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Traditional methods for specifying and reasoning about concurrent systems work for real-time 
systems" Using TLA (the temporal logic of actions), we illustrate how they work with the examples 
of a queue and of a mutual-exclusion protocol. In general, two problems must be addressed: 
avoiding the real-time programming version of Zeno's paradox, and coping with circularities when 
composing real-time assumption/guarantee specifications. Their solutions rest on properties of 
machine closure and realizability. 
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1. INTRODUCTION 

A new class of systems is often viewed as an opportunity to invent a new semantics. 
A number of years ago, the new class was distributed systems. More recently, 
it has been real-time systems. The proliferation of new semantics may be fun 
for semanticists, but developing a practical method for reasoning formally about 
systems is a lot of work. It would be unfortunate if every new class of systems 
required inventing new semantics, along with proof rules, languages, and tools. 

Fortunately, no fundamental change to the old methods for specifying and rea-
soning about systems is needed for these new classes. It has long been known 
that the methods originally developed for shared-memory multiprocessing apply 
equally well to distributed systems [Chandy and Misra 1988; Lamport 1982]. The 
first application we have seen of a clearly "off-the-shelf" method to a real-time 
algorithm was in 19S3 [Neumann and Lamport 19S3], but there were probably 
earlier ones. Indeed, the "extension" of an existing temporal logic to real-time 
programs by Bernstein and Harter [19S1] can be viewed as an application of that 
logic. 

The old-fashioned methods handle real time by introducing a variable, which we 
call now, to represent time. This idea is so simple and obvious that it seems hardily 
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1544 M. Abadi and L. Lamport 

worth writing about, except that few people appear to be aware that it works in 
practice. \Ve therefore describe how to apply a conventional method to real-time 
systems. 

Any formalism for reasoning about concurrent programs can be used to prove 
properties of real-time systems. However, in a conventional formalism based on 
a programming language, real-time assumptions are expressed by adding program 
operations that read and modify the variable now. The result can be a complicated 
program that is hard to understand and easy to get wrong. We take as our for-
malism TLA, the temporal logic of actions [Lamport 1994]. In TLA, programs and 
properties are represented as logical formulas. A real-time program can be written 
as the conjullction of its untimed version, expressed in a standard way as a TLA 
formula, and its timing assumptions, expressed in terms of a few standard param-
eterized formulas. This separate specification of timing properties makes real-time 
specifications easier to write and understand. 

The method is illustrated with two examples. The first is a queue in which 
the sender and receiver synchronize by the use of timing assumptions instead of 
acknowledgements. We indicate how safety and liveness properties of the queue 
can be proved. The second example is an n-process mutual exclusion protocol, in 
which mutual exclusion depends on assumptions about the length of time taken 
by the operations. Its correctness is proved by a conventional invariance argu-
ment. 

\Ve also discuss two problems that arise when time is represented as a program 
\'ariable-problems that seem to have received little attention-and present new 
solutions. 

The first problem is how to avoid the real-time programming version of Zeno's 
paradox. If time becomes an ordinary program variable, then one can inadvertently 
write programs in which time behaves improperly. An obvious danger is deadlock, 
where time stops. A more insidious possibility is that time keeps advancing but 
is bounded, approaching closer and closer to some limit. One way to avoid such 
"Zeno" behaviors is to place an a priori lower bound on the duration of any action, 
but. this can complicate the representation of some systems. We provide a more 
gcneral and, we feel, a more natural solution. 

The second problem is coping with the circularity that arises in open system spec-
ifications. The specification of an open system asserts that it operates correctly 
under some assumptions on the system's environment. A modular specification 
method requires a rule asserting that, if each component satisfies its specification, 
then it behaves correctly in concert with other components. This rule is circular, 
because a component's specification requires only that it behave correctly if its en-
vironment does, and its environment consists of all the other components. Despite 
its circularity, the rule is sound for specifications written in a particular style [Abadi 
and Lamport 1993; Misra and Chandy 1981; Pnueli 1984]. By examining an appar-
ently paradoxical example, we discover how real-time specifications of open systems 
can be written in this style. 

