
An Old-Fashioned Recipe for Real Time

MARTIN ABADI and LESLIE LAMPORT

Digital Equipment Corporation

""---- " ----

Traditional methods for specifying and reasoning about concurrent systems work for real-time
systems" Using TLA (the temporal logic of actions), we illustrate how they work with the examples
of a queue and of a mutual-exclusion protocol. In general, two problems must be addressed:
avoiding the real-time programming version of Zeno's paradox, and coping with circularities when
composing real-time assumption/guarantee specifications. Their solutions rest on properties of
machine closure and realizability.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification-
correctness proofs; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs-Specification techniques

General Terms: Theory, Verification
Additional Key Words and Phrases: Composition, concurrent programming, liveness propertiE~s,
real time, safety properties, temporal logic, Zeno

1. INTRODUCTION

A new class of systems is often viewed as an opportunity to invent a new semantics.
A number of years ago, the new class was distributed systems. More recently,
it has been real-time systems. The proliferation of new semantics may be fun
for semanticists, but developing a practical method for reasoning formally about
systems is a lot of work. It would be unfortunate if every new class of systems
required inventing new semantics, along with proof rules, languages, and tools.

Fortunately, no fundamental change to the old methods for specifying and rea-
soning about systems is needed for these new classes. It has long been known
that the methods originally developed for shared-memory multiprocessing apply
equally well to distributed systems [Chandy and Misra 1988; Lamport 1982]. The
first application we have seen of a clearly "off-the-shelf" method to a real-time
algorithm was in 19S3 [Neumann and Lamport 19S3], but there were probably
earlier ones. Indeed, the "extension" of an existing temporal logic to real-time
programs by Bernstein and Harter [19S1] can be viewed as an application of that
logic.

The old-fashioned methods handle real time by introducing a variable, which we
call now, to represent time. This idea is so simple and obvious that it seems hardily

Author's address: Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue,
Palo Alto, CA 94301.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association It)r Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
iC, 1994 ACM 0164-0925/94/0900-1543$03.50

A('M 'i'ml1s<\clioIlS on Programming Languages and Systems, Vol. 16, No.5, September 19!-:l4, Pag{\s 1 fA;) 1 ;)'/1.

ACM
Online Appendix
The Online appendix for this article is available on the ACM citation page within the source tab for this article: http://dx.doi.org/10.1145/186025.186058

Previous instructions for obtaining the appendix located on page 1571 were outdated, thus the instructions were removed from the PDF

http://crossmark.crossref.org/dialog/?doi=10.1145%2F186025.186058&domain=pdf&date_stamp=1994-09-01

1544 M. Abadi and L. Lamport

worth writing about, except that few people appear to be aware that it works in
practice. \Ve therefore describe how to apply a conventional method to real-time
systems.

Any formalism for reasoning about concurrent programs can be used to prove
properties of real-time systems. However, in a conventional formalism based on
a programming language, real-time assumptions are expressed by adding program
operations that read and modify the variable now. The result can be a complicated
program that is hard to understand and easy to get wrong. We take as our for-
malism TLA, the temporal logic of actions [Lamport 1994]. In TLA, programs and
properties are represented as logical formulas. A real-time program can be written
as the conjullction of its untimed version, expressed in a standard way as a TLA
formula, and its timing assumptions, expressed in terms of a few standard param-
eterized formulas. This separate specification of timing properties makes real-time
specifications easier to write and understand.

The method is illustrated with two examples. The first is a queue in which
the sender and receiver synchronize by the use of timing assumptions instead of
acknowledgements. We indicate how safety and liveness properties of the queue
can be proved. The second example is an n-process mutual exclusion protocol, in
which mutual exclusion depends on assumptions about the length of time taken
by the operations. Its correctness is proved by a conventional invariance argu-
ment.

\Ve also discuss two problems that arise when time is represented as a program
\'ariable-problems that seem to have received little attention-and present new
solutions.

The first problem is how to avoid the real-time programming version of Zeno's
paradox. If time becomes an ordinary program variable, then one can inadvertently
write programs in which time behaves improperly. An obvious danger is deadlock,
where time stops. A more insidious possibility is that time keeps advancing but
is bounded, approaching closer and closer to some limit. One way to avoid such
"Zeno" behaviors is to place an a priori lower bound on the duration of any action,
but. this can complicate the representation of some systems. We provide a more
gcneral and, we feel, a more natural solution.

The second problem is coping with the circularity that arises in open system spec-
ifications. The specification of an open system asserts that it operates correctly
under some assumptions on the system's environment. A modular specification
method requires a rule asserting that, if each component satisfies its specification,
then it behaves correctly in concert with other components. This rule is circular,
because a component's specification requires only that it behave correctly if its en-
vironment does, and its environment consists of all the other components. Despite
its circularity, the rule is sound for specifications written in a particular style [Abadi
and Lamport 1993; Misra and Chandy 1981; Pnueli 1984]. By examining an appar-
ently paradoxical example, we discover how real-time specifications of open systems
can be written in this style.

\\'e express these problems and their solutions in terms of TLA. However, we
believe that the problems will arise in any formalism that permits sufficiently gen-
eral specifications. Our solutions should be applicable to any formalism whose
semantics is based 011 sequences of states or actions.
ACM Transacli()[)s OJ) Pn)gramrning Languagl's and Systems, VoL 16, No. [), September 1991.

An Old-Fashioned Recipe for Real Time 1545

2. CLOSED SYSTEMS

We briefly review how to represent closed systems in TLA. A closed system is
one that is self-contained and does not communicate with an environment. No
one intentionally designs autistic systems; in a closed system, the environment is
represented as part of the system. Open systems, in which the environment and
system are separated, are discussed in Section 4.

vVe begin our review of TLA in Section 2.1 with an informal presentation of an
example. The formal definitions are summarized in Section 2.2. A more leisurely
exposition appears in [Lamport 1994]' and most definitions in the current paper are
repeated in a list in the appendix. Section 2.3 reviews the concepts of safety [Alpern
and Schneider 1985] and machine closure [Abadi and Lamport 1991] (also known
as feasibility [Apt et al. 1988]) and relates them to TLA, and Section 2.4 defines
a useful class of history variables [Abadi and Lamport 1991]. Propositions and
theorems are proved in the appendix.

2.1 The Lossy-Queue Example

We introduce TLA with the example of the lossy queue shown in Figure 1. The
interface consists of two pairs of "wires", each pair consisting of a val wire that
holds a message and a boolean-valued bit wire. A message m is sent over a pair of
wires by setting the val wire to m and complementing the bit wire. The receiver
detects the presence of a new message by observing that the bit wire has changed
value. Input to the queue arrives on the wire pair (ivai, ibit), and output is sent
on the wire pair (oval, obit). There is no acknowledgment protocol, so inputs are
lost if they arrive faster than the queue processes them. (Because of the way ib:it
is used, inputs are lost in pairs.) The property guaranteed by this lossy queue is
that the sequence of output messages is a subsequence of the sequence of input
messages. In Section 3.1, we add timing constraints to rule out the possibility of
lost messages.

A specification is a TLA formula II describing a set of allowed behaviors. A
property P is also a TLA formula. The specification II satisfies property P iff (if
and only if) every behavior allowed by II is also allowed by P-that is, if II implies
P. Similarly, a specification W implements II iff every behavior allowed by W is also
allowed by II, so implementation means implication.

The specification of the lossy queue is a TLA formula that mentions the four
variables ibit, obit, ivai, and oval, as well as two internal variables: q, which equals

ivai oval
q: I I I I I I ...

ibit
last: D obit

Fig. 1. A simple queue.

ACM Transactions on Programming Languages and Systems, Vo1. 16, No.5, September 1994.

1546 M. Abadi and L. Lamport

InitQ " 1\ ibit, obit E {true, fa Ise} -

1\ ivai, oval E Msg
1\ last = ibit
1\ q = (0)

Inp ::'. 1\ ibit' = ~ibit
1\ ivai' E Msg
1\ (obit, oval, q, last)' = (obit, oval, q, last)

EnQ ::'. 1\ last cp ibit
1\ q' = q 0 ((ivai))
1\ last' = ibit
1\ (ibit, obit, ivai, oval)' = (ibit, obit, ivai, oval)

DeQ ::'. 1\ q cp (())
1\ oval' = Head(q)
1\ q' = Tail(q)
1\ obit' = ~ obit
1\ (ibit, ivai, last)' = (ibit, ivai, last)

NQ ::'. Inp V EnQ V DeQ

" (ibit, obit, ivai, oval, q, last) v -

ITQ ::'. InitQ 1\ D[NQJv

1'Q " 3q, last: I1Q -

Fig. 2. The TLA specification of a lossy queue.

the sequence of messages received but not yet output; and last, which equals the
value of ibit for the last received message. (The variable last is used to prevent the
same message from being received twice.) These six variables are flexible variables;
their values can change during a behavior. We also introduce a rigid variable Msg
denoting the set of possible messages; it has the same value throughout a behavior.
We usually refer to flexible variables simply as variables, and to rigid variables as
constants.

The TLA specification is shown in Figure 2, using the following notation. A
list of formulas, each prefaced by 1\, denotes the conjunction of the formulas, and
indentation is used to eliminate parentheses. The expression ((II denotes the empty
sequence, ((mIl denotes the singleton sequence having m as its one element, 0

denotes concatenation, Head ((J") denotes the first element of (J", and Tail ((J") denotes
the sequence obtained by removing the first element of (J". The symbol ~ means is
defined to eqlLal.

The first definition is of the predicate InitQ, which describes the initial state. This
predicate asserts that the values of variables ibit and obit are arbitrary booleans,
the values of ivai and oval are elements of Msg, the values of last and ibit are equal,
and the value of q is the empty sequence.

