
Efficiently Counting Program Events
with Support for On-Line Queries

THOMAS BALL

University of Wisconsin, Madison

The abdity to count events in a program’s execution M reqmred by many program analysls

applications. We present an instrumentation method for efficiently counting events in a program’s
execution, with support for on-line queries of the event count, Event counting differs from basic
block profiling in that an aggregate count of events is kept rather than a set of counters, Due to
this difference, solutions to basic block profiling are not well suited to event counting. Our

algorithm finds a subset of points in a program to instrument, while guaranteeing that accurate
event counts can be obtained efficiently at every point m the execution.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Measurement Techniques;

D.2.2 [Software Engineering]: Tools and Techmques

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Control-flow graph, counting, instrumentation

1. INTRODUCTION

The ability to count events in a program’s execution is required by many

program analysis applications. Instruction counts are used to determine how

much time is spent in a procedure [Graham et al. 1983]; debuggers or

execution-driven simulators use countdown timers to return control from an

executing program to the debugger or simulator after a certain numlber of

events [Mellor-Crummey and LeBlanc 1989; Reinhardt 1993]; counts of syn-

chronization events, 1/0 events, and system calls are used to measure the

performance of parallel programs [Hollingsworth and Miller 1993]. Many of

these applications require the capability to query the event count on-line,

while the program executes, rather than off-line, after the program has

terminated.

We investigate how to count events in a program execution efficiently, with

support for on-line queries of the event count. An algorithm for efficiently

This work was supported in part by the National Science Foundation under grant CCR-8958530,

by the Defense Advanced Research Projects Agency, monitored by the Office of Naval Research
under contract NOO014-88-K-0590, as well as by grants from Xerox and 3M.
Author’s address: AT & T Bell Laboratories, Software Production Research Department,
Room lG-359, P.O. Box 3013, 1000 E. Warrenville Rd. Naperville, IL 60566-7013; emad:

tball@-esearch. att.com
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Assomation for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.
01994 ACM 0164-0925/94/0900-1399 $03.50

ACM Transactmns on Programmmg Languages and Systems, Vol 16, X. 5, September 1994, Pages 1399– 1410

http://crossmark.crossref.org/dialog/?doi=10.1145%2F186025.186027&domain=pdf&date_stamp=1994-09-01

1400 . Thomas Ball

counting and querying program events is given that uses program instrumen-

tation. Rather than instrument every program component, the algorithm

instruments at select points, while guaranteeing that an accurate event count

can be obtained efficiently at every point in the execution.

Event counting has a simple formalization. Each program component C

(either a basic block or a control-flow edge) has a constant number of events,

denoted by Events(C). The goal of event counting is to track the total number

of events in executed components. Because many applications (such as debug-

gers and simulators) require completely accurate event counts, we use

program instrumentation to obtain the counts. There are two basic instru-

mentation methods for event counting:

(1) Instrument the program to record the number of times each component
executes (i.e., maintain a basic block and/or edge profile). The event

count is computed by summing the component counters, weighted appro-

priately (e.g., if component C executes i times then add i x Events(C) to

the event count). Because of the potentially large number of counters that

must be summed for each query, this method is suitable only if there are

few queries of the event count during the execution of the program, or the

query is made off-line.

(2) Instrument the program to record the number of events directly in an

event counter. A straightforward approach is to add code to each compo-

nent C to increment the event counter by Euents(C). This approach can

incur high overhead (in the range of 200–300%) for programs with small

basic blocks [Ball and Larus 1994]. Furthermore, if instrumentation code

is dynamically added to and deleted from programs by patching a basic

block with a jump to a code stub rather than by rewriting the original

code, the overhead can increase substantially [Kessler 1990].

We present an event-counting scheme that is similar to (2); however, it

involves instrumenting control-flow edges (rather than basic blocks) in a

procedure’s control-flow graph. Previous work has shown that instrumenta-

tion of control-flow edges can be used to profile programs with low execution

time overhead [Samples 1991; Goldberg 1991; Ball and Larus 1994]. Instru-

mentation of control-flow edges rather than basic blocks allows greater

opportunity to place the code in areas of lower execution frequency.

