Var[Yk]

=
E
h“

1
2k

P

j(Rj − 1)
”4i

Var[Yk]

=
1

16k4

P

j E
ˆ

(Rj − 1)4
˜

+ 3
16k4

P

i6=j Var[Ri]Var[Rj ]
1
4k
µ2

=
µ4

4k2µ2
+

3(k − 1)µ2

4k2
→ 0.

For (C4), note that Ri is positive so Yk is bounded below by
1/2. Thus we apply Lemma 2 with the result that

D1 ∼ 1

2
Var[Yn] =

µ2

8k
. (5)

Finally, consider the KL divergence between entire cover
and stego objects: possibly apart from some unchanged re-
mainder pixels (which contribute nothing) the total KL di-
vergence is a sum of m independent groups, which is

D = mD1 ∼ m
µ2

8k
∼ µ2

8

m2

n

which tends to zero, given the hypothesis that m/
√
n → 0.

As with the classical square root law, the performance of
any detector must tend to purely random as n→ ∞.

We have demonstrated that Algorithm 1 has asymptotic
perfect security, in the sense that sufficiently large covers



give arbitrarily small probability of detection; this is be-
cause the payload is spread more thinly in larger covers.
But, since the entire procedure should be considered pub-
lic (e.g. because of Kerckhoffs’ Principle), there is nothing
to stop the attacker reading the hidden message by using
the same procedure as the recipient. This emphasises the
difference between steganographic security, where the covers
are not altered sufficiently for the changes to be detectable,
and cryptographic security which prevents the enemy from
understanding the payload. The same applies to the perfect
steganography result in [16], where the embedding distor-
tion is perfectly undetectable but the enemy can still read
the payload if it is not encrypted.

In practice, then, the sender and recipient would indeed
share a secret key, and use it to encrypt the payload prior to
embedding. The key need only be long enough to prevent
against exhaustion by the enemy. It is important that the
encryption produces high entropy output, which cannot be
distinguished from random noise, so that the enemy does
not recognise cyphertext when they see it. However, that is
beyond the scope of this paper.

Note that the converse to Theorem 3, that m/
√
n → ∞

implies asymptotic perfect detectability, also holds. It fol-
lows immediately from the classic square root law because
the detector need not use the additional information (zero
or one changes per group) to construct such a detector.

4. STEGANOGRAPHIC FISHER
INFORMATION

Algorithm 1 shares the asymptotic perfect secrecy prop-
erty of ideal uniformly-spread embedding, but we might still
believe that it is less secure: perhaps the KL divergences
tend to zero at different rates? This question is related to
Steganographic Fisher Information (SFI), which is studied
in [13] and [4]. Those papers refer to embedding in par-
ticular cover models, but the general concept applies more
widely. Given covers of size n and payloads of size m, when

DKL(P ‖ Q) ∼ I

2

m2

n
,

in the limit as m/
√
n → 0, then I is called the Stegano-

graphic Fisher Information for the embedding. Lower SFI
corresponds to lower KL divergence, less evidence, and hence
more secure embedding. The connection between Fisher In-
formation and asymptotic steganographic security was first
noted in [11], which also explains the reason for the appear-
ance of the squared ratio m2/n.

In this section, we show that Algorithm 1 is at least as
secure as ideal uniformly-spread embedding in the sense that
its SFI is no greater. The challenge is in the analysis of
ideal embedding. First, we consider how to model more
complex embedding schemes than the zero-or-one changes
of Algorithm 1.

Given k locations, we can number them 1 . . . k. We can
then model the effect of embedding as a probability dis-
tribution on Sk = P({1, . . . , k}) giving the likelihood of
changes at each location. For example, the embedding of
Algorithm 1 makes changes C with Pr(C=∅) = 1/2 and
Pr(C={i}) = 1/2k for each i. The distribution of stego ob-
jects, if unchanged locations have mass function p(x) and

changed locations have mass function q(x), is

Q(Xk
1 ) =

X

C′∈Sk

Pr(C = C′)
Y

c∈C

q(Xc)
Y

c/∈C

p(Xc)

=

„ k
Y

i=1

p(Xi)

«

E
C∼C

»

Y

c∈C

q(Xc)

p(Xc)

–

where C is the distribution of change locations. The log of
the second term is what we will need to deal with when com-
puting the KL divergence between cover and stego groups.
When more than one change is possible it is not a sum of in-
dependent components, so its analysis is more difficult than
in Theorem 3. We now prove a useful lemma about its vari-
ance.

