arXiv:1006.5845v1 [cs.0S] 30 Jun 2010

Dynamic and Transparent Analysis of Commodity
Production Systems

Aristide Fattorit Roberto Palearit
{aristide,roberto}@security.dico.unimi.it

Dip. di Informatica e Comunicazione’
Universita degli Studi di Milano

[-20135 Milan, ltaly

ABSTRACT

We propose a framework that provides a programming in-
terface to perform complex dynamic system-level analyses
of deployed production systems. By leveraging hardware
support for virtualization available nowadays on all com-
modity machines, our framework is completely transparent
to the system under analysis and it guarantees isolation of
the analysis tools running on its top. Thus, the internals
of the kernel of the running system needs not to be modi-
fied and the whole platform runs unaware of the framework.
Moreover, errors in the analysis tools do not affect the run-
ning system and the framework. This is accomplished by
installing a minimalistic virtual machine monitor and mi-
grating the system, as it runs, into a virtual machine. In
order to demonstrate the potentials of our framework we
developed an interactive kernel debugger, nicknamed Hy-
PERDBG. HYPERDBG can be used to debug any critical
kernel component, and even to single step the execution of
exception and interrupt handlers.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Monitors, Tracing; D.4.9 [Operating Sys-
tems]: Systems Programs and Utilities

General Terms

Verification

Keywords

hardware virtualization, debugging, system analysis

1. INTRODUCTION

Operating systems are peculiar and very complex pieces
of software whose internals are critically vital for a system:
a failure, or a bottleneck, in any of their parts can lead to

To appear in the 25'" TEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, 20-24 September 2010

Lorenzo Martignoni:
lorenzo.martignoni@uniud.it

Mattia Monga'
mattia.monga@unimi.it

Dip. di Fisica*
Universita degli Studi di Udine
[-33100 Udine, ltaly

catastrophic consequences. Therefore, special care is needed
to develop, analyze, test, and profile them. To simplify their
task, developers and analysts rely on a large variety of tools
and analysis techniques. Some of them are specific for study-
ing static properties of the operating system, while others
are more specific for studying dynamic properties. In par-
ticular, the latter class of tools and techniques is nowadays
very popular among kernel developers and analysts because
it allows them to collect the information very quickly, while
hiding many of the intricacies of the kernel, and can even be
used on running production systems.

Existing approaches for dynamic analysis of operating sys-
tems (e.g., debugging, profiling, and tracing) can be roughly
classified in two groups: kernel-based and VMM-based. The
approach taken by the first group is to include some com-
ponent into the kernel in order to intercept all the events of
interest (e.g., the creation of a new process, the execution
of a system call, and the execution of a kernel function) and
to execute a specific action when such events occur [2, 11,
14, 18, 20]. This solution requires the installation of specific
hooks in the kernel to monitor run-time events and it might
be very difficult to apply to operating systems that do not
natively offer facilities for dynamic analysis, especially when
the source code is not available. The approach taken by the
second group is to run the kernel and user-space applica-
tions in a virtual machine and to intercept, and respond
to, the events of interest from the virtual machine moni-
tor (VMM) [9]. Although this approach guarantees trans-
parency and has a loose dependency on the operating sys-
tem internals, it cannot be used in all the settings, since it
implies that the system must be run as a guest of a vir-
tual machine and production systems not running in virtual
machines cannot be analyzed. Moreover, VMM-based solu-
tions typically virtualize hardware devices, to allow multiple
guests to share the same physical peripherals. This makes
software virtualization approaches unsuitable to assist the
analysis of components that need to interact directly with
the underlying hardware.

In this paper we propose a framework that brings to-
gether the advantages of both approaches: it can be used on
commodity production systems (i.e., off-the-shelf products,
whose source code or debugging symbols are not necessarily
available), since it does not require to instrument the sys-
tem under test, and it is able to inspect systems running on
real hardware, since it does not require an emulation con-
tainer. Similarly to existing frameworks, the analyses that
can be built on top of our framework include profiling and

tracing of the kernel and user-space applications, interactive
debugging, or even extension of system features. However,
differently from existing frameworks, ours is fully dynamic,
transparent, loosely dependent on the operating system, and
fault-tolerant with respect to possible defects in the anal-
ysis code. First, our framework does not require recompi-
lation or rebooting of the target system. Thus, it can be
used to analyze any running production system, including
commodity operating systems lacking native support for in-
strumentation and systems not running in virtual machines.
Second, the framework is not invasive, since analyses can be
performed on a virtually unmodified system: as explained in
the paper, only a minimal driver needs to be installed and no
parts of the kernel are patched in any way. Moreover, since
the framework itself is not accessible from the target system,
its code cannot be detected by malicious code or unwittingly
influence buggy operating system components. Thus, the
infrastructure can be applied to any operating system, as
the majority of the facilities it supports are completely OS-
independent, and the only OS-dependent functionalities are
just provided to ease the development of analysis tools. Fi-
nally, the framework is fault-tolerant, as it guarantees that
a defect in an analysis tool built on top of it do not damage
the framework itself nor the analyzed system.

Our framework leverages hardware extensions for virtual-
ization available on commodity x86 CPUs [1, 15]. Hardware-
support for virtualization allows the development of virtual
machine monitors that are very efficient, completely trans-
parent, and non invasive to the systems running in the vir-
tual machine. To overcome the major limitation of tradi-
tional VMM-based approaches (i.e., the impossibility to an-
alyze productions systems not running in a virtual machine),
our framework exploits a feature of the hardware that allows
to install a virtual machine monitor and to migrate a run-
ning system into a virtual machine. When the analysis is
completed, the original mode of operation of the system can
be restored. Practically speaking, our framework is a mini-
malistic virtual machine monitor acting as a broker between
the analyzed system and the analysis tool. The framework
abstracts low-level events occurring in the analyzed system
into high-level events and guarantees fault-tolerance by re-
lying on the hardware to run the analysis tool in a isolated
execution environment.

To demonstrate the potentials of our framework we have
developed an interactive kernel debugger, nicknamed Hy-
PERDBG, constructed entirely using the programming in-
terface exposed by our infrastructure. HYPERDBG adds
live and interactive debugging support to Microsoft Win-
dows XP, so far only possible using very invasive tools, like
Syser [19], or traditional VMM-based debuggers. HYPER-
DBG can be used to debug any component of the Win-
dows kernel, including interrupt/exception handlers, device
drivers, and even supports single instruction stepping. Be-
ing completely separated from the debuggee, HYPERDBG is
transparent to the analyzed system and can be even used to
analyze protected and malicious code.

In summary, the paper makes the following contributions.

1. We propose a framework to perform complex dynamic
system-level analyses of commodity production sys-
tems. Compared to existing frameworks, the one we
propose guarantees transparency, efficiency, and does
not require the target system to be already installed
on a virtual machine.

2. We implemented our framework in an experimental
prototype for Microsoft Windows XP.

3. We describe the design and the implementation of Hy-
PERDBG, a kernel-level interactive debugger built on
top our framework.

Both the analysis framework and HYPERDBG are avail-
able at http://security.dico.unimi.it/hyperdbg/ and is
released under the terms and conditions of the GPL (v3.0)
license.

2. RELATED WORK

The framework proposed in this paper shares many simi-
larities with frameworks and techniques extensively explored
in the past. However, by exploiting recent facilities available
of modern Intel x86 CPUs, our framework is able to combine
and to offer simultaneously the main benefits introduced by
previous research work.

Dynamic Kernel Instrumentation.

DTrace is a facility included into the Solaris kernel that al-
lows the dynamic instrumentation of production systems [2].
The key points of DTrace are efficiency and flexibility. First,
the instrumentation framework itself introduces no over-
head. Second, the framework provides tens of thousands
of instrumentation points, and the actions to be taken can
be expressed in terms of a high-level control language, that
also includes a number of mechanisms to guarantee run-
time safety. Similarly, Kernlnst is a dynamic instrumen-
tation framework for commodity kernels [20]. KernInst has
been developed mainly to gather information about the per-
formances of a running kernel, but it has also been em-
ployed for run-time kernel optimization. Differently from
DTrace, Kernlnst does not provide any mechanism for run-
time safety of the instrumentation routines. Unfortunately,
the aforementioned approaches are not transparent, as they
require direct modifications of the operating system kernel,
achieved by loading a kernel-mode module. Moreover, none
of them is OS-independent, and they and cannot be applied
to closed-source operating systems. Our framework does
not suffer these limitations since it can instrument the ker-
nel without modifying it and does not rely on any facility
offered by the kernel.

Kernel-level Debugging.

Several efforts have been made to develop efficient and
reliable kernel-level debuggers. Indeed, these applications
are essential for many activities, such as the development
of device drivers. One of the first and most widely used
kernel-level debuggers that targeted the Microsoft Windows
operating system was SoftICE [18], but today the project
has been discontinued. However, both commercial [19] and
open-source [17] alternatives to SoftICE appeared. Mod-
ern versions of Windows already include a kernel debugging
subsystem [14]. Unfortunately, to exploit the full capabili-
ties of Microsoft’s debugging infrastructure, the host being
debugged must be physically linked (e.g., by means of a se-
rial cable) with another machine. All these approaches share
a common factor: to debug kernel-level code, they leverage
another kernel-level module. Obviously, that is like a dog
chasing its tail. The framework proposed in this paper does
not require any kernel support nor to modify the kernel to
add the missing support at run-time.

User User User User
process process process process

User mode User mode

Kernel mode Kernel mode

[Operating system kernel] [Ope‘kati‘ng system kernel]

Non-root mode
Root mode

Remove

Install

Framework

Figure 1: Overview of the framework

Frameworks Based on Virtual Machines.

Instead of relying on a kernel-level module to monitor
other kernel code, an alternative approach consists of run-
ning the target code inside a virtual machine, and to per-
form the required analyses from the outside [9]. In [10, 22, 7]
the authors propose virtual machines with execution replay-
ing capabilities: a user can move forward and backwards
through the execution history of the whole system, both
for debugging and for understanding how a hacker intrusion
took place. Finally, in [3] Chow et al. propose Aftersight,
a system that decouples execution recording from execution
trace analysis, thus reducing the overhead suffered by the
system where the guest operating system is run. Nowa-
days, Aftersight is part of the VMware platform, and other
mainstream commercial products provide similar capabili-
ties. The framework proposed in this paper can provide
these functionalities even on systems not running in any vir-
tual machine.

Aspect-oriented Programming.

Aspect-oriented programming is a paradigm that promises
to increase modularity by encapsulating cross-cutting con-
cerns into separated code units, called “aspects”, whose “ad-
vice” code is woven into the system automatically, by speci-
fying the properties of the join-points. AspectC is an aspect-
oriented framework that is used to customize (at compile-
time) operating system kernels [4, 12, 13]. More dynamic
approaches have been proposed: for example TOSKANA
provides before, after and around advices for in-kernel func-
tions and supports the implementation of aspects themselves
as dynamically exchangeable kernel modules [8]. The frame-
work proposed in this paper allows to achieve the same goal
while being transparent and fault-tolerant.

3. OVERVIEW OF THE FRAMEWORK

Figure 1 depicts the architecture of our framework, the
installation and removal processes, and the migration of the
operating system and its applications into a virtual machine.
Our framework consists of a virtual machine monitor (VMM
for short) that provides a programming interface for the de-
velopment of system-level analysis tools. As in traditional
VMM-based analysis approaches, the analysis tool is run
within the VMM and thus completely transparent to guests
of the virtual machine. However, compared to traditional

VMM-based ones, ours does not require the system to be
already running inside any virtual machine. To achieve this
goal, our framework leverages hardware extensions for virtu-
alization available on all modern x86 CPUs [15, 1] (which are
unused in the majority of the deployments). In short, these
extensions augment the instruction set architecture with two
new modes of operation: VMX root mode and VMX non-
root mode®. These new modes of operation separate logically
the virtual machine monitor from a guest without having to
modify the latter. More precisely, we exploit a particular
feature of these extensions that allows for late launching of
VMX modes. Late launching of VMX modes permits to
install a virtual machine monitor even if the system has al-
ready been bootstrapped. In other words, late launching
allows to migrate (temporarily) a running operating system
in a virtual machine, and to analyze and control the execu-
tion of the system from the monitor. Through the rest of the
paper, we use the term “guest” to refer to the system under
analysis that has been migrated into a virtual machine.

