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Abstract

Network-based genome-wide association studies (NWAS) utilize the molecular interactions 

between genes and functional pathways in biomarker identification. This study presents a novel 

network-based methodology for identifying prognostic gene signatures to predict cancer 

recurrence. The methodology contains the following steps: 1) Constructing genome-wide 

coexpression networks for different disease states (metastatic vs. non-metastatic). Prediction logic 

is used to induct valid implication relations between each pair of gene expression profiles in terms 

of formal logic rules. 2) Identifying differential components associated with specific disease states 

from the genome-wide coexpression networks. 3) Dissecting network modules that are tightly 

connected with major disease signal hallmarks from the disease specific differential components. 

4) Identifying most significant genes/probes associated with clinical outcome from the pathway 

connected network modules. Using this methodology, a 14-gene prognostic signature was 

identified for accurate patient stratification in early stage lung cancer.

Keywords

Implication networks; gene co-expression networks; molecular prognosis; personalized therapy

1. INTRODUCTION

The accurate assessment of disease progression in individual patients is a critical 

prerequisite in personalized medicine. With the completion of the Human Genome Project, 

the emphasis of genome-wide association studies has shifted from cataloging the “parts list” 

of signature genes and proteins to elucidating the networks of interactions that take place 

among them [1]. Increasing evidence has suggested that molecular network analysis could 

be used to improve disease classification [2] and identify novel therapeutic targets [3]. 

Nevertheless, major challenges have been the development of methods for efficiently 

constructing genome-scale coexpression networks and the identification of a particular set of 

markers, from among the enormous number of potential markers, that has the highest 

predictive ability for disease outcome [4]. This study tests the hypothesis that the combined 
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analysis of disease-mediated genome-wide coexpression networks, hallmark signal 

pathways, and clinical approaches leads to more informed clinical decision-making. This 

study will focus on the molecular diagnosis and prognosis of lung cancer relapse and 

metastasis.

Lung cancer is the leading cause of cancer-related deaths in industrialized countries. Non-

small cell lung cancer (NSCLC) accounts for about 80% of lung cancer cases. Currently, 

surgery is the major treatment option for patients with stage I NSCLC. However, 35–50% of 

stage I NSCLC patients will relapse within 5 years [5]. It remains an unsolved challenge for 

physicians to reliably identify patients at high risk for recurrence as candidates for 

chemotherapy. A few studies have described transcriptional profiling for lung cancer 

prognosis [6–8]. Nevertheless, there is no clinically applied gene test for this deadly disease.

In current genome-wide association studies, genes are ranked according to their association 

with the clinical outcome, and the top-ranked genes are included in the classifier. It has been 

noted that individual biomarkers showing strong association with disease outcome are not 

necessarily good classifiers [9]. Genes and proteins do not function in isolation, but rather 

interact with one another to form modular machines [10]. Molecular network analysis has 

led to promising applications in identifying new disease genes [11] and disease-related 

subnetworks [12], and classifying diseases [2].

Boolean networks can provide important biological insights into regulation functions [13]. 

Nevertheless, as the number of global states is exponential in the number of entities and the 

analysis relies on an exhaustive enumeration of all possible trajectories, this method is 

computationally expensive and only practical for small networks [14]. A recent formalism, 

causal Bayesian belief networks, have been utilized to model cellular networks [15]. 

Nevertheless, the number of possible networks is exponential in the number of nodes under 

consideration, which makes it impossible to evaluate all possible networks. Furthermore, it 

is not always possible to determine the causal relationships between nodes, i.e., the direction 

of the edges, owing to a property known as Markov equivalence [16]. More importantly, the 

acyclic Bayesian network structure was unable to model feedback loops, which are essential 

in signal pathways [17] and genetic networks [18–20]. To overcome this limitation, a more 

complex scheme, dynamic Bayesian networks, was explored for modeling temporal 

microarray data [21,22].

