
Proximity Coherence for Chip Multiprocessors

Nick Barrow-Williams
Computer Laboratory

University of Cambridge
Cambridge CB3 0FD, UK
npb28@cl.cam.ac.uk

Christian Fensch
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK
c.fensch@ed.ac.uk

Simon Moore
Computer Laboratory

University of Cambridge
Cambridge CB3 0FD, UK
swm11@cl.cam.ac.uk

ABSTRACT
Many-core architectures provide an efficient way of harnessing the
increasing numbers of transistors available in modern fabrication
processes. While they are similar to multi-node systems, they ex-
hibit different communication latency and storage characteristics,
providing new design opportunities that were previously not feasi-
ble. Traditional cache coherence protocols, although often used in
many-core designs, have been developed in the context of multi-
node systems. As such, they seldom take advantage of the new
possibilities that many-core architectures offer.

We propose Proximity Coherence, a scheme in which L1 load
misses are optimistically forwarded to nearby caches via new dedi-
cated links rather than always being indirected via a directory struc-
ture. Such an optimization is made possible by the comparable cost
of local cache accesses with the use of on-chip network resources.
Coherency is maintained using lightweight graph structures em-
bedded in the L1 caches. We compare our Proximity Coherence
protocol to an existing directory-based MESI protocol using full-
system simulations of a 32 core system. Our extension lowers the
latency of L1 cache load misses by up to 32% while reducing the
bytes transferred on the global on-chip interconnect by up to 19%
for a range of parallel benchmarks. Employing Proximity Coher-
ence provides execution time improvements of up to 13%, reduces
cache hierarchy energy consumption by up to 30% and delivers a
more efficient solution to the challenge of coherence in chip multi-
processors.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—cache memories;
C.1.2 [Computer Systems Organization]: Multiprocessors—in-
terconnection architectures

General Terms
Design, Performance

Keywords
Proximity Coherence, CMP, cache design, network-on-chip

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

1. INTRODUCTION
To effectively utilize the increasing number of transistors avail-

able in modern fabrication technologies, the semiconductor indus-
try is moving to many-core architectures [2, 20, 23]. Such ar-
chitectures provide better scalability than monolithic single core
superscalar architectures. While a many-core processor behaves
much like a multi-node system implemented on a single chip, im-
portant differences exist: storage available on-chip is much more
restricted, while communication latencies are considerably lower.
Furthermore, the close proximity of processing and storage ele-
ments allows for optimizations that were previously unattractive
in a multi-node system. Many-core processors are unconstrained
by the packaging and interconnect latencies of larger multi-node
machines, suggesting many possible architectural advances.

This paper investigates Proximity Coherence, a protocol in which
the private caches of neighboring cores are probed upon a cache
miss. Instead of immediately sending a message to the directory, a
core first asks neighboring caches for a copy of the required line.
The core sends a request to the directory only if all neighboring
caches reply that they do not have a copy of the data. Implement-
ing this scheme in a multi-node system would be impractical, as the
latencies to snoop another cache would be of the same magnitude
as going immediately to the directory. Moreover, in the case that
no neighboring cache can provide the data, the request must still be
sent to the directory, drastically increasing the service time.

However, in a many-core system, the communication costs are
different. Messages can be carried between neighboring cores us-
ing dedicated point-to-point links, minimizing both latency and en-
ergy costs. The overhead of probing a neighboring cache then be-
comes a matter of a few cycles. This delay is insignificant com-
pared to the service time of a request that is routed to and serviced
by a directory.

In this paper, we present a novel extension to a standard MESI
cache protocol [18] that implements the snooping mechanism de-
scribed and provides lower cache miss latencies. We introduce the
concept of a proximity cache hit, where data is provided by a neigh-
boring cache without involving the directory. Additionally, we pro-
pose the use of lightweight graph structure embedded into the pri-
vate cache lines to maintain coherence despite the lack of global
knowledge at the directory. All Proximity Coherence messages are
carried to neighboring cores on new, dedicated, point-to-point links
– an implementation made possible by the close proximity of pro-
cessing elements and the abundance of wires available in many-
core architectures.

Our results show that we are able to reduce the latency of load
misses by up to 33%, and 17% on average, resulting in overall ex-
ecution time improvements of up to 13% for a significant subset of
benchmarks. In addition to providing performance benefits, Prox-

123

CPUCPU

L1
D

L1
I

L2$ Bank
NIC

Ta
gs

CPU

L1
D

L1
I

L2€ Bank
NIC

Ta
gs

CPU

L1
D

L1
I

L2$ Bank
NIC

Ta
gs

CPU

L1
D

L1
I

L2$ Bank
NIC

Ta
gs

CPU

L1
D

L1
I

L2¥ Bank
NIC

Ta
gs

L1
D

L2£ Bank
NIC

Ta
gs

L1
I

DRAM Controller

CPU

L1
D

L2$ Bank
NIC

Ta
gs

L1
I CPU

L1
D

L2$ Bank
NIC

Ta
gs

L1
I

Figure 1: Top left corner of a tiled many-core processor. Gray
connections show the global on-chip interconnect. Black con-
nections show the proximity links that link the L1D caches.

0

20

40

60

80

100

S
P

L
A

S
H

−
2

b
a
rn

e
s

ch
o
le

sk
y ff
t

fm
m lu

o
ce

a
n

ra
d
io

si
ty

ra
d
ix

ra
yt

ra
ce

vo
lr
e
n
d

w
a
te

r−
n
sq

w
a
te

r−
sp

a
PA

R
S

E
C

bl
a
ck

sc
h
o
le

s
b
o
d
yt

ra
ck

ca
n
n
e
a
l

d
e
d
u
p

fa
ce

si
m

fe
rr

e
t

flu
id

a
n
im

a
te

fr
e
q
m

in
e

st
re

a
m

cl
u
st

r

sw
a
p
tio

n
s

vi
p
s

x2
6
4

p
ro

x
im

it
y
 h

it
ra

te
 i
n

 % Store on M

Load on M

Load on S

Figure 2: Results of the oracle study to investigate the limits
of Proximity Coherence in a 32 core system. Whenever an L1
cache miss occurs, we check all L1s for data that could be for-
warded.

imity Coherence also reduces network-on-chip traffic by 19% and
cache hierarchy energy consumption by up to 30%.

2. INITIAL STUDY AND MOTIVATION
Proximity Coherence exploits the principle that data may be avail-

able in other private caches in the system upon a miss in a proces-
sor’s local private cache. We have carried out experiments using the
Splash-2 [24] and Parsec [5] benchmark suites to gauge the benefits
of Proximity Coherence.

In our studies, we use a tiled many-core architecture. Figure 1
shows a corner of the processor, composed of 32 processing tiles
arranged on an 8x4 grid. Each tile consists of a processing core, a
private L1 cache, a single bank of the interleaved, shared L2 cache,
and a network interface that connects the tile to the global on-chip
network. Four memory controllers are placed in the corners of the
chip. The L2 cache contains a directory that uses a MESI protocol
to maintain coherence across all private L1 caches in the system.

2.1 Proximity Hits
When a memory access misses in the cache of a traditional chip-

multiprocessor, the request is forwarded to a directory structure. In
some cases, the data is already present in a different private cache
in the system. The baseline MESI protocol deals with this scenario
in one of two ways, depending on whether a private cache has ex-
clusive ownership (states E or M) of the line. In the first case, pro-

viding that no private cache has exclusive ownership for that line,
the data is returned from the L2 to the original requester. In the
second case, the directory sends a request to the exclusive cache,
instructing it to send the data to the requesting cache. In both sit-
uations, it is possible to bypass the indirection to the directory and
ask private caches already containing the line to provide the data
immediately.