Practically speaking, the running operating system is not
migrated anywhere and not touched at all. Rather, by
launching VMX modes, the execution environment is ex-
tended with the two aforementioned operating modes; the
running operating system is then associated with non-root
mode, while the VMM is associated with root mode. Thus,
in all respects, the operating system and its applications be-
come a guest of our special virtual machine. Following the
same principle, the VMM can be unloaded, and the original
mode of execution of the operating system restored, by sim-
ply disabling VMX modes. After the launch of the VMX
modes, the execution of the guest can continue exactly as
before, even in terms of interactions with the underlying
hardware devices. However, during its execution, the guest
might be interrupted by an ezit to root mode. Like hardware
exceptions, exits are events that block the execution of the
guest, switch from non-root mode to root mode, and transfer
the control to the VMM. Differently from exceptions, the set
of events triggering exits to root mode can be configured dy-
namically by the VMM. A routine of the VMM handles the
exit and eventually enters non-root mode to resume the ex-
ecution of the guest. Being executed at the highest privilege
level, the routine handling the exit has complete read/write
control of the state of the guest system (of both memory
and CPU registers).

The framework itself does not perform any analysis. It is
only responsible for handling a small set of exits to control
all accesses to the memory management unit of the CPU, to
prevent the guest from accessing the physical memory loca-
tions holding the code and the data of the framework. On
the other hand, the framework provides a flexible API to de-
velop tools to perform sophisticated analyses of both kernel
and user code running in the guest. Using the function-
alities provided through the API, the tool can request the
framework to monitor certain events that might occur dur-
ing the execution of the guest; when such events occur, it can
inspect, and even manipulate, the state of the guest. The
events that can be monitored include, but are not limited to,
system call invocations, function calls, context switches and
1/0 operations. Practically speaking, events are monitored
through exits to root mode. Thus, a request of the analysis
tool to monitor a certain high-level event (e.g., the execu-

'VMX (non-) root mode is the terminology used by Intel;
AMD adopts a different terminology.

Non-root mo

Root mode

,—»{ Analysis tool

3. API call

6. Exception

T

1. Exit
1 2. Notification|®

1

User mode

Kernel mode

4a. Inspect/manipulate

Framework
4. API 'request
Event gate Trap gate
___ 4b. Request event notification
L 5. Recover information about events

7. Interrupt

[Video] [Timer] [Disk] [V(‘t\\()l'](]

Figure 2: A close-up of the framework

Hardware

tion of a system call) is translated by the API of the frame-
work into a sequence of low-level operations that guarantee
that all the occurrences of such event in the guest trigger an
exit to root mode. Similarly, the framework translates the
exit into a higher-level event and notifies the occurrence of
the event to the analysis tool. Once notified, the tool can
recover information about the event (e.g., arguments and
return value of a system call), using the inspection function-
alities offered by the API.

An important requirement for the analysis of production
systems is that analysis tools must not interfere with the
correct execution of the guest. This is particularly impor-
tant for faults and deadlocks that might occur in the analysis
tool. The approach we adopt is to run the tool in a less privi-
leged execution environment, isolated from the analyzed sys-
tem and from the framework. The tool can interact with the
guest only through the API exposed by the framework. This
approach guarantees the framework the ability to intercept
any fault occurring in the tool, to mediate all accesses to
the analyzed system (and to prevent write accesses), and to
terminate the tool in case of deadlocks or other anomalous
situations.

4. DESIGN AND IMPLEMENTATION

Figure 2 shows a more detailed view of the architecture
of our framework. Intuitively, this architecture is very simi-
lar to that of traditional operating systems: the framework
plays the role of the kernel and the analysis tool plays the
role of a user-space application. As will become clear later,
this architecture prevents buggy analysis tools from compro-
mising the guest system and the framework. The separation
between these two parts is made possible by the fact that,
when VMX is enabled, root and non-root modes offer two
fully-featured execution environments. Thus, like the guest
running in non-root mode, the framework running in root
mode can rely on privilege separation to isolate the analysis
tool and can handle independently interrupts and exceptions
that might occur while executing in root mode.

When an exit to root mode interrupts the execution of
the guest, the event is delivered to the event gate (step 1

in Figure 2). The event gate is responsible for abstract-
ing low-level events into higher-level ones, and to notify the
analysis tool if the latter has requested to do so (step 2).
On startup the analysis tool requests the framework to be
notified of certain events (not shown in the figure). The
tool can use the API provided by framework to query extra
information about the event (e.g., the content of the stack
location storing one of the arguments of a function). Since
the tool is isolated from the framework, API functions are
invoked through software interrupts. Thus, requests coming
from the analysis tool are received by the trap gate (step
3), then forwarded to the component implementing the API
(step 4). The tool can perform two types of API calls: (step
4a) to inspect or manipulate the state of the guest, and (step
4b) to control event notifications (e.g., enable or disable the
notification of certain events). Note that the component
implementing the API is also used by the framework itself
(step 5) to recover extra information about events (e.g., the
return address of a function stored in the stack). The trap
gate also serves the purpose of detecting exceptions (e.g.,
page faults) that might occur during the execution of the
analysis tool. If the trap gate intercepts an exception (step
6), it terminates the faulty tool and unloads the framework,
to resume the normal operation mode of the system. Finally,
the trap gate is also used to handle timer interrupts (step
7), that, as will be discussed in Section 4.4, are employed to
enforce a time-bound on the execution of the tool.

The functionalities provided by the API of the framework
can be classified into two classes: execution and I/0 tracing
and state inspection and manipulation. The following para-
graphs describe briefly the API. More details are given in
Sections 4.2 and 4.3.

Execution and I/O tracing facilities allow a tool to inter-
cept the occurrence in the analyzed system of certain events
and certain I/O operations respectively. Table 1 reports the
main types of events that can be traced. For each event, the
table also reports the arguments associated to the event; ar-
guments are information about the events most commonly
used in tools. For example, the events FunctionEntry and
SyscallEntry are used to trace functions and system calls
respectively. The arguments associated to the FunctionEn-
try event are the address (or the name) of the function
called, the caller and the return address. Another exam-
ple is the ProcessSwitch event that can be used to trace
context switches between processes (not threads). From the
point of view of the analysis tool all the events are handled
in the same way: the tool can subscribe to any event and,
when the event occurs, can inspect its arguments and take
the proper actions. However, at the framework-level, certain
events are different from other ones. Indeed, some of them
(e.g., context switches between processes) can be traced di-
rectly by the hardware. That is, the event triggering the exit
corresponds exactly to the event being traced. Other events
instead (e.g., function calls and returns) cannot be traced
directly by the hardware. In all these cases the framework
relies on other low-level events to trace the execution and
then abstract exiting low-level events into higher-level ones,
meaningful for the analysis tool.

Arguments can optionally be used as conditions, to limit
the tracing to a subset of all the events. Conditions on events
serve two purposes. First, conditions allow to simplify the
analysis tools, since events that do not match the requested
conditions are discarded by the framework and thus do not

Event Description

Arguments

ProcessSwitch Context (process) switch

Exception Execution

Interrupt Hardware or software interrupt
BreakpointHit Execution breakpoint

WatchpointHit Watchpoint on data read/write
FunctionEntry Function call

FunctionExit Return from function

SyscallEntry System call invocation

SyscallExit Return from system call
I0OperationPort I/O operation throught hardware port

I0OperationMmap Memory-mapped I/O operation

Exception vector, faulty instruction, error code
Interrupt vector, requesting instruction

Breakpoint address

Watchpoint address, access type, hitting instruction
Function name/address, caller/return address
Function name/address, return address

System call number, caller/return address

System call number, return address

Port number, access type

Memory address, access type

Table 1: Events traceable using our framework and corresponding arguments (the argument that represents
the current process is omitted, as it is common to all the events)

need to be handled by the tool. Second, some conditions
allow preemptive filtering of the events. In other words,
the framework configures a priori which events trigger an
exit, instead of filtering out exits caused by uninteresting
events. For example, in the case of the I0OperationPort
event, preemptive filtering means to configure the CPU such
that only I/O operations involving a specific I/O port trigger
an exit. This feature is very important to minimize the
number of exits and thus the overall overhead.

State inspection and manipulation primitives can be used
by the tool to access the state of the guest, in order to extract
more detailed information about events or other data use-
ful for the analysis. For example, these primitives allow to
extract the arguments of an invoked function, or to inspect
the internal structures of the guest operating system. Note
that, by default, write access to guest state is not granted
to a tool. If necessary, such permission can be enabled at
compile-time. Obviously, in this case the framework cannot
protect the state of the guest from dangerous modifications.

4.1 Framework and Analysis Tool Loading

The framework and the analysis tool are loaded by a min-
imal kernel driver. This is unavoidable since the operations
we need to perform to load the framework require maxi-
mum privileges and can be performed only by the kernel of
the operating system. The driver, however, is indeed very
simple and we put extreme care in avoiding any interference
with the kernel. Moreover, since once loaded the framework
is completely invisible to the system, we unload the driver
immediately as soon as the framework has been installed.

When VMX modes are enabled, a special VMX data struc-
ture (VMCS in Intel terminology) is made accessible initially
to the loader, and subsequently, when the loading is com-
pleted, only to the framework. This data structure stores the
host state, guest state, and the execution control fields. The
host state stores the state of the processor that is loaded
on exits to root mode, and consists of the state of all the
registers of the CPU (except for general purpose registers).
Similarly, the guest state stores the state of the processor
that is loaded on entries to non-root mode. The guest state
is updated automatically at every exit, such that the sub-
sequent entry to non-root mode will resume the execution
from the same point. The execution control fields allow a
fine-grained specification of which events should trigger an
exit to root mode.

The task of the loader is to enable VMX modes and to
configure the VMX data structure such that the execution of
the operating system and user-space applications continue to

run in non-root mode, while the framework and the analysis
tool are executed in root mode. Moreover, the loader has
to configure the CPU such that all the events necessary for
the tool to trace the execution of the system trigger exits to
root mode. When the initialization is completed, the driver
unloads itself and resumes the execution of the system.

Guest State Configuration.

The guest state is initialized to the current state of the
system. In this way, when the virtual machine is launched
and execution enters non-root mode, the guest operating
system will resume its execution as if nothing happened.
A tricky problem when initializing non-root mode concerns
the management of the memory. More precisely, we must
prevent the newly created guest to use and access the phys-
ical memory frames allocated to the framework and to the
tool. Otherwise, the guest could detect and even corrupt
the framework. Most recent CPUs provide hardware facil-
ities for memory virtualization (e.g., Intel Extended Page
Table extension). If these facilities are not available, mem-
ory virtualization must be implemented entirely via soft-
ware. Briefly, software memory virtualization consists of
intercepting all guest operations to manipulate the page ta-
ble (the data structure the CPU uses for virtual-to-physical
address translation) and in ensuring that none of the phys-
ical frames allocated to the framework and to the analysis
tool are mapped into the guest. In case the guest tries to
map a reserved physical frame, the framework assigns the
guest a different one and masquerades the difference.

Host State Configuration.

The host state is initialized as follows. The CPU is config-
ured to use, when in root mode, a dedicated address space
and a dedicated interrupt descriptor table (IDT). This con-
figuration simplifies the separation of the analyzed system
from the framework and allows to detect and handle inter-
rupts and exceptions that occur in root mode. Differently
from the address of the entry point of non-root mode, which
is updated at every exit to allow to resume execution of
the guest from where it was interrupted, the address of the
entry point of root mode is fixed. The entry point is set
to the address of the routine that takes care of dispatching
an exit event to the appropriate handler and that in turn
might notify the analysis tool (i.e., the entry point of the
event gate).