In efficient profiling, each instrumented edge has its own counter, which is

incremented whenever the edge executes. After program execution, a propa-

gation phase determines the count for each uninstrumented edge from the

instrumented edges’ counts. In efficient event counting, each instrumented

edge increments the same counter, but by different increments. Before pro-

gram execution, event counts are propagated from uninstrumented to instru-

mented edges to determine the event increment for each instrumented edge.

The challenge is to determine a necessary and sufficient set of edges to

instrument, and to compute the increment associated with each instrumented

edge.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Efficiently Counting f’rogram Events . 1401

Edge e

w

x

Y
z

Increment(e)

(+P +EXIT)

(+P +Q +A +R +C)

(+P +Q +B +R +C)

(-C +EXIT)

Vertex v Querying

P (+P)

Q (+P +-Q)

A (-R -C)

B (-R -C)

R (-c)

co

EXIT O

Fig. 1. An example of efficient event counting.

Figure 1 gives an example of efficient event counting. In this example, the

number of events in a vertex (basic block) is denoted by the vertex’s label. The

example control-flow graph has four instrumented edges (w, x, y, z), marked

with black dots. For each instrumented edge e, there is a constant increment

Increment(e). This amount is added to the event counter each time edge e

executes. It is not hard to verify that for any execution path from P to EXIT,

the event count (as computed by the instrumented edges in the path) is

correct, For example, the count for the path P a Q - A ~ R - EXIT is

Increment(x) + Increment(z) = (+P + Q + A + R + C) + (– C + EXIT) =

(+ P+ Q+ A+ R+ EXIT).

An effect of efficiently counting events is that the event counter may not be

accurate at all points. In Figure 1, if the path P A Q has executed, then the

event counter has not been incremented at all. On the other hand, if the path
P - Q + A has executed, then the event count overestimates the true count

at A since the counts for R and C’ have been incorporated. We solve this

problem by computing for every vertex u a query increment Querylnc(u)

that, when added to the event counter, produces the correct count. Figure 1

shows the query increment for each vertex in the control-flow graph.

The uninstrumented edges in the control-flow graph of Figure 1 form an

(undirected) spanning tree of the graph. We show that for any spanning tree

of the control-flow graph, instrumentation of nontree edges is sufficient for

event counting. A simple depth-first search algorithm computes the incre-

ment value for each nontree edge. There are also cases in which cycles of

uninstrumented edges are allowed, as we will explore.

We first present some background material on. control-flow graphs and

spanning-tree theory. We then show how to count intraprocedural and inter-

procedural events. Last, we discuss related work, and conclude.

2. BACKGROUND

A path in a directed graph is a sequence of n vertices and n – 1 edges of the

form (ul, el, vz, . ..eR_l. Un), where for each edge e,, either e, = U, - U,+ 1 or

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1402 . Thomas Ball

et == UL+l * u,. A cycle is a path such that VI = u.. A path or cycle is directed

if for every edge e,, e, = u, ~ u,+ ~. A simple cycle is a cycle in which every

vertex occurs exactly once, except for vertex u ~ which occurs exactly twice

(u ~ = u.). Given an edge e, src(e) and tgt(e) denote the vertices that are the
source and target, respectively, of e. We use the terms path and cycle to

denote undirected paths and cycles. When edge direction matters, we state

explicitly that a path or cycle is directed.

A control-flow graph is a rooted directed graph G = (V, E) with a special

vertex EXIT (distinct from the root vertex) that corresponds to a procedure

in the following way: each vertex in V represents a basic block of instruc-

tions, and each edge in E represents the transfer of control from one basic

block to another. The root vertex represents the entry point of the procedure

and EXIT the return point. Every vertex is on a directed path from the root

vertex to EXIT. For technical reasons, there is an edge EXIT - root, which

makes the graph strongly connected. The EXIT vertex has no successors

other than the root vertex.

An execution of a procedure induces a directed path from the root vertex to

the EXIT vertex. The addition of edge EXIT + root to the end of the directed

path turns it into a directed cycle.