\\'e express these problems and their solutions in terms of TLA. However, we 
believe that the problems will arise in any formalism that permits sufficiently gen-
eral specifications. Our solutions should be applicable to any formalism whose 
semantics is based 011 sequences of states or actions. 
ACM Transacli()[)s OJ) Pn)gramrning Languagl's and Systems, VoL 16, No. [), September 1991. 
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2. CLOSED SYSTEMS 

We briefly review how to represent closed systems in TLA. A closed system is 
one that is self-contained and does not communicate with an environment. No 
one intentionally designs autistic systems; in a closed system, the environment is 
represented as part of the system. Open systems, in which the environment and 
system are separated, are discussed in Section 4. 

vVe begin our review of TLA in Section 2.1 with an informal presentation of an 
example. The formal definitions are summarized in Section 2.2. A more leisurely 
exposition appears in [Lamport 1994]' and most definitions in the current paper are 
repeated in a list in the appendix. Section 2.3 reviews the concepts of safety [Alpern 
and Schneider 1985] and machine closure [Abadi and Lamport 1991] (also known 
as feasibility [Apt et al. 1988]) and relates them to TLA, and Section 2.4 defines 
a useful class of history variables [Abadi and Lamport 1991]. Propositions and 
theorems are proved in the appendix. 

2.1 The Lossy-Queue Example 

We introduce TLA with the example of the lossy queue shown in Figure 1. The 
interface consists of two pairs of "wires", each pair consisting of a val wire that 
holds a message and a boolean-valued bit wire. A message m is sent over a pair of 
wires by setting the val wire to m and complementing the bit wire. The receiver 
detects the presence of a new message by observing that the bit wire has changed 
value. Input to the queue arrives on the wire pair (ivai, ibit), and output is sent 
on the wire pair (oval, obit). There is no acknowledgment protocol, so inputs are 
lost if they arrive faster than the queue processes them. (Because of the way ib:it 
is used, inputs are lost in pairs.) The property guaranteed by this lossy queue is 
that the sequence of output messages is a subsequence of the sequence of input 
messages. In Section 3.1, we add timing constraints to rule out the possibility of 
lost messages. 

A specification is a TLA formula II describing a set of allowed behaviors. A 
property P is also a TLA formula. The specification II satisfies property P iff (if 
and only if) every behavior allowed by II is also allowed by P-that is, if II implies 
P. Similarly, a specification W implements II iff every behavior allowed by W is also 
allowed by II, so implementation means implication. 

The specification of the lossy queue is a TLA formula that mentions the four 
variables ibit, obit, ivai, and oval, as well as two internal variables: q, which equals 

ivai oval 
q: I I I I I I ... 

ibit 
last: D obit 

Fig. 1. A simple queue. 

ACM Transactions on Programming Languages and Systems, Vo1. 16, No.5, September 1994. 
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InitQ " 1\ ibit, obit E {true, fa Ise} -

1\ ivai, oval E Msg 
1\ last = ibit 
1\ q = (0) 

Inp ::'. 1\ ibit' = ~ibit 
1\ ivai' E Msg 
1\ (obit, oval, q, last)' = (obit, oval, q, last) 

EnQ ::'. 1\ last cp ibit 
1\ q' = q 0 (( ivai)) 
1\ last' = ibit 
1\ (ibit, obit, ivai, oval)' = (ibit, obit, ivai, oval) 

DeQ ::'. 1\ q cp (()) 
1\ oval' = Head(q) 
1\ q' = Tail(q) 
1\ obit' = ~ obit 
1\ (ibit, ivai, last)' = (ibit, ivai, last) 

NQ ::'. Inp V EnQ V DeQ 

" (ibit, obit, ivai, oval, q, last) v -

ITQ ::'. InitQ 1\ D[NQJv 

1'Q " 3q, last: I1Q -

Fig. 2. The TLA specification of a lossy queue. 

the sequence of messages received but not yet output; and last, which equals the 
value of ibit for the last received message. (The variable last is used to prevent the 
same message from being received twice.) These six variables are flexible variables; 
their values can change during a behavior. We also introduce a rigid variable Msg 
denoting the set of possible messages; it has the same value throughout a behavior. 
We usually refer to flexible variables simply as variables, and to rigid variables as 
constants. 