Execution Control Fields Configuration.
To reduce the run-time overhead suffered by the guest

Event Exit cause Nat'lve
exit
ProcessSwitch Change of page table address 4
Exception Exception Vv
Interrupt Interrupt Vv
BreakpointHit Debug except. / Page fault except.
WatchpointHit Page fault except.
FunctionEntry Breakpoint on function entry point
FunctionExit Breakpoint on return address
SyscallEntry Breakpoint on syscall entry point
SyscallExit Breakpoint on return address

I0OperationPort Port read/write 4
I0OperationMmap Watchpoint on device memory

Table 2: Techniques for tracing events

system, the execution control fields are configured to mini-
mize the number of events that trigger an exit to root mode.
When the tool is initialized, it specifies which events must
be intercepted. Subsequently, in response to the invocation
of API functions, the configuration of the execution control
fields can be altered to intercept additional events or to ig-
nore other ones.

4.2 Execution Tracing

Table 2 describes the technique used to trace all the events
currently supported by the framework. Low-level events
(those with a mark in the last column) correspond directly
to exits to root mode (e.g., Exception). Other events are
traced through the aforementioned ones (e.g., Breakpoint-
Hit), and others again are traced through the latter (e.g.,
FunctionEntry).

Events that can be traced directly through the hardware
are process switches, exceptions, interrupts, and port-based
I/O operations. All these events exit conditionally: they
exit to root mode only when requested and can have op-
tional exit conditions to limit exits to particular situations.
The remaining of this section presents how we developed the
primitives for tracing higher-level events starting from the
aforementioned low-level ones.

Breakpoints and watchpoints are two of the most compli-
cated events to implement. Modern CPUs provide hardware
facilities to realize efficient and transparent breakpoints and
watchpoints. Unfortunately, hardware-assisted breakpoints
and watchpoints are limited in number (only 4) and shared
between non-root and root mode. Therefore, they cannot
be used simultaneously by the analyzed system and by the
framework. The solution we adopt to allow an arbitrary
number of breakpoints is to use software breakpoints. A
software breakpoint is a one-byte instruction that triggers a
breakpoint exception when executed. Software breakpoints
are enabled by replacing the byte at the address on which
we want the breakpoint with the aforementioned instruction.
When the breakpoint is hit, the original byte is restored and
the event is notified to the tool. If the breakpoint is not per-
sistent the execution of the system is resumed. Otherwise
the instruction is emulated and then the breakpoint is set
again. Clearly, this approach to breakpoints is not trans-
parent for the analyzed system. However, it is very efficient.
An alternative and transparent approach is to use the same
technique we use for watchpoints, as described in the next
paragraph. Our framework supports both approaches.

The approach used in our framework to implement soft-
ware watchpoints is based on protecting the memory loca-
tions from any access via hardware (or just from write ac-

cesses, depending on the type of watchpoint), such that any
access results in an exception [21]. More precisely, since
the finest level of protection offered by the hardware is at
the page level, we mark the page containing the address on
which we want to set the watchpoint as “non-present”. Any
future access to this page will result in a page fault exception
that will be intercepted by our framework. The framework
analyzes the exception and checks whether the accessed ad-
dress corresponds to the address with the watchpoint. If
the watchpoint is hit, the framework delivers the event to
the analysis tool, otherwise it emulates the instruction, and
then resumes the normal execution of the guest. Emula-
tion is necessary to execute the faulty instruction manually.
Indeed, to prevent a second fault, the original permission
of the memory page accessed by the instruction must be
restored before executing the faulty instruction. After the
execution of the instruction, the page must be marked again
as “non-present” to catch future accesses.

Other higher-level events, such as function and system call
entries and exits, are traced through breakpoints. When the
analysis tool requests the framework to monitor a certain
function, the framework sets a breakpoint on the address of
the entry point of the function. Later, when a breakpoint is
hit, the framework checks whether the hit breakpoint cor-
responds to a function entry point and, if so, it delivers the
appropriate event (i.e., FunctionEntry) to the analysis tool.
Function exits, instead, are traced by setting a breakpoint
on the return address. The framework discovers the return
address by setting a breakpoint on the function entry and by
inspecting the stack frame of the function when the break-
point on the entry point is hit. A similar approach is used
for tracing system calls entries and exits.

The approach for tracing function calls and returns just
described allows to trace specific functions, whose names or
addresses are supplied by the tool. The tracing of all func-
tion calls and returns is instead more complicated because
it is not possible to know a priori the addresses of all func-
tions’ entry points. The solution in this case is to perform
a static analysis to identify the addresses of all functions’
entry points (e.g., by recognizing function prologues). This
feature is still not available in our current implementation of
the framework. Nevertheless, if needed, the static analysis
could be performed directly in the tool. The tracing of all
system calls is instead much easier, since they are all invoked
through a common gate. The solution we adopt is to put a
breakpoint on the entry point of the system call gate [6].

Beside execution tracing facilities, the framework also ex-
poses to analysis tools the possibility of intercepting I/O
operations with hardware peripherals. Software can interact
with hardware devices through hardware I/O ports, or it can
leverage memory-mapped I/O. In the first case, VMX allows
to intercept the operation without any effort: the framework
simply configures the execution control fields such that all
the interactions with the specific hardware ports trigger an
exit to root mode; when such an exit occurs, the frame-
work notifies the tool by means of a I00perationPort event.
However, for performance reasons, modern peripherals typ-
ically resort to memory-mapped I/O. In this case, read and
write operations do not involve any hardware port, as they
are performed directly on memory. To intercept such opera-
tions we set a watchpoint on the appropriate memory region.
Thus, when an access to it is detected, the framework deliv-
ers a I0OperationMmap event to the tool.

4.3 State Inspection and Manipulation

Several situations require to access the state of the guest
system in order to inspect, and optionally manipulate, both
the registers of the CPU and the memory. As an example,
the framework could need to read the return address of a
function from the stack, to access the parameters of a system
call from the processor registers, or to insert a breakpoint
into the address space of a particular process. Similarly, the
analysis tool might need to extract data from the memory
of the guest.

The inspection and manipulation of CPU registers is a
straightforward activity. These information are saved during
an exit and restored before an entry. Thus, the inspection
and manipulation of registers merely consists of reading or
writing the VMX guest state (or the memory of the frame-
work, depending on the type of register).

Inspection and manipulation of memory locations is much
more complex. When paging is enabled, virtual addresses
are translated by the hardware into physical addresses ac-
cording to the content of the page table and direct physical
addressing is not possible. Each process has its own page
table; therefore, different processes have different virtual-to-
physical mappings and a process cannot access the memory
of the others. The framework is isolated from the guest us-
ing the same approach and thus it has its own page table
and its own mapping. Consequently, the framework cannot
directly access memory locations of guest processes. More-
over, inspection is complicated by the fact that page tables
cannot be traversed via software (but only via hardware):
the page table is a multilevel table and pointers to lower
levels are physical. To overcome this problem we have de-
veloped a specific, OS-independent, algorithm that allows to
access an arbitrary virtual memory location of an arbitrary
process. The core of the algorithm is a primitive that al-
lows to access arbitrary physical memory locations. This is
accomplished by mapping a given physical address p to an
unused virtual address v in the page table of the framework,
and subsequently by accessing v. Then, using this primi-
tive, the algorithm can traverse the page table of a process
of the guest via software by iteratively mapping the physical
addresses stored in the table.

The framework exposes memory inspection and manipula-
tion facilities, based on the aforementioned algorithm, to the
analysis tools through two API functions: GuestRead(p,a,-
n) and GuestWrite(p,a,data). The former reads n bytes
starting from virtual address a of process p; the latter writes
the content of buffer data into the address space of process
p, starting from virtual address a. By default, to preserve
the integrity of the guest, all GuestWrite operations are for-
bidden. On top of this functions we have built higher-level
ones that facilitates the extraction of functions’ arguments,
null terminated strings, and to disassemble code.

4.4 Tool Isolation

To be able to use our infrastructure on a production sys-
tem, it is essential to guarantee that any defect in the anal-
ysis tool will not affect the stability of the analyzed system
and of the framework. At this aim, the framework controls
the execution of the analysis tool and, if any anomalous be-
havior is observed, the whole infrastructure is automatically
unloaded.

As we outlined at the beginning of this section, even if
the analysis tool is executed in VMX root mode, it is still

constrained into a less privileged execution mode than the
framework. Thus, any operation the tool performs on the
guest must be mediated by the framework. This is exactly
what happens in traditional operating systems: a user-mode
process cannot access directly the resources of the operating
system, nor those of other user-mode processes, and any ac-
tion it performs outside its address space must be mediated
by the kernel. Similarly in our context, to perform an opera-
tion on the guest system, the tool must use the programming
interface offered by the framework.

In the default configuration, the framework does not al-
low a tool to access in write-mode to the state of the guest.
However, there is still the possibility that the execution of
an instruction of the tool raises an unexpected exception
(e.g., a page fault on memory access, or a general protec-
tion fault). When such an event occurs, the framework has
no way to handle the anomalous situation and to allow the
tool to continue its execution. The only viable approach that
also preserves the integrity of the guest system is to termi-
nate the analysis tool and to remove the framework. At this
aim, the solution we adopt is to intercept unexpected excep-
tions through the custom interrupt descriptor table (IDT)
installed when launching VMX modes. The IDT receives
the trap, and delivers it to the trap gate that eventually
unloads the framework. Another problem that might arise
with a buggy analysis tool is non-termination: if the anal-
ysis tool entered an infinite loop, the guest system would
never be resumed. To prevent this problem we added to the
framework a minimalistic watchdog and set a time limit on
the execution of the tool. The limit is not on the whole exe-
cution time of the tool, but rather on the execution time to
handle an event. Thus, the analysis tool could potentially
be run forever, but with the guarantee that the execution
of the analyzed system will be resumed within the specified
time limit. At this aim, before delivering an event to the
analysis tool, the framework resets a timer. Then, while
the tool handles the event, the framework periodically re-
gains the control of the execution and checks whether the
time limit has been exceeded. To do that the framework
registers, in the IDT, a custom interrupt handler to handle
timer interrupts and programs the interrupt controller to de-
liver only timer interrupts (that is necessary to prevent the
framework to consume interrupts for all the other devices).
Before returning to non-root mode, the framework repro-
grams the interrupt controller to deliver all the interrupts
to the analyzed system.

4.5 OS-dependent Interface

Our framework provides a general programming interface
completely independent from the operating system running
inside the guest. However, in many cases some OS-specific
facilities can ease the analysis of the guest. As an example,
the only OS-independent manner to identify a process is by
means of the base address of its page table (typically stored
inside the cr3 CPU register). However, it is quite awkward
to refer to processes using page table base addresses, and it
is more natural to identify a process through its process id
(PID) or through the name of the application it executes.

The OS-dependent interface we provide leverages virtual
machine introspection techniques [9] to analyze the inter-
nal structures of the guest operating system to translate
OS-independent information (e.g., process with page table
base address 0x13cdc000) into something more user-friendly

Name Description

GetFuncAddr(n)
GetFuncName (a)
GetProcName(p)

Return the address of the function n

Return the name of the function at address a
Get the name of process with page directory
base address p

Get the PID of process with page directory
base address p

Enumerate the dynamically linked libraries
loaded into process p

GetProcPID(p)

GetProcLibs(p)

GetProcStack(p) Get the stack base for process p
GetProcHeap(p) Get the heap base for process p
GetProcList () Enumerate processes
GetDriverList () Enumerate device drivers

Table 3: OS-dependent API

(e.g., process notepad.exe). Moreover, using debugging
symbols, the framework allows to resolve symbols’ names
and addresses (e.g., functions and global variables). In this
way, a tool can ask to interrupt the execution of the guest
when function NtCreateFile is invoked, instead of referenc-
ing the function through its address. Similarly, when a func-
tion is invoked, it is possible to inspect its call-stack and to
resolve the name of the caller functions and even recover the
libraries to which the various functions belong to. Some of
the OS-dependent functionalities provided are summarized
in Table 3.

In case the guest operating system is not supported, the
OS-dependent module is disabled, and only OS-independent
functionalities are available. Our current implementation
offers an OS-dependent interface only for the Windows XP
operating system.