Lemma 4. Suppose a group of pixels of size k, with em-
bedding changes located independently of cover content with
distribution C. Let P represent the probability distribution
for which the Xi are i.i.d. with mass function p(x). Then

Var
X∼P

"

E
C∼C

»

Y

c∈C

q(Xc)

p(Xc)

–

#

= EC1∼C
C2∼C

h

(µ2 +1)|C1∩C2|
i

−1.

Proof. For C′ ∈ Sk write R(C′) =
Q

c∈C′

q(Xc)
p(Xc)

. Then,

for any C′,

EX∼P

ˆ

R(C′)
˜

=
Y

c∈C′

E

»

q(Xc)

p(Xc)

–

= 1,

so

EX∼P

h

EC∼C

ˆ

R(C)
˜

i

= EC∼C

h

EX∼P

ˆ

R(C)
˜

i

= 1. (6)

Therefore

Var
X∼P

"

E
C∼C

»

Y

c∈C

q(Xc)

p(Xc)

–

#

= E
X∼P

»„

X

C′

Pr(C=C′)R(C)

«2 –

− 1

=
X

C1

X

C2

Pr(C=C1)Pr(C=C2)E
ˆ

R(C1)R(C2)
˜

− 1

= EC1∼C
C2∼C

h

EX∼P

ˆ

R(C1)R(C2)
˜

i

− 1.

And for any C1, C2 ∈ Sk,

E
ˆ

R(C1)R(C2)
˜

=
Y

c∈C1⊕C2

E

»

q(Xc)

p(Xc)

–

Y

c∈C1∩C2

E

»„

q(Xc)

p(Xc)

«2 –

=
Y

c∈C1∩C2

µ2 + 1

= (µ2 + 1)|C1∩C2|,

which gives the result.

Note that the embedding need not actually be a process
independent of the cover: if the distribution of the output of
the parity function P is uniform bits, and so is the payload,
then most source coding schemes will satisfy this property.
Next, some pure probability-theoretic results about the bi-
nomial and hypergeometric distributions:



Lemma 5. (i) If B has a binomial distribution with pa-
rameters n and p (n independent trials each with prob-
ability p of being a “success” counted in B) then, for
any a,

E[aB ] = (1 − p+ ap)n.

(ii) If H has a hypergeometric distribution with parameters
n, m, and m (m drawn, without replacement, from n
objects of which m are “successes” counted in H) and
m/

√
n→ 0 then, for any a > 1,

E
ˆ

aH˜− 1 ∼ (a− 1)
m2

n
.

Proof. (i) is just the probability generating function and
it follows immediately from the binomial theorem.

For (ii), consider the mass function of the hypergeometric
distribution:

Pr(H = h) =
`

m
h

´`

n−m
m−h

´

/
`

n
m

´

.

On one hand,

m
X

h=0

ah Pr(H =h) =

m
X

h=0

ah

 

m

h

!

(n−m)m−h mh

nm

=
m
X

h=0

ah

 

m

h

!
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(n− 2m+ h)h
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≤
„

1 − m

n

«m m
X
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m

h

!