As an alternative to Bayesian networks, an implication network model employs a partial 

order knowledge structure (POKS) for structural learning and uses the Bayesian theory for 

inference propagation [23,24]. When using Dempster-Shafer theory for belief updating, this 

implication network methodology is termed a Dempster-Shafer belief network [25,26]. An 

implication network is a general methodology for reasoning under uncertainty. POKSs are 

closed under union and intersection of implication relations, and have the formal properties 

of directed acyclic graphs. The constraints on the partial order can be entirely represented by 

AND/OR graphs [23,27]. When the constraints on the partial order are relaxed, the 

implication networks can represent cyclic relations among the nodes. In this condition, the 

implication network structure is a directed graph with nodes connected by implication 

(causal) rules, which can contain cycles such as feedback loops.
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Motivated to model complex molecular patterns for assessing disease progression, we 

employed the implication network formalism for efficiently constructing disease-mediated 

genome-wide coexpression networks for the identification of prognostic gene signatures.

2. ALGORITHM

The implication network induction algorithm proposed by Liu et al. [25,26] is based on 

binomial distribution, which is suitable for binary datasets. We developed a network 

induction algorithm based on prediction logic [28,29], which can be used in general 

applications, including multinomial datasets and multi-classification problems. Prediction 

logic reveals the implication (causal) relationships among variables in a dataset and 

evaluates propositions in formal logic. It integrates formal logic theory and statistics to build 

a convenient predictive structure for a dataset. The most important aspect of prediction logic 

is the conceptual value of prediction analysis in constructing and evaluating useful 

statements, particularly in complex multinomial problems with moderate sample sizes. This 

feature is vital for clinical applications, in which many clinical parameters are multinomial 

and patient sample size is usually small.

We used prediction logic based on formal logic rules relating two dichotomous variables to 

induce the implication network structure. A modified U-Optimality method [29] (Fig. 1) was 

used to derive the implication relation between each pair of attributes in a data set. In the 

implication induction algorithm (Fig. 1), UP is the scope of the implication rule, 

representing the portion of the data covered by the implication relation, and ∇P is the 

precision of the implication rule, representing the prediction success of the corresponding 

implication relation. An implication rule has high precision when the number of error 

occurrences is a small portion of the data covered by the implication rule. The minimum 

scope and precision required by the implication rule are indicated, respectively, by Umin and 

∇min, which must be positive for a valid implication relation. The induction algorithm 

derives an implication rule if it has the maximum scope UP and it satisfies the constraint that 

its scope UP and precision ∇P are greater than the required minimum values, Umin and 

∇min. To simplify the computation of the maximization problem, the ∇ij value of every 

error cell must be greater than that of the non-error cell for the corresponding implication 

rule [28,29].

For a single error cell, where Nij is the number of error occurrences, we have:

For multiple error cells,
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The difference between our implication and that of Hildebrand et al. [29] is that we set 

minimum requirements for both scope (Up) and precision (∇P), instead of precision alone. 

Furthermore, each implication rule has an associated weight function that represents the 

conditional probability of the implied event.

3. IMPLEMENTATION AND RESULTS

In this study, an implication induction algorithm (Fig. 1) was used to construct pair-wise 

genome-scale coexpression networks for predicting recurrence in lung adenocarcinomas. In 

a published (dChip normalized) dataset [8], UM and HLM cohorts formed the training set (n 

= 256), whereas MSK (n = 104) and DFCI (n = 82) constituted two independent validation 

sets.

Genes with missing measurements in more than half of the samples were removed from 

analysis. Furthermore, for genes measured with multiple probes, the average expression of 

the duplicates was used to represent the expression profile of a unique gene for the network 

analysis (with 12,566 unique genes). To construct implication networks, the mean 

expression of each gene in a patient cohort was used as a cutoff to partition the expression 

profiles. If the expression of a gene in a patient sample was greater than the mean in the 

cohort, this gene was denoted as up-regulated in this tumor sample; otherwise, it was 

denoted as down-regulated in the tumor sample. In the training set, patients who died within 