S. APPLICATIONS

In this section we present HYPERDBG, an interactive ker-
nel debugger for Microsoft Windows XP we built on top of
our framework. In our strive to contribute to the open source
community, we released the code of HYPERDBG, along with
the code of the framework, under the GPL (v3.0) license.
The code is available at the following address:

http://security.dico.unimi.it/hyperdbg/

The section also discusses other possible applications that
could be constructed using our framework.

5.1 HyperDbg

HYPERDBG is an interactive kernel debugger we developed
on top of our analysis framework. It offers all the features
commonly found in kernel-level debuggers but, being com-
pletely run in VMX root mode, it is OS-independent and
grants complete transparency to the guest operating system
and its applications. The debugger provides a simple graph-
ical user interface to ease the interaction with the user. This
interface is activated in two circumstances: (1) when the user
presses a special hot-key or (11) when the debugger receives
the notification for an event that requires the attention of
the user (e.g., when a breakpoint is hit). From this interface
the user interacts with the debugger and can perform several
operations, including setting breakpoints and watchpoints,
tracing functions and system calls, and inspecting and ma-
nipulating the state of the guest (since all interactive debug-
gers allow to modify the state of the debuggee, we decided
to enable write access to the guest as well).

=1 I ne: Syste
ER mlnss EBH‘SGWWB? EGG -B8802ec8 EDY - 0&8-63 EBF‘&&SSQTI:‘! EBP BMEB’MS EIP=8@65Baf
ES1-BUHBHEBY ED]-0US5@7FE CRU--HE1W@3L CRI-BBHITHEN C

hot-key pressed

cxecuting connand: disassemble BxBB4dEE3I7
8B44£637 FlSc%‘?bSSal call Ex88557hed <KeGdiFlushserBatch?
0B4drRId: eax

284d£83e :
GB4drIE: FERSIBFGArET
2B43£845 : BhED
0B4dIB47: BhSFBc
2B4dF84a: 33ch
HB4dfBdc : BaBcld
8B4AFA4F: BhIF
HB4dFHS1: BhicB?
8B4AFASA: 2hel
B4dEBSE: cledBd

¢ Bhfe
BB4AEE5h: 3h3LIAFEE500
: M A32971 ARBA

: F3al
AR4AFAGD : FFd2

: Bhab moy zahp.
HUddfHEd: Bh@d24F1dFEE ot T —
AR4AFA7I: BRGE3o moy Bx3cczehpr, zedx
Saadruze: 599035010000 moy xedx . BxlFdGmerxd

= eli
BRAdEET - 745708.@9299 hﬂ.l $g‘12NBB BxPBnebpd
SB4dFHE6 : ,‘5'455 o8l tes Lh $0x1, BxboCrebp)

8B4dfB8c: BLLd24F1dFEE F Bx!fﬂrfim xohic
AR44FAI2: c6AI2cRA noub SAxB. Bx2e(rehx)
8B4dFEIE: BE7h4=6E cnnh 58x8, BxdaCrahi)
0B4dFA9a: P44 Ahidx

end of comnand: disascenble MaMde3‘?

executing conmand: haclclvcl 13
[ewrrent] 086 E50al
(B8] 830550748 l‘sidl‘ldn

[H1] GAUSSOHic D@4dad?f CKilnterruptDispatchirei)
[@2] 830550840 FRSE3862

[63] GAUSS0HAY DUSdcBd? C(HiSwapProcess(0ei21>

[B‘!l] lEfldfl?BB l‘h‘ll‘f?BG

[i8Ad2pre syl
Cintelppn.sys]

Figure 3: HyperDbg in action

Figure 3 shows HYPERDBG in action®. In particular, the
figure shows the debugger notifying the event that inter-
rupted the execution of the analyzed system, displaying a
fragment of the code of the process currently running in the
analyzed system and displaying a “backtrace” of the function
calls that are currently active. Additionally, the debugger
displays information about the status of the registers at the
time the event occurred (in the case of the figure the event is
the pressure of the hot-key). To facilitate the analysis, the
debugger leverages OS-dependent information. For exam-
ple, the screenshot in Figure 3 shows that the debugger re-
solved the ID and the name of the process in a MS Windows
XP guest, by knowing how the process table is managed by
the operating system.

It is worth pointing out that HYPERDBG can be used to
debug any piece of code of the guest system, including crit-
ical components such as the process scheduler, or interrupt
and exception handlers. Indeed, Figure 3 shows that the
guest operating system has been stopped while executing
the PS/2 keyboard/mouse driver (i8042prt.sys). Thanks
to the fact that the framework on which the debugger is
built on is completely transparent to the analyzed system,
the user can use the keyboard to interact with the debug-
ger even though the keyboard driver of the guest is being
debugged.

HYPERDBG consists of less than 1600 lines of code: ~25%
of the code implements the graphical interface, ~23% of
the code provides the facilities required for keyboard-based
user interaction, and the remaining ~52% is responsible for
handling events and for all the other interactions with the
framework. Note that certain functionalities (e.g., disassem-
bling a code region) are implemented directly in the frame-
work since, most likely, they will be used for other types of
analysis as well. The framework is about four times big-
ger than the debugger (without considering the disassembly
module embedded in the framework, as it is based on an
off-the-shelf disassembler). We believe these numbers are
very significant. The number of lines of code we had to
write to implement HYPERDBG clearly witnesses that com-

2The screenshot was taken using our development environ-
ment based on an Intel x86 emulator supporting extensions
for virtualization (i.e., BOCHS).

plex analysis tools like an interactive kernel debugger are
straightforward to implement using our framework.

The remaining of this section describes how we used the
facilities of the framework to implement the user interface
and the component to receive commands from the user.

User Interface.

Although the graphical user interface of the debugger is
rough, its implementation is very challenging. The reason
of the complexity is the fact that we cannot rely on any
high-level graphical facility available in the analyzed system
to render the interface. Such approach would be too OS-
depended and not transparent at all. The lack of graphical
primitives obliged us to interact directly with the video card.
The video memory is mapped at a fixed address in the guest
and thus unmodified inspection and manipulation APT (i.e.,
GuestRead and GuestWrite) can be used by the debugger
to render the interface. Note that this approach is not de-
pendent on the OS nor on the hardware. We developed a
small video library that provides basic graphical functional-
ities and translates our requests into data that are written
directly in the memory of the video card. Before rendering
the graphical interface to the screen, the debugger backups
the content of the video memory and restores the content
right before resuming the execution of the analyzed system.

User Interaction.

User interaction is keyboard-based. When in non-root
mode, the user can switch into HYPERDBG by pressing a
hot-key. Then, in root mode the user can control the de-
bugger. For these reasons, HYPERDBG must be able to in-
tercept keystrokes both in root and non-root mode. To in-
tercept keystrokes in non-root mode we monitor all the read
operations from the hardware I/O port devoted to the key-
board. In other words, HYPERDBG registers to the core for
all the I00perationPort events that satisfy the event con-
dition port=KEYBOARD_PORT && access=read. When such
operation is detected, HYPERDBG checks whether the key
pressed corresponds to the hot-key that enables the debug-
ger. If the key pressed matches the hot-key the debugger
pops up the graphical interface and waits for commands.
Otherwise, the debugger passes the keystroke to the ana-
lyzed system such that the latter will continue its execution
as if the keystroke were read directly from the keyboard.
Keyboard handling in root mode is done by polling the key-
board hardware I/O port. Since direct access to I/O ports
is not permitted to any analysis tool, the debugger relies on
a API function exported by the framework which mediates
all accesses to I/O ports and allows (if the permission is
granted at compile time) certain analysis tools to read data
from certain I/O ports.

5.2 Other Possible Uses of the Framework

HyPERDBG demonstrates that our framework is very ver-
satile and that enables new opportunities for dynamic anal-
ysis and we will explore in our future research.

An interesting extension of HYPERDBG will be the sup-
port for kernel-level omniscent debugging. Omniscent de-
bugging allows developers to inspect the status of their pro-
grams in past execution instants, in order to detect the cause
of a failure without the need to run the target program mul-
tiple times [16]. HYPERDBG could be extended to allow a
user to record and inspect the values a memory location

stored during the time, and the exceptions and interrupts
occurred. Such a feature would ease a user to discover when
a memory location of the kernel gets corrupted and which
instruction is responsible for the corruption. Moreover, the
ability to log asynchronous events, such as interrupts, would
allow to spot defects connected to non-deterministic behav-
iors of the analyzed system. Our framework already offers
all the necessary facilities for this kind of debugging: excep-
tion and interrupts can be traced natively by the framework
and memory accesses can be traced using watchpoints.

Another interesting application of our framework will be
dynamic aspect-oriented programming of operating system
kernels. As discussed in Section 2, several approaches have
been proposed to apply AOP to kernels. The main advan-
tage offered by our framework over the approaches proposed
so far is that it does not require any modification of the
source code of the kernel, nor any modification of the image
in memory of the kernel. Moreover, our framework pro-
tects the running kernel from defects in the woven code.
One approach to facilitate the use of such technology would
be to provide programmers a source-to-source translator, to
translate aspect oriented code written in languages like As-
pectC [5] into C code that uses the API offered by our frame-
work. In particular, the translator would be responsible for
translating pointcuts into API calls to trace the correspond-
ing events, using advices as events handlers, and for trans-
lating all pointer dereferences into calls to inspection API
to read the memory of the guest.

6. CONCLUSIONS

We proposed a framework to perform complex run-time
analyses of both system- and user-level code on commodity
production systems. The framework exposes an API that
eases the development of analysis tools on its top. The ap-
proach we described leverages hardware extensions for vir-
tualization available on modern processors to overcome the
limitations that affect existing approaches for the analysis of
system-level code. In particular, the solution we proposed
does not require to recompile or reboot the target system,
it is not invasive, it is almost completely OS-independent,
and it guarantees that a defect in an analysis tool cannot
damage the framework itself nor the analyzed system. To
demonstrate its potentials, we developed HYPERDBG, an in-
teractive kernel-level debugger for Microsoft Windows XP.
HyPERDBG and the framework have been released as an
open source package.

Acknowledgments

This research has been partially funded by the European
Commission, Program IDEAS-ERC, Project 227977 SM-
SCom and by the Italian Ministry of Education, Universities
and Research, Program PRIN-2008.

7. REFERENCES

[1] AMD, Inc. AMD virtualization.
http://www.amd.com/us/products/technologies/
virtualization/Pages/virtualization.aspx.

[2] B. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic Instrumentation of Production Systems. In
Proceedings of USENIX Annual Technical Conference,
pages 1528, June 2004.

3]

(4]

[16]
(17]
(18]

[19]
[20]

J. Chow, T. Garfinkel, and P. Chen. Decoupling
Dynamic Program Analysis from Execution in Virtual
Environments. In Proceedings of USENIX Annual
Technical Conference, pages 1-14, June 2008.

Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn.
Using AspectC to improve the modularity of
path-specific customization in operating system code.
In Proceedings of the 8th Furopean Software
Engineering Conference, pages 88-98, 2001.

Y. Coady, G. Kiczales, M. J. Feeley, N. C. Hutchinson,
and J. S. Ong. Structuring Operating System Aspects.
Communications of the ACM, 44(10):79-82, 2001.

A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
Malware Analysis via Hardware Virtualization
Extensions. In Proceedings of the 15th ACM
Conference on Computer and Communications
Security, pages 51-62. ACM, 2008.

G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: Enabling Intrusion Analysis
Through Virtual-Machine Logging and Replay. In
OSDI ’02: 5th Symposium on Operating Systems
Design and Implementations, December 2002.

M. Engel and B. Freisleben. TOSKANA: A toolkit for
operating system kernel aspects. Transactions on
Aspect-Oriented Software Development 11,
4242:182-226, 2006.

T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion
Detection. In Proceedings of the Symposium on
Network and Distributed Systems Security, San Diego,
CA, Feb. 2003.

S. T. King, G. W. Dunlap, and P. M. Chen.
Debugging operating systems with time-traveling
virtual machines. In Proceedings of USENIX Annual
Technical Conference, pages 71-84, April 2005.