Next is defined the action Inp, which describes all state changes that represent
the sending of an input message. (Since this is the specification of a closed system,
it includes the environment '8 Inp action.) The first conjunct, ibit' = ,ibit, asserts
that the new value of ibit equals the complement of its old value. The second con-
junct asserts that the new value of ivai is an element of Msg. The third conjunct
ACM Transactions on Programming Language's and Systems. Vol. 16, No.5, September 1994.

An Old-Fashioned Recipe for Real Time 1547

asserts that the value of the four-tuple (obit, oval, q, last) is unchanged; it is equiv-
alent to the assertion that the value of each of the four variables obit, oval, q, and
last is unchanged. The action Inp is always enabled, meaning that, in any state, a
new input message can be sent.

Action EnQ represents the receipt of a message by the system. The first conjunct
asserts that last is not equal to ibit, so the message on the input wire has not yet
been received. The second conjunct asserts that the new value of q equals the
sequence obtained by concatenating the old value of ival to the end of q's old value.
The third conjunct asserts that the new value of last equals the old value of ibit.
The final conjunct asserts that the values of ibit, obit, ival, and oval are unchanged.
Action EnQ is enabled in a state iff the values of last and ibit in that state are
unequal.

The action DeQ represents the operation of removing a message from the head
of q and sending it on the output wire. It is enabled iff the value of q is not the
empty sequence.

The action NQ is the specification's next-state relation. It describes all allowed
changes to the queue system's variables. Since the only allowed changes are the
ones described by the actions Inp, EnQ, and DeQ, action NQ is the disjunction of
those three actions.

In TLA specifications, it is convenient to give a name to the tuple of all relevant
variables. Here, we call it v.

Formula ITQ is the internal specification of the lossy queue-the formula spec-
ifying all sequences of values that may be assumed by the queue's six variables,
including the internal variables q and last. Its first conjunct asserts that InitO
is true in the initial state. Its second conjunct, D[No]v, asserts that every step
is either an No step (a state change allowed by No) or else leaves v unchanged,
meaning that it leaves all six variables unchanged.

Formula <l>Q is the actual specification, in which the internal variables q and
last have been hidden. A behavior satisfies <l>O iff there is some way to assign
sequences of values to q and last such that ITO is satisfied. The free variables of <l>Q
are ibit, obit, ivai, and oval, so <l>O specifies what sequences of values these four
variables can assume. All the preceding definitions just represent one possible way
of structuring the definition of <l>Q; there are infinitely many ways to write formulas
that are equivalent to <l>O and are therefore equivalent specifications.

TLA is an untyped logic; variables may assume any values in a fixed universal
domaill. Type correctlless can be expressed by the formula DT, where T is the
predicate asserting that all relevant variables have values of the expected "types"'.
For the internal queue specification, the type-correctness predicate is

Tq ~ 1\ ibit, obit, last E {true, fa Ise }
1\ ivai, oval E Msg
1\ q E Msg*

(1)

where Msg* is the set of finite sequences of messages. Type correctness of ITq is
asserted by the formula ITQ =? DTq , which is easily proved [Lamport 1994]. Type
correctness of <I>q follows from I1Q =? DTQ by the usual rules for reasoning about
quantifiers.

Formulas rIQ and <Pq are safety properties, meaning that they are satisfied by
ACM Transactions OJ) Programming Languages and Systems, Vol. 16, No.5, September 1994.

1548 M. Abadi and L. Lamport

an infinite bchavior iff t hl'y are satisfied by every finite initial portion of the be-
havior. Safdy propert ies allow behaviors in which a system performs properly for
a while and t hen the values of all variables are frozen, never to change again. In
asynchronous SYOitClllOi, such undesirable behaviors are ruled out by adding fairness
propert.ies. \Ve could strengthen our lossy-queue specification by conjoining the
weak fairness property \VF,,(DeQ) and the strong fairness property SFv(EnQ) to
TI q , obt aining

(2)

Propcrh \\T I (DeQ) assert s that if action DeQ is enabled forever, then infinitely
lllany DcQ stcps must occur. This property implies that every message reaching
the qucuc is cwntually output. Property SFv(EnQ) asserts that if action EnQ is
cnahlce! infinitely often, then infinitely many EnQ steps must occur. It implies
t hat if infinitcl!' Illany inputs are sent, then the queue must receive infinitely many
of them. The formula (2) implies the liveness property [Alpern and Schneider
1985l that an infinite number of inputs produces an infinite number of outputs. A
forlllula such as (2), which is the conjunction of an initial predicate, a term of the
form D[AlI' and a fairness property, is said to be in canonical form.

2.2 The Semantics of TLA

\Ve begin wit h some definitions. \Ve assume a universal domain of values, and we
let [F] denote the semantic meaning of a formula F.

statc. A mapping from variables to values. \Ve let s.x denote the value that state
5 assigns to variable x.

state functlOn. An expression formed from variables, constants, and operators.
The meaning of a state function is a mapping from states to values. For example,
x + 1 is a state function such that [x + l](s) equals s.x + 1, for any state s.

predicate. A boolean-valued state function, such as x > y + l.
transition function. An expression formed from variables, primed variables, con-

stants, and operators. The meaning of a transition function is a mapping from pairs
of states to values, with ullprimecl variables referring to the first state of a pair and
primed variables to the second. For example, x + y' + 1 is a transition function,
and [x + y' + l](s, t) equals the value s.x + t.y + 1, for any pair of states s, t.

action. A boolean-valued transition function, such as x > (y' + 1).
stcp. A pair of stat(~s s, t. For an action A, the pair is called an A step iff [A] (s, t)

<:quals true. It is called a stuttenng step iff s = t.

1'. The transition fUllction obtained from the state function f by priming all the
frce variables of f, so [1'](5, t) = [1](t) for any states sand t.

[All' The action A V (1' = 1), for allY action A and state function f·
(A) I' The actioll A 1\ (1' cI Jl, for any action A and state function f·

Enabled A. For any action A, the predicate such that [Enabled A] (s) equals
:=Jt : [A](.s, t), for any stat<: 8.

Informally, we oftcn idcntify a formula and its meaning. For example we say that
a predicate P is tnw ill stat e 8 inst cad of [P] (s) = true.
;\CM Tr<tllsactioll,c.; ()Il ProgranJming' L;lllguag()s and Systems, Vol. 16. No. G, September 1994.

An Old-Fashioned Recipe for Real Time 1549

An RTLA (raw TLA) formula is a boolean expression built from actions, classical
operators (boolean operators and quantification over rigid variables), and the unary
temporal operator O. The meaning of an RTLA formula is a boolean-valued func-
tion on behaviors, where a behavior is an infinite sequence of states. The meaning
of the operator 0 is defined by

[OF](Sl,S2,S3,"') ~ 'in> 0: [F](Sn,Sn+l,5n+2, ...)

Intuitively, OF asserts that F is always true. The meaning of an action as an RTLA
formula is defined in terms of its meaning as an action by letting [A](Sl, 52, S3,"')
equal [A](Sl' S2). A predicate P is an action; P is true for a behavior iff it is true
for the first state of the behavior, and OP is true iff P is true in all states. For any
action A and state function f, the formula O[Alf is true for a behavior iff each step
is an A step or else leaves f unchanged. The classical operators have their usual
meanings.

A TLA formula is one that can be constructed from predicates and formulas
O[Alf using classical operators, 0, and existential quantification over flexible vari-
ables. Thus, an action that is not a predicate can appear in a TLA formula F
only as a subformula of an action A in a subformula o[Alf or Enabled A of F.
The semantics of actions, classical operators, and 0 are defined as before. The
approximate meaning of quantification over a flexible variable is that 3x : F is true
for a behavior iff there is some sequence of values that can be assigned to x that
makes F true. The precise definition appears in [Lamport 1994l and is recalled in
the appendix. As usual, we write 3 Xl, ... ,Xn : F instead of 3 Xl : ... 3 Xn : F.

A property is a set of behaviors that is invariant under stuttering, meaning that
it contains a behavior a iff it contains every behavior obtained from a by adding
and/or removing stuttering steps. The set of all behaviors satisfying a TLA formula
is a property, which we often identify with the formula.

For any TLA formula F, action A, and state function f:

OF
WFf(A)

SF f(A)

~

OO-,(Enabled (A) f) V OO(A) f

~ OO-;(Enabled (A) f) V OO(A) f

These are TLA formulas, since O(A) f equals -;0 [-;Alf.

2.3 Safety and Fairness

A finite behavior is a finite sequence of states. We say that a finite behavior satisfies
a property F iff it can be continued to an infinite behavior in F. A property F is
a safety property [Alpern and Schneider 1985] iff the following condition holds: F
contains a behavior iff it is satisfied by every finite prefix of the behavior. 1 Intu-
itively, a safety property asserts that something "bad" does not happen. Predicates
and formulas of the form O[Alf are safety properties.

Safety properties are closed sets in a topology on the set of all behaviors [Abadi
and Lamport 1991l. Hence, if two TLA formulas F and G are safety properties,

10ne sometimes defines 81, ... ,8n to satisfy F iff the behavior 81, ... , 8 n , 8 n , 8 n , ... is in F. Since
properties are invariant under stuttering, this alternative definition leads to the same definition
of a safety property.

ACM Transactions on Programming· Lang'uages and Systems, Vol. 10, No. G, September 199'4.

1550 M. Abadi and L. Lamport

then F 1\ G is also a safety property. The closure C(F) of a property F is the
smallest safety property containing F. It can be shown that C (F) is expressible in
TLA, for any TLA formula F.