„
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n− 2m

«h

(b)
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„

1 − m

n

«m„

1 +
am

n− 2m

«m

(c)
= 1 + (a− 1)

m2

n
+O

 

„

m2

n

«2
!

where (a) comes from (1), (b) is the binomial theorem, and
(c) is a binomial expansion. On the other,

m
X

h=0

ah Pr(H = h) ≥ Pr(H = 0) + aPr(H = 1)

=
(n−m)m

nm
+ am2 (n−m)m−1

nm

=
(n−m)m

nm

„

1 + am2 1

n− 2m+ 1

«

(a)
≥
„

1 − m

n−m

«m„

1 + a
m2

n

«

(b)
= 1 + (a− 1)

m2

n
+O

 

„

m2

n

«2
!

where (a) comes from (1) and (b) is a binomial expansion.
These inequalities combine, along with the assumption that
m/

√
n→ 0, to give the required result.

We can now put everything together and prove that Al-
gorithm 1 has (at least) the same asymptotic security of
ideal uniformly-spread embedding, despite the former need-
ing no embedding key at all while the latter needs one of
size O(m logm).

Theorem 4. The Steganographic Fisher Information for
ideal embedding, with paths chosen uniformly from all possi-
bilities, is at least as large as that provided by Algorithm 1,
even if the enemy knows the groups used by the latter.

Proof. Equation (5) tells us that the SFI of Algorithm 1
is µ2

4
. We now compute the SFI for uniformly-spread em-

bedding. We proceed as in Theorem 3, letting P denote
the joint distribution of a cover object (X1, . . . , Xn) and Q
denote the corresponding stego object. Write C for the dis-
tribution of cover changes. Recall that m out of n locations
are chosen to convey payload, uniformly from all possibil-
ities, and of those chosen each is changed, independently
of the others, with probability 1/2. We begin by following
Theorem 3:

D = DKL(P ‖ Q)

= −E

»

log

„Q(Xn
1 )

P(Xn
1 )

«–

= −E

"

log

 

E
C∼C

»

Q

c∈C

q(Xc)

p(Xc)

–

!#

We wish to apply Lemma 2 to

Yn = E
C∼C

»

Y

c∈C

q(Xc)

p(Xc)

–

.

(C1) is verified at (6), and (C2) follows because p and q are
not identical. To compute the variance we use Lemma 4. Let
H be the number of payload locations used by both of the
independent random embeddings C1 and C2: 3/4 of these
will involve changes under only one, or neither, embedding.
More precisely, conditional on H, B = |C1 ∩C2| is binomial
with parameters H and 1

4
. Therefore, conditioning on H, we

use Lemma 4 and parts (i) and (ii) of Lemma 5 in succession
to compute

VarX∼P [Yn] = EB

ˆ

(µ2 + 1)B
˜

− 1

= EH

h

EB

ˆ

(µ2 + 1)B |H
˜

i

− 1

= EH

h“

3
4

+ 1
4
(µ2 + 1)

”Hi

− 1

∼
“

3
4

+ 1
4
(µ2 + 1) − 1

”m2

n

=
µ2

4

m2

n

It remains to verify (C3): the best proof found by the author
is extremely long and we include a sketch in Appendix. A.
Then we can apply the first part of Lemma 2, telling us that
asymptotically,

D ≥ 1

2

µ2

4

m2

n
.

In fact, it is possible to show that the full conclusion of
Lemma 2 holds, and that the SFI for the ideal uniformly-
spread embedding is exactly the same as that of Algorithm 1,
but we cannot get there using the tools we have outlined in
this paper: condition (C4) does not hold here. In any case
the conclusion is unimportant compared with that already
proven: Algorithm 1 is at least as secure as ideal uniformly-
spread embedding, as well as having the advantage of need-
ing no embedding key at all.



The techniques of this and the previous section may pro-
vide a template for analysis of other embedding operations.
We will study one other in the following section.

5. SOURCE CODING
The technology of Sect. 4 can also be applied to more

efficient source coding. A common example of efficiency-
boosting coding is matrix embedding [8], which allows rela-
tively fewer embedding changes to be made, when embed-
ding below-maximal payloads. In previous square root laws,
such source coding has either been excluded, or the capac-
ity result stated in terms of embedding changes instead of
payload. It has often been stated, for example in [15], that
asymptotically maximally efficient source coding turns the
capacity law

√
n into

√
n log n, but that was to ignore any

dependencies introduced by the matrix embedding process
(or to assume that it was kept secret from the enemy, but
that presents the same key size problems as with the choice
of embedding locations). We now confirm that the structure
of a simple embedding scheme does not give the enemy any
additional advantage.