Linux Trace Toolkit. http://1ttng.org/.

D. Mahrenholz, O. Spinczyk, A. Gal, and

W. Schréder-Preikschat. An Aspect-Oriented
Implementation of Interrupt Synchronization in the
PURE Operating System Family. In Proceedings of
the 5th ECOOP Workshop on Object Orientation and
Operating Systems, pages 49-54, June 2002.

D. Mahrenholz, O. Spinczyk, and

W. Schréder-Preikschat. Program Instrumentation for
Debugging and Monitoring with AspectC++. In
Symposium on Object-Oriented Real-Time Distributed
Computing, pages 249-256, April 2002.

Microsoft Corporation. Debugging Tools for Windows.
http://www.microsoft.com/whdc/devtools/
debugging/default .mspx.

G. Neiger, A. Santoni, F. Leung, D. Rodgers, and

R. Uhlig. Intel Virtualization Technology: Hardware
Support for Efficient Processor Virtualization. Intel
Technology Journal, 10(3):167-177, August 2006.

G. Pothier and E. Tanter. Back to the future:
Omniscient debugging. IEEE Software, 26:78-85, 2009.
Rasta ring 0 debugger.
http://rr0d.droids-corp.org/.

SoftICE. http://en.wikipedia.org/wiki/SoftICE.
Syser Kernel Debugger. http://www.sysersoft.com/.
A. Tamches. Fine-Grained Dynamic Instrumentation

10

of Commodity Operating System Kernels. PhD thesis,
University of Wisconsin-Madison, 2001.

A. Vasudevan and R. Yerraballi. Stealth Breakpoints.
In 21st Annual Computer Security Applications
Conference, pages 381-392, 2005.

M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam,
and B. Weissman. ReTrace: Collecting execution trace
with virtual machine deterministic replay. In
Proceedings of the 3rd Annual Workshop on Modeling,
Benchmarking and Simulation, 2007.

arXiv:1006.5845v1 [cs.0S] 30 Jun 2010

Dynamic and Transparent Analysis of Commodity
Production Systems

Aristide Fattorit Roberto Palearit
{aristide,roberto}@security.dico.unimi.it

Dip. di Informatica e Comunicazione’
Universita degli Studi di Milano

[-20135 Milan, ltaly

ABSTRACT

We propose a framework that provides a programming in-
terface to perform complex dynamic system-level analyses
of deployed production systems. By leveraging hardware
support for virtualization available nowadays on all com-
modity machines, our framework is completely transparent
to the system under analysis and it guarantees isolation of
the analysis tools running on its top. Thus, the internals
of the kernel of the running system needs not to be modi-
fied and the whole platform runs unaware of the framework.
Moreover, errors in the analysis tools do not affect the run-
ning system and the framework. This is accomplished by
installing a minimalistic virtual machine monitor and mi-
grating the system, as it runs, into a virtual machine. In
order to demonstrate the potentials of our framework we
developed an interactive kernel debugger, nicknamed Hy-
PERDBG. HYPERDBG can be used to debug any critical
kernel component, and even to single step the execution of
exception and interrupt handlers.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Monitors, Tracing; D.4.9 [Operating Sys-
tems]: Systems Programs and Utilities

General Terms

Verification

Keywords

hardware virtualization, debugging, system analysis

1. INTRODUCTION

Operating systems are peculiar and very complex pieces
of software whose internals are critically vital for a system:
a failure, or a bottleneck, in any of their parts can lead to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE’10, September 20-24, 2010, Antwerp, Belgium.

Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

Lorenzo Martignoni:
lorenzo.martignoni@uniud.it

Mattia Monga'
mattia.monga@unimi.it

Dip. di Fisica*
Universita degli Studi di Udine
[-33100 Udine, ltaly

catastrophic consequences. Therefore, special care is needed
to develop, analyze, test, and profile them. To simplify their
task, developers and analysts rely on a large variety of tools
and analysis techniques. Some of them are specific for study-
ing static properties of the operating system, while others
are more specific for studying dynamic properties. In par-
ticular, the latter class of tools and techniques is nowadays
very popular among kernel developers and analysts because
it allows them to collect the information very quickly, while
hiding many of the intricacies of the kernel, and can even be
used on running production systems.

Existing approaches for dynamic analysis of operating sys-
tems (e.g., debugging, profiling, and tracing) can be roughly
classified in two groups: kernel-based and VMM-based. The
approach taken by the first group is to include some com-
ponent into the kernel in order to intercept all the events of
interest (e.g., the creation of a new process, the execution of
a system call, and the execution of a kernel function) and to
execute a specific action when such events occur [?, 7, 7, 7,
?]. This solution requires the installation of specific hooks
in the kernel to monitor run-time events and it might be
very difficult to apply to operating systems that do not na-
tively offer facilities for dynamic analysis, especially when
the source code is not available. The approach taken by
the second group is to run the kernel and user-space appli-
cations in a virtual machine and to intercept, and respond
to, the events of interest from the virtual machine moni-
tor (VMM) [?]. Although this approach guarantees trans-
parency and has a loose dependency on the operating sys-
tem internals, it cannot be used in all the settings, since it
implies that the system must be run as a guest of a vir-
tual machine and production systems not running in virtual
machines cannot be analyzed. Moreover, VMM-based solu-
tions typically virtualize hardware devices, to allow multiple
guests to share the same physical peripherals. This makes
software virtualization approaches unsuitable to assist the
analysis of components that need to interact directly with
the underlying hardware.

In this paper we propose a framework that brings to-
gether the advantages of both approaches: it can be used on
commodity production systems (i.e., off-the-shelf products,
whose source code or debugging symbols are not necessarily
available), since it does not require to instrument the sys-
tem under test, and it is able to inspect systems running on
real hardware, since it does not require an emulation con-
tainer. Similarly to existing frameworks, the analyses that
can be built on top of our framework include profiling and

tracing of the kernel and user-space applications, interactive
debugging, or even extension of system features. However,
differently from existing frameworks, ours is fully dynamic,
transparent, loosely dependent on the operating system, and
fault-tolerant with respect to possible defects in the anal-
ysis code. First, our framework does not require recompi-
lation or rebooting of the target system. Thus, it can be
used to analyze any running production system, including
commodity operating systems lacking native support for in-
strumentation and systems not running in virtual machines.
Second, the framework is not invasive, since analyses can be
performed on a virtually unmodified system: as explained in
the paper, only a minimal driver needs to be installed and no
parts of the kernel are patched in any way. Moreover, since
the framework itself is not accessible from the target system,
its code cannot be detected by malicious code or unwittingly
influence buggy operating system components. Thus, the
infrastructure can be applied to any operating system, as
the majority of the facilities it supports are completely OS-
independent, and the only OS-dependent functionalities are
just provided to ease the development of analysis tools. Fi-
nally, the framework is fault-tolerant, as it guarantees that
a defect in an analysis tool built on top of it do not damage
the framework itself nor the analyzed system.

Our framework leverages hardware extensions for virtual-
ization available on commodity x86 CPUs [?, ?]. Hardware-
support for virtualization allows the development of virtual
machine monitors that are very efficient, completely trans-
parent, and non invasive to the systems running in the vir-
tual machine. To overcome the major limitation of tradi-
tional VMM-based approaches (i.e., the impossibility to an-
alyze productions systems not running in a virtual machine),
our framework exploits a feature of the hardware that allows
to install a virtual machine monitor and to migrate a run-
ning system into a virtual machine. When the analysis is
completed, the original mode of operation of the system can
be restored. Practically speaking, our framework is a mini-
malistic virtual machine monitor acting as a broker between
the analyzed system and the analysis tool. The framework
abstracts low-level events occurring in the analyzed system
into high-level events and guarantees fault-tolerance by re-
lying on the hardware to run the analysis tool in a isolated
execution environment.

To demonstrate the potentials of our framework we have
developed an interactive kernel debugger, nicknamed Hy-
PERDBG, constructed entirely using the programming in-
terface exposed by our infrastructure. HYPERDBG adds
live and interactive debugging support to Microsoft Win-
dows XP, so far only possible using very invasive tools, like
Syser [?], or traditional VMM-based debuggers. HYPERDBG
can be used to debug any component of the Windows kernel,
including interrupt/exception handlers, device drivers, and
even supports single instruction stepping. Being completely
separated from the debuggee, HYPERDBG is transparent to
the analyzed system and can be even used to analyze pro-
tected and malicious code.

In summary, the paper makes the following contributions.

1. We propose a framework to perform complex dynamic
system-level analyses of commodity production sys-
tems. Compared to existing frameworks, the one we
propose guarantees transparency, efficiency, and does
not require the target system to be already installed
on a virtual machine.

2. We implemented our framework in an experimental
prototype for Microsoft Windows XP.

3. We describe the design and the implementation of Hy-
PERDBG, a kernel-level interactive debugger built on
top our framework.

Both the analysis framework and HYPERDBG are avail-
able at http://security.dico.unimi.it/hyperdbg/ and is
released under the terms and conditions of the GPL (v3.0)
license.

2. RELATED WORK

The framework proposed in this paper shares many simi-
larities with frameworks and techniques extensively explored
in the past. However, by exploiting recent facilities available
of modern Intel x86 CPUs, our framework is able to combine
and to offer simultaneously the main benefits introduced by
previous research work.

Dynamic Kernel Instrumentation.

DTrace is a facility included into the Solaris kernel that al-
lows the dynamic instrumentation of production systems [?].
The key points of DTrace are efficiency and flexibility. First,
the instrumentation framework itself introduces no over-
head. Second, the framework provides tens of thousands
of instrumentation points, and the actions to be taken can
be expressed in terms of a high-level control language, that
also includes a number of mechanisms to guarantee run-
time safety. Similarly, Kernlnst is a dynamic instrumen-
tation framework for commodity kernels [?]. Kernlnst has
been developed mainly to gather information about the per-
formances of a running kernel, but it has also been em-
ployed for run-time kernel optimization. Differently from
DTrace, Kernlnst does not provide any mechanism for run-
time safety of the instrumentation routines. Unfortunately,
the aforementioned approaches are not transparent, as they
require direct modifications of the operating system kernel,
achieved by loading a kernel-mode module. Moreover, none
of them is OS-independent, and they and cannot be applied
to closed-source operating systems. Our framework does
not suffer these limitations since it can instrument the ker-
nel without modifying it and does not rely on any facility
offered by the kernel.

Kernel-level Debugging.

Several efforts have been made to develop efficient and
reliable kernel-level debuggers. Indeed, these applications
are essential for many activities, such as the development
of device drivers. One of the first and most widely used
kernel-level debuggers that targeted the Microsoft Windows
operating system was SoftICE [?], but today the project
has been discontinued. However, both commercial [?] and
open-source [?] alternatives to SoftICE appeared. Mod-
ern versions of Windows already include a kernel debugging
subsystem [?]. Unfortunately, to exploit the full capabilities
of Microsoft’s debugging infrastructure, the host being de-
bugged must be physically linked (e.g., by means of a serial
cable) with another machine. All these approaches share a
common factor: to debug kernel-level code, they leverage
another kernel-level module. Obviously, that is like a dog
chasing its tail. The framework proposed in this paper does
not require any kernel support nor to modify the kernel to
add the missing support at run-time.

User User User User
process process process process

User mode User mode

Kernel mode Kernel mode

[Operating system kernel] [Ope‘kati‘ng system kernel]

Non-root mode
Root mode

Remove

Install

Framework

Figure 1: Overview of the framework

Frameworks Based on Virtual Machines.

Instead of relying on a kernel-level module to monitor
other kernel code, an alternative approach consists of run-
ning the target code inside a virtual machine, and to per-
form the required analyses from the outside [?]. In [?, 7, 7]
the authors propose virtual machines with execution replay-
ing capabilities: a user can move forward and backwards
through the execution history of the whole system, both
for debugging and for understanding how a hacker intrusion
took place. Finally, in [?] Chow et al. propose Aftersight,
a system that decouples execution recording from execution
trace analysis, thus reducing the overhead suffered by the
system where the guest operating system is run. Nowa-
days, Aftersight is part of the VMware platform, and other
mainstream commercial products provide similar capabili-
ties. The framework proposed in this paper can provide
these functionalities even on systems not running in any vir-
tual machine.

