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ABSTRACT 
Sketch recognition is automated understanding of hand-
drawn diagrams.  Current sketch recognition systems exist 
for only a handful of domains, which contain on the order 
of 10-20 shapes. Our goal was to create a generalized 
method for recognition that could work for many domains, 
increasing the number of shapes that could be recognized in 
real-time, while maintaining a high accuracy. In an effort to 
effectively recognize shapes while allowing drawing 
freedom (both drawing-style freedom and perceptually-
valid variations), we created the shape description language 
modeled after the way people naturally describe shapes to 
1) create an intuitive and easy to understand description, 
providing transparency to the underlying recognition 
process, and 2) to improve recognition by providing 
recognition flexibility (drawing freedom) that is aligned 
with how humans perceive shapes. This paper describes the 
results of a study performed to see how users naturally 
describe shapes. A sample of 35 subjects described or drew 
approximately 16 shapes each. Results show a common 
vocabulary related to Gestalt grouping and singularities. 
Results also show that perception, similarity, and context 
play an important role in how people describe shapes. This 
study resulted in a language (LADDER) that allows shape 
recognizers for any domain to be automatically generated 
from a single hand-drawn example of each shape.  Sketch 
systems for over 30 different domains have been 
automatically generated based on this language. The largest 
domain contained 923 distinct shapes, and achieved a 
recognition accuracy of 83% (and a top-3 accuracy of 87%) 
on a corpus of over 11,000 sketches, which recognizes 
almost two orders of magnitude more shapes than any other 
existing system. 
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INTRODUCTION 

Sketch interfaces recognize hand-drawn sketches in real 
time, combining the drawing freedom of paper with the 
powerful beautification, editing, and simulation capabilities 
of a computer-interpreted drawing. Most existing sketch 
recognition algorithms use either gesture or template-based 
recognition. Gesture recognition algorithms classify 
gestures based on a selection of drawing style features.  The 
disadvantage of this method is that either the system has to 
be trained for each user and/or users have to draw each 
gesture in a specific manner (order, direction, number of 
strokes) in order for it to be recognized [10][12]. Template 
recognition algorithms recognize shapes by what they look 
like rather than how they were drawn, providing additional 
drawing freedom.  The disadvantage of template-based 
recognizers is that a shape must be drawn to look just like 
its template, and a separate template must be provided for 
each acceptable variation.  Providing a separate template 
for every possible drawing variation can prove to be 
boundless.  For example, think of an arrow that has a 
limited number of acceptable variations.  

Current sketch recognition systems have been limited to 
on the order of 10-20 sketched shapes.  Additionally these 
shapes usually contain a number of drawing requirements 
that limit the way that the users can draw each of the 
shapes.  Alternatively, our goal is to develop a generalized 
method of recognition that recognizes more shapes in real 
time without having to sacrifice accuracy.  In order to do 
this, the authors attempted to develop a shape language 
modeled after the way people naturally describe shapes, 
allowing shapes to be described compositionally by the 
geometric components each shape is made up of and the 
constraints between them. Recognizing shapes based on a 
geometric description provides both drawing style freedom, 
in that users are not constrained to draw shapes with a 
specific number, order, or direction of strokes, as well as 
perceptual variable drawing freedom, in that users can draw 



acceptable variations provided the variations still abide by 
the specified constraints and subcomponents.  To give an 
examples, an arrow can be described as two lines and a path 
all connecting at a single point, where the two lines are of 
equal length and form equal acute angles with itself and the 
path (arrow shaft).  Such a geometric description allows the 
arrow to be drawn in one to three strokes (as opposed to a 
gesture-based recognition algorithm) and allows the shaft of 
the arrow to be of any shape or size. 

When creating the shape description language, the 
authors had several goals. The language should: 

1) Be able to describe domain information 
2) Be broad enough to support a wide range of 

domains 
3) Provide a high level of abstraction 
4) Remain narrow enough to remain comprehensible 
5) Be easy to read, understand, and debug; be 

intuitive; help make the recognition process 
transparent to the user 

6) Allow the description of a generalized version of a 
shape that includes acceptable variations.  

7) Allows for recognition of a shape based on what it 
looks like rather than how it was drawn 

8) Allows users to also specifying some drawing style 
information when desired 

9) Allows for the specification of drawing context 
10) Supports hierarchical descriptions and abstract 

descriptions. 
In an effort to find a complete, yet concise, 

understandable shape description language, the authors set 
out to find out 1) how people naturally describe shapes 
when trying to convey that shape to another human, and 2) 
what subcomponents and constraints are commonly used 
and how specific are people naturally in their descriptions. 
By modeling recognition after humans, the authors hope 
that 1) recognition will be transparent and understandable to 
the user, and that 2) recognition will be more accurately 
aligned to how humans recognize shapes, possibly implying 
higher accuracy rates and more intuitive failures. 