Like the scheme used in Sect. 3, the embedding method
is probably the simplest, first published in [17]. It uses syn-
dromes of binary Hamming codes: let Hp be the parity check
matrix for a [2p−1, 2p−1−p] binary Hamming code, namely
the binary p× 2p − 1 matrix whose columns are the binary
representations of numbers 1, . . . , 2p − 1.

Algorithm 2. Let the cover size be n and the payload size
be m; compute the largest integer p such that

‰

m

p

ı

≤ n

2p − 1
.

Temporarily we will write q = 2p − 1 as a convenient short-
hand. Divide the cover, (x1, . . . , xn), into ⌊n/q⌋ groups of q
pixels each, with any remainder pixels left unused. Form the
payload as a sequence of bits (b1, . . . , bm) into ⌈m/p⌉ groups
of p bits each, padding if necessary.

In each cover pixel group G = (x1, . . . , xq), form the vec-
tor of parities cq1 = (P (x1), . . . , P (xq)), and denote the cor-
responding group of payload bits ap

1. Compute the column
vector over binary arithmetic

yp
1 = ap

1 − Hpc
q
1;

if yp
1 is a zero vector, alter none of the pixels in the group;

if yp
1 is the vector which is the binary expansion of k then

alter the parity of pixel xk.
The recipient recovers the embedded payload by dividing

the stego object pixels into the same groups and converting
them to parity, then for each group of parities sq

1 computes

rp
1 = Hps

q
1.

Correctness of the algorithm follows because the columns
of H enumerate the binary numbers, so H(sq

1 − cq1) = yp
1 .

Then rp
1 = H(sq

1 − cq1) +Hcq1 = yp
1 +Hcq1 = ap

1. Algorithm 2
embeds p payload bits into each group of q = 2p − 1 cover
locations, altering at most one location per group. As is well
known, this is more efficient than the average of 1/2 changes
per embedded bit of simple replacement. We now show the
equivalent of a square root law for this situation.

Theorem 5. Suppose that the cover consists of n pixels
(X1, . . . , Xn) each drawn from a finite alphabet X , inde-
pendent and identically distributed each with mass function
p(x), and that Algorithm 2 is applied to embed payload of
size m. Suppose that altered pixels have mass function q(x).
Finally, suppose that p(x) 6= 0 and q(x) 6= 0 for all x ∈ X .

If

m√
n log n

→ 0 (7)

then, for sufficiently large n, any detector must have arbi-
trarily high error rate, even if they have knowledge of the
groups and the parity function.

Proof. We proceed as in Theorem 3, first considering a
single group of 2p − 1 pixels. There is probability of 2−p of
no change, or of changing any one of the group. Let P, Q,
and Ri be defined analogous to Theorem 3. By the same
argument, the KL divergence of one group is

D1 = DKL(P ‖ Q)

= −E

»

log

„Q(Xk
1 )

P(Xk
1 )

«–

= −E

»

log

„

2−p
“

1 +
P2p−1

j=1 Rj

”

«–

.

Write Yp = 2−p
`

1+
P

j Rj

´

; as in Theorem 3 we easily verify

E[Yp] = 1 and compute both

Var[Yp] =
2p − 1

4p
µ2,

giving (C2), and

E
ˆ

(Yp − 1)4
˜

=
2p − 1

16p
µ4 +

3(2p − 1)(2p − 2)

16p
µ2

2,

which satisfies the condition of Lemma 3 so that we can
deduce (C3). (C4) follows because X is finite and q nonzero,
so Rj = q(Xj)/p(Xj) is bounded below away from zero.
Therefore Lemma 2 gives

D1 ∼ 1

2
Var[Yp] ∼ µ2

2

2p − 1

4p
.