Aspect-oriented Programming.

Aspect-oriented programming is a paradigm that promises
to increase modularity by encapsulating cross-cutting con-
cerns into separated code units, called “aspects”, whose “ad-
vice” code is woven into the system automatically, by speci-
fying the properties of the join-points. AspectC is an aspect-
oriented framework that is used to customize (at compile-
time) operating system kernels [?, 7, ?]. More dynamic ap-
proaches have been proposed: for example TOSKANA pro-
vides before, after and around advices for in-kernel functions
and supports the implementation of aspects themselves as
dynamically exchangeable kernel modules [?]. The frame-
work proposed in this paper allows to achieve the same goal
while being transparent and fault-tolerant.

3. OVERVIEW OF THE FRAMEWORK

Figure 1 depicts the architecture of our framework, the
installation and removal processes, and the migration of the
operating system and its applications into a virtual machine.
Our framework consists of a virtual machine monitor (VMM
for short) that provides a programming interface for the de-
velopment of system-level analysis tools. As in traditional
VMM-based analysis approaches, the analysis tool is run
within the VMM and thus completely transparent to guests
of the virtual machine. However, compared to traditional

VMM-based ones, ours does not require the system to be
already running inside any virtual machine. To achieve this
goal, our framework leverages hardware extensions for virtu-
alization available on all modern x86 CPUs [?, ?] (which are
unused in the majority of the deployments). In short, these
extensions augment the instruction set architecture with two
new modes of operation: VMX root mode and VMX non-
root mode®. These new modes of operation separate logically
the virtual machine monitor from a guest without having to
modify the latter. More precisely, we exploit a particular
feature of these extensions that allows for late launching of
VMX modes. Late launching of VMX modes permits to
install a virtual machine monitor even if the system has al-
ready been bootstrapped. In other words, late launching
allows to migrate (temporarily) a running operating system
in a virtual machine, and to analyze and control the execu-
tion of the system from the monitor. Through the rest of the
paper, we use the term “guest” to refer to the system under
analysis that has been migrated into a virtual machine.

Practically speaking, the running operating system is not
migrated anywhere and not touched at all. Rather, by
launching VMX modes, the execution environment is ex-
tended with the two aforementioned operating modes; the
running operating system is then associated with non-root
mode, while the VMM is associated with root mode. Thus,
in all respects, the operating system and its applications be-
come a guest of our special virtual machine. Following the
same principle, the VMM can be unloaded, and the original
mode of execution of the operating system restored, by sim-
ply disabling VMX modes. After the launch of the VMX
modes, the execution of the guest can continue exactly as
before, even in terms of interactions with the underlying
hardware devices. However, during its execution, the guest
might be interrupted by an ezit to root mode. Like hardware
exceptions, exits are events that block the execution of the
guest, switch from non-root mode to root mode, and transfer
the control to the VMM. Differently from exceptions, the set
of events triggering exits to root mode can be configured dy-
namically by the VMM. A routine of the VMM handles the
exit and eventually enters non-root mode to resume the ex-
ecution of the guest. Being executed at the highest privilege
level, the routine handling the exit has complete read/write
control of the state of the guest system (of both memory
and CPU registers).

The framework itself does not perform any analysis. It is
only responsible for handling a small set of exits to control
all accesses to the memory management unit of the CPU, to
prevent the guest from accessing the physical memory loca-
tions holding the code and the data of the framework. On
the other hand, the framework provides a flexible API to de-
velop tools to perform sophisticated analyses of both kernel
and user code running in the guest. Using the function-
alities provided through the API, the tool can request the
framework to monitor certain events that might occur dur-
ing the execution of the guest; when such events occur, it can
inspect, and even manipulate, the state of the guest. The
events that can be monitored include, but are not limited to,
system call invocations, function calls, context switches and
1/0 operations. Practically speaking, events are monitored
through exits to root mode. Thus, a request of the analysis
tool to monitor a certain high-level event (e.g., the execu-

'VMX (non-) root mode is the terminology used by Intel;
AMD adopts a different terminology.

Non-root mo

Root mode

,—»{ Analysis tool

3. API call

6. Exception

T

1. Exit
1 2. Notification|®

1

User mode

Kernel mode

4a. Inspect/manipulate

Framework
4. API 'request
Event gate Trap gate
___ 4b. Request event notification
L 5. Recover information about events

7. Interrupt

[Video] [Timer] [Disk] [V(‘t\\()l'](]

Figure 2: A close-up of the framework

Hardware

tion of a system call) is translated by the API of the frame-
work into a sequence of low-level operations that guarantee
that all the occurrences of such event in the guest trigger an
exit to root mode. Similarly, the framework translates the
exit into a higher-level event and notifies the occurrence of
the event to the analysis tool. Once notified, the tool can
recover information about the event (e.g., arguments and
return value of a system call), using the inspection function-
alities offered by the API.

An important requirement for the analysis of production
systems is that analysis tools must not interfere with the
correct execution of the guest. This is particularly impor-
tant for faults and deadlocks that might occur in the analysis
tool. The approach we adopt is to run the tool in a less privi-
leged execution environment, isolated from the analyzed sys-
tem and from the framework. The tool can interact with the
guest only through the API exposed by the framework. This
approach guarantees the framework the ability to intercept
any fault occurring in the tool, to mediate all accesses to
the analyzed system (and to prevent write accesses), and to
terminate the tool in case of deadlocks or other anomalous
situations.

4. DESIGN AND IMPLEMENTATION

Figure 2 shows a more detailed view of the architecture
of our framework. Intuitively, this architecture is very simi-
lar to that of traditional operating systems: the framework
plays the role of the kernel and the analysis tool plays the
role of a user-space application. As will become clear later,
this architecture prevents buggy analysis tools from compro-
mising the guest system and the framework. The separation
between these two parts is made possible by the fact that,
when VMX is enabled, root and non-root modes offer two
fully-featured execution environments. Thus, like the guest
running in non-root mode, the framework running in root
mode can rely on privilege separation to isolate the analysis
tool and can handle independently interrupts and exceptions
that might occur while executing in root mode.

When an exit to root mode interrupts the execution of
the guest, the event is delivered to the event gate (step 1

in Figure 2). The event gate is responsible for abstract-
ing low-level events into higher-level ones, and to notify the
analysis tool if the latter has requested to do so (step 2).
On startup the analysis tool requests the framework to be
notified of certain events (not shown in the figure). The
tool can use the API provided by framework to query extra
information about the event (e.g., the content of the stack
location storing one of the arguments of a function). Since
the tool is isolated from the framework, API functions are
invoked through software interrupts. Thus, requests coming
from the analysis tool are received by the trap gate (step
3), then forwarded to the component implementing the API
(step 4). The tool can perform two types of API calls: (step
4a) to inspect or manipulate the state of the guest, and (step
4b) to control event notifications (e.g., enable or disable the
notification of certain events). Note that the component
implementing the API is also used by the framework itself
(step 5) to recover extra information about events (e.g., the
return address of a function stored in the stack). The trap
gate also serves the purpose of detecting exceptions (e.g.,
page faults) that might occur during the execution of the
analysis tool. If the trap gate intercepts an exception (step
6), it terminates the faulty tool and unloads the framework,
to resume the normal operation mode of the system. Finally,
the trap gate is also used to handle timer interrupts (step
7), that, as will be discussed in Section 4.4, are employed to
enforce a time-bound on the execution of the tool.

The functionalities provided by the API of the framework
can be classified into two classes: execution and I/0 tracing
and state inspection and manipulation. The following para-
graphs describe briefly the API. More details are given in
Sections 4.2 and 4.3.

Execution and I/O tracing facilities allow a tool to inter-
cept the occurrence in the analyzed system of certain events
and certain I/O operations respectively. Table 1 reports the
main types of events that can be traced. For each event, the
table also reports the arguments associated to the event; ar-
guments are information about the events most commonly
used in tools. For example, the events FunctionEntry and
SyscallEntry are used to trace functions and system calls
respectively. The arguments associated to the FunctionEn-
try event are the address (or the name) of the function
called, the caller and the return address. Another exam-
ple is the ProcessSwitch event that can be used to trace
context switches between processes (not threads). From the
point of view of the analysis tool all the events are handled
in the same way: the tool can subscribe to any event and,
when the event occurs, can inspect its arguments and take
the proper actions. However, at the framework-level, certain
events are different from other ones. Indeed, some of them
(e.g., context switches between processes) can be traced di-
rectly by the hardware. That is, the event triggering the exit
corresponds exactly to the event being traced. Other events
instead (e.g., function calls and returns) cannot be traced
directly by the hardware. In all these cases the framework
relies on other low-level events to trace the execution and
then abstract exiting low-level events into higher-level ones,
meaningful for the analysis tool.

Arguments can optionally be used as conditions, to limit
the tracing to a subset of all the events. Conditions on events
serve two purposes. First, conditions allow to simplify the
analysis tools, since events that do not match the requested
conditions are discarded by the framework and thus do not

Event Description

Arguments

ProcessSwitch Context (process) switch

Exception Execution

Interrupt Hardware or software interrupt
BreakpointHit Execution breakpoint

WatchpointHit Watchpoint on data read/write
FunctionEntry Function call

FunctionExit Return from function

SyscallEntry System call invocation

SyscallExit Return from system call
I0OperationPort I/O operation throught hardware port

I0OperationMmap Memory-mapped I/O operation

Exception vector, faulty instruction, error code
Interrupt vector, requesting instruction

Breakpoint address

Watchpoint address, access type, hitting instruction
Function name/address, caller/return address
Function name/address, return address

System call number, caller/return address

System call number, return address

Port number, access type

Memory address, access type

Table 1: Events traceable using our framework and corresponding arguments (the argument that represents
the current process is omitted, as it is common to all the events)

need to be handled by the tool. Second, some conditions
allow preemptive filtering of the events. In other words,
the framework configures a priori which events trigger an
exit, instead of filtering out exits caused by uninteresting
events. For example, in the case of the I0OperationPort
event, preemptive filtering means to configure the CPU such
that only I/O operations involving a specific I/O port trigger
an exit. This feature is very important to minimize the
number of exits and thus the overall overhead.

State inspection and manipulation primitives can be used
by the tool to access the state of the guest, in order to extract
more detailed information about events or other data use-
ful for the analysis. For example, these primitives allow to
extract the arguments of an invoked function, or to inspect
the internal structures of the guest operating system. Note
that, by default, write access to guest state is not granted
to a tool. If necessary, such permission can be enabled at
compile-time. Obviously, in this case the framework cannot
protect the state of the guest from dangerous modifications.

4.1 Framework and Analysis Tool Loading

The framework and the analysis tool are loaded by a min-
imal kernel driver. This is unavoidable since the operations
we need to perform to load the framework require maxi-
mum privileges and can be performed only by the kernel of
the operating system. The driver, however, is indeed very
simple and we put extreme care in avoiding any interference
with the kernel. Moreover, since once loaded the framework
is completely invisible to the system, we unload the driver
immediately as soon as the framework has been installed.

When VMX modes are enabled, a special VMX data struc-
ture (VMCS in Intel terminology) is made accessible initially
to the loader, and subsequently, when the loading is com-
pleted, only to the framework. This data structure stores the
host state, guest state, and the execution control fields. The
host state stores the state of the processor that is loaded
on exits to root mode, and consists of the state of all the
registers of the CPU (except for general purpose registers).
Similarly, the guest state stores the state of the processor
that is loaded on entries to non-root mode. The guest state
is updated automatically at every exit, such that the sub-
sequent entry to non-root mode will resume the execution
from the same point. The execution control fields allow a
fine-grained specification of which events should trigger an
exit to root mode.

The task of the loader is to enable VMX modes and to
configure the VMX data structure such that the execution of
the operating system and user-space applications continue to

run in non-root mode, while the framework and the analysis
tool are executed in root mode. Moreover, the loader has
to configure the CPU such that all the events necessary for
the tool to trace the execution of the system trigger exits to
root mode. When the initialization is completed, the driver
unloads itself and resumes the execution of the system.