This paper describes the results from a study performed 
by the authors to determine how users naturally describe 
shapes to other human. 

This paper proceeds as follows. The next section 
describes related work in sketch recognition.  It then details 
the methodology and results of this study.  Next, it 
compares the results of this study with results from Gestalt 
principles. Finally, we briefly describe language choices as 
well as the overall effectiveness of the language in the 
automatic generation of sketch recognition user interfaces.  

 
PREVIOUS WORK 
Shape Description Languages 

Shape description languages, such as shape grammars, 
have been around for a long time [19]. Shape grammars are 
studied widely within the field of architecture, and many 
systems are continuing to be built using these shape 
grammars [5]. However, shape grammars have been 

developed for shape generation rather than for recognition. 
More recent shape description languages have been created 
for use in diagram parsing [4].  

However, none of the above languages were built to 
recognize hand-drawn shapes. Hand-drawn shapes 
necessarily contain noise and approximations.  Hand-drawn 
shapes are never exactly the same as the original cleaned 
example. They are different because they contain not only 
the messy jagged lines of a hand-drawn shape, but also 
allowable perceptual variations.  Thus, we need a language 
that identifies the perceptually important details of a shape 
and uses those details for recognition. 

Lee performed recognition using attribute relational 
graphs [11]. Their language differs significantly from the 
one described here in that their language is quantitative 
rather than perceptually based, requiring specific details of 
the shape’s position. Keating and Mason [10] also 
performed recognition by matching a graph representation 
of a shape; their language differs from the one described in 
this paper in that theirs is statistical and specifies the 
probable location of each subpart, whereas ours is based on 
the way humans describe shapes, which tends instead to be 
categorical, describing the ideal location of the shape and 
allowing the perceptually based recognition engine to 
automatically determine the allowable variance. 

Within the field of sketch recognition, other attempts 
have been made to create languages for sketch recognition. 
Mahoney [13] used a language to model and recognize stick 
figures. Saund developed a symbolic method for 
constructing higher-level primitive shapes, such as curved 
contours, corners, and bars. Bimber, Encarnacao, and Stork 
created a multilayer architecture for sketch recognition [1] 
of 3D sketches. Their system recognized objects created by 
multiple strokes with the use of a simple BNF grammar to 
define the sketch language. Their sketch domain differs 
from ours in that we wish to allow free-hand sketching, 
which they did not. Caetano et al. [2] used Fuzzy Relational 
Grammars to describe shapes by combining fuzzy logic and 
special relation syntax in a unified formalism [9].  Shilman 
has developed a statistical language model for ink parsing 
with a similar intent of facilitating development of sketch 
recognizers.  The language consists of seven constraints: 
distance, deltaX, deltaY, angle, width ratio, height ratio, 
and overlap, and allows the user to specify concrete values, 
using either a range or a Gaussian [18]. However, based on 
our studies we find that humans find it more intuitive to 
state (contains shape1 shape2) rather than have to specify 
two deltaX and two deltaY constraints, using discrete 
constraints, each of the form deltaX (shape1.WEST < 
shape2.WEST).range(0,100)). Egenhofer [7] has used a 
shape language for searching for images using cardinal 
directions, topology, and a metric refinement to determine 
the amount of area or border intersection.  Myers et al. [14] 
designed programming language for designing user 
interfaces; however, shapes are not described using a 
geometric formalism.  



None of the above shape languages were based on a 
preliminary study that attempted to model how humans 
naturally describe shapes in order to create an intuitive 
language that would be easy for users to understand. 
 
Perception Based Sketch Recognition 

While no hand-drawn shape description studies have 
been yet performed in attempts to create a language for 
sketch recognition, several systems have dealt with human 
perception. Veselova [21] has automatically generated 
shape descriptions using perceptual rules. David [3] has 
developed a method for recognizing deformable shapes 
based on perception. Sarkar developed metrics for 
quantifying Gestalt properties of similarity between arcs 
and lines [16].  Saund has used perception to aid in object 
grouping [17]. 

 
Gestalt Principles 

In 1890, Christian von Ehrenfels said that Gestalt 
principles describe “experiences that require more than the 
basic sensory capabilities to comprehend” [22]. The brain is 
programmed to perceive certain visual features as more 
perceptually important than others. Grouping rules, 
developed by Wertheimer in 1959 [23], explain how people 
perceptually group objects using concepts such as 
connectedness, nearness, and other principles. Singularities, 
provided by Goldmeier in 1972 [6], describe which 
geometric shape properties are most noticeable, such as the 
very precise constraints HORIZONTAL or PERPENDICULAR, 
as compared with general categories of constraints such as 
POSSLOPE and ACUTE.  