If IT is a safety property and L an arbitrary property, then the pair (IT, L) is
machine closed iff every finite behavior satisfying IT can be extended to an infinite
behavior in IT 1\ L. Two equivalent definitions are that (IT, L) is machine closed iff
(i) C (IT 1\ L) equals IT, or (ii) for any safety property \jJ, if IT 1\ L implies \jJ then IT
implies \jJ. The lack of machine closure can be a source of incompleteness for proof
methods. Most methods for proving safety properties use only safety properties as
hypotheses, so they can prove IT 1\ L ::::} \jJ for safety properties IT and \jJ only by
proving IT ::::} \jJ. If IT is not machine closed, then IT 1\ L ::::} \jJ could hold even though
IT ::::} \jJ does not., and t.hese methods will be unable to prove that the system wit.h
specification IT sat.isfies \jJ.

Proposition 1 below shows that machine closure generalizes the concept of fair-
ness. The canonical form for a TLA formula is

3 x: (Init 1\ D[Nlv 1\ L) (3)

where Init is a predicate, N is an action, v is a state function, L is a formula,
(Init 1\ 0 [Nlv, L) is machine closed, and x is a t.uple of variables called the internal
variables of the formula. Usually, v will be the tuple of all variables appearing free
in In it , N, and L (including t.he variables of x). It. follows from the definitions
that a behavior satisfies (3) iff there is some way of choosing values for x such that
(a) Init is true in the initial state, (b) every step is either an N step or leaves all
the variables in v unchanged, and (c) the entire behavior satisfies L.

An action A is said to be a subaction of a safety property IT iff, whenever an
A step is possible, an A step that satisfies IT is possible. More precisely, A is a
subaction of IT iff for every finite behavior S1,"" Sn satisfying IT wit.h Enabled A
true in state Sn, there exists a state Sn+l such t.hat (sn' sn+d is an A step and
S1, ... , Sn+1 satisfies IT. By this definition, if A implies N then A is a subaction of
Init 1\ D[Nlv. The exact condition is that A is a subaction of Init 1\ D[Nlv iW

Init 1\ D[Nlv => D((Enabled A) => Enabled (A 1\ [Nlv))

Two actions are disjoint iff their conjunction is identically false. A weaker notion is
disjointness of two actions for a property: A and B are disjoint for IT iff no behavior
satisfying IT contains an A 1\ B step. By this definition, A and B are disjoint for
Init 1\ 0 [Nlv iff

Init 1\ 0 [Nlv => D--.Enabled (A 1\ B 1\ [Nlv)

The following result shows that the conjunction of WF and SF formulas is a
fairness property. It is a special case of Proposition 4 of Section 4.

PROPOSITION l. If IT is a safety property and L is the conjunction of a finite or
countably infinite number of formulas of the form WFw(A) and/or SFw(A) such
that each (A)w is a subaction of IT, then (IT, L) is machine closed.

2We let =? have lower precedence than the other boolean operators.

ACM Transactions on Programming Languages and Syst.ems, Vol. 16, No.5, September 1994.

An Old-Fashioned Recipe for Real Time 1551

In practice, each w will usually be a tuple of variables changed by the corresponding
action A, so (A)w will equal A.3 In the informal exposition, we often omit the
subscript and talk about A when we really mean (A)w.

Machine closure for more general classes of properties can be proved with the
following two propositions, which are proved in the appendix. To apply the first,
one must prove that 3x : II is a safety property. By Proposition 2 of [Abadi and
Lamport 1991, page 265], it suffices to prove that II has finite internal nondeter-
minism (fin), with x as its internal state component. Here, fin means roughly that
there are only a finite number of sequences of values for x that can make a finite
behavior satisfy II.

PROPOSITION 2. If (II, L) is machine closed, x is a tuple of variables that do
not occur free in L, and 3x : II is a safety property, then ((3x : II), L) is machine
closed.

PROPOSITION 3. If (II, LI) is machine closed and II II Ll implies L 2 , then
(II, L 2) is machine closed.

2.4 History-Determined Variables

A history-determined variable is one whose current value can be inferred from the
current and past values of other variables. For the precise definition, let

Hist(h, f,g, v) ~ (h = f) II D[(h' = g) II (v' 1"= V)](h,v) (4)

where f and v are state functions and 9 is a transition function. A variable h is a
history-determined variable for a formula II iff II implies Hist(h, f, g, v), for some
f, g, and v such that h occurs free in neither f nor v, and h' does not occur free in
g.

If f and v do not depend on h, and 9 does not depend on h', then 3h :
Hist (h, f, g, v) is true for all behaviors. Therefore, if h does not occur free in formula
q" then 3h : (q, II Hist(h,f,g,v)) is equivalent to q,. In other words, conjoining
Hist(h,f,g,v) to q, does not change the behavior of its variables, so it makes h a
"dummy variable" for q,-in fact, it is a special kind of history variable [Abadi and
Lamport 1991, page 270].

As an example, we add to the lossy queue's specification q,Q a history variable
hin that records the sequence of values transmitted on the input wire. Let

Hin ~ II hin = (()) (5)
II D[II hin' = hin 0 ((ivan)

II (ivai, ibit)' 1"= (ivai, ibit)](hin,ival,ibit)

Then H in equals Hist(hin, (()), hin 0 ((ivai')), (ivai, ibit)); therefore, hin is a history-
determined variable for q,Q II H in , and 3 hin : (q,Q II H in) equals q,Q.

lf h is a history-determined variable for a property II, then II is fin, with h as
its internal state component. Hence, if II is a safety property, then 3h : II is also a
safety property.

3More precisely, T /\ A will imply w' f w, where T is the type-correctness invariant.

ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

1552 M. Abadi and L. Lamport

3. REAL-TIME CLOSED SYSTEMS

V/e now usc TLA to specify and reason about timing properties of closed systems.
vVe focus on worst-case upper and lower bounds on real-time delays. However, our
approach should be applicable to other real-time properties as well. We believe
(hat its only inherent limitation is that it cannot handle probabilistic real-time
properties, such as average delay requirements. This limitation arises because, like
most specification formalisms, TLA cannot express probabilistic properties.

Sectioll 3.1 explains how time and timing properties can be represented with
TLA formulas, and Section 3.2 describes how to reason about these formulas. The
problem of Zeno specificatiolls is addressed in Section 3.3. Our method of specifying
and reasoning about timing properties is illustrated in Section 3.4 with the example
of a real-time mutual exclusion protocol.

3.1 Time and Timers

In real-time TLA specifications, real time is represented by the variable now. Al-
t hough it has a special interpretation, now is just an ordinary variable of the logic.
The value of now is always a real number, and it never decreases-conditions ex-
pressed by the TLA formula

RT ~ (now E R) 1\ D[now' E (now, oo)]now

where R is the set of real numbers and (r, 00) is {t E R : t > T}.
It is convenient to make time-advancing steps distinct from ordinary program

steps. This is done by strengthening the formula RT to

RTv ~ (now E R) 1\ D[(now' E (now,oo)) 1\ (Vi = v)]now

This property differs from RT only in asserting that v does not change when now ad-
vances. Simple logical manipulation shows that RT v is equivalent to RT 1\ D [now' =
now]1J, and

Init 1\ D[Nlv 1\ RTv = Init 1\ D[N 1\ (now' = now)]v 1\ RT

vVe express real-time constraints by placing timing bounds on actions. Such
bounds are the bread-and-butter of many real-time formalisms, such as real-time
process algebras [de Bakker et al. 1992]. Timing bounds on actions are imposed
by using timers to restrict the increase of now. A timer for II is a state function t
such that II implies D(t E RU {±oo}). Timer t is used as an upper-bound timer
by conjoining the formula

MaxTime(t) (now:::; t) 1\ D[now' :::; t']now

to a specification. This formula asserts that now is never advanced past t. Timer
t is used as a lower-bound timer for an action A by conjoining the formula

MinTime(t,A,v) ~ D[A~(t:::;now)]v

to a specification. This formula asserts that an (A)v step cannot occur when now
is less than t.4

4 Unlike the usual timers in computer systems that represent an increment of time, our timers

ACM Transactions on Programming Language0 and Systems, Vol.]6, No.5, September 1994.

An Old-Fashioned Recipe for Real Time 1553

A common type of timing constraint asserts that an A step must occur within 5
seconds of when the action A becomes enabled, for some constant 5. After an A
step, the next A step must occur within 5 seconds of when action A is re-enabled.
There are at least two reasonable interpretations of this requirement.

The first interpretation is that the A step must occur if A has been continuously
enabled for 5 seconds. This is expressed by MaxTime(t) when t is a state function
satisfying

VTimer(t, A, 5, v) ~ 1\ t = if Enabled (A/v then now + 5
else 00

1\ 0 [1\ t' = if (Enabled (A/v)'
then if (A/v V .. Enabled (A/v

then now + 5
else t

else 00

1\ v' f v](t,11)

Such a t is c2Jled a volatile 5-timer.
Another interpretation of the timing requirement is that an A step must occur

if A has been enabled for a total of 5 seconds, though not necessarily continuously
enabled. This is expressed by MaxTime(t) when t satisfies

PTimer(t, A, 5, v) ~ 1\ t = now + 5
1\ or 1\ t' = if Enabled (A)v

then if (A)v then now + 5
else t

else t + (now' - now)
1\ (v, now)' f (v, now) lu,11,now)

Such a t is called a persistent o-timer. We can use o-timers as lower-bound timers
as well as upper-bound timers.

Observe that VTimer(t, A, 0, v) has the form Hist(t, j, g, v) and PTimer(t, A, 0, v)
has the form Hist(t,j,g, (v, now)), where Hist is defined by (4). Thus, if formula
II implies that a variable t satisfies either of these formulas, then t is a history-
determined variable for II.

As an example of the use of timers, we make the lossy queue of Section 2.1
non lossy by adding the following timing constraints.