Guest State Configuration.

The guest state is initialized to the current state of the
system. In this way, when the virtual machine is launched
and execution enters non-root mode, the guest operating
system will resume its execution as if nothing happened.
A tricky problem when initializing non-root mode concerns
the management of the memory. More precisely, we must
prevent the newly created guest to use and access the phys-
ical memory frames allocated to the framework and to the
tool. Otherwise, the guest could detect and even corrupt
the framework. Most recent CPUs provide hardware facil-
ities for memory virtualization (e.g., Intel Extended Page
Table extension). If these facilities are not available, mem-
ory virtualization must be implemented entirely via soft-
ware. Briefly, software memory virtualization consists of
intercepting all guest operations to manipulate the page ta-
ble (the data structure the CPU uses for virtual-to-physical
address translation) and in ensuring that none of the phys-
ical frames allocated to the framework and to the analysis
tool are mapped into the guest. In case the guest tries to
map a reserved physical frame, the framework assigns the
guest a different one and masquerades the difference.

Host State Configuration.

The host state is initialized as follows. The CPU is config-
ured to use, when in root mode, a dedicated address space
and a dedicated interrupt descriptor table (IDT). This con-
figuration simplifies the separation of the analyzed system
from the framework and allows to detect and handle inter-
rupts and exceptions that occur in root mode. Differently
from the address of the entry point of non-root mode, which
is updated at every exit to allow to resume execution of
the guest from where it was interrupted, the address of the
entry point of root mode is fixed. The entry point is set
to the address of the routine that takes care of dispatching
an exit event to the appropriate handler and that in turn
might notify the analysis tool (i.e., the entry point of the
event gate).

Execution Control Fields Configuration.
To reduce the run-time overhead suffered by the guest

Event Exit cause Nat'lve
exit
ProcessSwitch Change of page table address 4
Exception Exception Vv
Interrupt Interrupt Vv
BreakpointHit Debug except. / Page fault except.
WatchpointHit Page fault except.
FunctionEntry Breakpoint on function entry point
FunctionExit Breakpoint on return address
SyscallEntry Breakpoint on syscall entry point
SyscallExit Breakpoint on return address

I0OperationPort Port read/write 4
I0OperationMmap Watchpoint on device memory

Table 2: Techniques for tracing events

system, the execution control fields are configured to mini-
mize the number of events that trigger an exit to root mode.
When the tool is initialized, it specifies which events must
be intercepted. Subsequently, in response to the invocation
of API functions, the configuration of the execution control
fields can be altered to intercept additional events or to ig-
nore other ones.

4.2 Execution Tracing

Table 2 describes the technique used to trace all the events
currently supported by the framework. Low-level events
(those with a mark in the last column) correspond directly
to exits to root mode (e.g., Exception). Other events are
traced through the aforementioned ones (e.g., Breakpoint-
Hit), and others again are traced through the latter (e.g.,
FunctionEntry).

Events that can be traced directly through the hardware
are process switches, exceptions, interrupts, and port-based
I/O operations. All these events exit conditionally: they
exit to root mode only when requested and can have op-
tional exit conditions to limit exits to particular situations.
The remaining of this section presents how we developed the
primitives for tracing higher-level events starting from the
aforementioned low-level ones.

Breakpoints and watchpoints are two of the most compli-
cated events to implement. Modern CPUs provide hardware
facilities to realize efficient and transparent breakpoints and
watchpoints. Unfortunately, hardware-assisted breakpoints
and watchpoints are limited in number (only 4) and shared
between non-root and root mode. Therefore, they cannot
be used simultaneously by the analyzed system and by the
framework. The solution we adopt to allow an arbitrary
number of breakpoints is to use software breakpoints. A
software breakpoint is a one-byte instruction that triggers a
breakpoint exception when executed. Software breakpoints
are enabled by replacing the byte at the address on which
we want the breakpoint with the aforementioned instruction.
When the breakpoint is hit, the original byte is restored and
the event is notified to the tool. If the breakpoint is not per-
sistent the execution of the system is resumed. Otherwise
the instruction is emulated and then the breakpoint is set
again. Clearly, this approach to breakpoints is not trans-
parent for the analyzed system. However, it is very efficient.
An alternative and transparent approach is to use the same
technique we use for watchpoints, as described in the next
paragraph. Our framework supports both approaches.

The approach used in our framework to implement soft-
ware watchpoints is based on protecting the memory lo-
cations from any access via hardware (or just from write

accesses, depending on the type of watchpoint), such that
any access results in an exception [?]. More precisely, since
the finest level of protection offered by the hardware is at
the page level, we mark the page containing the address on
which we want to set the watchpoint as “non-present”. Any
future access to this page will result in a page fault exception
that will be intercepted by our framework. The framework
analyzes the exception and checks whether the accessed ad-
dress corresponds to the address with the watchpoint. If
the watchpoint is hit, the framework delivers the event to
the analysis tool, otherwise it emulates the instruction, and
then resumes the normal execution of the guest. Emula-
tion is necessary to execute the faulty instruction manually.
Indeed, to prevent a second fault, the original permission
of the memory page accessed by the instruction must be
restored before executing the faulty instruction. After the
execution of the instruction, the page must be marked again
as “non-present” to catch future accesses.

Other higher-level events, such as function and system call
entries and exits, are traced through breakpoints. When the
analysis tool requests the framework to monitor a certain
function, the framework sets a breakpoint on the address of
the entry point of the function. Later, when a breakpoint is
hit, the framework checks whether the hit breakpoint cor-
responds to a function entry point and, if so, it delivers the
appropriate event (i.e., FunctionEntry) to the analysis tool.
Function exits, instead, are traced by setting a breakpoint
on the return address. The framework discovers the return
address by setting a breakpoint on the function entry and by
inspecting the stack frame of the function when the break-
point on the entry point is hit. A similar approach is used
for tracing system calls entries and exits.

The approach for tracing function calls and returns just
described allows to trace specific functions, whose names or
addresses are supplied by the tool. The tracing of all func-
tion calls and returns is instead more complicated because
it is not possible to know a priori the addresses of all func-
tions’ entry points. The solution in this case is to perform
a static analysis to identify the addresses of all functions’
entry points (e.g., by recognizing function prologues). This
feature is still not available in our current implementation of
the framework. Nevertheless, if needed, the static analysis
could be performed directly in the tool. The tracing of all
system calls is instead much easier, since they are all invoked
through a common gate. The solution we adopt is to put a
breakpoint on the entry point of the system call gate [?].

Beside execution tracing facilities, the framework also ex-
poses to analysis tools the possibility of intercepting I/O
operations with hardware peripherals. Software can interact
with hardware devices through hardware I/O ports, or it can
leverage memory-mapped I/O. In the first case, VMX allows
to intercept the operation without any effort: the framework
simply configures the execution control fields such that all
the interactions with the specific hardware ports trigger an
exit to root mode; when such an exit occurs, the frame-
work notifies the tool by means of a I00perationPort event.
However, for performance reasons, modern peripherals typ-
ically resort to memory-mapped I/O. In this case, read and
write operations do not involve any hardware port, as they
are performed directly on memory. To intercept such opera-
tions we set a watchpoint on the appropriate memory region.
Thus, when an access to it is detected, the framework deliv-
ers a I0OperationMmap event to the tool.

4.3 State Inspection and Manipulation

Several situations require to access the state of the guest
system in order to inspect, and optionally manipulate, both
the registers of the CPU and the memory. As an example,
the framework could need to read the return address of a
function from the stack, to access the parameters of a system
call from the processor registers, or to insert a breakpoint
into the address space of a particular process. Similarly, the
analysis tool might need to extract data from the memory
of the guest.

The inspection and manipulation of CPU registers is a
straightforward activity. These information are saved during
an exit and restored before an entry. Thus, the inspection
and manipulation of registers merely consists of reading or
writing the VMX guest state (or the memory of the frame-
work, depending on the type of register).

Inspection and manipulation of memory locations is much
more complex. When paging is enabled, virtual addresses
are translated by the hardware into physical addresses ac-
cording to the content of the page table and direct physical
addressing is not possible. Each process has its own page
table; therefore, different processes have different virtual-to-
physical mappings and a process cannot access the memory
of the others. The framework is isolated from the guest us-
ing the same approach and thus it has its own page table
and its own mapping. Consequently, the framework cannot
directly access memory locations of guest processes. More-
over, inspection is complicated by the fact that page tables
cannot be traversed via software (but only via hardware):
the page table is a multilevel table and pointers to lower
levels are physical. To overcome this problem we have de-
veloped a specific, OS-independent, algorithm that allows to
access an arbitrary virtual memory location of an arbitrary
process. The core of the algorithm is a primitive that al-
lows to access arbitrary physical memory locations. This is
accomplished by mapping a given physical address p to an
unused virtual address v in the page table of the framework,
and subsequently by accessing v. Then, using this primi-
tive, the algorithm can traverse the page table of a process
of the guest via software by iteratively mapping the physical
addresses stored in the table.

The framework exposes memory inspection and manipula-
tion facilities, based on the aforementioned algorithm, to the
analysis tools through two API functions: GuestRead(p,a,-
n) and GuestWrite(p,a,data). The former reads n bytes
starting from virtual address a of process p; the latter writes
the content of buffer data into the address space of process
p, starting from virtual address a. By default, to preserve
the integrity of the guest, all GuestWrite operations are for-
bidden. On top of this functions we have built higher-level
ones that facilitates the extraction of functions’ arguments,
null terminated strings, and to disassemble code.

4.4 Tool Isolation

To be able to use our infrastructure on a production sys-
tem, it is essential to guarantee that any defect in the anal-
ysis tool will not affect the stability of the analyzed system
and of the framework. At this aim, the framework controls
the execution of the analysis tool and, if any anomalous be-
havior is observed, the whole infrastructure is automatically
unloaded.

As we outlined at the beginning of this section, even if
the analysis tool is executed in VMX root mode, it is still

constrained into a less privileged execution mode than the
framework. Thus, any operation the tool performs on the
guest must be mediated by the framework. This is exactly
what happens in traditional operating systems: a user-mode
process cannot access directly the resources of the operating
system, nor those of other user-mode processes, and any ac-
tion it performs outside its address space must be mediated
by the kernel. Similarly in our context, to perform an opera-
tion on the guest system, the tool must use the programming
interface offered by the framework.

In the default configuration, the framework does not al-
low a tool to access in write-mode to the state of the guest.
However, there is still the possibility that the execution of
an instruction of the tool raises an unexpected exception
(e.g., a page fault on memory access, or a general protec-
tion fault). When such an event occurs, the framework has
no way to handle the anomalous situation and to allow the
tool to continue its execution. The only viable approach that
also preserves the integrity of the guest system is to termi-
nate the analysis tool and to remove the framework. At this
aim, the solution we adopt is to intercept unexpected excep-
tions through the custom interrupt descriptor table (IDT)
installed when launching VMX modes. The IDT receives
the trap, and delivers it to the trap gate that eventually
unloads the framework. Another problem that might arise
with a buggy analysis tool is non-termination: if the anal-
ysis tool entered an infinite loop, the guest system would
never be resumed. To prevent this problem we added to the
framework a minimalistic watchdog and set a time limit on
the execution of the tool. The limit is not on the whole exe-
cution time of the tool, but rather on the execution time to
handle an event. Thus, the analysis tool could potentially
be run forever, but with the guarantee that the execution
of the analyzed system will be resumed within the specified
time limit. At this aim, before delivering an event to the
analysis tool, the framework resets a timer. Then, while
the tool handles the event, the framework periodically re-
gains the control of the execution and checks whether the
time limit has been exceeded. To do that the framework
registers, in the IDT, a custom interrupt handler to handle
timer interrupts and programs the interrupt controller to de-
liver only timer interrupts (that is necessary to prevent the
framework to consume interrupts for all the other devices).
Before returning to non-root mode, the framework repro-
grams the interrupt controller to deliver all the interrupts
to the analyzed system.