  
STUDY GOALS 

This paper describes a study to determine how people 
naturally describe shapes.  The purpose of this study is to 
determine the vocabulary and syntax of a shape description 
language for use in recognition.  Additionally, the study is 
to help that the vocabulary and syntax chosen enables that: 

2. Shape descriptions would be complete enough to 
recognize and identify a shape that agreed with the 
description. 

3. Shape descriptions would be readable and 
understandable to a wide variety of people, 
including computer programmers and 
nonprogrammers. 

4. The language would be intuitive, such that it would 
key into the way people naturally describe shapes.  

 
DESCRIPTION OF STUDY 

This section describes the study performed to determine 
how people naturally describe shapes. 

 
Participants 

Although users of our language (aka developers of a 
sketch interface) include experts in graphics-based fields in 
computer science, we did not want this to be a requirement 
for language use. We do, however, expect the developers to 

be competent in the domain for which they are generating a 
sketch recognition system; additionally, we expect them to 
be power computer users, but not necessarily computer 
programmers. In particular, we expect that sketch 
recognition UI designers, who may be teachers or experts in 
a particular domain, but not necessarily computer science 
programmers, may use our language to create sketch 
recognition systems that correct homework or test 
questions, facilitate learning, simplify design development, 
or create intuitive interfaces. Because we wanted to create a 
language understandable to people from a wide variety of 
backgrounds, we selected a participant population with a 
diverse background, including computer programmers and 
those who are not programmers, to mimic the intended user 
population. 

In order to gain a diverse background of participants, we 
placed flyers around town, in high traffic areas.  Several 
participants were gained by an e-mail forwarded by the 
spouse of the director of the computer science lab, who is a 
professor in performing arts. Participants called or sent an 
e-mail to set up a time to perform the study.  Most studies 
were performed in the computer science laboratory, but 
several studies were performed in a coffeehouse in the 
neighboring town (Somerville) to encourage users with 
diverse backgrounds to complete the study.   

There were a total of 35 participants, ranging in age 
from 18 to 71. While computer science graduate students 
contributed a noticeable portion of study participants, they 
comprised less than a third of the total participants.  
Participant occupations included dancers, teachers, business 
people, professors, mathematicians, and undergraduate and 
graduate students in various departments.  

Participants were provided with a free unrestricted 
movie ticket as a measure of thanks for completing the 
study.  Participants were allowed to back out of the study at 
any time, and they were informed that they would still 
receive their movie ticket thank you. However, none opted 
out early.   

 
Study Length 

Each participant described or drew shapes for 
approximately one hour. There were 4 sections to the study, 
performed in tandem.  Each part was stopped after the 
participant had performed the study section for 15 minutes. 
If the participant was in the middle of a question when the 
time ended, they were encouraged to finish the question on 
which they were currently working before the next section 
started.  There was no human intervention in the timing of 
each section. The application automatically progressed 
through each section using a timer that checked after each 
question whether the allotted time had completed.  

 
Questions 

The study consisted of four sections where participants 
had to either draw shapes based on a description, or 
describe shapes textually and verbally based on an image.  
Participants were provided with textual instructions (as 
described below) for each stage to ensure that each 



participant received the same instructions. An observer was 
located either nearby (when the study was performed in the 
coffee shop) or in the next room (when the study was 
performed in the lab) in case a participant had a question. 
Very few questions were asked and usually had to do with 
technical issues, such as what to do when the submit button 
was accidentally clicked before a description was 
completed.1 The experimental procedure comprised 4 
stages, as follows: 

 
Part 1: Novice Descriptions:  
The purpose of Part 1 was to obtain unadulterated natural 
human shape descriptions. In Part 1, a participant was 
shown a shape description at the top of the screen with the 
following text and a text box below it: “We want you to 
describe the shape you see above. Imagine you are 
describing this shape to a computer that understands only 
simple geometric shapes and relationships between them.” 
The participant was asked first to verbally describe the 
shape, then to textually describe it. Verbal descriptions 
were typed out verbatim, with disfluencies such as “um” 
and “ah” removed. In this Novice task, participants were 
unaffected by others’ descriptions (as they did not see 
them), and thus more likely to use more natural language. 

In a preliminary study we first varied the order of 
verbally or textually describing a shape, as we thought it 
might make a difference in descriptions; however, we found 
that whenever participants were asked to textually describe 
a shape first, they invariably simply read what they had just 
typed without thinking about the geometric shape of the 
object. To prevent that, we required users to first give a 
verbal description of the shape before giving a text 
description.  In hindsight, we wonder whether simply 
removing their description before asking for a verbal 
description would prevent this. 