Although the control-flow graph is directed, the spanning trees that we

consider are undirected. A spanning tree of a graph G = (V, E) is a subgraph

that is a tree and contains all the vertices of G. If T is the set of spanning-tree

edges, then any edge in E – T is called a chord of the spanning tree. The

addition of any chord e to the spanning tree creates exactly one simple cycle,
The cycle is called the fundamental cycle of e and is denoted by C(e).

We will use Theorem 2.1 [Knuth 1968] which shows that the number of

times an edge appears in a directed cycle in a control-flow graph is uniquely

determined by the number of times each chord (of a spanning tree of the

graph) appears in the cycle. As discussed in Section 5, this theorem has

applications to the related area of profiling. Let #(P, f) denote the number of

times edge f appears in path P. Given a cycle D containing edges e and ~, let

Dw(D, e, f) equal 1 if edges e and f are in the same direction in D, and – 1

if edges e and f are in opposite directions in D.

THEOREM 2.1 (KNUTH). Let G be a control-flow graph; let T be a spanning

tree of G and let D be a directed (not necessarily simple) cycle in G. For all

edges e:

#(D, e) = ~ #(D, f) Dir(C(f), e, f)
VfGE– T

st ee C(f)

3. INTRAPROCEDURAL-EVENT COUNTING

This section focuses on counting edge events within one procedure. Vertex

events can be modeled as edge events by replacing a vertex u by an edge

v<n + Uout, where the predecessors of u become predecessors of u, ~, and the

successors of u become successors of uOUt. The event count associated with u

ACM TransactIons on Programming Languages and Systems, Vol 16, No 5, September 1994

EHiciently Counting Program Events . 1403

Fig. 2. Transformation of vertices to edges

is then associated with the edge v, ~ + voU~. Figure 2 shows the control-flow

graph from Figure 1 after the above transformation has been applied to each

vertex.

Each edge e contains a constant number of events, denoted by Events(e).

The goal of intraprocedural-event counting is to find a (small) set of edges

F c E, and for each edge f E F a constant Increment(f) such that for any

directed cycle EX in the control-flow graph:

~ #(EX, f) Increment(f) = ~ #(EX, e) Events(e).
VfEF Vee E

As mentioned previously, some points in the execution path may not be

accurate query points. We would like to find fc~r each edge g, a query

increment Querylnc(g) such that for any incomplete execution path IX that

starts at the root vertex and ends with edge g:

+ Querying = ~ #(IX, e) Events(e).

VeEE

instrumentation code on the chords of any

i
~ #(IX, f)lncrenzent(f)

Vf E F)

Section 3.1 shows that placing

spanning tree of the control-flow graph is sufficient for event counting;l it

also shows how to determine the increment for a chord from its fundamental

cycle. Section 3.2 presents a depth-first search algorithm that computes the

increment for all chords in linear time. Section 3.3 shows how to compute

query increments.

—
1In practice, spanning trees must be chosen carefully in order to reduce the execution overhead
incurred by nmtrumentlng the chords. We wdl not concern ourselves with this issue here. As
shown by Ball and Larus [1994], different spanning trees can produce very different run-time
overhead.

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No 5, September 1994

1404 . Thomas Ball

3.1 Computing the Edge Event Increments

The increment value for a chord f is defined by its fundamental cycle C(f)

and the direction of the edges in this cycle:

Increment (f) = ~ Events(e) Dir(C(f’), e, f).

Vee C’(f)

An edge e in C“(f) in the same direction as f makes a positive contribution to

Increment(f), while an edge e in the opposite direction from f makes a

negative contribution. Of course, if Increment(f) = O, then edge f does not

have to be instrumented.

Figure 3 shows the fundamental cycle for each chord in the control-flow

graph from Figure 2, The increment for chord w is (+ P + EXIT), since the

edges P and EXIT are directed in the same direction as edge w in C(w). The

fundamental cycle C(z) defines Increment(z) = (– C + EXIT), because edge

C is in the opposite direction from z in C(z) while edge EXIT is in the same

direction as z in C(z). Note that edges P and R are not in C(z), so they do

not contribute to Increment(z).