4.5 OS-dependent Interface

Our framework provides a general programming interface
completely independent from the operating system running
inside the guest. However, in many cases some OS-specific
facilities can ease the analysis of the guest. As an example,
the only OS-independent manner to identify a process is by
means of the base address of its page table (typically stored
inside the cr3 CPU register). However, it is quite awkward
to refer to processes using page table base addresses, and it
is more natural to identify a process through its process id
(PID) or through the name of the application it executes.

The OS-dependent interface we provide leverages virtual
machine introspection techniques [?] to analyze the inter-
nal structures of the guest operating system to translate
OS-independent information (e.g., process with page table
base address 0x13cdc000) into something more user-friendly

Name Description

GetFuncAddr(n)
GetFuncName (a)
GetProcName(p)

Return the address of the function n

Return the name of the function at address a
Get the name of process with page directory
base address p

Get the PID of process with page directory
base address p

Enumerate the dynamically linked libraries
loaded into process p

GetProcPID(p)

GetProcLibs(p)

GetProcStack(p) Get the stack base for process p
GetProcHeap(p) Get the heap base for process p
GetProcList () Enumerate processes
GetDriverList () Enumerate device drivers

Table 3: OS-dependent API

(e.g., process notepad.exe). Moreover, using debugging
symbols, the framework allows to resolve symbols’ names
and addresses (e.g., functions and global variables). In this
way, a tool can ask to interrupt the execution of the guest
when function NtCreateFile is invoked, instead of referenc-
ing the function through its address. Similarly, when a func-
tion is invoked, it is possible to inspect its call-stack and to
resolve the name of the caller functions and even recover the
libraries to which the various functions belong to. Some of
the OS-dependent functionalities provided are summarized
in Table 3.

In case the guest operating system is not supported, the
OS-dependent module is disabled, and only OS-independent
functionalities are available. Our current implementation
offers an OS-dependent interface only for the Windows XP
operating system.

S. APPLICATIONS

In this section we present HYPERDBG, an interactive ker-
nel debugger for Microsoft Windows XP we built on top of
our framework. In our strive to contribute to the open source
community, we released the code of HYPERDBG, along with
the code of the framework, under the GPL (v3.0) license.
The code is available at the following address:

http://security.dico.unimi.it/hyperdbg/

The section also discusses other possible applications that
could be constructed using our framework.

5.1 HyperDbg

HYPERDBG is an interactive kernel debugger we developed
on top of our analysis framework. It offers all the features
commonly found in kernel-level debuggers but, being com-
pletely run in VMX root mode, it is OS-independent and
grants complete transparency to the guest operating system
and its applications. The debugger provides a simple graph-
ical user interface to ease the interaction with the user. This
interface is activated in two circumstances: (1) when the user
presses a special hot-key or (11) when the debugger receives
the notification for an event that requires the attention of
the user (e.g., when a breakpoint is hit). From this interface
the user interacts with the debugger and can perform several
operations, including setting breakpoints and watchpoints,
tracing functions and system calls, and inspecting and ma-
nipulating the state of the guest (since all interactive debug-
gers allow to modify the state of the debuggee, we decided
to enable write access to the guest as well).

=1 I ne: Syste
ER mlnss EBH‘SGWWB? EGG -B8802ec8 EDY - 0&8-63 EBF‘&&SSQTI:‘! EBP BMEB’MS EIP=8@65Baf
ES1-BUHBHEBY ED]-0US5@7FE CRU--HE1W@3L CRI-BBHITHEN C

hot-key pressed

cxecuting connand: disassemble BxBB4dEE3I7
8B44£637 FlSc%‘?bSSal call Ex88557hed <KeGdiFlushserBatch?
0B4drRId: eax

284d£83e :
GB4drIE: FERSIBFGArET
2B43£845 : BhED
0B4dIB47: BhSFBc
2B4dF84a: 33ch
HB4dfBdc : BaBcld
8B4AFA4F: BhIF
HB4dFHS1: BhicB?
8B4AFASA: 2hel
B4dEBSE: cledBd

¢ Bhfe
BB4AEE5h: 3h3LIAFEE500
: M A32971 ARBA

: F3al
AR4AFAGD : FFd2

: Bhab moy zahp.
HUddfHEd: Bh@d24F1dFEE ot T —
AR4AFA7I: BRGE3o moy Bx3cczehpr, zedx
Saadruze: 599035010000 moy xedx . BxlFdGmerxd

= eli
BRAdEET - 745708.@9299 hﬂ.l $g‘12NBB BxPBnebpd
SB4dFHE6 : ,‘5'455 o8l tes Lh $0x1, BxboCrebp)

8B4dfB8c: BLLd24F1dFEE F Bx!fﬂrfim xohic
AR44FAI2: c6AI2cRA noub SAxB. Bx2e(rehx)
8B4dFEIE: BE7h4=6E cnnh 58x8, BxdaCrahi)
0B4dFA9a: P44 Ahidx

end of comnand: disascenble MaMde3‘?

executing conmand: haclclvcl 13
[ewrrent] 086 E50al
(B8] 830550748 l‘sidl‘ldn

[H1] GAUSSOHic D@4dad?f CKilnterruptDispatchirei)
[@2] 830550840 FRSE3862

[63] GAUSS0HAY DUSdcBd? C(HiSwapProcess(0ei21>

[B‘!l] lEfldfl?BB l‘h‘ll‘f?BG

[i8Ad2pre syl
Cintelppn.sys]

Figure 3: HyperDbg in action

Figure 3 shows HYPERDBG in action®. In particular, the
figure shows the debugger notifying the event that inter-
rupted the execution of the analyzed system, displaying a
fragment of the code of the process currently running in the
analyzed system and displaying a “backtrace” of the function
calls that are currently active. Additionally, the debugger
displays information about the status of the registers at the
time the event occurred (in the case of the figure the event is
the pressure of the hot-key). To facilitate the analysis, the
debugger leverages OS-dependent information. For exam-
ple, the screenshot in Figure 3 shows that the debugger re-
solved the ID and the name of the process in a MS Windows
XP guest, by knowing how the process table is managed by
the operating system.

It is worth pointing out that HYPERDBG can be used to
debug any piece of code of the guest system, including crit-
ical components such as the process scheduler, or interrupt
and exception handlers. Indeed, Figure 3 shows that the
guest operating system has been stopped while executing
the PS/2 keyboard/mouse driver (i8042prt.sys). Thanks
to the fact that the framework on which the debugger is
built on is completely transparent to the analyzed system,
the user can use the keyboard to interact with the debug-
ger even though the keyboard driver of the guest is being
debugged.

HYPERDBG consists of less than 1600 lines of code: ~25%
of the code implements the graphical interface, ~23% of
the code provides the facilities required for keyboard-based
user interaction, and the remaining ~52% is responsible for
handling events and for all the other interactions with the
framework. Note that certain functionalities (e.g., disassem-
bling a code region) are implemented directly in the frame-
work since, most likely, they will be used for other types of
analysis as well. The framework is about four times big-
ger than the debugger (without considering the disassembly
module embedded in the framework, as it is based on an
off-the-shelf disassembler). We believe these numbers are
very significant. The number of lines of code we had to
write to implement HYPERDBG clearly witnesses that com-

2The screenshot was taken using our development environ-
ment based on an Intel x86 emulator supporting extensions
for virtualization (i.e., BOCHS).

plex analysis tools like an interactive kernel debugger are
straightforward to implement using our framework.

The remaining of this section describes how we used the
facilities of the framework to implement the user interface
and the component to receive commands from the user.

User Interface.

Although the graphical user interface of the debugger is
rough, its implementation is very challenging. The reason
of the complexity is the fact that we cannot rely on any
high-level graphical facility available in the analyzed system
to render the interface. Such approach would be too OS-
depended and not transparent at all. The lack of graphical
primitives obliged us to interact directly with the video card.
The video memory is mapped at a fixed address in the guest
and thus unmodified inspection and manipulation APT (i.e.,
GuestRead and GuestWrite) can be used by the debugger
to render the interface. Note that this approach is not de-
pendent on the OS nor on the hardware. We developed a
small video library that provides basic graphical functional-
ities and translates our requests into data that are written
directly in the memory of the video card. Before rendering
the graphical interface to the screen, the debugger backups
the content of the video memory and restores the content
right before resuming the execution of the analyzed system.

User Interaction.

User interaction is keyboard-based. When in non-root
mode, the user can switch into HYPERDBG by pressing a
hot-key. Then, in root mode the user can control the de-
bugger. For these reasons, HYPERDBG must be able to in-
tercept keystrokes both in root and non-root mode. To in-
tercept keystrokes in non-root mode we monitor all the read
operations from the hardware I/O port devoted to the key-
board. In other words, HYPERDBG registers to the core for
all the I00perationPort events that satisfy the event con-
dition port=KEYBOARD_PORT && access=read. When such
operation is detected, HYPERDBG checks whether the key
pressed corresponds to the hot-key that enables the debug-
ger. If the key pressed matches the hot-key the debugger
pops up the graphical interface and waits for commands.
Otherwise, the debugger passes the keystroke to the ana-
lyzed system such that the latter will continue its execution
as if the keystroke were read directly from the keyboard.
Keyboard handling in root mode is done by polling the key-
board hardware I/O port. Since direct access to I/O ports
is not permitted to any analysis tool, the debugger relies on
a API function exported by the framework which mediates
all accesses to I/O ports and allows (if the permission is
granted at compile time) certain analysis tools to read data
from certain I/O ports.

5.2 Other Possible Uses of the Framework

HyPERDBG demonstrates that our framework is very ver-
satile and that enables new opportunities for dynamic anal-
ysis and we will explore in our future research.

An interesting extension of HYPERDBG will be the sup-
port for kernel-level omniscent debugging. Omniscent de-
bugging allows developers to inspect the status of their pro-
grams in past execution instants, in order to detect the cause
of a failure without the need to run the target program mul-
tiple times [?]. HYPERDBG could be extended to allow a
user to record and inspect the values a memory location

stored during the time, and the exceptions and interrupts
occurred. Such a feature would ease a user to discover when
a memory location of the kernel gets corrupted and which
instruction is responsible for the corruption. Moreover, the
ability to log asynchronous events, such as interrupts, would
allow to spot defects connected to non-deterministic behav-
iors of the analyzed system. Our framework already offers
all the necessary facilities for this kind of debugging: excep-
tion and interrupts can be traced natively by the framework
and memory accesses can be traced using watchpoints.

Another interesting application of our framework will be
dynamic aspect-oriented programming of operating system
kernels. As discussed in Section 2, several approaches have
been proposed to apply AOP to kernels. The main advan-
tage offered by our framework over the approaches proposed
so far is that it does not require any modification of the
source code of the kernel, nor any modification of the image
in memory of the kernel. Moreover, our framework pro-
tects the running kernel from defects in the woven code.
One approach to facilitate the use of such technology would
be to provide programmers a source-to-source translator, to
translate aspect oriented code written in languages like As-
pectC [?] into C code that uses the API offered by our
framework. In particular, the translator would be respon-
sible for translating pointcuts into API calls to trace the
corresponding events, using advices as events handlers, and
for translating all pointer dereferences into calls to inspec-
tion API to read the memory of the guest.

6. CONCLUSIONS

We proposed a framework to perform complex run-time
analyses of both system- and user-level code on commodity
production systems. The framework exposes an API that
eases the development of analysis tools on its top. The ap-
proach we described leverages hardware extensions for vir-
tualization available on modern processors to overcome the
limitations that affect existing approaches for the analysis of
system-level code. In particular, the solution we proposed
does not require to recompile or reboot the target system,
it is not invasive, it is almost completely OS-independent,
and it guarantees that a defect in an analysis tool cannot
damage the framework itself nor the analyzed system. To
demonstrate its potentials, we developed HYPERDBG, an in-
teractive kernel-level debugger for Microsoft Windows XP.
HyPERDBG and the framework have been released as an
open source package.

Acknowledgments

This research has been partially funded by the European
Commission, Program IDEAS-ERC, Project 227977 SM-
SCom and by the Italian Ministry of Education, Universities
and Research, Program PRIN-2008.