Then consider the KL divergence between entire cover and
stego objects: it is a sum arising from ⌈m/p⌉ independent
groups,

D =

‰

m

p

ı

D1 ∼
‰

m

p

ı

µ2

2

2p − 1

4p
∼ µ2

2

m

p 2p
.

It remains to show that D → 0 given (7); the analysis is a
bit fiddly.

Recall that, by definition of p,
‰

m

p+ 1

ı

(2p+1 − 1) > n. (8)

We first show that, for sufficiently large n,

p ≥ 1
4

log2 n. (9)

Suppose not, then there exists a sufficiently large n with
m+1 ≤ √

n log n (by (7)) and 2 log2 n ≤ n1/4 (by elementary
analysis), and we obtain the contradiction with (8),

˚

m
p+1

ˇ

(2p+1−1) < 2(m+1)2p < 2(m+1)n
1

4 ≤ 2n
3

4 log n ≤ n.



Then consider the cases m ≥ p and m < p separately:

m2

n(log2 n)2
(8)
>

m2

`

m
p+1

+ 1)(2p+1 − 1)(log2 n)2

>
m2p

(m+ p)2p+1(log2 n)2

(a)
≥ mp

4 2p(log2 n)2

(9)
≥ m

64 p 2p

with (a) holding as long as m ≥ p, or

m

p 2p
<

1

2p
≤ 1

n1/4

otherwise. Thus

D ∼ µ2

2

m

p 2p
<
µ2

2
max

„

64m2

n(log2 n)2
,

1

n1/4

«

→ 0.

The converse, analogous to Theorem 1(i), is also true. It
states that m/

√
n log n → ∞ leads to asymptotically per-

fect detection. This holds not only for the simple Hamming
code matrix embedding used here, but for any embedding
scheme. It uses the well-known rate distortion bound and is
not difficult, but it is outside the scope of this work.

It is interesting that the oldest matrix embedding idea still
attains the asymptotically best embedding “rate”

√
n log n.

One is then motivated to ask: what is the equivalent of SFI
in this case? The natural equivalent is to look for a constant
I satisfying

DKL(P ‖ Q) ∼ I

2

m2

n log n
,

where here P denotes the distribution of entire covers of
size n, and Q of stego objects with payload size m. However,
there is a difficulty. For the scheme described in Algorithm 2,
the quotient

DKL(P ‖ Q)
n log n

m2
(10)

does not converge! It has a limit inferior which is half its
limit superior, and oscillates more and more slowly between
these asymptotes. This is because Algorithm 2 relies on the
discrete Hamming code family, and for unfavourable frac-
tions m/n a lot of cover is used inefficiently. Speculatively,
we would suggest that Equivalent Steganographic Fisher In-
formation (ESFI), the equivalent of SFI for embedding when
source coding is used, should be defined by the limit infe-
rior of (10). This could be argued because combinations of
codes can usually be concatenated to achieve a favourable
average, but there is certainly more work required to justify
this properly.

6. DISCUSSION
Despite the (admittedly tongue-in-cheek) title, the results

in this paper do not contradict those in [14]. For the situ-
ation described there, in which each payload bit or word is
placed at a single embedding location, a linear key is indeed
necessary to avoid key exhaustion attacks by the enemy.
This is an essential weakness of embedding schemes which

require the recipient to know the exact embedding locations.
What we have shown here is that the issue can be circum-
vented entirely, by spreading the possible payload locations
more widely in larger covers: no key is needed, yet asymp-
totically perfect steganographic security is achieved. In a
sense, this is a sort of “public key” steganography, which is
asymptotically perfectly secure1.

We also followed a similar line for matrix embedding, ver-
ifying that the capacity of imperfect steganography is of or-
der

√
n log n2. There are some complications with the simple

Hamming code we used, because its best efficiencies are only
gained for rare combinations of cover and payload size.