Using Theorem 2.1, it is straightforward to show that the above definition

of Increment(f) has the desired property, as shown by the following theorem:

THEOREM 3.1.1. Let G be a control -fZow graph, and let F be the set of chord

edges induced by a spanning tree T for graph G (i. e., F = E – T). For any

directed cycle EX in CFG G:

~ #(EX, f) Increment(f) = ~ #(EX, e) Events(e).

Vfs F Ves E

PROOF. Substituting the definition for Increment(f) on the left-hand side

of the above equation and moving #(EX, f) inside the inner sum of the

resulting equation yields:

~ Z #(Ex, f)~uent.(e)Dir(C(f), e, f)
t’,fe Fvesc(f)

The above equation is rewritten so that e is bound by the outer sum and f is

bound by the inner sum, as follows:

‘z ~ #(EX, f) Euents(e)Du(C(f), e, f).
Ve~E Vf= F

st @Gr(f)

Moving Events(e) out of the inner sum yields:

= ~ Events(e) ~ #(EX, f) Dir(C(f), e, f)
Ve~E VfEF

St e= c(f)

By Knuth’s theorem, the inner sum of the above equation is equal to
#(E’X, e), which finishes the proof. ❑

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Efficiently Counting Program Events . 1405

c(w)

Q
P

Q
x

A

R

c

c(x)

P

Q

QY

El

R

C3

c(y)

P

Q

R

z

P

c

)
EXIT

c(z)

Fig. 3. The fundamental cycles of the graph from Figure 2 with respect to the spanmng tree in

that figure. The fundamental cycle C(z) is shown with edges P and R hanging off it for context
Neither of these edges is in C(z),

3.2 Computing the Edge Increments via a Depth-First Search

A naive algorithm for determining Increment(e) for each chord e would

simply traverse each fundamental cycle C(e). Since each fundamental cycle

is, in the worst case, of size O(E), and there are E – (V – 1) chords, this

naive algorithm would run in 0(E x (E – V)) worst-case time. Figure 4

presents an algorithm that uses a depth-first search of the spanning tree to

determine the increments for all chords in time 0(E). There are three

parameters to the depth-first search procedure DFS: an integer euents which

is the current event increment, a vertex u, and the tree edge e that was just

traversed to reach U. Each chord is visited twice by the algorithm, while each

tree edge is visited exactly once. The running time of this algorithm is clearly

O(E).

We explain the algorithm and show that it computes Increment(e) correctly

for each chord e. At some point the depth-first search will have just traversed

a path P that ends with chord e. For each edge f in P (except for e),

Euents(f) has been added to events. For each change in edge direction in P,

events has been negated. For each edge f in P in the same direction as e,

Euents(f) will be negated an even number of times (through the negation of

euents), making a positive contribution to Increment(e) (when the assignment

to Increment(e) takes place). For each edge ~ in P in the opposite direction

from e, Euents(f) will be negated an odd number of times, making a negative

contribution to Increment(e). The event value associated with a chord is

added to the chord’s increment after the depth-first search.

To show that Increment(e) is correctly computed for any chord e, there are

two cases to consider: the root vertex is in C(e) or is not in C(e). In the

former case, the depth-first search will reach e two times by paths PI and

P2. The only edge shared by the two paths is e, and the union of edges in F’l

and P2 is C(e). As shown above, edges in the same direction as e make a

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1406 . Thomas Ball

for each e ● E – Tdo Increment(e) = O od

DFS(O,root, NULL)

foreache~ E – Tdo

[ncremerrt(e] = Increment(e)+ Events(e)

d

procedure DFS(mteger events, vertex v, edge e) function Dlr(edge e, edgefi integer

for eachf e T f #e and u=rgt(f) do precondlt]on’ e andf sharea common endpoint

DFS(Lhr(e,f) “events + Events(f), src(f) , f) if e = NULL then

od retom (1)

for eachf c T, f #e and v=src(f) do else if src(e)=tgr(f) or rgr(e)=src(f) then

DFS(Dtr(e,f) *events + Events(f), tgt(f), f) retonr (1) // e andf m samedlrectlon

od else

for eachf e E–T v =src(f) or v =tgt(f) do retom (-1) // e rmdfm opposite d]rectlorrs
Increment (f) = Increment(f) + Dw(e, f) *events fi

6

Fig 4 Algorithm for determining Increment(e) for each chord e using a depth-first search of

spanning tree T of graph G.

positive contribution to Increment(e), while edges in the opposite direction

from e make a negative contribution to Increment(e), as desired.