We propose a scheme in which cache lines are requested directly
from other private caches without contacting the directory, avoiding
the aforementioned indirection. We refer to this process as snoop-
ing another private cache. A situation where a processor misses in
its local private cache but receives at least one copy of the requested
data directly from another private cache is declared a proximity hit.
There are three possible ways in which this can occur:

Load on S The requester performs a load operation and snoops a
cache that has the data available in state Shared. The data
can be forwarded to the requester.

Load on M The requester performs a load operation and snoops a
cache that has the data available in state Exclusive or Mo-
dified. The data can be forwarded to the requester. How-
ever, in order to maintain coherency, the snooped cache can
no longer write to its cache line without invalidating the re-
quester’s copy first.

Store on M The requester performs a store operation and snoops a
cache that has the data available in state Exclusive or Modi-
fied. The data and write permissions can be forwarded to the
requester. However, the snooped cache can no longer read or
write its cache line without getting an up-to-date copy back
first.

To evaluate the potential of this technique, we record memory
access traces of all programs in the Splash-2 [24] and Parsec [5]
benchmark suite using the Virtutech Simics [15] full-system simu-
lator. This study focuses on memory accesses caused by the bench-
mark program. Hence, we remove all memory accesses caused by
the OS or other processes. We pass the traces through a functional
simulator of a MESI cache coherence protocol.

Whenever a processor encounters a cache miss the simulator
probes all other L1 caches to find a copy suitable for forwarding.
Figure 2 shows that all programs exhibit at least some degree of
sharing that can be exploited by Proximity Coherence, with many
showing considerable potential. For example, barnes, bodytrack,
volrend, water-nsquared and water-spatial all exhibit proximity hit
rates between 65% and 87%. Across all benchmarks, Load on S
and Load on M events cover over 95% of all proximity hits. Store
on M events occur infrequently, as shared data is almost always
read before it is overwritten. Radix and swaptions are the only ex-
ceptions, exhibiting a significant fraction of Store on M events due
to false sharing. In light of these results, our implementation of
Proximity Coherence supports only Load on S and Load on M for-
warding. However, it is necessary to check every other cache in the
system after each local cache miss to achieve such hit rates.

2.2 Snoop Width
Due to constraints on wiring resources and limited cache ports,

any implementation of Proximity Coherence must select a sub-set
of processors in which to snoop for data. We refer to the size of this
subset as the snoop width.

To investigate the effect of limiting the snoop width, we perform
a two phase study. As expected, reducing the snoop width will
always reduce the proximity hit rate. For this reason, we only in-
clude benchmarks that exhibit proximity hit rates of at least 20%

124

0

20

40

60

80

100

SPLASH−2

PARSEC
barnes

3
1

1
6 8 4 2 1

cholesky

3
1

1
6 8 4 2 1

fm
m

3
1

1
6 8 4 2 1

lu

3
1

1
6 8 4 2 1

radix

3
1

1
6 8 4 2 1

raytra
ce

3
1

1
6 8 4 2 1

vo
lre

nd

3
1

1
6 8 4 2 1

water−nsq

3
1

1
6 8 4 2 1

water−spa

3
1

1
6 8 4 2 1

bodytra
ck

3
1

1
6 8 4 2 1

flu
idanim

ate

3
1

1
6 8 4 2 1

swaptio
ns

3
1

1
6 8 4 2 1

p
ro

x
im

it
y
 h

it
 r

a
te

 i
n
 %

snoop
width

Store on M

Load on M

Load on S

Figure 3: Impact on the proximity hit rate, when the number of cores snooped is reduced. In this study, we limit snooping to the n
best neighbors – a good neighbor is a core that is more likely to be able to forward data to the requester.

in the previous oracle study. Using results from the experiments
in which all caches are snooped, we generate ordered lists of “pre-
ferred neighbors” for each core in the system; a preferred neigh-
bor is a cache that is more likely to return a proximity hit when
snooped. We use these lists in the second phase of the study to de-
termine proximity hit rates when snooping only the first 1, 2, 4, 8,
16 or 31 caches, as shown in figure 3.

Due to the tiled layout of our baseline architecture (see figure 1),
we are most interested in the proximity hit rate when snooping only
four neighboring caches. Our results show that, even with this re-
duced snoop width, it is possible to capture the majority of all prox-
imity hits. In some cases, snooping just four caches captures up to
90% of all possible hits. For the selection of benchmarks shown in
figure 3, the average proximity hit rate is 37%. This suggests that
the parallel benchmarks examined have stable sets in which data is
shared, allowing for good proximity hit performance through the
use of correct thread mappings and network topologies.

2.3 Concurrent Proximity Requests
The forwarding of cache misses to adjacent processors increases

the strain placed on the read ports of private caches. Although
the probability of generating a proximity message requiring read
port access is low, a single cache could be expected to serve up to
the four concurrent requests from adjacent tiles. Our trace analy-
sis shows that the likelihood of this is extremely low – averaged
across all benchmarks, 99.39% of proximity messages encountered
no contention from others. 0.6% of messages encountered con-
tention from a single concurrent message, with three-way and four-
way contention making up the final 0.01%. Such a low probability
of contention permits the reuse of existing cache read ports and
a simple arbitration mechanism with no fear of degrading perfor-
mance through the stalling of proximity messages.

2.4 Energy Considerations
Research in the network-on-chip field [22] has shown that the en-

ergy cost of network routers will inevitably comprise a significant
portion of total system demand. As a consequence, schemes that re-
duce network hop traversals are becoming increasingly attractive.
Additionally, advanced on-chip router energy consumption is now
comparable to an L1 cache access [4, 14, 21]. Importantly, this
validates the use of the additional L1 cache accesses generated by
Proximity Coherence to reduce network utilization. If a sufficient

number of proximity hits are delivered, we can reduce memory ac-
cess latency and lower energy consumption.

2.5 Summary
Increasing communication costs and the demand for high per-

formance data sharing motivates the extension of existing cache
coherency protocols to exploit the physical locality of shared data.
The results generated from our functional cache coherence simula-
tor show that a significant proportion (11 of 24) of benchmarks can
benefit from Proximity Coherence extensions.

3. PROXIMITY COHERENCE
Proximity Coherence is built around the concept that a core snoops

its four neighboring caches before sending a request to the direc-
tory. We refer to this request as a proximity-request. If a snooped
cache can provide the data, it performs a cache-to-cache transfer to
the requester and marks it as forwarded. If any neighboring caches
supply the requested data, then we classify the original cache miss
as a proximity-hit. These cache-to-cache transfers use novel point-
to-point links between neighboring cores, rather than the packet
switched, global on-chip network. Due to the critical nature of
proximity requests from adjacent nodes, we prioritize them when
arbitrating for cache read ports.

Forwarding data in this way presents design challenges, as the
directory is not aware of the additional sharers. In order to maintain
coherence, modifying the cache coherency protocol is necessary to
provide the following mechanisms:

• When an L1 cache replaces a cache line that has been for-
warded, it sends an L1_UPDATE_S (Update Sharer) mes-
sage to the directory. The message contains a list of the
cores to which the replacing cache has forwarded the data.
To avoid incoherent data being held in the system, it is nec-
essary for the directory to acknowledge this message. A sim-
ilar mechanism is already used in the baseline MESI protocol
when an L1 cache evicts a dirty cache line.