5 years were labeled as poor-prognosis (n = 125), and those who survived 5 years after 

surgery were labeled as good-prognosis (n = 104). Censored cases (those with follow-up of 

less than 5 years) were removed from the analysis (n = 27). For each patient group in the 

training set, a genome-scale coexpression network was constructed using the implication 

induction algorithm. Between each pair of genes, possible significant (P < 0.05; z-tests) 

coexpression relations were derived in each patient group, constituting disease-mediated 

gene coexpression networks. By comparing the connectivity patterns (implication relations) 

of each pair of genes between the two networks, disease-specific differential network 

components were identified. These differential components contain the coexpression 

relations that were either present in the poor-prognosis group but missing in the good-

prognosis group, or conversely, those present in the good-prognosis group but missing in the 

poor-prognosis group. In this analysis, more than 67 million interactions were derived in the 

good-prognosis group and more than 69 million interactions were derived in the poor-

prognosis group. Of these interactions, more than 38 million were common to both disease 

states, more than 29 million were unique to the good-prognosis group, and more than 31 

million were unique to the poor-prognosis group. The computation was completed in 40 min 

by an Intel® Core™2 Duo processor with a 2.83-GHz CPU, 4 GB of memory (RAM) 

allocated, and 455 GB of hard disk space.

Next, genes displaying direct co-regulation with major NSCLC signal proteins were 

identified from the disease-specific network modules. Genes of a significant (P < 0.05) 

coexpression relation with TP53, KRAS, EGF, EGFR, E2F3, and E2F4 were pinpointed 

from the differential components associated with each patient group. As a result, 63 genes 

were identified from the poor-prognosis group, 48 genes from the good-prognosis group, 

and 9 genes common in both groups, yielding a set of 102 genes.

Wan et al. Page 4

ACM Int Conf Bioinform Comput Biol (2010). Author manuscript; available in PMC 2015 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We sought to evaluate whether the genes identified from the proposed network analysis 

could generate accurate prognostic prediction. From the training set of the original 

continuous microarray data, 19 probes were significantly associated with overall survival (P 

< 0.05, univariate Cox modeling), from which the top 14 genes ranked by RELIEF [30] 

were identified as the most accurate prognostic gene signature. By fitting a multivariate Cox 

proportional hazard model with the 14 genes as covariates, a survival risk score was 

generated for each patient. A risk score of −11.79 was identified as a cutoff value for patient 

stratification in the training set (Fig. 2A). This training model and cutoff value were applied 

to the two validation sets (Fig. 2B and 2C). In all three patient cohorts, this scheme stratified 

patients into prognostic groups with distinct overall survival (log-rank P < 0.008, Kaplan-

Meier analyses).

The coexpression patterns of these 14 signature genes and six NSCLC hallmarks derived 

from the differential components in the training set were compared with those derived in the 

two validation sets. The common gene coexpression patterns presented in all three datasets 

are shown in Fig. 3, indicating the reproducibility of the gene/protein interactions derived 

from transcriptional profiles. Among all three patient cohorts, there are 4 common gene 

coexpression relations specifically associated with good-prognosis (Fig. 3A) and 5 common 

coexpression relations specifically associated with poor-prognosis (Fig. 3B). The 

coexpression relations among these genes are elucidated by the implication network 

structure. The coexpression networks in Fig. 3 are significant at P < 0.24 as evaluated in 

1000 permutation tests. Specifically, a metric (S) was computed to represent the proportion 

of the number of common coexpression relations among three datasets over the number of 

coexpression relations found in the training set. The null distribution was generated by 

permuting the class labels in two validation sets.

4. CONCLUSIONS

This study demonstrates that the implication network methodology based on prediction logic 

is suitable for constructing genome-scale coexpression networks for analyzing perturbed 

gene expression patterns in different disease states. The disease-mediated differential 

network components may contain important information for the discovery of biomarkers and 

pathways for targeted therapy and prognostic prediction. The implication network 

methodology provides a convenient and more predictive structure of gene regulation than 

the networks constructed based on correlation coefficients.
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Fig. 1. 
Implication induction algorithm.

Wan et al. Page 8

ACM Int Conf Bioinform Comput Biol (2010). Author manuscript; available in PMC 2015 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Prognostic performance of the 14-gene signature
The 14-gene signature generated significant patient stratification on the training set (A) and 

two validation sets, MSK (B) and CAN/DF (C), in Kaplan-Meier analyses. Log-rank tests 

were used to assess the difference in survival probability between the two prognostic groups.
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Fig. 3. Gene coexpression patterns among the 14-gene signature and lung cancer hallmarks 
present in all three datasets
The lung cancer signal hallmarks are highlighted in yellow. The biological interpretation of 

the implication relations is described in the legend.
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