 
Part 2: Interpreting Descriptions:  
The purpose of Part 2 was to 1) see if other humans could 
reproduce the drawing based on a provided description (i.e., 
test if their description was understandable), and 2) 
emphasize to the user the purpose of their task (i.e., that 
their descriptions have to be understandable such that the 
drawing is reproducible by another human). 

In Part 2, the participant was shown another 
participant’s description from Part 1 or Part 3 selected at 
random and asked to “Draw the shape above.” Participants 
were never asked to draw or describe the same shape twice 
(thus, the large number of images needed). In order to 
ensure that there would be enough descriptions to ensure 
participants would not draw a shape they had previously 
described, this section had to be seeded with data from 
preliminary participants who completed only Part 1.  The 
participants used for seeding the data were not included in 
the 35 participants. 

                                                
1 These descriptions (of accidental submission) were deleted. 

This section clearly helped participants to better 
understand the task at hand.  We wanted participants to 
create descriptions that could be understood by others. Only 
by showing their descriptions to others did they fully 
understand what that meant.  When doing this part of the 
study, participants often were heard to remark to 
themselves: “Oh, I get it,” or “Oh, that’s a much better way 
to explain it,” or “Hmm, that is very confusing.” This 
section was also used to help validate which descriptions 
were easier to understand and read. 

 
Part 3: Experienced Descriptions:  
The purpose of Part 3 was to determine how users 
descriptions changed after experiencing Part 2.  
In Part 3, the instructions and setup for this section were the 
same as in Part 1. Participants were asked to repeat this task 
to see what effect the experience gained from Part 2 had on 
their descriptions.  The expectation was that participants 
would produce more understandable descriptions. 
 
Part 4: Structured Descriptions:  
The purpose of Part 4 was to determine how their 
descriptions changed, both in terms of words used and 
understandability when users were required to put a little bit 
of structure in their description. 

 
Figure 1. A screen shot of the study during Part 2: 
Interpreting Descriptions after a participant drew a 
description. 

In Part 4, participants were shown a shape and asked to 
label the shape using two separate text boxes. The first text 
box instructed, “List all of the simple geometric shapes in 
the shape shown. Create names for each of them of the form 
line1, line2, circle1, arc1.” The second text box instructed, 
“Using the names you just created above, describe the 
relationships between the components.”  
 
Shapes Shown 

We chose 90 military course of action symbols as our 
image set (Appendix 1). The goal was to select iconic 
shapes that were unfamiliar to most people,2 but still 

                                                
2 We confirmed that military course of actions symbols were, in 
fact, unfamiliar to all of the participants in our study. 



describable using primitive shapes such as lines, arcs, and 
ellipses to more easily allow participants to restrict their 
language to geometric terms only, rather than using a 
domain-specific functional description of the shape. 
Because of the nature of the domain, most of the described 
shapes had elongated rectangles surrounding them. The 
large number of images was chosen to ensure that 
throughout the study participants were never asked to 
describe or draw the same shape twice. 

 
RESULTS 

All verbal descriptions were typed out in textual form so 
they could be appropriately compared with the textual 
descriptions. In total, 520 descriptions and 260 drawings 
were collected and included in this study. 
 
Sample Effective Descriptions 

Many of the diagrams were correctly reproduced given 
their textual description. Figure 2 presents some sample 
descriptions that were accurately reproduced.  
 

 
“This is a rectangle with a line parallel to the left side just inside 
the rectangle and extending from the bottom to the top.  In the 
bottom half of the rectangle is an arc from the bottom left vertex to 
the bottom right vertex. The highest point of the arc is the 
midpoint of the rectangle. Just above the midpoint of the rectangle 
is an ellipse inside the rectangle and centered horizontally.” 

 
“There is a box.  A vertical line divides the box in half.  A line 
connects lower left to upper right corners.  There is a 'B' shape in 
the top left corner.  There is a dark dot in the left half of the box 
above the diagonal line about 3/4 of the way up from the bottom of 
the box.  There is a dark dot on the right side also about 3/4 of the 
way up from the bottom and lies just below the diagonal line.  
Curves from the dots extend across the vertical and diagonal line.  
The curves intersect along the vertical line just below the height of 
the dots.” 
Figure 2. Sample descriptions with the original shape on 
the left and the reproduced drawing on the right. 
 
Sample Ineffective Descriptions 

Although many of the shapes were accurately 
reproduced from participants’ descriptions, some shapes 
drawn in Part 2 from the previous participants’ descriptions 
were reproduced incorrectly. Because many of these shapes 
were mostly correct with the exception of a single 
inaccuracy, we chose not to produce an accuracy 

percentage. Rather, some language choices caused some 
inaccurate reproduction of shapes, and we will discuss a 
few of them here.  