Due to silent evictions of shared data, it is possible that the
L1_UPDATE_S message will contain cores that no longer
hold a copy of the data. This is not an issue, as the MESI
baseline protocol dictates that invalidates received for non-
present data are immediately acknowledged.

125

L1D L1D

ld 0xabc P P
A B

Tag State Fwd
0xab I 0xab S

Tag State Fwd

(a) PA performs a load operation, which
misses in its L1 cache. PB has a copy of
this data in its local cache with read permis-
sions.

L1D L1D

ld 0xabc P P
A B

Tag State Fwd
0xab I_SP 0xab S

Tag State Fwd
ProxReq

(b) Instead of contacting the directory, PA
sends PROXREQ messages to neighboring
cores. These messages are sent using direct
point-to-point links.

L1D L1D

ld 0xabc P P
A B

Tag State Fwd
0xab S 0xab S

Tag State Fwd
ProxHit

(c) PB can supply the data to PA and replies
with a PROXHIT message. In addition, it
records that it has forwarded the data. PA
obtains the data through a proximity hit.

Figure 4: Example of a proximity hit.

PB PC
Dir X

1 1

22
PA

3

1

1

2

2

Figure 5: Example of a proximity miss. PA misses in its local
cache and sends out 4 PROXREQ messages to its neighboring
cores (step Ê). Since none of these tiles can provide the data,
they all respond with a PROXMISS message each. We call this
situation a proximity miss (step Ë). PA now sends a GETS mes-
sage to the directory in order to request the data (step Ì).

• When an L1 cache receives an INVALIDATE message it is
necessary to propagate this message to any cores to which it
has forwarded the cache line. After the cache has received all
acknowledgements, it can acknowledge the original INVALI-
DATE message. As the propagated messages (PROXINV) can
only be sent to neighboring cores, they are sent using the
same direct links as proximity-requests.

• If a core requires exclusive access to a cache line that it has
already forwarded, all forwarded copies must be invalidated
and an UPGRADE message sent to the directory. These events
can be performed in parallel, speeding up the invalidation
process.

3.1 An Example of Proximity Coherence
Figure 4 shows the detailed behavior of the Proximity Coherence

protocol when a load operation misses in an L1 cache. PA issues
a load to address 0xabc, but the corresponding line 0xab is not
valid in its cache. PB has a valid copy of this line in state Shared
(figure 4a). Instead of sending a request to the directory, PA sends
out four Prox Requests to its neighboring cores and moves the line
into a transient state (figure 4b), which indicates that the cache is
awaiting replies from all proximity requests. Since PB has a valid
copy of line 0xab, it replies by sending a PROXHIT message con-
taining the data and marks the cache line as forwarded to its left
neighboring core (figure 4c). The requesting core will write the
data that arrives first to its private cache. As there is no acknowl-
edgement of a proximity hit from the requester, every core that pro-
vided the data will mark its cache line as forwarded. Hence, for a
single address, several cores can point to a single requester.

Figure 5 shows the actions taken if a load operation does not hit
in any of the neighboring caches. As before, PA sends out proximity
requests to its neighboring caches (step Ê). As none of the caches
contains a copy of the data that can be forwarded to PA, they all re-
spond with a PROXMISS message (step Ë). After PA has collected

all replies, it sends a GETS message to the directory responsible for
this cache block (step Ì).

3.2 Invalidations
As figure 4 shows, any cache that forwards data to another core

records this action in the forwarded vector for that line. This pro-
cess can occur several times, forming an acyclic forwarding graph,
as figure 6a illustrates. As a cache must hold a line to be the source
of a forwarding pointer, it is impossible to form a cycle in the graph.
Cores P10 and P14 originally have received their data from the di-
rectory (located for this particular address in core P27). Core P10
has forwarded the data to cores P2, P9 and P11, while core P14 has
forwarded it to core P15. These cores in turn have forwarded the
data to other cores, as indicated by the forwarded arrows. When
core P1 has requested the data, both cores P2 and P9 return a copy.
Therefore, both cores hold a record that they forwarded the data to
core P1. As the directory has sent the data only to cores P10 and
P14, it holds only a pointer to these cores. For this reason, on an
invalidation, it is necessary to follow the forwarded links in order
to reach and invalidate all copies of the data. The following para-
graphs present examples of the two types of invalidations found in
Proximity Coherence:

External Invalidations occur when a core, which is not part of
the forwarding graph, needs to modify shared data. In figure 6b,
core P20 requires exclusive access to a cache line. As in a normal
MESI directory protocol, core P20 sends a GETX message to the
directory (step Ê). The directory responds by sending invalidates
to the two sharers it has knowledge of (cores P10 and P14) and
in parallel notifies core P20 that it should wait for two acknowl-
edgements (step Ë). The protocol now diverges from the standard
MESI behavior. Before cores P10 and P14 can reply with an ac-
knowledgement, they have to invalidate the cores to which they
have forwarded the data. Figure 6c shows how core P10 invalidates
these cores (core P14 acts in a similar way, but for simplicity we
focus on core P10). Core P10 sends PROXINV messages to cores
P2, P9 and P11 (step Ê). Since these cores also forwarded the data,
they too must send PROXINV messages (step Ë). A special case
is core P1, since it received data from both core P2 and P9. As
such, P1 will possibly receive two PROXINV messages before it re-
ceives confirmation from core P0, to which it forwarded the data.
In order to remember the cores to which PROXINV messages were
sent, the function of the forwarding vector is changed; instead of
keeping track of to whom the cache line has been forwarded, it
keeps now track which cores send a PROXINV message. When the
end of the forwarding chain is reached, the final core replies with
a PROXACK message (see core P0 in step Í). This in turn causes
the previous core in the chain to generate a PROXACK message.
Once all PROXACK messages have been collected by core P10, it

126

10 2 3 4 5 6 7

128 9 11 13 14 15

16 17 18 19 21 22 23

24 25 26 27 28 29 30 31

Forwarding Pointer Directory Pointer

10

20

(a) Initial situation: the directory is aware of
2 sharers, P10 and P14. P10 is the root of
the left half of the forwarding graph, while
P14 is the root of the right half. Tile P20 and
P11 are emphasized since they will start the
process that will lead to the invalidation of
all sharers.

27

7

9 11 14 15

Forwarding Ptr Global Net Control Msg

INV

GETX

ACK:2

INV

0 1 2

12

2

1
22

10

20

(b) P20 sends a GETX message to the direc-
tory in order to gain exclusive ownership of
the cache line. The directory responds by
sending INV messages to the known sharer
and an ACK:2 message to P20. All these
messages are sent over the global on-chip
network.

9 11
Prox Invalidate

Prox Ack

INVACK

0 1 2

12

15 62

1

4

2

3

7

1

6

3

4

2

5

10

(c) Invalidation of the left part of the for-
warding graph. The PROXINV and PROX-
ACK messages are sent over the direct links
between neighboring cores.

7

9 11 14 15

0 1 2

12

27

Forwarding Pointer

Prox Invalidate

Global Net

UPGRADE

Control Msg

10

(d) P11, which is part of the sharer graph,
sends an UPGRADE message to the direc-
tory in order to gain exclusive ownership of
the cache line. Since it also has forwarded
the data to its right neighboring core, it also
sends a PROXINV message to this core –
proactively invalidating it.