The TLA specification is shown in Figure 2, using the following notation. A 
list of formulas, each prefaced by 1\, denotes the conjunction of the formulas, and 
indentation is used to eliminate parentheses. The expression (( II denotes the empty 
sequence, ((mIl denotes the singleton sequence having m as its one element, 0 

denotes concatenation, Head ((J") denotes the first element of (J", and Tail ((J") denotes 
the sequence obtained by removing the first element of (J". The symbol ~ means is 
defined to eqlLal. 

The first definition is of the predicate InitQ, which describes the initial state. This 
predicate asserts that the values of variables ibit and obit are arbitrary booleans, 
the values of ivai and oval are elements of Msg, the values of last and ibit are equal, 
and the value of q is the empty sequence. 

Next is defined the action Inp, which describes all state changes that represent 
the sending of an input message. (Since this is the specification of a closed system, 
it includes the environment '8 Inp action.) The first conjunct, ibit' = ,ibit, asserts 
that the new value of ibit equals the complement of its old value. The second con-
junct asserts that the new value of ivai is an element of Msg. The third conjunct 
ACM Transactions on Programming Language's and Systems. Vol. 16, No.5, September 1994. 
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asserts that the value of the four-tuple (obit, oval, q, last) is unchanged; it is equiv-
alent to the assertion that the value of each of the four variables obit, oval, q, and 
last is unchanged. The action Inp is always enabled, meaning that, in any state, a 
new input message can be sent. 

Action EnQ represents the receipt of a message by the system. The first conjunct 
asserts that last is not equal to ibit, so the message on the input wire has not yet 
been received. The second conjunct asserts that the new value of q equals the 
sequence obtained by concatenating the old value of ival to the end of q's old value. 
The third conjunct asserts that the new value of last equals the old value of ibit. 
The final conjunct asserts that the values of ibit, obit, ival, and oval are unchanged. 
Action EnQ is enabled in a state iff the values of last and ibit in that state are 
unequal. 

The action DeQ represents the operation of removing a message from the head 
of q and sending it on the output wire. It is enabled iff the value of q is not the 
empty sequence. 

The action NQ is the specification's next-state relation. It describes all allowed 
changes to the queue system's variables. Since the only allowed changes are the 
ones described by the actions Inp, EnQ, and DeQ, action NQ is the disjunction of 
those three actions. 

In TLA specifications, it is convenient to give a name to the tuple of all relevant 
variables. Here, we call it v. 

Formula ITQ is the internal specification of the lossy queue-the formula spec-
ifying all sequences of values that may be assumed by the queue's six variables, 
including the internal variables q and last. Its first conjunct asserts that InitO 
is true in the initial state. Its second conjunct, D[No]v, asserts that every step 
is either an No step (a state change allowed by No) or else leaves v unchanged, 
meaning that it leaves all six variables unchanged. 

Formula <l>Q is the actual specification, in which the internal variables q and 
last have been hidden. A behavior satisfies <l>O iff there is some way to assign 
sequences of values to q and last such that ITO is satisfied. The free variables of <l>Q 
are ibit, obit, ivai, and oval, so <l>O specifies what sequences of values these four 
variables can assume. All the preceding definitions just represent one possible way 
of structuring the definition of <l>Q; there are infinitely many ways to write formulas 
that are equivalent to <l>O and are therefore equivalent specifications. 

TLA is an untyped logic; variables may assume any values in a fixed universal 
domaill. Type correctlless can be expressed by the formula DT, where T is the 
predicate asserting that all relevant variables have values of the expected "types"'. 
For the internal queue specification, the type-correctness predicate is 

Tq ~ 1\ ibit, obit, last E {true, fa Ise } 
1\ ivai, oval E Msg 
1\ q E Msg* 

(1) 

where Msg* is the set of finite sequences of messages. Type correctness of ITq is 
asserted by the formula ITQ =? DTq , which is easily proved [Lamport 1994]. Type 
correctness of <I>q follows from I1Q =? DTQ by the usual rules for reasoning about 
quantifiers. 

Formulas rIQ and <Pq are safety properties, meaning that they are satisfied by 
ACM Transactions OJ) Programming Languages and Systems, Vol. 16, No.5, September 1994. 