-Values must be put on a wire at most once every 5snd seconds. There are two
conditions-one on the input wire and one on the output wire. They are expressed
by using 5.md-timers tlnp and tDeQ, for the actions Inp and DeQ, as lower-bound
timers.

-A value must be added to the queue at most ll1'c11 seconds after it appears on
the input wire. This is expressed by using a ll1'cv-timer TEnQ, for the enqueue
action, as an upper-bound timer.

repres'mt an absolute time. To allow the type of strict time bound that would be expressed by
replacing :s with < in the definition of MaxTime or Min Time, we could introduce, as additional
possible values for timers, the set of all "infinitesimally shifted" real numbers r-, where t :s r­
iff t < r, for any reals t and r.

ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

1554 M. Abadi and L. Lamport

-A value must be sent on the output. wire wit.hin 6 5n d seconds of when it reaches
the head of the queue. This is expressed by using a 6,md-timer T DeQ , for the
dequeue action, as an upper-bound timer.

The timed queue will be non lossy if 6"c1I < 6snd. In this case, we expect the Inp,
EnQ, and DeQ actions to remain enabled until they are "executed", so it doesn't
matter whether we use volatile or persistent timers. vVe use volatile timers because
they are a little easier to reason about.

The timed version ITO of the queue's internal specification ITQ is obtained by
conjoining the timing constraints to ITQ:

/\ ITQ /\ RTv

/\ VTimer(tlnp, Inp, 6snd, v) /\ MinTime(tlnp, Inp, v)
/\ VTimer(tDeQ, DeQ, 6snd, v) /\ MinTime(tDeQ' DeQ, v)
/\ VTimer(TEnQ , EnQ, 6"c1I' v) /\ MaxTime(TEnQ)

/\ VTimer(TDeQ , DeQ, 6 snd, v) /\ MaxTime(TDcQ)

(6)

The external specification <l.lO of the timed queue is obtained by existentially quan-
tifying first the timers and then the variables q and last.

Formula ITO of (6) is not in the canonical form for a TLA formula. A straight-
forward calculation, using the type-correctness invariant (1) and the equivalence of
(OF) /\ (DC) and O(F /\ C), converts the expression (6) for ITO to the canonical
form given in Figure 3. 5 Observe how each subaction A of the original formula
has a corresponding timed version At. Action At is obtained by conjoining A with
the appropriate relations between the old and new values of the timers. If A has
a lower-bound timer, then At also has a conjunct asserting that it is not enabled
when now is less than this timer. (The lower-bound timer tlnp for Inp does not
affect the enabling of other subactions because Inp is disjoint from all other sub-
actions; a similar remark applies to the lower-bound timer tDeQ') There is also a
new action, QTick, that advances now.

Formula ITO is the TLA specification of a program that satisfies each maximum-
delay constraint by preventing now from advancing before the constraint has been
satisfied. Thus, the program "implements" timing constraints by stopping time, an
apparent absurdity. However, the absurdity results from thinking of a TLA formula,
or the abstract program that it represents, as a prescription of how something is
accomplished. A TLA formula is really a description of what is supposed to happen.
Formula ITO says only that an action occurs before now reaches a certain value. It
is just our familiarity with ordinary programs that makes us jump to the conclusion
that now is being changed by the system.

3.2 Reasoning About Time

Formula ITO is a safety property; it is satisfied by a behavior in which no variables
change values. In particular, it allows behaviors in which time stops. We can rule

5Fllrther simplification of this formula is possible, but it requires an invariant. In particular, the
fOllrt.h conjllllct of DeQt can be replaced by T'enQ = TEnQ'

ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

An Old-Fashioned Recipe for Real Time

Init~ "'. t\ InitQ
t\ now E R
t\ tlnp = now + 0snd
t\ tDeQ = TEnQ = TDeQ = 00

Inpt '" t\ Inp

t\ t Inp S; now
1\ t1np = now' + 0md

1\ T EnQ = if last' 01 ibit' then now' + 6 1'cv else 00
1\ (tDeQ' TDeQ)' = if q = (0) then (00, (0) else (tDeQ' TDeQ)
t\ now' = now

EnQt "'. t\ EnQ

1\ T EnQ = 00

1\ (tDeQ,TDeQ)' = ifq= (()) then (now+6snd, now + 6 snd)
else (tDeQ, TDeQ)

t\ (tlnp, now)' = (tlnp' now)

DeQt "'. t\ DeQ

QTick

vi

TTl Q

1\ t DeQ S; now
t\ (tDeQ' TDeQ)' == if q' = (0) then (00, (0)

else (now + osnd' now + 6 snd)
t\ T EnQ = if last' = ibit' then 00 else TEnQ

1\ (tlnp' now)' = (tlnp' now)

"'. 1\ now' E (now, min(TDeQ' TEnQ)]

t\ (v, tlnp' tDeQ, TDeQ, TEnQ)' = (v, tlnp' tDeQ' TDeQ' TEnQ)

'" (v, now, tlnp' tDeQ, TDeQ' TEnQ)

"'. t\ Init'q
1\ D[Inpt V EnQt V DeQt V QTickl vt

1555

Fig. 3. The canonical form for IT'q, where (1', s] denotes the set of reals u such that l' < u S; s.

ACM Tran:-;action:-; 011 ProgTHIllllling Languages and Systems, Vo1. 16, No.5, September]994.

1556 M. Abadi and L. Lamport

out such behaviors by conjoining to I1b the liveness property

NZ ~ VtER:O(now>t)

which asserts that now gets arbitrarily large. However, when reasoning only about
real-time (safety) properties, this should not be necessary. For example, suppose
we \\'ant to show that our timed queue satisfies a real-time property expressed by
formula Wi, which is also a safety property. If IIQ implies 'lit) then IIQ 1\ NZ implies
Wi 1\ NZ. Conversc!y, we don't expect conjoining a live ness property to add safety
propert ies; if IIb 1\ NZ implies 'lit, then IIq by itself should imply 'lit. Hence, there
shonkl he no need to introduce the live ness property NZ. Section 3.3 below explains
precisely when we can ignore property NZ.

A safety property we might want to prove for the timed queue is that it docs not
lose any inputs. To express this property, let hin be the history variable, determined
by Hm of US). t hat records the sequence of input values; and let hout and H ont be
t he analogous history variable and property for the outputs. The assertion that the
timed queue loses no inputs is expressed by

m~ 1\ H in 1\ H out => D (hout j hinp)

where a j .3 iff a is an initial prefix of fl. This is a standard invariance property.
The llwal method for proving such properties leads to the following invariant

1\ 'Tq 1\ (tIn}!. now E R) 1\ (TEnQ' tDeQ, T DeQ E R U {oo})
1\ now :s; min(TFnQ' Tl)cQ)

1\ (last = ibit) => (TEnQ = (0) 1\ (hinp = hout 0 q)

1\ (last cF zbit) => (TEnQ < tInp) A (hinp = hout 0 q 0 ((ivai)))

A (q=(O)) == (TDeQ=oo)

aIld to the necessary assumption c'rcv < 5 snd. (Recall that T Q is the type-
correctness predicate (1) for II Q .) Property NZ is not needed to prove this in-
variant.

Property NZ is needed to prove that real-time properties imply liveness proper-
ties. The dcsiredliveness property for the timed queue is that the sequence of input
messages up to any point eventually appears as the sequence of output messages.
It is expressed by

IIL 1\ NZ => Va: D((hinp = a) => O(hout = a))

This formula is proved by first showing

II22 1\ NZ => WFv(EnQ) A WFv(DeQ)

and then using a standard liveness argument to prove

Db A vVFv(EnQ) A WF ,,(DeQ) => Va: D((hinp = a) => O(hout = a))

(7)

The proof that I1b A NZ implies WFv(EnQ) is by contradiction. Assume EnQ
is forever enabled but never occurs. An invariance argument then shows that IIb
implies that T EnQ forever equals its current value, preventing now from advanc-
ing past that value; and this contradicts NZ. The proof that IIb 1\ NZ implies
vVF,,(DeQ) is similar.

ACM Transactions on Programming Languages and Systems, VoL 16, No.5. September 1994.

An Old-Fashioned Recipe for Real Time 1557

3.3 The NonZeno Condition

The timed queue specification II~ asserts that a DeQ action must occur between
Osnd and 6:..snd seconds of when it becomes enabled. What if 6:.. snd < Osnd? If an
input occurs, it eventually is put in the queue, enabling DeQ. At that point, the
value of now can never become more than 6:.. snd greater than its current value, so
the program eventually reaches a "time-blocked state". In a time-blocked state,
only the QTick action can be enabled, and it cannot advance now past some fixed
time. In other words, eventually a state is reached in which every variable other
than now remains the same, and now either remains the same or keeps advancing
closer and closer to some upper bound.

We can attempt to correct such pathological specifications by requiring that now
increase without bound. This is easily done by conjoining the liveness property NZ
to the safety property II~, but that doesn't accomplish anything. Since IIQ /I. NZ
rules out behaviors in which now is bounded, it allows only behaviors in which
there is no input, if 6:.. snd < Osnd. Such a specification is no better than the original
speci:fication II~. The fact that the safety property allows the possibility of reaching
a time-blocked state indicates an error in the specification. One does not add timing
constraints on output actions with the intention of forbidding input.

We call a safety property Zeno if it allows the system to reach a state from which
now must remain bounded. More precisely, a safety property II is nonZeno iff every
finite behavior satisfying II can be completed to an infinite behavior satisfying II
in which now increases without bound. In other words, II is nonZeno iff the pair
(II, NZ) is machine closed.6

Zenoness can be a source of incompleteness for proof methods. Only nonZeno
behaviors are physically meaningful, so a real-time system with specification II
satisfies a property \jJ if II /I. NZ implies \jJ. As observed in Section 2.3, a proof
method may be incapable of showing that II /I. NZ implies \jJ if (II, NZ) is not
machine closed-that is, if II is Zeno.