Forwarding Pointer

7

9 14 1511

INV

ACK:2

INV

12

27

0 1 2

Global Net
Control Msg

10

(e) By the time the directory processes the
UPGRADE request, core P12 has already in-
validated its copy of the data and is shown in
gray. The directory responds by sending INV
messages to the known sharer and ACK:2
message to P11.

7

9 14 1511

0 1 2

12

Prox Invalidate

Forwarding Pointer
27

10

(f) After core P10 and P14 have received
the INV messages, they send PROXINV mes-
sages to the cores they have forwarded the
data to. Since P11 is the originator of the re-
quest, it ignores the PROXINV by acknowl-
edging it without invalidating its copy of the
data.

Figure 6: Example of external (b – c) and internal (d – f) invalidations. For this cache line, the directory is located in core P27,
indicated by solid gray shading.

sends an ACK message over the global on-chip network to the new
exclusive owner of the cache line (step Ð). The remaining actions
are identical to those in a standard MESI protocol.

Internal Invalidations occur when a core, which is part of the
sharer graph, needs to modify shared data, such as core P11 in fig-
ure 6d. Core P11 sends a UPGRADE message to the directory to
request exclusive access to the cache line. Since P11 also has for-
warded the cache line to other cores, it sends PROXINV messages to
these cores. For simplicity, we show a situation in which the PROX-
INV messages are acknowledged before the GETX message is pro-
cessed by the directory. However, this is not a requirement of the
protocol; the events are allowed occur in any order. The directory
responds in the standard manner sending out two INV messages and
one ACK message that tells core P11 how many sharers there were
(see figure 6e). Once core P10 and P14 have received the invalidate
messages, they send out PROXINV messages to cores P2, P9, P11
and P15. As such, P11 will receive an invalidate message, even
though it originated the request. To prevent P11 from invalidating
itself, the PROXINV messages must contain a field identifying the
original requester. Therefore, if a core receives a PROXINV mes-
sage for which it is the originator, it can ignore the message and
reply with a PROXACK.

3.3 L1 Cache Replacements
At any time during the life of a forwarding graph, a participating

cache can evict its data. If the protocol were to behave as a standard
MESI protocol and perform a silent eviction, the graph would be

irreparably broken. To prevent this, we modify the mechanics of an
L1 replacement:

• If the cache has not forwarded the data to any other core,
it behaves as in the standard MESI protocol and simply re-
places the cache line, without informing the directory. If it
later receives a PROXINV message for the replaced address
from any neighboring cores or an INV message from the di-
rectory, it acknowledges the message.

• If the core has forwarded the data, then it must inform the
directory of the other sharers before it can replace the cache
line. This action is similar to an L1 cache trying to replace
a cache line that contains dirty data: before the cache line
can be replaced, it has to be written back to the L2 and the
directory has to be informed. We use the same simple mech-
anism. This mechanism also deals with cases when, during
an L1 replacement, another L1 tries to gain exclusive access
to the data and wins the arbitration at the directory.

Figure 7 illustrates such a scenario. The starting situation is
shown in figure 7a. The directory in core P26 is only aware that
core P9 has a copy of the data, while core P11 wants to perform
a replacement, having forwarded the data to cores P3 and P12.
P11 sends an UPDATE_S (Update Sharer) message to the direc-
tory (step Ê). Upon receiving this message, the directory adds the
sharers contained to its sharer vector and sends an ACK_S message
back to core P11 (step Ë). To prevent protocol races against exter-
nal invalidations, P11 must retain the sharer information for the

127

10 2 3 4 5 6 7

128 9 13 14 15

16 17 18 19 21 22 23

24 25 26 27 28 29 30 31

Directory PointerForwarding Pointer

10 11

20

(a) Initial situation: the directory is aware of
1 sharer, P9. P9 is the root of the forwarding
graph. Core P11 has forwarded the cache line
to core P3 and P12. It now wants to replace
the cache line.

10 3

128 9

26
L1_UPDATE_S

ACK_S

Global Net Control Msg

Forwarding Pointer

10 11

2

1

(b) In order not to break the forwarding
graph, it sends an L1_UPDATE_S message
to the directory. The directory adds the
sharer contained in this message to its sharer
vector and acknowledge the receipt with an
ACK_S message.

10 3

128 9

26

Forwarding Pointer Directory Pointer

10 11

(c) Final situation: core P11 has invalidated
its copy of the cache line, shown in gray.
The directory is now aware that core P3 and
P12 have a copy of the data and holds a di-
rect pointer to them.

Figure 7: Example of an L1 replacement in case of forwarded data. For this cache line, the directory is located in core P26, indicated
by solid gray shading.

cache line until the ACK_S message is received. Figure 7c shows
the situation after the replacement: the directory is now aware that
cores P3, P9 and P12 have a copy of that cache line. Core P10
maintains a forwarded pointer set towards core P11, but this has
minimal impact; P11 simply receives a PROXINV message for the
replaced address.

3.4 Forwarding from Modified and Exclusive
In addition to supporting Load on S forwarding described so far,

Proximity Coherence also allows data to be forwarded from a line
that is held with exclusive permissions. Forwarding is supported
from the Modified and Exclusive states of the baseline MESI pro-
tocol.

When a proximity-request is received for a cache line held in the
M or E states, the data is returned as a proximity-hit and the cache
line is moved immediately to a new Forwarded state. This F state
indicates to the forwarding cache that the line’s permissions have
been downgraded, without the directory’s knowledge, to read-only
access. A processor holding a line in the F state is responsible for
any copies it forwarded on. This means that, should the core receive
an invalidate, it must invalidate all copies of the data forwarded to
adjacent processors.

Supporting forwarding in this way is important, as when a line is
first loaded into the system it arrives with exclusive permissions in
the requesting private cache. Hence, without the addition of Load
on M forwarding, the first proximity-request is guaranteed to miss,
creating unnecessary traffic to the directory.

In a situation similar to the one described in section 3.3, the for-
warding graph is broken into two parts. As such, the replacing
cache sends an L1_UPDATE_S message to the directory. For this
reason, maintaining the read-sharers vector in the directory state
machine is necessary even when the line is believed to be held with
exclusive access in a private L1 cache. No extra storage is required
to support this extension. In the special case that the replacing
cache is the root of the forwarding graph, a message is returned to
the directory containing both the forwarding vector and, if the line
is dirty, the data. Again, the directory state machine is augmented
to allow for such messages to be processed.

Before a processor can write to a cache line that is held in the
F state, the processor must reacquire exclusive access. This is
achieved by invalidating the forwarded read-access copies of the
data using proximity invalidates, and in parallel, sending an UP-
GRADE request to the directory. When all forwarded copies are in-

validated and confirmation is received from the directory, the cache
line returns to Modified and the write completes.

3.5 Hardware Costs
Implementing Proximity Coherence incurs only a small hard-

ware overhead. In contrast to similar works [10, 11], no additional
complexity is required in either the processor or network routers.
First, we need additional wires for the point-to-point links that are
used for the proximity requests. These wires are, on average, the
length of one tile and do not require deep buffering. Flow con-
trol is provided by a simple not-ready wire applying backpressure.
Moreover, there are a large number of such wires available in mod-
ern fabrication processes [1, 9], particularly in wiring channels be-
tween tiles. Second, each cache line needs additional bits to store
to where the cache line has been forwarded. In this particular im-
plementation of the scheme, data can be forwarded to any of the
four neighboring cores requiring an additional 4 bits per cache line.
This increases the stored information in each L1 cache by less than
1%, assuming 64 byte cache lines with 51 bit tags. Finally, as dis-
cussed in section 2.3, it is not necessary to increase the number of
cache read ports. All new structures employed in Proximity Coher-
ence are distributed and will scale well to larger core counts without
incuring additional hardware overheads.