 
Rectangle, not “Box”:   
The term “box” caused some confusion. In 6 different 
drawings, a 3D box, rather than the intended 2D rectangle, 
was produced. (Other occurrences of this word produced 
the intended 2D rectangle; see elsewhere in the paper for a 
sample.)  This is interesting in that no 3D figures were part 
of the domain; we expect that the term “box” would cause 
more confusion if 3D and 2D figures were included in the 
domain. Figure 3 presents a few of the images produced. 

  
Figure 3. Sketches created in Part 2 with descriptions 
specifying a “box.” 
 
Insufficiently Constrained Descriptions:  
Several descriptions gave a relative location to one shape 
but not to others.  Thus, the shape would be insufficiently 
constrained. Figure 4 lists a few of the images produced 
from insufficiently constrained descriptions. 

 
“a rectangle with an arc at the bottom and an ellipse above it, 
touching it, and inside the ellipse there's another arc, sharper than 
the first one, and inside this one there is the letter "S" and there's 
a line at the left-hand end of the rectangle.” 

  
“horiz box. two small, adjacent squares bottom center of box. 
EXCEPT squares do not have bottoms” 
Figure 4. Insufficiently constrained shape descriptions. 
 
Shape Vocabulary 

The main purpose of this study was to determine an 
effective and appropriate vocabulary for the shape 
description language. The participants used 1,203 distinct 
words in their 520 descriptions comprising 209 spoken and 
311 typed descriptions. The descriptions came to 19,345 
total word instances, of which 766 words, totaling 18,906 
instances, were used more than once.  

Each word was labeled as to how it was used within the 
description. The possible labels were: shape type (e.g. 
“rectangle”), shape constraint (e.g., “inside”), shape 



property (e.g., “width”), stop word (e.g., “the,” “a,” 
“those”), nonmeaningful variable label (e.g., “a1,” “s1”), 
everyday non-geometric objects (e.g., golden arches, shield, 
coffin, bridge), and other concepts (such as “like” or 
“about”) which were not chosen in the initial formulation of 
our language.  

Of the 18,906 instances of the 766 words used more 
than once, 8,992 words consisted of shape types, 
constraints, or shape propertied. Table 1 lists the shapes 
used more than once.  Note that the standard geometric 
shapes top this list. There is a general standardization 
vocabulary for most shapes, although there is some 
variability in the description of an arc (“semicircle”, “semi-
ellipse”, “quarter-circle”, “half-circle”, “quarter-arc”). 
Table 2 lists the constraints used more than twice3. Table 3 
lists the properties used more than once.  

 
Shape Count Shape Count 
rectangle 844 line 576 
arc 180 circle 143 
dot 130 triangle 124 
box 116 point 78 
shape 76 ellipse 74 
this 66 oval 66 
semicircle 37 curve 30 

quadrilateral 19 
rounded-
rectangle 16 

square 13 box 13 
segment 11 quarter-circle 8 
figure 6 text 6 
tick 5 semi-ellipse 5 
object 4 half-circle 4 
stick 3 mark 3 
square-
shaped 3 squiggle 2 
wavy-line 2 cursive 2 
quarter-arc 2 dash 1 

Table 1. Word frequency for shape types used more than 
once4.  
 
Language Choices 

The authors created an initial vocabulary for the shape 
description language from the results of this study.  When 
multiple words with the same meaning (or usage in the case 
of using the word “box” in place of “rectangle”), the most 
popular label was chosen.   

Interestingly enough, and rather unsurprisingly, the 
shape constraint words used in the study aligned largely 
with the grouping and singularity rules of perception from 
Wertheimer and Goldmeier’s Gestalt principles. 

                                                
3 Note that misspellings (“diagnol”) and other parts of speech 
(“diagonally”) were counted as the according constraint. 
4 Note that misspellings (“rectagle”) and labels with the same 
name containing a number at the end (“rectangle1”) were counted 
as the according type. 