Algorithms 1 and 2 have one thing in common: they are
the simplest examples of their type, respectively a trivial
wet paper code and the simplest nontrivial matrix embed-
ding. It was necessary to consider simple examples because,
when proving asymptotic security, it is important to take
account of the structure caused by the embedding proce-
dure which introduces dependencies into the embedding. In
these cases the structure is the fact that no pixel group can
ever have more than one change. It required some quite in-
tricate analysis to bound the KL divergence, and it would
have been even more difficult to examine more complicated
wet paper codes or matrix embedding schemes.

In fact, there is arguably no need to examine more general
wet paper codes: Theorem 4 shows not only that the em-
bedding in Algorithm 1 achieves the asymptotically optimal
embedding rate of

√
n, but also that its constant multiple

is equal to that of “ideal” uniform embedding. Wet paper
codes certainly have useful applications when the wet pixels
cannot be altered, but they cannot give any useful advan-
tage to the “public key” problem we have addressed in this
work.

On the other hand, there may well be value in considering
better matrix embedding schemes than Algorithm 2, as it is
known that greater embedding efficiency (bits embedded per
location changed) is possible. We performed some prelim-
inary work in this direction, with surprising initial results.
One of the leading source coding schemes is given by the
construction in [18], dubbed ZZW after its authors, which
converts one matrix embedding scheme into another. The
construction is (in a sense described in [6]) optimal when it
is applied to the trivial embedding of one bit per location.
It involves, like Algorithm 2, breaking the cover image into
groups and using a Hamming code within each group; it also
involves a wet paper code so that the changes in each block
can signal further information (see [18] for the details). The
second stage makes its analysis difficult, because the differ-
ent blocks are no longer independent.

However, if we pretend that the different blocks are in-
deed independent we can apply a similar analysis to that
in Theorem 5. Like Algorithm 2, it achieves a

√
n log n

capacity rate. What is interesting is that its Equivalent
Steganographic Fisher Information, if we use the specula-
tive definition 2 lim inf DKL(P ‖ Q)n log n/m2, appears to

1We proved that capacity below
√
n is asymptotically per-

fectly secure; that capacity above
√
n is asymptotically per-

fectly detectable comes for free from the classical square root
law.
2We proved that capacity below

√
n log n is asymptotically

perfectly secure; it indeed true that above this rate leads to
asymptotic perfect detection, but that lies beyond the scope
of this work.



be the same as for Algorithm 2. Note that the ZZW scheme
may be less secure than this, because we have ignored some
of the correlation structure the embedding causes, but it
could not be any more secure when that is taken into ac-
count. Therefore, it seems, the plain Hamming code is at
least as secure as this ZZW construction, in the same sense
that Algorithm 1 is at least as secure as ideal uniform em-
bedding. This would be a curious result, because the ZZW
construction is more efficient in terms of bits conveyed per
change. Perhaps this can be reconciled by the comment
in [6], where it is noted that both Hamming and ZZW fam-
ilies “parallel” the rate distortion bound, when embedding
efficiency against embedding rate is charted in a particular
way. We might conjecture that all schemes which have the
same property are equally secure as regards their asymp-
totic KL divergence ESFI. The advantage of ZZW lies in its
application to small, finite, cases.

There is some natural further work arising. The results
should be extended to more practical cover models, particu-
larly the Markov model considered in [5]; however, the anal-
ysis is likely to be very difficult and new abstractions will
be required. It may be reassuring, to those who have to use
them, to extend the analysis of Algorithm 1 to random wet
paper codes: it seems likely that the method for solving (4)
will have to be carefully chosen, perhaps even to the point of
finding all solutions and choosing uniformly between them,
otherwise attacks such as in [2] might be applied.

Finally, we have sketched a possible extension of the con-
cept of Steganographic Fisher Information, which is closely
related to the maximum possible root rate r when m ∼ r

√
n

[4, 13], to embedding which allows for source coding. Such
Equivalent Steganographic Fisher Information would be re-
lated to the maximum possible r when m ∼ r

√
n log n, but

the discrete nature of codes creates a discontinuity making
even the definition of ESFI rather difficult. Perhaps it would
be best to take the approach of [13] (amongst many other
publications on theoretical capacity) and keep the number
of permissible changes entirely separate from the choice of
embedding code.
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[2] R. Böhme. Wet paper codes for public key
steganography? Unpublished rump session talk at 7th
Information Hiding Workshop, Barcelona, Spain, 2005.
Available at http://www.inf.tu-dresden.de/∼rb21/

publications/Boehme2005_IHW_RumpSession.pdf.