4. EVALUATION SETUP
To evaluate the performance benefits of Proximity Coherence,

we implement a cycle accurate version of the protocol. The systems
and methodology used are described below.

4.1 Simulation Parameters
For our full-system simulation we used Virtutech Simics [15]

and the Wisconsin GEMS tool set [16]. These tools provide full
OS support and a customizable memory model. Using the GEMS
SLICC language, we define the extended state machine with all
transient states and the necessary storage additions to hold forward-
ing vectors for each cache line. We have thoroughly stress-tested
the protocol using the supplied SLICC protocol tester, to check for
race conditions and consistency violations. We have augmented
the existing GEMS network model with fast point-to-point links
between neighboring tiles, as described in section 3.5.

Table 1 lists the parameters of the simulated system. These pa-
rameters are in line with recently proposed industrial architectures,
such as Intel’s Larrabee processor [20]. In order to account for vari-
ability in simulating a multi-threaded workload on a full-system

128

l

l

fmm

Providing CPU

R
e

q
u

e
s
ti
n

g
 C

P
U

CPU00 CPU05 CPU10 CPU15 CPU20 CPU25 CPU30

C
P

U
0

0
C

P
U

0
6

C
P

U
1

2
C

P
U

1
8

C
P

U
2

4
C

P
U

3
0

l

l

water−nsquared

Providing CPU

R
e

q
u

e
s
ti
n

g
 C

P
U

CPU00 CPU05 CPU10 CPU15 CPU20 CPU25 CPU30

C
P

U
0

0
C

P
U

0
6

C
P

U
1

2
C

P
U

1
8

C
P

U
2

4
C

P
U

3
0

low

high

a
b

ili
ty

 t
o

 f
o

rw
a

rd

(a) Preferred neighbour analysis for fmm and water-nsq.

10

10

19

2829

30

31 2 3

4 5

6 7

8 9

11

12 13

14

15

1617

18

2021

2223

2425

2627

(b) H-tree thread placement.

Figure 8: Thread mapping considerations: (a) shows the best neighbor lists for fmm and water-nsquared. A darker color indicates
that this core is more likely to be able to forward data to the requesting core. We notice a dark region around the diagonal, which
resulted in the approximate thread placement strategy shown in (b).

Processors 32 Sparc V9 cores, 3 GHz, single-issue, in-order,
non-memory IPC = 1

OS Solaris 9
L1 cache 32 kB per core, split I/D, 4 way associative, 2 cycles latency,

64 byte lines
L2 cache 8 MB, 32 banks interleaved, 8 way associative,

16 cycles latency, 64 byte lines
Memory 1GB, 4 banks, 250 cycles latency
Directory L1 tag replication, 32 banks interleaved, MESI protocol
Network 8x4 mesh topology, 2-cycle routers, 1-cycle link latency,

36 bytes wide
Prox-Links 1-cycle link latency, 36 bytes wide, single-depth buffers

Table 1: Parameters used in our full-system simulation to eval-
uate Proximity Coherence.

simulator, we randomize the memory access latency slightly for
each data point as described by Alameldeen and Wood [3] and run
each benchmark many times to produce results with sufficient con-
fidence. Error bars showing standard deviation are included where
applicable.

4.2 Benchmark Selection
In figure 3, we show a selection of Splash-2 [24] and Parsec [5]

benchmarks that exhibit behaviors that warrant further investiga-
tion. For full-system simulation, we eliminate benchmarks that ex-
hibit less than 10% proximity hit rate for the chosen snoop width of
4, excluding swaptions. However, ocean, a benchmark with a low
proximity hit rate of 13%, exemplifies the behavior of Proximity
Coherence with less favorable programs.

To capture all temporal phase behavior we run the entire parallel
phase of each benchmark. For Splash-2, we use the recommended
input size and for Parsec, the simmedium input set.

We found that simulation times for Parsec benchmarks are orders
of magnitude greater than for Splash-2, preventing the inclusion of
results for bodytrack and fluidanimate.

4.3 Thread Mapping
The results presented in section 2.2 provide us with lists of pre-

ferred neighbors for each core. These lists define an ideal thread
placement for each benchmark. We find these ideal mappings im-
possible to achieve when mapping to a 2-D mesh topology. Com-
puting the optimal 2-D mesh mappings would place additional strain
on the compiler or runtime environment; instead, we choose a suit-
able approximation.

Figure 8a shows the preferred neighbor lists for two of our cho-
sen benchmarks. We observe that any core i is likely to find cores

i− 1 and i + 1 high in its preferred neighbor list. This leads us to
the use of the H-tree thread mapping shown in figure 8b. Our trace-
driven analysis shows that if a random mapping were to be used, an
average of 35% of proximity hits would be lost, confirming the use
of this simple, fixed scheme.

5. EXPERIMENTAL RESULTS
In this section, we evaluate Proximity Coherence in detail. We

measure high proximity hit rates for our selection of benchmarks,
in line with the predicted values. As a direct consequence, our
scheme provides considerable improvements in memory access la-
tency, which in turn improves overall program execution time. We
confirm that in delivering these benefits, Proximity Coherence does
not impose unrealistic demands on network resources. In fact, the
system reduces the energy requirements of the cache hierarchy, cre-
ating a faster and more efficient coherency protocol.

We evaluate three versions of Proximity Coherence, one imple-
menting only Load on S sharing (referred to as Prox) and the sec-
ond also providing support for Load on E/M sharing (referred to as
ProxF). The third version, used to evaluate the impact of the point-
to-point links, is a modified implementation of the ProxF protocol,
where neighboring caches are snooped via the global on-chip net-
work (referred to as ProxF-N).

5.1 Impact on Memory Latency
Figure 9 shows the effects of Proximity Coherence on L1 load

and store miss latencies. We observe that Prox achieves load la-
tency reduction of up to 32% and 14% on average. ProxF provides
further improvements, lowering load miss latency by an additional
2.3% on average, resulting in a maximum reduction of 33% in the
case of fmm. Improvements are obtained by avoiding unnecessary
indirections to the directory, as discussed in section 3. ProxF-N
also benefits from physical locality of shared data, but due to laten-
cies introduced by unnecessary router traversals, we see diminished
gains.

When using Proximity Coherence, store miss latencies can be
marginally increased. The worst degradation in latency occurs in
cholesky – an increase of 2.4% – due to the serialization of invali-
dations in forwarding graphs. A standard directory protocol is able
to send invalidations to every sharer in parallel. In Proximity Co-
herence, however, some sharers can only be reached through the
traversal of the forwarding graph, causing the observed increase in
latency.

However, on average the ProxF scheme improves store miss la-
tency by 1.4%, due to ProxF more efficiently supporting the re-
acquirement of write permissions. This is particularly important

129

50

60

70

80

90

100

110

bar cho fmm lu oce rad ray vol wsq wsp

n
o
rm

a
liz

e
d
 l
o
a
d
 m

is
s
 l
a
te

n
c
y
 %

50

60

70

80

90

100

110

bar cho fmm lu oce rad ray vol wsq wsp

n
o
rm

a
liz

e
d
 s

to
re

 m
is

s
 l
a
te

n
c
y
 %

115%

base Prox ProxF ProxF−N

Figure 9: Cache miss latency reduction in % compared to a system using the MESI baseline protocol.

in producer-consumer relationships, a common data sharing pat-
tern. For example, should a cache line be held in state F, the core
can normally re-obtain write permission with a 2-hop transaction,
as described in section 3.4. In Prox however, where no F state is
implemented, a 3-hop transaction is required.