Constraint Count Constraint Count 
and 483 with 365 
in 328 bottom 275 
right 221 horizontal 217 
left 208 top 173 
inside 158 on 138 
above 115 vertical 100 
smaller 84 connected 72 
lower 64 diagonal 63 
centered 61 intersect 58 
extending 56 longer 55 
equals 52 parallel 37 
same 37 below 36 
near 36 touches 32 
upper 32 within 30 
through 29 little 27 
meet 26 curved 25 
into 24 clockwise 23 
contains 23 larger 23 
across 21 oriented 20 
ends 18 higher 18 
between 17 close 17 
not 17 starts 17 
bigger 15 located 14 
short 14 crossing 13 
passing 13 beginning 12 
congruent 12 equilateral 12 
out 12 or 11 
attached 10 downward 10 
either 10 more 10 
divided 9 isosceles 9 
bisecting 8 aligned 7 
consists 7 inscribed 7 
meets 7 stretching 7 
before 6 bisected 6 
embedded 6 greater 6 
pointed 6 off 6 
topped 5 curving 5 
joined 5 outside 5 
perpendicular 5 straight 5 
taller 5 tiny 5 
upward 5 bottom-left 4 
criss-crossing 4 doesn’t 4 
floating 4 follows 4 
opposite 4 underneath 4 
apart 3 away 3 
bottom-right 3 degree 3 
far 3 over 3 
places 3 round 3 
sits 3 slope 3 
tangent 3 together 3 

Table 2. Word frequency for constraints used more than 
twice.  



We list the some of the chosen constraints and how they 
relate to Gestalt principles (whether grouping or 
singularity): COINCIDENT	
   (grouping),	
   CONNECTED	
  
(grouping),	
  MEET	
   (grouping),	
   TOUCHES	
   (grouping),	
  NEAR	
  
(grouping),	
   FAR	
   (anti-­‐grouping),	
   INTERSECTS	
   (grouping),	
  
CONTAINS	
   (grouping),	
  HORIZONTAL	
   (singularity),	
  VERTICAL	
  
(singularity),	
   DIAGONAL	
   (anti-­‐singularity),	
   PARALLEL	
  
(singularity),	
  PERPENDICULAR	
  (singularity),	
  SLANTED	
  (anti-­‐
singularity),	
   EQUALLENGTH/EQUALSIZE	
   (singularity),	
  	
  
LONGER/LARGER	
   (anti-­‐singularity),	
   SAMEX	
   (singularity),	
  
LEFTOF	
   (anti-­‐singularity),	
   SAMEY	
   (singularity),	
   ABOVE	
  
(anti-­‐singularity),	
  ACUTEMEET	
   (grouping	
   combined	
  with	
  
anti-­‐singularity),	
  OBTUSEMEET	
   (grouping	
   combined	
  with	
  
anti-­‐singularity),	
  BISECTS	
  (grouping	
  and	
  singularity),	
  and	
  	
  
NOT	
  (anti-­‐grouping	
  or	
  singularity).	
  

 
Property Count Property Count 
to (as in p2) 345 center 274 
from (as in p1) 200 middle 84 
wider 79 half 75 
height 70 edge 65 
tall 61 length 46 
vertex 42 degrees 37 
width 37 end 35 
part 23 diameter 19 
angle 18 endpoints 17 
midpoint 9 size 9 
halfway 7 area 6 
position 5 tip 5 
radius 3 head 2 
p1 2 p2 2 
scale 2 skinny 2 
start 2   

Table 3. Word frequency for properties used more than 
once5.  
 

Other constraints were also included to exist in the 
language, but the other constraints not listed above 
functioned as a sort of syntactic sugar, being already 
specifiable by a combination of constraints in the language, 
such as SMALLER or CENTEREDABOVE to include other 
popular constraints.	
  

48% of all words used in the study were a variation of 
one of the above terms (or the word itself). If you include 
stop words and variable labels, that accounts for 97% of all 
words used in the study, leaving only 3% of words used not 
included in the initial version of the language.  
 
Other Vocabulary 

Of the 18,906 words, 8,375 words were instances of 
stop words or non-meaningful variable labels, 541 instances 
were non-geometric objects, and 998 instances (of 75 
distinct words) were other words used in descriptions. 
Table 4 lists the most-popular other words used more than 

                                                
5 Plural and single properties were counted as one. 

15 times (totaling 14 out of 75 individual words and 718 
out of the 998 instances).  These other words were not 
included in the initial version of the vocabulary as there was 
not an immediately intuitive manner as to how they should 
be translated into a recognition rule. 

 
Other Frequency Other  Frequency 
about 77 slightly 28 
as 66 inch 24 
like 53 looks 24 
but 45 both 22 
other 36 towards 20 
rotated 35 upside 18 
way 32 along 18 

Table 4. Word frequency for other words used more than 
15 times each. 

 
The 998 instances of the 75 missing concepts were 

mostly concepts describing how one shape was similar to 
another, and then how it was different (examples included 
“this looks like X, except for...” or “this is about the same Y 
as X, but rotated...”).6 Similarities seemed to be a natural 
way for humans to describe shapes. This method of 
description agrees with the perception rule that people like 
to group similar things. 

