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ABSTRACT
In this work we consider the problem of sensor network lo-
calization when only the connectivity information is avail-
able. More specifically, we compare the performance of the
centralized algorithm MDS-MAP with its distributed version
HOP-TERRAIN. We show that both algorithms are able to
localize sensors up to a bounded error decreasing at a rate
inversely proportional to the radio range r.
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1. INTRODUCTION
This problem of localization plays an important role in

wireless sensor networks when the positions of the nodes are
not provided in advance. One costly way to find the positions
is by equipping all the sensors with a global positioning sys-
tem (GPS). Apart from its considerable cost to the system,
the major drawback of such a systems is that it does not work
in indoor environments. An alternative way is to acquire the
positions of sensors based on basic local information such as
proximity or local distances.

Recently, a great deal of work focused on localization algo-
rithms for sensor networks [9, 6, 5, 8, 11, 1, 12, 13]. Based on
the approach of processing the distance measurements, these
algorithms can be classified into two categories: centralized
algorithms and distributed algorithms. In centralized algo-
rithms [12, 1], all the distance measurements are sent to a
single processor where the estimated positions are computed.
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On the other hand, in distributed algorithms [9, 6, 5, 8, 11,
13] there is no central infrastructure and nodes through mes-
sage passing with their local neighbours share information.
This way they collectively estimate their pairwise distances
and compute their own positions.
The performance of these practical algorithms are mainly

measured through simulations. Of the same interest and
complementary in nature, however, are the theoretical guar-
antees associated with the performance of the existing meth-
ods. Such analytical bounds on the performance of localiza-
tion algorithms can provide answers to practical questions:
for example, how large should the radio range be in order
to get the error within a threshold? With this motivation in
mind, our work takes a forward step in this direction. In par-
ticular, we provide and compare the performance bounds of
the centralized algorithm MDS-MAP [12] and its distributed
version HOP-TERRAIN [9].
The organization of this paper is as follows. Section 2

describes the model used in this paper. We then briefly
explain MDS-MAP and HOP-TERRAIN sensor localization
algorithms in section 3. Finally, section 4 states our main
results.

2. MODEL DEFINITION
First, we assume that we have no fine control over the

placement of the sensors which we call the unknown nodes
(e.g., the nodes are dropped from an airplane). Formally,
n sensors, or unknown nodes, are distributed uniformly at
random within the d-dimensional hypercube [0, 1]d. Addi-
tionally, we assume that there are m special sensors, which
we call anchors, with a priori knowledge of their own posi-
tions in some global coordinate.
Let Va = {1, . . . ,m} denote the set of m vertices cor-

responding to the anchors and Vu = {m + 1, . . . ,m + n}
the set of n vertices corresponding to the unknown nodes.
We consider the random geometric graph model G(n, r) =
(V,E, P ) where V = Vu ∪ Va, E ⊆ V × V is a set of undi-
rected edges that connect pairs of sensors which are close
to each other, and P : E → R+ is a non-negative real-
valued function. We consider the function P as a mapping
from a pair of connected nodes (i, j) to the approximate
measurement for the distance between i and j, which we
call the proximity measurement. Let || · || be the Euclidean
norm in Rd. Define a set of random positions of n +m sen-
sors X = {x1, . . . , xm, xm+1, . . . , xm+n}, where xa ∈ Rd for
a ∈ {1, . . . , m} is the position of anchor a and and xi ∈ Rd

for i ∈ {m + 1, . . . , m+ n} is the position of unknown node
i. A common model for the random geometric graph is the
disc model where node i and j are connected if the Euclidean



Figure 1: The disc model. Unknown nodes and anchors
are denoted by white and red points respectively.

distance di,j = ||xi − xj || is less than or equal to a positive
radio range r (see Figure 1). To each edge (i, j) ∈ E, we
associate the proximity measurement Pi,j between sensors i
and j, which is a function of the distance di,j and random
noise. In an ideal case when our measurements are exact,
we have Pi,j = di,j . On the other extreme, when we are
given only network connectivity information and no distance
information, we have constant Pi,j ’s for all (i, j) ∈ E, i.e.,
Pi,j = r.

In sensor network localization, distributed or localized, not
all the information is available at each node. Given the graph
G(n, r) = (V,E, P ) with associated proximity measurements
for each edges in E, we assume that each of the nodes is
aware of the proximity measurements between itself and its
adjacent neighbors and each of the anchors is also aware of
its own position. Moreover, communication is only possible
between adjacent neighboring nodes. The goal of distributed
sensor network localization is for each node to find its esti-
mated position that best fits the measured proximity with
small number of communications.

We are interested in a scalable system of n unknown nodes
for large value of n. In the unit square, assuming sensor posi-
tions are drawn uniformly at random, the graph is connected,
with high probability, if πr2 > (log n+cn)/n for cn → ∞ [2].
A similar condition can be derived for generic d-dimensions
as Cdr

d > (log n+cn)/n, where Cd ≤ π is a constant that de-
pends on d. Hence, we focus in the regime where the average
number of connected neighbours is slowly increasing with n,
namely, r = α(log n/n)1/d for some positive constant α such
that the graph is connected with high probability.

3. LOCALIZATION
In this section we briefly explain the centralized algorithm

MDS-MAP and the distributed algorithm HOP-TERRAIN.