5.2 Invalidation Chain Length
In addition to the fixed overhead of checking adjacent caches,

Proximity Coherence serializes invalidations within the forwarding
graphs of shared data. If a forwarding graph is deep, an invalida-
tion request will take many cycles to propagate to the end of each
branch, causing slow state transitions. In order for Proximity Co-
herence to provide good performance the depth of any forwarding
graphs frequently invalidated must be low. Figure 10 shows the
depth of invalidations encountered when using the ProxF scheme.

The graphs invalidated most frequently are of depth one, show-
ing that data was forwarded only once before being invalidated.
Over 98% of proximity invalidations are of depth less than or equal
to 2. This minimizes the serialization penalty and ensures good
invalidation performance for data shared through proximity hits.

5.3 Proximity Hit Rate
Figure 11 shows the measured proximity hit rates for both Prox

and ProxF. For ProxF, we distinguish between Load on S and Load
on M hits.

Our implementations of Proximity Coherence achieve hit rates of
up to 54%, enabling the latency improvements already described.
Our results show that in almost all cases, the measured proxim-
ity hit rate is close to our predicted value presented in section 2.2.
This is especially interesting, as the expected hit rates have been
generated using an ideal thread placement, while the measured re-
sults use only an approximate placement, as described in section 4.
Additional variation is introduced through operating system inter-
ference. Radix is especially affected, as it is a particularly short
running benchmark: a significantly higher proximity hit rate is
observed in the full-system simulation results than the predicted
value.

When examining the ProxF results, we notice that for each bench-
mark, Load on M forwarding provides only a small proportion
of proximity hits, on average 2.6% and, excluding cholesky, just
1.4%. However, this small improvement means that more sharers

0

20

40

60

80

bar cho fmm lu oce rad ray vol wsq wsp

p
ro

x
im

it
y
 h

it
ra

te
 i
n

 %

Prox

ProxF "Load on S"

ProxF "Load on M"

Figure 11: Measured proximity hit rates for Prox and ProxF.

are available in the system sooner and these sharers can offer data
via Load on S forwarding, as reflected by the increased Load on
S events for ProxF. This behavior improves average proximity hit
rate by an additional 3.3%. These two effects combined deliver
higher than expected latency benefits, as shown in figure 9. ProxF
increases latency reduction by up to 7%, justifying the additional
complexity.

5.4 Execution Time Improvements
Figure 12 shows the overall execution time improvements Prox-

imity Coherence provides. The ProxF scheme delivers benefits of
up to 13% with only ocean suffering a slight slow down. ocean was
included as an example of a program with a low proximity hit rate,
leading to a marginal execution time increase of 1%. Importantly
however, network traffic and energy consumption are still reduced.
ProxF-N cannot match these improvements and for six benchmarks
delivers worse runtime results than the baseline system.

Although Proximity Coherence is an effective optimization, its
impact on execution time is limited by the high L1 cache hit rates

130

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1

0
L

1
1

L
1

2
L

1
3

L
1

4
L

1
5

L
1

6

0

1

2

3

4

5
d

is
tr

ib
u

ti
o

n
 i
n

 %
95.4% barnes

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1

0
L

1
1

L
1

2
L

1
3

L
1

4
L

1
5

L
1

6

0.0

0.2

0.4

0.6

0.8

1.0

d
is

tr
ib

u
ti
o

n
 i
n

 %

99.0% cholesky

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1

0
L

1
1

L
1

2
L

1
3

L
1

4
L

1
5

L
1

6

0

2

4

6

8

10

12

d
is

tr
ib

u
ti
o

n
 i
n

 %

86.2% fmm

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1

0
L

1
1

L
1

2
L

1
3

L
1

4
L

1
5

L
1

6

0

1

2

3

4

5

6

d
is

tr
ib

u
ti
o

n
 i
n

 %

94.1% lu

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1

0
L

1
1

L
1

2
L

1
3

L
1

4
L

1
5

L
1

6

0

1

2

3

4

d
is

tr
ib

u
ti
o

n
 i
n

 %

95.6% ocean

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1
0

L
1
1

L
1
2

L
1
3

L
1
4

L
1
5

L
1
6

0

1

2

3

4

5

d
is

tr
ib

u
ti
o

n
 i
n

 %

95.2% radix

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1
0

L
1
1

L
1
2

L
1
3

L
1
4

L
1
5

L
1
6

0

2

4

6

8

10

12

d
is

tr
ib

u
ti
o

n
 i
n

 %
86.3% raytrace

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1
0

L
1
1

L
1
2

L
1
3

L
1
4

L
1
5

L
1
6

0

1

2

3

4

d
is

tr
ib

u
ti
o

n
 i
n

 %

95.5% volrend

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1
0

L
1
1

L
1
2

L
1
3

L
1
4

L
1
5

L
1
6

0.0

0.5

1.0

1.5

2.0

d
is

tr
ib

u
ti
o

n
 i
n

 %

97.6% water nsq

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1
0

L
1
1

L
1
2

L
1
3

L
1
4

L
1
5

L
1
6

0

2

4

6

8

10

12

14

d
is

tr
ib

u
ti
o

n
 i
n

 %

84.9% water spa

Figure 10: Distribution of the depth of the sharer graph at the time of an invalidation request, when using the ProxF scheme. The
graph has in most cases only a depth of 1, resulting in negligible overhead. The vertical dashed line indicates the maximum depth
observed in that program.

0.85

0.90

0.95

1.00

1.05

1.10

bar cho fmm lu oce rad ray vol wsq wsp

n
o

rm
a

liz
e

d
 r

u
n

ti
m

e

base Prox ProxF ProxF−N

Figure 12: Runtime reduction compared to a system using the
MESI baseline protocol.

observed in our chosen benchmarks. The data forwarding mecha-
nisms of the protocol are only exercised during L1 cache misses.

5.5 Impact on Network Traffic
As Proximity Coherence optimizes the communication in many-

core systems, analyzing its impact on on-chip network traffic is
important. In this study, we distinguish between two types of traf-
fic: proximity messages that are carried on the new dedicated links
described in section 3.5 and standard messages that use the global
on-chip interconnect. We make this distinction as the two networks
have significantly different characteristics.

Figure 13 shows the aggregate number of bytes transferred a sin-
gle hop by on-chip network. Since all proximity messages travel
on only one point-to-point link to reach their destination, they have
a fixed hop count of 1. However, global network-on-chip messages
may have to travel through several routers to reach their destination.

Over all benchmarks, Proximity Coherence achieves a reduction

in global network-on-chip data transferred of between 8% and 42%.
In Prox and ProxF, cache misses that would have been serviced
using the global network are satisfied using the proximity network.

As discussed, ProxF provides several benefits over the simpler
Prox. However, our network analysis shows that these improve-
ments create no increase in proximity link traffic. This is as ex-
pected, since “Load on M” forwarding effectively turns control
traffic (negative reply to a proximity request) into data traffic (pos-
itive reply). The number of requests sent and replies received re-
mains constant.

The ProxF-N scheme succeeds in reducing the amount of data
traffic, however, as control messages to neighboring cores still need
to traverse two routers, the total control traffic increases to the point
that it negates the savings made by reduced data traffic. For all
benchmarks, ProxF-N generates more traffic than the baseline sys-
tem, highlighting the importance of the new proximity links when
implementing Proximity Coherence.