The following result can be used to ensure that a real-time specification written in
terms of volatile o-timers is nonZeno. The main hypotheses are: (1) the maximum-
delay timers are on sub actions of the untimed specification, and (3) a maximum
delay for an action Aj is not smaller than a minimum delay for an action Ai if Ai
and Aj can be simultaneously enabled.

THEOREM 1. Let v be the tuple of variables free in Init or N. The property

/I. Init /I. D[Nlv /I. RTv

/I. \:Ii E I: VTimer(t;,Ai,o;,v) /I. Min Time (t;, Ai, v)

/I. \:Ij E J: VTimer(Tj ,Aj ,6:.. j ,v) /I. MaxTime(Tj)

is nonZeno if now does not appear in v, I and J are finite sets, and for all i E: I

and j E J:

(1) (Aj)v is a subaction of Init /I. D[Nlv whose free variables appear in v,

(2) 6i and 6:.. j are positive reals,

6 An arbitrary property TI is nonZeno iff (C(TI), TIANZ) is machine closed. We restrict our attention
to reali-time constraints for safety specifications.

ACM Transactions on Programming Languages and Systems, Vol. Iii, No. G, S<,ptl'mlwr 1994.

1558 M. Abadi and L. Lamport

(3) 6; :S !::!..j, or (Ai)v and (Aj)v are disjoint for Init A O[N]v and i cI j,

(4) the ti and Tj are distinct variables different from now and from the variables
2n v.

\Ve can apply the theorem to prove that the specification IT~ is nonZeno if
6snd :S !::!"snd· The hypotheses of the theorem are checked as follows.

(1) Actions (DeQ)v and (EnQ)v imply NQ, so they are subactions of ITQ.

(2) Trivial.
(3) The conjunction of any two of the actions (Inp) v , (DeQ)v, and (EnQ)v equals

false, so the actions are pairwise disjoint for ITQ .7 The only remaining cases to
consider are those in which i = j. Only (DeQ)v has both a lower-bound and
an upper-bound timer, and 6snd :S !::!..snd holds by hypothesis.

(4) Trivial.

The theorem is valid for persistent as well as volatile timers. Any combination
of VTimer and PTimer formulas may occur, except that a single Ak cannot have
a persistent lower-bound timer tk and a volatile upper-bound timer Tk . In fact,
the theorem is valid for any kind of lower-bound timer tk, not just a persistent
or volatile one, provided tk is never greater than the corresponding upper-bound
timer T k .

All of these results are corollaries of Theorem 2 below, which in turn is a con-
sequence of Theorem 4 of Section 4. To allow arbitrary lower-bound timers, The-
orem 2 uses different notation from Theorem 1. The IT of Theorem 2 corresponds
to the conjunction of Init A 0 [N]v with all the VTimer formulas of Theorem 1.

THEOREM 2. Let

IT be a safety property of the form Init A o[N]w,
-t; and Tj bc timcrs for IT and let Ak be an action, for all i E I, j E J, and

k E I U J, where I and J are sets, with J finite,

-ITt ~ IT A RT v A
I::/i E I: MinTime(t;,A;,v) A I::/j E J: MaxTime(Tj)

If (1) ITt =? 0 (ti :S Tj), or (Ai)v and (Aj)v are diSjoint for IT and i cI j, for
all i E I and j E J,

(2) (a) now does not occur free in v,
(b) (now' = r) A (v' = v) is a subaction of IT, for all r E R,

(3) for all j E J:
(a) (AJ)v A (now' = now) is a subaction of IT,
(b) IT =? VTimer(TJ, A j , !::!..j, v) or IT =? PTimer(Tj , Aj,!::!..j, v), for

some!::!"j E (0,00),
(c) ITt =? D(Enabled (A])v =

Enabled ((Aj)v A (now' = now)))
(d) (v' = v) =? (Enabled (Aj)v = (Enabled (Aj)v)')

then (IT', NZ) is machine closed

7 Actually, the type-correctness predicate TQ is needed to prove that (Inp)v 1\ (DeQ)v equals false.

ACM Transactions on ProgTarnrning Languages and Systems, Vol. 16, No.5, September]991.

An Old-Fashioned Recipe for Real Time 1559

Most nonaxiomatic approaches, including both real-time process algebras and
more traditional programming languages with timing constraints, essentially use
6-timers for actions. Theorem 2 implies that they automatically yield nonZeno
speci5cations.

Theorem 2 can be further generalized in two ways. First, J can be infinite--if
IIt implies that only a finite number of actions Aj with j E: J are enabled before
time r, for any r E R. For example, by letting Aj be the action that sends message
number j, we can apply the theorem to a program that sends messages number 1
through n at time n, for every integer n. This program is nonZeno even though
the number of actions per second that it performs is unbounded. Second, we can
extend the theorem to the more general class of timers obtained by letting the I'1 j

be arbitrary real-valued state functions, rather than just constants-if all the I'1 j

are bounded from below by a positive constant 6..
Theorem 2 can be proved using Propositions 1 and 3 and ordinary TLA reasoning.

By these propositions, it suffices to display a formula L that is the conjunction of
fairness conditions on subactions of rrt such that IIt 1\ L implies NZ. A suitable L
is WF(now,v)(C), where C is an action that either (a) advances now by minjEJ 6. j if
allowed by the upper-bound timers Tj , or else as far as they do allow, or (b) executes
an (Aj)v action for which now = Tj . The proof in the appendix of Theorem 4,
which implies Theorem 2, generalizes this approach.

Theorem 2 does not cover all situations of interest. For example, one can require
of our timed queue that the first value appear on the output line within c seconds
of when it is placed on the input line. This effectively places an upper bound on
the sum of the times needed for performing the EnQ and DeQ actions; it cannot be
expressed with 6-timers on individual actions. For these general timing constraints,
nonZenoness must be proved for the individual specification. The proof uses the
method described above for proving Theorem 2: we add to the timed program IIt
a live ness property L that is the conjunction of any fairness properties we like,
including fairness of the action that advances now, and prove that IIt 1\ L implies
NZ. NonZenoness then follows from Propositions 1 and 3.

There is another possible approach to proving nonZenoness. One can make granu-
larity assumptions-lower bounds both on the amount by which now is incremented
and on the minimum delay for each action. Under these assumptions, nonZenoness
is equivalent to the absence of deadlock, which can be proved by existing methods.
Granularity assumptions are probably adequate-after all, what harm can come
from pretending that nothing happens in less than 10-100 nanoseconds? How-
ever, they can be unnatural and cumbersome. For example, distributed algorithms
often assume that only message delays are significant, so the time required for
local actions is ignored. The specification of such an algorithm should place no
lower bound on the time required for a local action, but that would violate any
granularity assumptions. We believe that any proof of deadlock freedom based on
granularity can be translated into a proof of nonZenoness using the method outlined
above.

So far, we have been discussing nonZenoness of the internal specification, where
both the timers and the system's internal variables are visible. Timers are defined
by adding history-determined variables, so existentially quantifying over them pre-
serves nonZenoness by Proposition 2. We expect most specifications to be fin [Abadi

ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

1560 M. Abadi and L. Lamport

and Lamport 1991, page 263], so nonZenoness will also be preserved by existen-
tially quantifying over the system's internal variables. This is the case for the timed
queue.

3.4 An Example: Fischer's Protocol

As another example of real-time closed systems, we treat a simplified version of
a real-time mutual exclusion protocol proposed by Fischer [1985] and described
in [Lamport 1987, page 2]. The example was suggested by Schneider et al. [1992].
The protocol consists of each process i executing the following code, where angle
brackets denote instantaneous atomic actions:

a: await (x = 0);
b: (x:= i);
c: await (x = i);

es: critical section

There is a maximum delay 6.b between the execution of the test in statement a and
the assignment in statement b, and a minimum delay 6c between the assignment in
statement b and the test in statement c. The problem is to prove that, with suitable
conditions on 6.b and 6c , this protocol guarantees mutual exclusion (at most one
process can enter its critical section).

As written, Fischer's protocol permits only one process to enter its critical section
one time. The protocol can be converted to an actual mutual exclusion algorithm.
The correctness proof of the protocol is easily extended to a proof of such an
algorithm.

The TLA specification of the protocol is given in Figure 4. The formula IIF
describing the untimed version is standard TLA. We assume a finite set Proc of
processes. Variable x represents the program variable x, and variable pc represents
the control state. The value of pc will be an array indexed by Proc, where peril
equals one of the strings "a", "b", "c", "cs" when control in process i is at the
corresponding statement. The initial predicate Init F asserts that peril equals "a"
for each process i, so the processes start with control at statement a. No assumption
011 the initial value of x is needed to prove mutual exclusion.

Next come the definitions of the three actions corresponding to program state-
ments (1, b, and c. They are defined using the formula Go, where Go(i, u, v) asserts
that control in process i changes from u to v, while control remains unchanged in
the other processes. Action Ai represents the execution of statement a by process
i; actions Hi and Ci have the analogous interpretation. In this simple protocol, a
process stops when it gets to its critical section, so there are no other actions. The
program's next-state action NF is the disjunction of all these actions. Formula IIF
asserts that all processes start at statement a, and every step consists of executing
the next statement of some process.

Action Hi is enabled by the execution of action Ai. Therefore, the maximum
delay of 6.b between the execution of statements a and b can be expressed by an
upper-bound constraint on a volatile 6.b-timer for action Hi. The variable n is an
array of such timers, where Tb[i] is the timer for action Hi.