Suppose that root vertex is not in C(e). The depth-first search will still

reach e two times by paths PI and P2. However, in this case PI and P2

share a common prefix Q containing edges that are not members of C(e). Let

f be the last edge in Q; let P: be the suffix of P, (i.e., PI = QllP~); and let Pj

be the suffix of P2. The only edge shared by P; and P; is e, and the union of

the edges in Pj and PJ is C(e). It is clear that the event values for edges

present in P; and P; will be correctly accounted for in Increment(e). We

must show that the event values accumulated in prefix Q cancel out. Suppose

that edge f is encountered by the call DFS(x, u, f). It is clear that edge e

cannot be in the same direction as edge f in both paths PI and P2. So the

event value x will be negated an even number of times along one path and an

odd number of times along the other path, thus canceling each other out.

3.3 Computing the Query Increments

As mentioned before, there is a trade-off between efficiently counting pro-

gram events and the number of points in a program at which queries are

accurate. If every program component updates the event counter, then queries

are accurate at every component. Updating the event count at the chord

edges of the spanning tree leads to fewer accurate query points. This problem

is solved by computing a query increment, Querying, for each edge g. If a

query is made just after executing edge g, then Querylnc(g) is simply added

to the event counter to obtain the correct event count (the event counter is

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Efficiently Counting Program Events . 1407

not updated).z That is, for any incomplete execution path 1X that starts at

the root vertex and ends with edge g,

~ #(IX, e)l?uents(e) =
()

~ #(IX, f)lrzcrement(f) + Querylrzc(g).
Vee E Vf=F

If Querylnc(g) = O then edge g is an accurate query point.

Computing QueryIrzc(g) is easy. Let T be the set of spanning-tree edges.

We add an edge g‘ = tgt(g) - root to the control-flow graph (with

Euents(g’) = O) and treat it as a member of E – T. Edge g‘ is a chord of the

spanning tree T and has fundamental cycle C(g ‘). QueryInc(g) is defined to

be Increment(g ‘). The addition of edge g‘ to any incomplete path 1. that

starts at the root vertex and ends with g yields a directed cycle 1X’. Since

Euents(g’) = O, itfollows that

Since IX’

~ #(IX, e) Events(e) = ~ #(lX’, e) Euents(e).
Vee E tJee E

is a directed cycle, Theorem 3.1.1 implies that

~ #(lX’, e) Events(e) = ~ #(lX’, f)lncrement(f).
Ve=E Vf~F

AS Increment(g’) = Querying and IX’ is formed by adding edge g‘ ILO Ix,

it follows that

(1~ #(IX’, f)~ncrement(f) = ~ #(IX, f)lncrement(f) + Querylnc(g).

Vf= F vfGF

Figure 5 illustrates the computation of QueryInc(B) for edge B from the

control-flow graph from Figure 2. If the chord edge B‘ = BOU~ - P,r, was

added to this control-flow graph it would define the fundamental cycle C(B’)
shown in Figure 5: Querylnc(1?) = Increment (B’) = (–R – C).

To compute the query increment for all edges in a control-flow graph,

simply add a chord edge e‘ = tgt(e) ~ root for each original edge e and then

apply the algorithm in Figure 4 to determine the increments for all chord

edges,

4. INTE.RPROCEDURAL-EVENT COUNTING

The previous section addressed how to count events within a procedure. This

section describes two problems in efficiently counting events across procedure

boundaries and their solutions.

The first problem is to maintain a global count of events executed through-

out the entire program, with the capability to query the counter accurately at

any place in the program. This problem is solved in two steps. The first step

2Query increments also can be used to update the event counter correctly when execution of a
procedure terminates early (i.e., not at the EXIT vertex) due to an exceptional condit~onal or
interprocedural transfer of control (such as setjmp / Iong]mp).