 
Other Notable Occurrences 
Hierarchical Descriptions:  
Shapes were often described hierarchically and 
compositionally.  Participants frequently referred to 
previously described shapes even though they were 
instructed not to since descriptions were shown in a random 
order in Part 2.7 Given the prevalence of hierarchically 
described descriptions, the shape language provides the 
ability to describe shapes hierarchically. 
 
Orientation Dependent Descriptions:  
When examining the shape primitives that people used, we 
noticed that they made extensive use of orientation-
dependent terms like “horizontal” and “vertical” in phrases 
like “horizontal rectangle” or “horizontal equilateral 
triangle.” Participants also used orientation when referring 
to subcomponents of a shape, for example, “lower-right 
corner.”  
 
 
 
                                                
6 Note that “rotated” in this list was used not to say that a shape is 
rotatable, a concept that does exist in the language, but rather to 
describe an alteration: “this looks like X, but rotated on its side.” 
This example emphasizes that we feel that how the word was used 
is at least as important as, if not more than, the choice of word 
itself. 
7 In cases where users did refer to previous shapes, we included 
the description of that shape during the drawing task to allow other 
users still to be able to reproduce the shape. 



Common Vocabulary:  
We found it interesting that participants were consistent and 
used the same word repeatedly to describe a concept, both 
within their own descriptions and with others’ descriptions, 
showing the existence of a shared shape vocabulary. The 
extensive use of orientation-dependent descriptions showed 
the value of orientation-dependent constraints, including: 
ABOVE, BELOW, RIGHT, LEFT, HORIZONTAL, VERTICAL. 
Also, some shapes had an implied orientation, and 
participants would comment on the orientation only when it 
was different than expected, for example, “a sideways e.” 
 
Prevalence of Everyday Words: 
Participants were specifically instructed not to use non-
geometrical words (such as everyday objects in their lives) 
and to limit themselves to a graphical vocabulary. Despite 
this instruction, 541 instances of non-geometrical words 
still occurred (e.g., golden arches, shield, coffin, bridge). 
They used non-geometrical words more frequently when 
the diagram was more cluttered, seemingly to simplify the 
description (similar to the idea of using hierarchical 
descriptions). Curiously, they sometimes would use non-
geometrical words even if there were no clear way to draw 
the object from the word (e.g., the word “bridge” for the 
shape “][”). 
 
Text versus Speech:  
In determining how people naturally describe shapes, we 
wanted to see whether participants would use a different 
vocabulary when describing shape orally than when 
describing shapes textually. Thus, we had participants do 
both.  

We found that participants’ oral language was not 
markedly different from their typewritten language. All but 
4 participants tended to type what they spoke, even when 
the description was quite long and difficult to remember. Of 
the words that were used only in speech or only in typing, 
none were used more than 7 times each. Of those used more 
than 4 times, all were labels (e.g., “s”), typed misspellings 
(e.g., “diagnol”), typed shorthand (e.g., “1/3” versus “one 
third”), or stop words (e.g., “what,” “guess”) that were not 
present in a typed description. The 4 participants who did 
not type and speak the description similarly were computer 
science researchers. They tended to type descriptions 
similar to those they had learned in other graphical 
languages (e.g., “box w 2 h 1”). 

We also wanted to test whether non-geometrical words 
were more prevalent in spoken descriptions where the 
participant was interacting with a human as compared with 
interacting with a computer. We found that this was not the 
case; subjects used the same number of context words in 
both the spoken and the typed sections. In fact, the number 
was smaller in spoken descriptions (2.93% of spoken and 
3.02% of typed), but not significantly so. 
 
Novice versus Experienced:  
We wanted to see whether experience changed people’s 
vocabulary. We found that while mostly the same words 

were used in both the Novice and in the Experienced 
section, the number of instances did change for those 
words. Of the words that were used only in one section, 
only one word was used more than 9 times: “some” was 
used 14 times in the Novice section, but never in the 
Experienced section.  

Participants definitely seemed to improve their 
descriptions in the second section. In the Novice section, 
participants often would falter with how to describe 
something, pausing for a long time before beginning. The 
descriptions in the Novice section were often convoluted. 
Between the Novice and Experienced sections, participants 
would read other people’s descriptions and attempt to draw 
their shapes; after seeing others’ descriptions, they often 
would pick a simpler way to describe something, and their 
descriptions would be much easier to understand. A 
common example was the “horizontal rectangle,” which 
was described in the Novice section in such convoluted 
ways as “It’s a quadrilateral with two pairs of lengths, two 
different pairs of lengths. Each pair is congruent in length.” 
In the Experienced section, however, it would almost 
always be described as a “horizontal rectangle” or “a 
rectangle wider than it is tall.” 