The constant 6c is the minimum delay between when control reaches statement
c and when that statement is executed. Therefore, we need an array tc of lower-
ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

An Old-Fashioned Recipe for Real Time

InitF ~ Vi E Proc : peril = "a"

Co(i,u,v) ~ 1\ peril = u
1\ pe'[i] = v
1\ V j E Proc : (j cp i) =? (pel [j] = pe[j])

Ai " Co(i,"a", "b") 1\ (X=X'=O)

Bi ~ Go(i, "b") "e") 1\ (Xl == i)

Ci ~ Go(i) "c", "cs") J\ (x=x'=i)

NF ~ :J i E Proc : (Ai V Bi V Cd
I1F ~ InitF 1\ o[NF](x,pe)

1\ I1F 1\ RT (x ,pc)
1\ Vi E Proc: 1\ VTirr,er(n[i], Bi, .0.b, (x,pe))

1\ MaxTime(Tb[i])
1\ Vi E Proc: 1\ VTimer(tc[i], Co(i, "c", "cs"), oc, (x,pe))

1\ Min Time(tc[i] , Ci, (x,pe))

Fig. 4. The TLA specification of Fischer's real-time mutual exclusion protocol.

1561

bound timers for the actions Ci . The delay is measured from the time control
reaches statement c, so we want te[i] to be a 6e-timer on an action that becomes
enabled when process i reaches statement c and is not executed until Ci is. (Since
we are placing only a lower-bound timer on it, the action need not be a subaction
of I1F') A suitable choice for this action is Go(i, "e", "es").

Adding these timers and timing constraints to the untimed formula I1F yields
formula I1~ of Figure 4, the specification of the real-time protocol with the timers
visible. The final specification, <Pj", is obtained by quantifying over the timer
variables nand te. Since (Bj)(x,pc) 1\ (now' = now) is a sub action of I1F and
(Go(i, "e", "cs"))(x,pe) is disjoint from (Bj)(x,pc), for all i and j in Proe, Theorem 2
implies that I1~ is nonZeno if 6.b is positive. Proposition 2 can then be applied to
prove that <P~ is nonZeno.

Mutual exclusion asserts that two processes cannot be in their critical sections
at the same time. It is expressed by the predicate

Mutex ~ Vi, j E Proe : (pe[i] = pe[j] = "es") :::::? (i = j)

The property to be proved is

Assump 1\ <Pj" :::::? DMutex (8)

where Assump expresses the assumptions about the constants Proc, 6.b, and 6e
needed for correctness. Since the timer variables do not occur in Mutex or Assump,
(8) is equivalent to

Assump 1\ I1j" :::::? DMutex

The standard method for proving this kind of invariance property leads to the
ACM Transactions on Programming Languages and Systems, Vol. 16, No. S, Septem bel' 1994.

1562 M. Abadi and L. Lamport

invariant

1\ now E R
l\'v'iEProe:

1\ Tb[i], tc[i] E R U {CXJ}
1\ peril E {"a", "b" , "e", "es"}
1\ (pe[i] = "es") =} 1\ x = i

1\ 'v' j E Proe : pe[j] "# "b"
1\ (pe[i] = "e") =} 1\ x"# 0

1\ 'v' j E Proe : (pe[j] = "b") =} (tc[i] > Tb[j])
1\ (pe[i] = "b") =} (n[i] < now + oc)
1\ now <:: n[i]

and the assumption

Assump

4. OPEN SYSTEMS

A closed system is solipsistic. An open system interacts with an environment,
where system steps are distinguished from environment steps. Sections 4.1 and 4.2
reformulate a number of concepts introduced in [Abadi and Lamport 1993] that are
needed for treating open systems in TLA. Some new results appear in Section 4.3.
The following two sections explain how reasoning about open systems is reduced to
reasoning about closed systems, and how open systems are composed.

4.1 Receptiveness and Realizability

To describe an open system in TLA, one defines an action f.L such that f.L steps
are attributed to the system and 'f.L steps are attributed to the environment. A
specification should constrain only system steps, not environment steps.

For safety properties, the concept of constraining is formalized as follows: if f.L is
an action and II a safety property, then II constrains at most f.L iff, for any finite
behavior S1, ... , Sn and state Sn+1, if S1, ... , Sn satisfies II and (sn' sn+d is a 'f.L
step, then Sl,' .. ,Sn+1 satisfies II. The generalization to arbitrary properties of
constraining at most f.L is f.L-reeeptiveness. Intuitively, II is f.L-receptive iff every
behavior in II can be achieved by an implementation that performs only f.L steps-
the environment being able to perform any 'f.L step. The concept of receptiveness
is due to Dill [1988]. The generalization to f.L-receptiveness is developed in [Abadi
and Lamport 1993].8 A safety property is f.L-receptive iff it constrains at most f.L.

The generalization of machine closure to open systems is machine realizability.
Intuitively, (II, L) is f.L-machine realizable iff an implementation that performs only

8To translate from the semantic model of [Abadi and Lamport 1993] into that of TLA, we let
agents be pairs of states and identify an action f.l with the set of all agents that are f.l steps. A
TLA behavior 81,82, ... corresponds to the sequence 81 ~ 82 ~ 83 -"4 ... , where Qi equals
(8,-1,5i). With this translation, the definitions in [Abadi and Lamport 1993] differ from the ones
given here and in the appendix mainly by attributing the choice of initial state to the environment
rather than to the system, requiring initial conditions to be assumptions about the environment
rather than guarantees by the system.

ACM Transactions on Progran1fning Languages and Systems, Vol. 16, No.5, September 1994.

An Old-Fashioned Recipe for Real Time 1563

fL steps can ensure that any finite behavior satisfying IT is completed to an infinite
behavior satisfying IT/\ L. Formally, (IT, L) is defined to be fL-machine realizable
iff (IT, L) is machine closed and IT/\ L is fL-receptive. For fL equal to true, machine
realizability reduces to machine closure.

4.2 The -f> Operator

A common way of specifying an open system is in terms of assumptions and guaran-
tees [Jones 1983], requiring the system to guarantee a property M if its environment
satisfies an assumption E. An obvious formalization of such a specification is the
property E ::::;. M. However, this property contains behaviors in which the sys-
tem violates M and then the environment later violates E. Because the system
cannot predict what the environment will do, such behaviors cannot occur in any
actual implementation. A behavior cr generated by any implementation satisfies
the additional property that if any finite prefix of (J' satisfies E, then it satisfies M.
We can therefore formalize the assumption/guarantee specification by the property
E -t> M, defined by: (J' E E -f> M iff cr E (E ::::;. M) and, for every finite prefix
p of cr, if p satisfies E then p satisfies M. If E and M are safety properties, then
E -f> M is as well.

For safety properties, the operator -f> is the implication operator of an intuition-
istic logic [Abadi and Plotkin 1992j. Most valid propositional formulas without
negation remain valid when::::;. is replaced by -f>, if all the formulas that appear on
the left of a -f> are safety properties. For example, the following formulas are valid
if cP and IT are safety properties.

cP -f> (IT -f> \]i) =: (<I> /\ IT) -f> W (9)
(cP -f> w) /\ (IT -f> \]i) =: (cP V IT) -f> W

For any TLA formulas cP and IT, the property <I> -f> IT is expressible as a TLA
formula.

4.3 Proving Machine Realizability

Propositions 1-3, which concern machine closure, have generalizations for machine
realizability. Proposition 1 is the special case of Proposition 4 in which <I> and f-L are
identically true. Proposition 3 is similarly a special case of Proposition 5 if (true, L 2)

is machine closed-that is, if L2 is a liveness property. This is sufficient for our
purposes, since NZ is a liveness property. The generalization of Proposition 2 is
omitted; it would be analogous to Proposition 10 of [Abadi and Lamport 1993j.

Proposition 4 is stated in terms of f-L-invariance, which generalizes the ordinary
concept of invariance. A predicate P is a f-L-invariant of a formula IT iff, in any
behavior satisfying IT, no fL-step makes P false. This condition is expressed by the
TLA formula IT ::::;. D[(f-L /\ P) ::::;. PI]P.

PROPOSITION 4. If IT and <I> are safety properties, IT constrains at most fL, and
L is the conjunction of a finite or countably infinite number of formulas of the form
WFw(A) and/or SFw(A), where, for each such formula,

(1) (A)w is a subaction of IT/\ cP,
(2) IT/\ <I> ::::;. D[(A;w ::::;. f-Ljw,

ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1991.

1564 M. Abadi and L. Lamport

(3) if A appears in a formula SFw(A), then Enabled (A)w is a ~p,-invariant of
IT A 1>,

then (1) -£> IT, 1> :::? L) is IL-machine realizable.

PROPOSITION .5. If 1> and IT are safety properties, (1) -£> IT, L 1) and (true, L 2)

are p,-machine realizable, and 1> A ITA L1 implies L2 , then (1) -£> IT, L2) is p,-machine
realizable.

4.4 Reduction to Closed Systems

Consider a specification E -£> lvI, where E and M are safety properties. We expect
the system's requirement to restrict only system steps, meaning that M constrains
at most p,. This implies that E -£> I\;1 also constrains at most p,. \Ve also expect
the environment assumption E not to constrain system steps; formally, E does not
constrain p, iff it constrains at most 'IL and it is satisfied by every (finite behavior
consisting only of an) initial state 9

Suppose E and M have the following form:

E ~ D[p, V Nd"
M ~ Init A D[~p, V N"'I]v

Then E does not constrain p, and M constrains at most p,. If the system's next-
state action NM implies 1-", and the environment's next-state action NE implies ~I-",
then a simple calculation shows that

(10)

Conjunction represents parallel composition, so E A M is the formula describing the
closed system consisting of the open system together with its environment. Observe
that E A M has precisely the form we expect for a closed system comprising two
components with next-state actions NE and NM .