[3] W. Feller. An Introduction to Probability Theory and
Its Applications, Volume II. Wiley, 1966.

[4] T. Filler and J. Fridrich. Fisher Information
determines capacity of ǫ-secure steganography. In
Proc. 11th Information Hiding Workshop, volume
5806 of Springer LNCS, pages 31–47, 2009.

[5] T. Filler, A. Ker, and J. Fridrich. The square root law
of steganographic capacity for Markov covers. In

Media Forensics and Security XI, volume 7254 of
Proc. SPIE, pages 0801–0811, 2009.

[6] J. Fridrich. Asymptotic behavior of the ZZW
embedding construction. IEEE Trans. Information
Forensics and Security, 4(1):151–153, 2009.

[7] J. Fridrich, M. Goljan, P. Lisoněk, and D. Soukal.
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APPENDIX

A. (C3) FOR UNIFORM EMBEDDING
We have

Yn = E
C∼C

»

Y

c∈C

q(Xc)

p(Xc)

–

and wish to apply Lemma 3 to deduce (C3). Hence we need
to show that

E
ˆ

(Yn − 1)4
˜

Var[Yn]
→ 0.

Only a sketch proof is included.



First, use the expansion

E
ˆ

(Yn − 1)4
˜

= E[Y 4
n − 1] − 4E[Y 3

n − 1] + 6E[Y 2
n − 1]. (11)

Then Lemma 4 can be extended to cover the higher powers
of Yn, transforming (11) into

EC1∼C
C2∼C
C3∼C
C4∼C

h

κ|4 of (C1...C4)|λ|3 of (C1...C4)|(µ2 + 1)|2 of (C1...C4)|
i

−4 EC1∼C
C2∼C
C3∼C

h

λ|3 of (C1,C2,C3)|(µ2 + 1)|2 of (C1,C2,C3)|
i

+6 EC1∼C
C2∼C

h

(µ2 + 1)|2 of (C1,C2)|
i

(12)

where “i of (C1, . . . , Cn)” indicates the set whose elements
are those in precisely i of C1, . . . , Cn; κ and λ are positive
constants whose value need not concern us here.

We must then consider overlaps between three or four in-
dependent sets of embedding locations, under ideal uniform
embedding. Lemma 5(b) tells us that for H, a hypergeo-
metric random variable which represents two or more coin-
cidences between two independent sets of embedding loca-
tions, the cases H ≥ 2 contribute only negligibly to E[aH ].
In the same way it can be shown that, if J represents the
number of triple or quadruple coincidences in three or four
independent sets of embedding changes, J ≥ 1 is negligi-
ble and hence the terms involving powers of κ and λ are
negligibly different from 1.

Thus, writing ǫ1 and ǫ2 rather loosely for negligible terms,
(12) becomes

(1 + ǫ1) EC1∼C
C2∼C
C3∼C
C4∼C

h

(µ2 + 1)|2 of (C1,...,C4)|
i

−4(1 + ǫ2) EC1∼C
C2∼C
C3∼C

h

(µ2 + 1)|2 of (C1,C2,C3)|
i

+6 EC1∼C
C2∼C

h

(µ2 + 1)|2 of (C1,C2)|
i

(13)

Now we can use the symmetry of C1, . . . , C4 to reduce (13)
to

`

(1 + ǫ1).6 − 4(1 + ǫ2).3 + 6
´

EC1∼C
C2∼C

h

(µ2 + 1)|C1∩C2|
i

= (6ǫ1 − 12ǫ2)Var[Yn].

Hence

E
ˆ

(Yn − 1)4
˜

Var[Yn]

is negligible as n→ ∞.