5.6 Impact on Energy
To confirm that Proximity Coherence is feasible to implement,

we estimate the energy consumed in the two networks and the en-
ergy required for snooping the four neighboring caches. For this
study, we make three assumptions. First, we assume that network
energy consumed is proportional to the amount of data transferred.
Work by Banerjee et al. [4] shows that, with effective clock-gating,
this is the case. In Proximity Coherence, data messages are ap-
proximately nine times larger than control messages. As such, we
assume that they consume nine times more energy. Second, we as-
sume that when transferring a message, the energy consumed in a
router is four times that which is consumed in the link. This as-
sumption is based upon work presented by Kundu [14]. As the
proximity network is composed of simple point-to-point links with
no routers, we assume that the energy required to send a single
proximity message is equal to the amount consumed by a global
network link. Finally, as discussed in section 2.4, we assume that
the energy required for a single L1 cache lookup is equivalent to
the amount consumed by a router processing one message. For
simplicity, we do not consider the energy saved by not performing
an L2 lookup after a proximity hit.

131

0.0

0.2

0.4

0.6

0.8

1.0

B P F N

bar
B P F N

cho
B P F N

fmm
B P F N

lu
B P F N

oce
B P F N

rad
B P F N

ray
B P F N

vol
B P F N

wsq
B P F N

wsp

n
o
rm

a
liz

e
d
 n

e
tw

o
rk

 t
ra

ff
ic

Global Control Global Data Prox Control Prox Data

Figure 13: Normalized network traffic compared to a system using the MESI baseline protocol. “B” refers to the baseline system,
“P” refers to Prox, “F” refers to ProxF, and “N” referes to ProxF-N.

Figure 14 shows the total network energy consumption under the
discussed assumptions. We also show the energy overhead associ-
ated with snooping caches. When using the baseline MESI pro-
tocol, we see that only 19% of energy is spent on control mes-
sages, despite their greater contribution to overall network traffic.
Using either of the Proximity Coherence implementations that em-
ploy proximity links results in a reduction of between 5% and 30%
in total network energy. Importantly, the reduced consumption in
the global network is not nearly matched by the energy spent in
the proximity links. Moreover, we see that the total network en-
ergy saved more than offsets the additional expense of lookups in
neighboring caches. We find that as ProxF-N only uses the global
on-chip interconnect, its energy requirements are up to 55% higher
than ProxF (24% on average), further motivating the inclusion of
proximity links in architectures implementing Proximity Coher-
ence. A more detailed analysis is left to future work.

6. RELATED WORK
To the best of our knowledge, we are the first to suggest the use

of dedicated wires to snoop neighboring caches in a many-core pro-
cessor. However, prior work exists that attempts to exploit proxim-
ity in a chip multiprocessor or considers the special properties of
chip multiprocessors as opposed to multi-node systems.

Cheng et al. [8] optimize the energy demand of the on-chip in-
terconnect by providing different networks for different coherence
message types. Unlike our scheme, they do not explore the new op-
portunities of a many-core design and focus solely on optimizing
the on-chip network for an existing cache coherence protocol.

Brown et al. [6] describe an augmentation to the coherence mech-
anism that takes into account the proximity of available sharers
when the directory serves an L1 cache miss and cannot provide a
copy from its L2 cache bank. Unlike our work, Brown’s scheme
does not avoid the extra hop to the directory and cannot utilize
an inexpensive point-to-point network that provides a copy from
a neighboring sharer. Furthermore, the proposed changes are or-
thogonal to our scheme and combining both schemes may prove
beneficial.

Eisley et al. [10] propose a coherence mechanism that is directly
embedded into the interconnection network routers. The mecha-
nism works by constructing tree structures in the network routers

that redirect requests to the directory towards a nearby sharer, if the
request happens to traverse a node that is part of the tree. How-
ever, depending on the routing, it is completely possible that the
request will miss an adjacent sharer and will proceed across the
network. Our scheme will always probe neighboring tiles and is
guaranteed to find adjacent copies. Furthermore, this scheme in-
creases the processing time of the router, dealing with both rout-
ing and coherence protocol tasks. Additionally this work does not
present execution time statistics, which prevents any direct com-
parison of performance.

Enright Jerger et al. [11] propose a protocol that uses a tree struc-
ture to maintain coherence across several sharers. The root of the
tree acts as an ordering point for requests. While their scheme uses
a coarse-grained coherence mechanism, we maintain coherence at
cache line granularity. In addition, their scheme also results in an
increase of global network traffic by a factor two to three over a
standard directory protocol, drastically reducing the efficiency of
the proposed scheme. Proximity Coherence delivers improved per-
formance and reduces energy consumption.

Hossain et al. [12] present a scheme where an L1 cache also
sends a request to a neighboring cache instead of sending a request
to the directory. However, since they use the global on-chip net-
work for such requests, rather than our novel dedicated links, their
definition of neighboring is a more relaxed “close-by” instead of
adjacent. Furthermore, while the data is provided by this “close-
by” cache, the directory functions are not delegated to this cache.
Instead, the directory is immediately informed and the provided
data can only be used once the directory has acknowledged the for-
warding. The main performance gain in their system comes from
control messages having a lower latency than data messages. In
our system, we assume a global network that delivers data and con-
trol messages with the same latency. Additionally, our work mod-
els state of the art router latencies [4]. As detailed in Hossain’s
work, using such a low latency network reduces the benefits gained
through their scheme. Finally, we delegate coherence responsibility
to the L1 that forwarded the data, such that the data is usable im-
mediately; an acknowledgement from the directory is not needed.

Cache coherence protocols have been proposed that uses linked-
lists to track sharers in a multi-processor system [13, 17]. Although
sharers are also tracked using pointers in Proximity Coherence, our

132

0.0

0.2

0.4

0.6

0.8

1.0

B P F N

bar
B P F N

cho
B P F N

fmm
B P F N

lu
B P F N

oce
B P F N

rad
B P F N

ray
B P F N

vol
B P F N

wsq
B P F N

wsp

n
o
rm

a
liz

e
d
 n

e
tw

o
rk

 e
n
e
rg

y

Global Control Global Data Prox Control Prox Data Snooped Cache

Figure 14: Normalized estimated network energy consumption compared to a system using the MESI baseline protocol. “B” refers
to the baseline system, “P” refers to Prox, “F” refers to ProxF, and “N” referes to ProxF-N. In addition, we show the energy required
to perform a cache lookup in the case of a servicing a proximity request.

scheme differs significantly: it tracks sharers in an acyclic graph
and takes physical locality information into account. Further dif-
ferences are found due to the proximity-link network introduced
by our work.

Cheng et al. [7] propose a scheme that delegates directory re-
sponsibilities to other nodes in the system. The goal is to transform
3-hop transitions into 2-hop transitions. However, their design is
optimized for a multi-node system and unlike our system, the dele-
gations only happen after a stable producer-consumer relationship
has been detected. Our scheme uses an optimistic mechanism and
establishes delegation immediately.

Ros et al. [19] propose a cache coherence protocol for tiled CMPs.
Similar to the work by Cheng et al., this scheme aims to avoid long
latency 3-hop transitions by delegating the directory responsible
to the owner node. While the protocol considers the limited stor-
age requirements in a CMP system, it does not take advantage of
the opportunities offered by the low latency on-chip interconnect.
Implementing this scheme in in a multi-node system may obtain
similar improvements.