\Ve can make the inverse transformation from a closed system specification IT to
the corresponding assumption/guarantee specification E -£> M such that IT equals
E AM, where E does not constrain p, and .M constrains at most p,. This is possible
because any safety property IT can be written as such a conjunction.

Implementation mean§...implication. A system with guarantee M implements a
system ~ith guarantee M, under environment assumption E, iff E -£> M implies
E -£> M. It follows from the definition of -£> that, when E and M are safety
properties, E -£> M implies E -£> M iff E A M implies E A M. Thus, proving that
one open system implements another is equivalent to proving the implementation
relation for the corresponding closed systems. Implementation for open systems
therefore reduces to implementation for closed systems.

4.5 Composition

The distinguishing feature of open systems is that they can be composed. The
proof that the composition of two specifications implements a third specification is

9The asymmetry between constrains at most and does not constmin arises because we assign the
system responsibility for the iIlitial state.

ACl\1 TransactioJls Oil Programming Languages and Systems, Vol. 16, No. 5, Sc~pt('mbpr 1994

An Old-Fashioned Recipe for Real Time 1565

based on the following result, which is a reformulation of Theorem 2 of [Abadi and
Lamport 1993] for safety properties.

THEOREM 3. If E, E1, E2 " M 1, and M2 are safety properties and /11 and ,112
are actions such that

(1) E1 does not constrain /11 and E2 does not constrain /12,

(2) 1\[1 constrains at most /11 and M2 constrains at most /12,

then the following proof rule is valid:

E 1\ M1 1\ M2 :=} E1 1\ E2
(E1 -t> Md 1\ (E2 -t> M2) :=} (E -t> M1 1\ M2)

This theorem is essentially the same as Theorem 1 of [Abadi and Plotkin 1992]; the
proof is omitted.

5. REAL-TIME OPEN SYSTEMS

In Section 3, we saw how we can represent time by the variable now and introduce
timing constraints with timers. To extend the method to open systems, we need
only decide how to separate timing properties into environment assumptions and
system guarantees. An examination of a paradoxical example in Section 5.1 leads
to the general form described in Section 5.2, where the concept of nonZenoness is
generalized.

5.1 A Paradox

Consider the two components II 1 and II 2 of Figure 5. Let the specification of
II 1 be Py -t> Px , which asserts that it writes a "good" sequence of outputs on
x if its environment writes a good sequence of inputs on y. Let Px -t> Py be the
specification of II 2, so II 2 writes a good sequence of outputs on y if its environment
writes a good sequence of inputs on x. If Px and Py are safety properties, then it
appears that we should be able to apply Theorem 3, our composition principle, to
deduce that the composite system II 12 satisfies Px 1\ Py , producing good sequences
of values on x and y. (We can define /11 and /12 so that writing on x is a /11 action
and writing on y is a /12 action.)

Now, suppose Px and Py both assert that the value 0 is written by noon. These
can be regarded as safety properties, since they assert that an undesirable event
never occurs-namely, noon passing without a 0 having been written. Hence, the
composition principle apparently asserts that II 12 sends O's along both x and y by
noon. However, the specifications of III and II 2 are satisfied by systems that wait
for a 0 to be input, whereupon they immediately output a O. The composition of
those two systems does nothing.

This paradox depends on the ability of a system to respond instantaneously to
an input. It is tempting to rule out such systems-perhaps even to outlaw specifI-
cations like these. We show that this Draconian measure is unnecessary. Indeed, if
the specification of II 2 is strengthened to assert that a 0 must unconditionally be
written on y by noon, then there is no paradox, and the composition does guarantee
that a 0 is written on both x and y by noon. All paradoxes disappear when one
carefully examines how the specifications must be written.

ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

1566 M. Abadi and L. Lamport

x x x
----+

y y y --
Fig. 5. The composition of two systems.

To resolve the paradox, we examine more closely the specifications SI and S2
of II) and II 2. For simplicity, let the only possible output actions be the setting
of x and y to O. The untimed version of S) then asserts that, if the environment
does nothing but set y to 0, then the system does nothing but set x to O. This is
expressed in TLA by letting

Mx ~ (x' = 0) 1\ (y' = y)
/v1. y ~ (y' = 0) 1\ (x' = x)

1/1 ~ x' =I x

and defining the untimed version of specification S) to be

(11)

To add timing constraints, we must first decide whether the system or the envi-
ronment should change now. Since the advancing of now is a mythical action that
does not have to be performed by any device, either decision is possible. Somewhat
surprisingly, it turns out to be more convenient to let the system advance time.
Wit h the convention that initial conditions appear in the system guarantee, we
define:

fiT ~ Mx 1\ (now' = now) MTx ~ MaxTime(Tx)

N;/ ~ My 1\ (now' = now) MTy ~ MaxTime(Ty)

Tx ~ if x =I 0 then 12 else 00
1'>.

1/1 V (now' =I now) PI -

Ty ~ if y =I 0 then 12 else 00

E) ~ D[p) V Ny](x.y,now)

AI) ~ (now = 0) 1\ O[~I~1 V Nxl(x,y,now) !\ RT(x.y) !\ MT x

Adding timing constraints to (11) the same way we did for closed systems then
leads to the following timed version of specification S 1.

(12)

However, this does not have the right form for an open system specification because
MT y constrains the advance of now, so the environment assumption constrains Pl.
The conjunct MT y must be moved from the environment assumption to the system
ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

An Old-Fashioned Recipe for Real Time 1567

guarantee. Using (9), we rewrite (12) as:

51 ~ E1 -t> (MTy -t> Md

This has the expected form for an open system specification, with an environment
assumption E1 that does not constrain ILl and a system guarantee MT y -t> IV!l

that constrains at most ILl.
The specification 52 of the second component in Figure 5 is similar, where Jl2,

E 2 , 1\12, and 52 are obtained from ILl, E 1 , M 1 , and 51 by substituting 2 for 1, x
for y, and y for x.

Both components III and IT2 change now. This is not a problem because the
components do not really control time. We have merely written the specifications
51 and 52 as if now were an output variable of both IT1 and II2. Formulas 51
and 52 express real-time constraints by making assertions about how now changes.
There is no problem because these constraints do not conflict.

vVe now compose specifications 51 and 52. The definitions of M1 and M2 and
the observation that P -t> Q implies P =? Q yield

(MTx V MTy) /\ (MT y -t> Md /\ (MTx -t> M2) =? M1/\ M2 (13)

The definitions of M1 and M2 and simple temporal reasoning yield

where

E ~ D[IL1 V IL2b,y,now)

Combining (13) and (14) proves

E /\ (MTx V MTy) /\ (MTy -t> Md /\ (MTx -t> M 2) =? E1/\ E2

(14)

We can therefore apply Theorem 3, substituting E /\ (MT x V MT y) for E, MT y .-{>

J\11 for M 1, and MT x -t> M2 for M2, to deduce

5 1 /\52 =? (E /\ (MTx V MTy) -t> (MTy -t> Md /\ (MTx -t> M2))

Using the implication-like properties of -t>, this simplifies to

51 /\ 52 =? (E -t> (MTy -t> Md /\ (MTx -t> M2)) (15)

All one can conclude about the composition from (15) is: either x and y are both
o when now reaches 12, or neither of them is 0 when now reaches 12. There is no
paradox.

As another example, we replace 52 by the specification E2 -t> M 2 . This specifi-
cation, which we call 53, asserts that the system sets y to 0 by noon, regardless of
whether the environment sets x to O. The definitions imply

MTy/\E/\(MTy-t>Md/\M2 =? E1/\E2

and Theorem 3 yields

51 /\ 53 =? (E -t> (MTx -t> Md /\ M2)

Since M2 implies MTx, this simplifies to

51 /\ 53 =? (E -t> M1 /\ M2)

The composition of 51 and 53 does guarantee that both x and y equal 0 by noon.
ACM Transactions on Programming Languages and Systems, VoL 16, No.5, September 1994.

1568 M. Abadi and L. Lamport

5.2 Timing Constraints in General

Our no-longer-paradoxical example suggests that the form of a real-time open sys-
tem specification should be

E --i> (P --i> M) (16)

,vhere AI describes the system's timing constraints and the advancing of now,
and P describes the upper-bound timing constraints for the environment. Since
the environment's lower-bound timing constraints do not constrain the advance of
now, they can remain in E. As we observed in Section 4.4, proving that one open
specification implements another reduces to the proof for the corresponding closed
systems. Since E --i> (P --i> M) is equivalent to (E 1\ P) --i> Ai, the closed system
corresponding to (16) is the expected one, E 1\ P 1\ M.

For the specification (16) to be reasonable, its closed system version, E 1\ P 1\ M,
should be nonZeno. However, this is not sufficient. Consider a specification guaran-
teeing that the system produces a sequence of outputs until the environment sends
a stop message, where the nth output must occur by time (n - l)/n. There is no
timing assumption on the environment; it need never send a stop message. This
is an unreasonable specification because now cannot reach 1 until the environment
sends its stop message, so the advance of time is contingent on an optional ac-
tion of the environment. However, the corresponding closed system specification is
nonZeno, since time can always be made to advance without bound by having the
environment send a stop message.

If advancing now is a 11 action, then a system that controls 11 actions can guar-
antee time to be unbounded while satisfying a safety specification S iff the pair
(S, NZ) is l1-machine realizable. We therefore take this condition to be the defini-
tion of nonZenoness for an open system specification S.

For specifications in terms of 5-timers, nonZenoness can be proved with gener-
alizations to open systems of the theorems in Section 3.3. The following is the
generalization of the strongest of them, Theorem 2. It is applied to a specification
of the form (16) by substituting E 1\ P for E.