3.1 MDS-MAP
The focus of MDS-MAP when the anchors are not deployed

is to find the relative map/topology of the network up to rigid
transformations. Based on MDS, MDS-MAP consists of two
steps :

Algorithm : MDS-MAP [12]
Input: dimension d, graph G = (V,E, P )
1: Compute the shortest paths, and let D̂ be

the squared shortest paths matrix;
2: Apply MDS to D̂, and let X̂ be the output.

The shortest path between node i and j in graph G =
(V,E, P ) is defined as a path between two nodes such that
the sum of the proximity measures of its constituent edges is
minimized. Let d̂i,j be the computed shortest path between
node i and j. Then, the squared shortest paths matrix D̂ ∈
Rn×n is defined as D̂ij = d̂2i,j for i )= j, and 0 for i = j. Note

that D̂ is well defined only if the graph G is connected. IfG is
not connected, there are multiple configurations resulting in
the same observed proximity measures and global localization
is not possible.
In step 2, we apply the MDS to D̂ to get a good estimate

of X, namely, X̂ = MDSd(D̂). The main step in MDS is sin-
gular value decomposition of a dense matrix D̂. For further
information about how MDS is used in MDS-MAP please
look at [7].
Note that in order to perform the second step, all the pair-

wise shortest paths are needed and should be sent to a cen-
tral unit. This unit will then compute the MDS and find the
topology of the network.

3.2 HOP-TERRAIN
In the distributed version, we assume that there are n un-

known nodes without the knowledge of their position and
that there are m anchor nodes with the knowledge of their
position. In contrast to MDS-MAP (where the goal was to
find the topology of the network not the absolute positions
of each nodes) here the goal is that each node finds its global
position in the network. Based on the robust positioning al-
gorithm introduced in [9], the distributed sensor localization
algorithm HOP-TERRAIN consists of two steps :

Algorithm : Hop-TERRAIN [9]
1: Each node i computes the shortest paths

{d̂i,a : a ∈ Va} between itself and the anchors;
2: Each node i derives an estimated position x̂i

by triangulation with a least squares method.

The first step is done in the similar fashion as in MDS-MAP
where each unknown nodes estimates only the distances be-
tween itself and the anchors.
In the second step, each unknown node i ∈ Vu uses a set of

estimated distances {d̂i,a : a ∈ Va} together with the known
positions of the anchors to perform a triangulation. The
resulting estimated position is denoted by x̂i. For each node,
the triangulation consists of solving a single instance of a
least squares problem (Ax = b) and this process is known as
Lateration [10, 4].

4. PERFORMANCE ANALYSIS
Let X̂ denote an n × d estimation for X with estimated

position for node i in the ith row. Then, for MDS-MAP we
need to define a metric for the distance between the original
position matrix X and the estimation X̂ which is invariant
under rigid transformation of X or X̂ . Let us define L ≡
In − (1/n)1n1

T
n . The symmetric matrix L has rank n − 1

which eliminates the contributions of the translation, in the
sense that LX = L(X + 1sT ) for all s ∈ Rd. Note that L
has the following nice properties:



• LXXTL is invariant under rigid transformation.

• LXXTL = LX̂X̂TL implies that X and X̂ are equal
up to a rigid transformation.

This naturally defines following distance between X and X̂ .

d1(X, X̂) = (1/n)
∣∣∣∣LXXTL− LX̂X̂TL

∣∣∣∣
F
, (1)

where || · ||F denotes the Frobenius norm. Notice that the
factor (1/n) corresponds to the usual normalization by the
number of entries in the summation. Indeed this distance is
invariant to rigid transformation of X and X̂ . Furthermore,
d1(X, X̂) = 0 implies that X and X̂ are equal up to a rigid
transformation.

Define

rMDS ≡ 24 d2√
10

(
log n
n

) 1
d

rHOP ≡ 8
√
3d3/2

( log n
n

) 1
d
.

The following theorems give upper bounds on the perfor-
mance of MDS-MAP and HOP-TERRAIN localization algo-
rithms.

Theorem 4.1. Assume that n sensors are distributed uni-
formly at random. Then, the MDS-MAP returns estimated
positions X̂ such that, with high probability,

d1(X, X̂) ≤ rMDS

r
+O(r) , (2)

for r > rMDS.

Theorem 4.2. Assume that n sensors and m = Ω(log n)
anchors are distributed uniformly at random. Then, the HOP-
TERRAIN returns estimated positions {x̂i} such that, with
high probability,

||xi − x̂i|| ≤
rHOP

r
+O(r) , (3)

for r > rHOP.

The proofs are provided in our work [3] and [7]. It is worth
noting that the two bounds (2) and (3) have the same asymp-
totic behaviour. Since we are interested in the regime where
the graph is connected (hence no isolated nodes), the first
terms in upper bounds (2) and (3) are order optimum. On
the other hand, since the accuracy of the measurements is
r, we cannot avoid the second terms without any further re-
finement added to algorithms.

When r = α(log n/n)1/d for some positive parameter α,
the error bounds in (2) and (3) are C1/α + C2α

√
log n/n

for some numerical constants C1 and C2. The first term is
inversely proportional to α and is independent of n, whereas
the second term is linearly dependent on α and vanishes as
n grows large (this effect is shown numerically in Figure 2).
Therefore, both MDS-MAP and HOP-TERRAIN are guar-
anteed to produce estimated positions less that any fixed
threshold δ so long as the constant α and number if nodes n
are chosen large enough.
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Figure 2: Numerical evaluation of upperbound (3).
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