ACM TransactIons on Programming Languages and Systems, Vol 16, No 5, September 1994

1408 . Thomas Ball

P

~

B’

B

R

c

Querying = Increment(B’) = (-R -C)

Flg 5 Computmg Quei-ylnc(B)

computes a spanning tree and determines the chord edge increments for each

procedure’s control-flow graph. The second step ensures that the event count

is correct whenever a procedure passes control to another procedure by

treating procedure calls as queries: immediately before a call the event

counter is incremented by the query increment for the call, and immediately

after the call the event counter is decremented by the same value (to ensure

that counts will be correct after the call).3 To query the event counter at

vertex w in procedure X, we need only add QueryInc(w) to the event counter.

Without the second step, queries of the event counter would be pro-

hibitively expensive, as the following example illustrates:

Suppose that vertex B in the control-flow graph of Figure 1 contains a call to

procedure X. When B passes control to X, the event count 1s off because
Increment(y) has already accounted for vertices R and C, even though they have
not executed. An accurate query from vertex w in procedure X must add both

Querying and QueryInc(B) to the event counter. In general, without the
second step, the query may have to perform an addition for each active procedure.

The second problem is to maintain a count cntP,. (for each call site ‘s: call

Q’ in procedure P) of events executed by the procedure Q (and procedures it

calls transitively) when called from s in procedure P. A number of counters

are used to solve this problem. For each procedure P, a global counter cntP is

initialized to O at the beginning of program execution and tracks the events

executed by P and procedures (transitively) called P. However, cntP is only

updated inside the procedure P. For each (procedure P, call site ‘s: call Q’)

pair, there is a global counter cntP , and a counter LcntP, ,, which is a local

variable of procedure P. The counter cntP , is initialized to O at the beginning

of execution, and LcntP, , is initialized as described below.

Counter increments are determined as follows: For each procedure P, a

spanning tree is found, and chord increments are computed. These incre-

‘For each call, It should be poss]ble to elimmate either the increment or decrement by mcorpo-
ratlng either one Into the increment of nearby chords,

ACM Transactions on Programming Languages and Systems, Vol 16, No 5, September 1994

Efficiently Counting Program Events . 1409

ments are for events solely inside P and update the counter cntP. For each

call site ‘s: call Q’ in procedure P, the assignment ‘LcntP, ~ := cnt~’ is placed

immediately before the call, and the assignments ‘cntP, , ‘= cntP, , + (cnt~ –

LcntP, ,); cntP := cntP + (cnt~ – LcntP, ~)’ are placed immediately after the

call.

It is not difficult to see that this solution is con-ect by induction over the

calling history of the program (as represented by a call tree). We show the

base case. The induction step is quite similar. In the base case (at the leaves

of the call tree) there is a call. By recording cnt~ in Lent,, ~ before the call,

the difference (cnt~ – LcntP, ~) will be the number of events executed by

procedure Q when called by P at call site s.

A query of a call site counter cntP,, will reflect the number of events for all

terminated calls made from that call site. The effect of an active call is not

reflected in the count until the call terminates. Within a procedue P, we can

add the query increment to cntP to get an accurate event count for cntP.

However, outside of procedure P, the value of cntP will not be current (i.e.,

reflect the number of events executed by P and procedures called by P) since

cntP is only updated inside of procedure P.

5. RELATED WORK

There are a number of works on the related topic of efficiently profiling

programs with instrumentation [Knuth 1968; Knuth and Stevenson 1973;

I%obert 1975; Sarkar 1989; Samples 1991; Goldberg 1991; Ball and Larus

1994]. All of these (except Sarkar [1989]) use the spanning tree to determine

a (small) set of points in a control-flow graph at which to place counters so

that vertex (basic block) profiles or edge profiles can be derived from the

measured points. Knuth’s theorem, stated in Section 2, shows that the

number of times each control-flow edge appears in an execution is uniquely

determined by the number of times each chord (of some spanning tree)

appears in the execution. In edge profiling, each chord has an associated

counter that is incremented each time the chord executes. After execution,

Knuth’s theorem can be applied to determine the count for tree edges from

the chords’ counts. In event counting, we have made use of Knuth’s theorem

(before program execution) to determine an increment value for each chord
that summarizes the event counts associated with tree edges. A c herd’s

increment value may be zero, in which case instrumentation of that chord is

unnecessary (unlike in profiling, in which each chord edge must be instru-

mented).