THEOREfI! 4. With the notation and hypotheses of Theorem 2, if E and 1'vl are
safety properties such that II = E 1\ M, and

4· M constrains at most 11,

5. (a) (A k / v =? IL, for all k E I U J,
(b) (now' =f. now) =? 11

then (E --i> Mt 1 NZ) is l1-machine realizable, where

Mt ~ M 1\ RT v 1\

Vi E I: MinTime(t;,A;lv) 1\ Vj E J: MaxTime(Tj)

Hypothesis 4 says that 11 steps are attributed to the system represented by M.
Part (a) of Hypothesis 5 says that the other hypotheses restrict the timing con-
straints on system actions (Ak/v only; environment actions may have any timing
constraints. Part (b) says that advancing now is a system action.

The proof of Theorem 4, which appears in the appendix, is similar to the proof of
Theorem 2 sketched in Section 3.3. It uses Propositions 4 and 5 instead of Propo-
ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

An Old-Fashioned Recipe for Real Time 15(39

sitions 1 and 3. Since machine realizability implies machine closure, Theorem 2
follows from Theorem 4 by letting E and f.1 equal true and M equal II.

Theorem 4 applies to the internal specifications, where all variables are visible.
For closed systems, existential quantification is handled with Proposition 2. For
open systems, the generalization of this proposition-the analog of Proposition 10
of [Abadi and Lamport 1993]-is needed.

6. CONCLUSION

6.1 What We Did

We started with a simple idea-specifying and reasoning about real-time systems
by representing time as an ordinary variable. This idea led to an exposition that
most readers probably found quite difficult. What happened to the simplicity?

About half of the exposition is a review of concepts unrelated to real time. All
the fundamental concepts described in Sections 2 and 4, including machine clo-
sure, machine realizability, and the --t> operator, have appeared before [Abadi and
Lamport 1993; Abadi and Lamport 1991]. These concepts are subtle, but they are
important for understanding any concurrent system; they were not invented for
real-time systems.

We chose to formulate these concepts in TLA. Like any language, TLA seems
complicated on first encounter. We believe that a true measure of simplicity of a
formal language is the simplicity of its formal description. The complete syntax
and formal semantics of TLA are given in about one page in [Lamport 1994].

We never claimed that specifying and reasoning about concurrent systems is easy.
Verifying concurrent systems is difficult and error prone. Our assertions that one
formula follows from another, made so casually in the exposition, must be backed
up by detailed calculations. We have omitted the proofs for our examples, which,
done with the same detail as the proofs in the appendix, occupy some twenty pages.

We did claim that existing methods for specifying and reasoning about concurrent
systems could be applied to real-time systems. Now, we can examine how hard they
were to apply.

We found few obstacles in the realm of closed systems. The second author has
more than fifteen years of experience in the formal verification of concurrent al-
gorithms, and we knew that old-fashioned methods could be applied to real-time
systems. However, TLA is relatively new, and we were pleased by how well it
worked. The formal specification of Fischer's protocol in Figure 4, obtained by
conjoining timing constraints to the untimed protocol, is as simple and direct as
we could have hoped for. Moreover, the formal correctness proofs of this protocol
and of the queue example, using the method of reasoning described in [Lamport
1994], were straightforward. Perhaps the most profound discovery was the relation
between nonZenoness and machine closure.

Open systems made up for any lack of difficulty with closed systems. State-based
approaches to open systems were a fairly recent development, and we had little
experience with them. Studying real-time systems taught us a great deal, and led to
a number of changes from the approach in [Abadi and Lamport 1993]. For example,
we now write specifications with --t> instead of =}, and we put initial conditions in
the system guarantee rather than in the environment assumption. Many alternative

ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

1570 M. Abadi and L. Lamport

ways of writing real-time specifications seemed plausible; choosing one that works
was surprisingly hard. Even the simple idea of putting the environment's timing
assumptions to the left of a --c> in the system's guarantee came only after numerous
failed efforts. Although the basic ideas we need to handle real-time open systems
seem to be in place, we still have much to learn before reasoning about open systems
becomes routine.

6.2 Beyond Real Time

Real-time systems introduce a fundamentally new problem: adding physical con-
tinuity to discrete systems. Our solution is based on the observation that, when
reasoning about a discrete system, we can represent continuous processes by dis-
crete actions. If we can pretend that the system progresses by discrete atomic
actions, we can pretend that those actions occur at a single instant of time, and
that the continuous change to time also occurs in discrete steps. If there is no
system action between noon and v'2 seconds past noon, we can pretend that time
advances by those v'2 seconds in a single action.

Physical continuity arises not just in real-time systems, but in "real-pressure"
and "real-temperature" process-control systems. Such systems can be described in
the same way as real-time systems: pressure and temperature as well as time are
represented by ordinary variables. The continuous changes to pressure and tem-
perature that occur between system actions are represented by discrete changes to
the variables. The fundamental assumption is that the real, physical system is ac-
curately represented by a model in which the system makes discrete, instantaneous
changes to the physical parameters it affects.

The observation that continuous parameters other than time can be modeled by
program variables has probably been known for years. However, the first published
work we know of that uses this idea, by Marzullo et al. [1991]' appeared only
recently.

REFERENCES

ABAD!,]\1. Ai\D LA:'IPORT, L. 1991. The existence of refinement mappings. Theoretical Computer­
Science 82, 2 (May), 253-284.

ABAD!, :'II. A]\D LAMPORT, L. 1993. Composing specifications. ACM Trans. on Programm. Lang.
Syst. 15, 1 (Jan.), 73-132.

AIlAD!, :\1. A0ID PLOTKIN, G. 1992. A logical view of composition. Research Report 86 (May),
Digital Equipment Corporation, Systems Research Center.

ALPER:;, B. AND SCHNEIDER, F. B. 1985. Defining Iiveness. Inf. Process. Lett. 21, 4 (Oct.),
181-185.

APT, K. R., FRANCEZ, N., AND KATZ, S. 1988. Appraising fairness in languages for distributed
programming. Distributed Computing 2, 226-241.

BER]\STEIN, A. AND HARTER, JR., P. K. 1981. Proving real time properties of programs with
temporal logic. In Proceedings of the Eighth Symposium on Operating Systems Principles,
New York, pp. 1-11. ACM. Operating Systems Review 15, 5.

CHANDY, K. M. AND MISRA, J. 1988. Parallel Program Design. Addison-Wesley, Reading,
Massachusetts.

DE BAKKER, J. W., HUIZING, C., DE ROEVER, W. P., AND ROZENBERG, G. (Eds.) 1992. Real­
Time: Theory in Practice, Volume 600 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin. Proceedings of a REX Real-Time Workshop, held in The Netherlands in
June, 1991.

ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994.

An Old-Fashioned Recipe for Real Time 1571

DILL, D. L. 1988. Trace theory for automatic hierarchical verification of speed-independent
circuits. Ph. D. thesis, Carnegie Mellon University.

FISCHER, M. 1985. Re: Where are you? E-mail message to Leslie Lamport. Arpanet
message sent on June 25, 1985 18:56:29 EDT, number 8506252257.AA07636@YALE-

- BULLDOG.YALE.ARPA (47 Jines). .
_ JONI;;S, C. B. 1983. Specification and design of (parallel) programs. In R. E. A. MASON (Ed.),

Information Processing 83: Proceedings of the IFIP 9th World Congress, pp. 321-332.
IF!P: North-Holland. --

- LAMPORT, 1.. 1982. An a-ssertronal'correctness proof of a distributed algorithm. Science of
Computer Progmmming 2, 3 (Dec.), 175-206.

LAMPORT, L. 1987. A fast ITlutual exclusion algorithm. ACM Transactions on Computer Sys­
tems 5, 1 (Feb.), 1-11.

LAMPORT, 1. 1994. The-l;emporallogic of actions. A eM Trans. on Programm. Lang. Syst. 16, 3
(May), 872-923.

MARZULLO, K., SCHNEIDER; F. B., AND BUDHIRAJA, N,.1991. Derivation of sequential, real-time
process-control programs. In A. M. VAN TILBORG AND G. M. KOOB (Eds.), Foundations of
Real-Time Computing: Formal Specijications''and Methods, Chapter 2, pp. 39-54. Boston,
Dordrecht, and London: Kluwer Academic Publishers.

l\·!ISRA, J. AND CHANDY, K. M. 1981. Proofs of networks of processes. IEEE Transactions on
Software Engineering SE-'l, 4 (July), 417-426.

l'i'Et:MANN, P. G. AND LAMPORT, L. 1983. Highly dependable distributed systems. Technical
report (June), SRr International. Contract Number DAEA18-81-G-0062, SRI Project 4180.

PNUELI, A. 1984. In transition from global to modular temporal reasoning about programs.
In K. R. APT (Ed.), Logics and Models of Concurrent Systems, NATO ASI Series, pp.
123-144. Springer-Verlag.

ScmmIDER, F. B., BLOOM, B., AND MARZULLO, K. 1992. Putting time into proof outlines. In
J. W. DE BAKKER, C. HUIZING, W.-P. J)E ROEVER, AND G. ROZENBERG (Eds.), Real-Time:
Theory in Practice, Volume 600 of Lecture Notes in Computer Science, Berlin, Heidelberg,
New York, pp. 618-639. Springer-Verlag.

Received November 1992; revised November 1993; accepted April 1994.

ACM 'l'mnsactions on Programming:Languages and Systems, Vol: 16, No.5, September 1994.

ACM
Online Appendix
The Online appendix for this article is available on the ACM citation page within the source tab for this article: http://dx.doi.org/10.1145/186025.186058

Previous instructions for obtaining the appendix located on page 1571 were outdated, thus the instructions were removed from the PDF