If we compare the number of occurrences of a word in 
the Novice section versus the Experienced section, we can 
observe the changes in word choice. If we take the absolute 
difference of the number of occurrences in each section, 8 
words have an absolute difference of 40 instances or more. 
Of these 8 words, all were much more frequent in the 
Experienced section, displaying convergence into a single 
shared vocabulary. It suggests that at the beginning, various 
words were used to describe a concept until the appropriate 
word was found and then repeatedly used. To give an 
example, “horizontal” was used 68 more times in the 
Experienced section than in the Novice section: a threefold 
increase, from 31 occurrences in the Novice section to 99 
occurrences in the Experienced section. This was the largest 
factor of increase among those 8 words.  

Since participants were able to find the appropriate 
word choice more quickly, we expected that the 
Experienced descriptions would contain fewer words. 
However, the Experienced descriptions were longer, 
containing 7 more words per description on average (28.46 
versus 35.40). Although participants described concepts 
more concisely, they often added words to describe other 
parts of the shape more precisely. 
 
LANGUAGE CHOICES 

As stated previously, our initial version of the LADDER 
language accounts for 97% of all words used in this study.  

By including perceptually important constraints, we 
argue that the resulting language is more intuitive and 
easier for humans to use. We also argue that the resulting 
descriptions are likely to be more accurate and likely to 
produce better descriptions because the descriptions focus 
on only those details that are perceptually important. By 
focusing on perceptually important constraints, we simplify 



the language. As a result, we have no need for constraints 
that specify angles at a finer granularity than horizontal, 
vertical, positive slope, or negative slope. We argue that 
this narrowing of the language makes it more 
comprehensible and easy to find the appropriate constraints 
to describe a shape. 

The LADDER language also allows developers to 
specify shapes hierarchically (specifying a shape that is the 
same as another, but with something added), using abstract 
shapes (two different shapes may share common properties, 
such as a “body” in mechanical engineering), using local 
geometrical context (geometric relations based on other 
shapes on the screen, e.g., “this shape is bigger than that 
shape”), and using similarity (again, only by hierarchy); all 
of these methods of shape descriptions were shown to be 
commonly used by humans in the study. 
 

 

 

 

 
Figure 5. Images of automatically generated sketch 
recognition user interfaces using the shape language. 
 
Language Use 

This paper describes the initial choices for the 
LADDER shape description language, but we must ask 
ourselves how can we measure the effectiveness of this 
language selection. To measure the language vocabulary, 
sketch recognition systems for over 30 domains by more 
than 20 different users have been effectively created using 
the LADDER sketch language. Sample domains include 
mechanical engineering, finite state machines, electrical 
circuits, chemical diagrams, flow charts, UML class 
diagrams, UML sequence diagrams, stick figures, and many 
more (Figure 5) [8]. Using the principles in this paper, the 

shape recognizers for each sketch recognition system been 
automatically generated after supplying only a single 
example of each shape.  The system then applies the 
principles in this paper in reverse to automatically generate 
a description and then a recognizer for each shape [8].  
Also, as noted before, previous sketch recognition systems 
have contained on the order of 10-20 shapes. Using the 
LADDER language, we have been able to create a system 
that recognizes 923 distinct shapes in real-time, and 
achieved a recognition accuracy of 83% (and a top-3 
accuracy of 87%) on a corpus of over 11,000 sketches. This 
is almost two orders of magnitude larger than any existing 
system, and has been made possible through the results of 
this study and the resulting language that has been 
developed from this study. 
 
FUTURE WORK 

The study showed that humans use a variety of forms of 
context to identify and describe shapes, including non-
geometrical cultural contextual clues and similarities to 
other shapes. For the class of shapes we have handled thus 
far in recognition, this has not been a problem, but it 
certainly could be, given how prevalent it was in the study. 
Both techniques could be a valuable addition to the 
language and an interesting research problem. In order to 
allow developers to describe shapes in terms of everyday 
cultural objects, we would have to (1) define each of the 
objects that may be used in a description and (2) come up 
with a similarity metric for comparing them. Given the 
number of objects in our everyday lives, this is a substantial 
task. We suggest that a commonsense database, such as 
OpenMind [20], for accessing everyday objects might help 
in implementing this technique. 
 
CONCLUSIONS 

This paper presents the methodology and results of a 
study conducted to determine how people describe shapes. 
Results show that Gestalt principles of perception, 
similarity, and context play an important role in how people 
describe shapes. The results of this study have been used to 
help implement and refine the LADDER shape description 
language used to recognize shapes in a sketch interface. 
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Appendix 1. The complete listing of the 90 images used in the study. This represents a subset of the total number 

of military course of action diagrams.
 