7. CONCLUSION
In this work, we present Proximity Coherence, a novel proto-

col that exploits the physical locality of shared data to provide an
efficient cache coherence in many-core architectures. Our design
delivers a 14% reduction in L1 load miss latency, while reducing
global on-chip network traffic by 19%. For our selection of bench-
marks, we achieve execution time improvements of up 13%. Prox-
imity Coherence effectively trades off network traffic and latency
against additional L1 cache accesses, while simultaneously reduc-
ing energy consumed by the memory hierarchy.

Benefits emerge through the use of new dedicated links between
neighboring cores. Using these links, data is optimistically re-
quested from adjacent cores. Coherence is then maintained through
delegation of responsibility, from the directory to caches that have
forwarded data. An implementation without these links is not fea-
sible, as using the global on-chip interconnect increases the energy
required by the network by 24% and reduces the obtainable latency
improvements. Additionally, it is impossible to run the baseline
MESI protocol transactions over the simple proximity links – such

messages require more comprehensive routing, flow control, and
buffering. Furthermore, the resources required to form proximity
links are so minimal, that reassigning their use to further increase
the global-network bandwidth is not possible – increasing band-
width requires larger crossbars and associated datapaths, not just
more wires.

Looking forward, Proximity Coherence presents many opportu-
nities for additional research. First, reducing the number of unsuc-
cessful cache snoops by using dynamic prediction may be possi-
ble. We are also interested in implementing an OS-based scheme
to disable Proximity Coherence in situations it is either not required
or has detrimental effects on performance. Such a scheme would
require simply changing a single state transition, disabling snoop-
ing. Second, we are interested in the challenge of implementing
Proximity Coherence on a strictly non-inclusive cache hierarchy
that maximizes on-chip storage utilization. Third, we believe that
a processor architecture employing chip-stacking would allow for
a greater number of proximity-links to be added, further improv-
ing the chances of delivering a proximity hit. Finally, we believe
that restructuring the benchmark algorithms can increase the phys-
ical locality of shared data, improving the proximity hit rate. In
such a scheme, Proximity Coherence would provide efficient sup-
port for message-passing style communication between physically
local cores, while still supporting a fallback of a fully coherent
shared-memory. Optimizing communication then becomes an op-
tional performance layer, offering an interesting new platform for
software and hardware engineers alike.

8. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and the Com-

puter Architecture Group at Cambridge University for their con-
structive comments and suggestions. In particular, we would like
to thank Arnab Banerjee and Robert Mullins for their insightful
discussions, Christophe Dubach and Timothy Jones for providing
valuable feedback, and Kate Aufses for her assistance editing the
final paper. This research was supported in part by the Engineering
and Physical Sciences Research Council (EPSRC). This work has
made use of the resources provided by the Edinburgh Compute and

133

Data Facility (http://www.ecdf.ed.ac.uk/). This facility is partially
supported by the eDIKT initiative (http://www.edikt.org.uk).

9. REFERENCES
[1] International Technology Roadmap for Semiconductors.

http://public.itrs.net/.
[2] A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina,

C.-C. Miao, C. Ramey, and D. Wentzlaff. Tile Processor:
Embedded Multicore for Networking and Multimedia. In
Hot Chips 19, Aug. 2007.

[3] A. R. Alameldeen and D. A. Wood. Variability in
Architectural Simulations of Multi-threaded Workloads. In
Proceedings of HPCA 9, pages 7–18, Feb. 2003.

[4] A. Banerjee, P. T. Wolkotte, R. D. Mullins, S. W. Moore, and
G. J. Smit. An Energy and Performance Exploration of
Network-on-Chip Architectures. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 17(3):319–329,
Mar. 2009.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of PACT 17, pages 72–81, Oct.
2008.

[6] J. A. Brown, R. Kumar, and D. Tullsen. Proximity-Aware
Directory-based Coherence for Multi-Core Processor
Architectures. In Proceedings of SPAA 19, pages 126–134,
June 2007.

[7] L. Cheng, J. B. Carter, and D. Dai. An Adaptive Cache
Coherence Protocol Optimized for Producer-Consumer
Sharing. In Proceedings of HPCA 13, pages 328–339, Feb.
2007.

[8] L. Cheng, N. Muralimanohar, K. Ramani,
R. Balasubramonian, and J. B. Carter. Interconnect-Aware
Coherence Protocols for Chip Multiprocessors. In
Proceedings of ISCA 33, pages 339–351, June 2006.

[9] W. J. Dally and B. Towles. Route Packets, Not Wires:
On-Chip Inteconnection Networks. In Proceedings of the
38th annual Design Automation Conference (DAC), pages
684–689, June 2001.

[10] N. Eisley, L.-S. Peh, and L. Shang. In-Network Cache
Coherence. In Proceedings of MICRO 39, pages 321–332,
Dec. 2006.

[11] N. D. Enright Jerger, L.-S. Peh, and M. H. Lipasti. Virtual
Tree Coherence: Leveraging Regions and In-network
Multicast Trees for Scalable Cache Coherence. In
Proceedings of MICRO 41, pages 35–46, Nov. 2008.

[12] H. Hossain, S. Dwarkadas, and M. C. Huang. Improving
Support for Locality and Fine-Grain Sharing in Chip
Multiprocessors. In Proceedings of PACT 17, pages
155–165, Oct. 2008.

[13] D. V. James, A. T. Laundrie, S. Gjessing, and G. Sohi.

Distributed-directory scheme: Scalable Coherent Interface.
IEEE Computer, 23(6):74–77, 1990.

[14] P. Kundu. On-Die Interconnects for next generation CMPs.
Presentation at Workshop on On- and Off-Chip
Interconnection Networks for Multicore Systems
(http://www.ece.ucdavis.edu/~ocin06/
program.html), Dec. 2006.

[15] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, Feb. 2002.

[16] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. SIGARCH
Computer Architecture News, 33(4):92–99, Nov. 2005.

[17] A. Nowatzyk, G. Aybay, M. C. Browne, E. J. Kelly,
M. Parkin, B. Radke, and S. Vishin. The S3.mp Scalable
Shared Memory Multiprocessor. In Proceedings of the 1995
International Conference on Parallel Processing, volume 1,
pages 1–10, Aug. 1995.

[18] M. S. Papamarcos and J. H. Patel. A low-overhead coherence
solution for multiprocessors with private cache memories. In
Proceedings of ISCA 11, pages 348–354, June 1984.

[19] A. Ros, M. E. Acacio, and J. M. García. DiCo-CMP:
Efficient Cache Coherency in Tiled CMP Architectures. In
IEEE International Symposium on Parallel and Distributed
Processing, pages 1–11, Apr. 2008.

[20] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: A Many-Core x86 Architecture for Visual
Computing. ACM Trans. Graph., 27(3):1–15, Aug. 2008.

[21] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi.
Cacti 5.1. Technical Report HPL-2008-20, HP Labs, 2008.

[22] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain,
V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and
S. Borkar. An 80-Tile Sub-100-W TeraFLOPS Processor in
65-nm CMOS. IEEE Journal of Solid-State Circuits,
43(1):29–41, Jan. 2008.

[23] S. Vangali, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyerl, A. Singh, T. Jacob, S. Jain,
S. Venkataraman, Y. Hoskotel, and N. Borkarl. An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS. In Digest of
Technical Papers of the International Solid-State Circuits
Conference (ISSCC), pages 98–99, 589, Feb. 2007.

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proceedings of ISCA 22,
pages 24–36, June 1995.

134