Mellor-Crummey and LeBlanc [1989] describe what they call a sojlware

instruction counter. The software instruction counter does not actually count

the number of instructions that have executed. Rather, the software instruc-

tion counter is a pair (PC, SIC) where PC is the program counter and SIC is

a counter that is incremented for each backward branch and procedure call

that has executed. Because a program counter’s value can only be reused if a
backward branch is taken or a chain of recursive calls is made, this pair of

values uniquely identif~es a particular instruction in a program’s execution

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1410 . Thomas Ball

history. Such a counter has utility in cyclic debugging where one is interested

in repeated executions and stopping at a particular state. However, as

defined, the software instruction counter cannot count the number of instruc-

tions executed.

6. CONCLUSION

Events in a program’s execution may be counted efficiently by instrumenting

the chords of a spanning tree of the control-flow graph. An efficient depth-first

search algorithm computes the increment value for each chord and a query

increment for each vertex at which a query needs to be made.

REFERENCES

BALL, T. AND LARUS, J. R 1994 Optimally profillng and tracing programs ACM Tram

Program Lang Syst 16, 3 (July)
GOLDBERG, A 1991 Reducing overhead m counter-based execution profihng Tech Rep CSL-

TR-91-495, Computer Systems Laboratory, Stanford Univ , Stanford, Calif, (Ott)

GRAHAM, S L , KESSLER, P B., AND MCKUSICK, M. K 1983 An execution profiler for modular
programs Softw Pratt. Exper, 13, 671-685.

HOLLINGSWORTH, J. K. AND MILLF,R, B P 1993 Dynamic control of performance momtoring on

large scale parallel systems Tech Rep #1133, Umv. of Wlsconsm, Madison (Jan.).
K~SSLICR, P. B 1990 Fast breakpoints Des]gn and Implementation In Proceechngs of the

ACM SIGPLAN’90 Conference on Programming Language Design and Implementation SIG-

PLAN Not. 256 (June), 78-84
KNUTH, D E 1973 The Art of Computer Programmmg, Vol 1. Fundamental Algorithms, 2nd

ed Addison-Wesley, Reading, Mass.

KNUTH, D. E. AND STEVENSON, F. R. 1973 Optimal measurement points for program frequency

counts BIT 13, 313–322

M~LLOR-CRUMM~Y, J M AND LEBLANC, T, J 1989 A software InstructIon counter In the 3rd

ASPLOS Proceedings. SIGARCH Comput. Arch News 17, 2, 78-86

PROBERT, R L. 1975 Optimal msertlon of software probes in well-delimited programs. IEEE

Trans Softw Eng. SE-8, 1 (Jan), 34-42
R~INHARDT, S. K,, HILL, M, D., LARUS, J, R,, LEBECK, A, R , L~wM, J C., AND WOOD, D. A 1993

The Wlsconsm Wmd Tunnel Virtual prototyping of parallel computers In Proceedings of the

1993 ACM SIGMETRICS Conference on Measurement and Modellng of Computer Systems.

ACM, New York, 48-60.
SAMPLiTS, A. D. 1991, Profile-dr,ven compdatlon Ph D thesis, Rep No UCB/CSD 91/627,

Umv. of Califorma, Berkeley, Cahf, Apr

SARKAR, V 1989 Determlnmg average program execution times and them variance In Pro-

ceedings of the ACM SIGPLAN ’89 Conference on Programming Language De ~~gn and Imple-

mentation (Portland, Ore). ACM SIGPLAN Not 24, 7, 298–312

Received October 1993; revised March 1994; accepted April 1994

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 5, September 1994