1548 M. Abadi and L. Lamport 

an infinite bchavior iff t hl'y are satisfied by every finite initial portion of the be-
havior. Safdy propert ies allow behaviors in which a system performs properly for 
a while and t hen the values of all variables are frozen, never to change again. In 
asynchronous SYOitClllOi, such undesirable behaviors are ruled out by adding fairness 
propert.ies. \Ve could strengthen our lossy-queue specification by conjoining the 
weak fairness property \VF,,(DeQ) and the strong fairness property SFv(EnQ) to 
TI q , obt aining 

(2) 

Propcrh \\T I (DeQ) assert s that if action DeQ is enabled forever, then infinitely 
lllany DcQ stcps must occur. This property implies that every message reaching 
the qucuc is cwntually output. Property SFv(EnQ) asserts that if action EnQ is 
cnahlce! infinitely often, then infinitely many EnQ steps must occur. It implies 
t hat if infinitcl!' Illany inputs are sent, then the queue must receive infinitely many 
of them. The formula (2) implies the liveness property [Alpern and Schneider 
1985l that an infinite number of inputs produces an infinite number of outputs. A 
forlllula such as (2), which is the conjunction of an initial predicate, a term of the 
form D[AlI' and a fairness property, is said to be in canonical form. 

2.2 The Semantics of TLA 

\Ve begin wit h some definitions. \Ve assume a universal domain of values, and we 
let [F] denote the semantic meaning of a formula F. 

statc. A mapping from variables to values. \Ve let s.x denote the value that state 
5 assigns to variable x. 

state functlOn. An expression formed from variables, constants, and operators. 
The meaning of a state function is a mapping from states to values. For example, 
x + 1 is a state function such that [x + l](s) equals s.x + 1, for any state s. 

predicate. A boolean-valued state function, such as x > y + l. 
transition function. An expression formed from variables, primed variables, con-

stants, and operators. The meaning of a transition function is a mapping from pairs 
of states to values, with ullprimecl variables referring to the first state of a pair and 
primed variables to the second. For example, x + y' + 1 is a transition function, 
and [x + y' + l](s, t) equals the value s.x + t.y + 1, for any pair of states s, t. 

action. A boolean-valued transition function, such as x > (y' + 1). 
stcp. A pair of stat(~s s, t. For an action A, the pair is called an A step iff [A] (s, t) 

<:quals true. It is called a stuttenng step iff s = t. 

1'. The transition fUllction obtained from the state function f by priming all the 
frce variables of f, so [1'](5, t) = [1](t) for any states sand t. 

[All' The action A V (1' = 1), for allY action A and state function f· 
(A) I' The actioll A 1\ (1' cI Jl, for any action A and state function f· 

Enabled A. For any action A, the predicate such that [Enabled A] (s) equals 
:=Jt : [A](.s, t), for any stat<: 8. 

Informally, we oftcn idcntify a formula and its meaning. For example we say that 
a predicate P is tnw ill stat e 8 inst cad of [P] (s) = true. 
;\CM Tr<tllsactioll,c.; ()Il ProgranJming' L;lllguag()s and Systems, Vol. 16. No. G, September 1994. 
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An RTLA (raw TLA) formula is a boolean expression built from actions, classical 
operators (boolean operators and quantification over rigid variables), and the unary 
temporal operator O. The meaning of an RTLA formula is a boolean-valued func-
tion on behaviors, where a behavior is an infinite sequence of states. The meaning 
of the operator 0 is defined by 

[OF](Sl,S2,S3,"') ~ 'in> 0: [F](Sn,Sn+l,5n+2, ... ) 

Intuitively, OF asserts that F is always true. The meaning of an action as an RTLA 
formula is defined in terms of its meaning as an action by letting [A](Sl, 52, S3,"') 
equal [A](Sl' S2). A predicate P is an action; P is true for a behavior iff it is true 
for the first state of the behavior, and OP is true iff P is true in all states. For any 
action A and state function f, the formula O[Alf is true for a behavior iff each step 
is an A step or else leaves f unchanged. The classical operators have their usual 
meanings. 

A TLA formula is one that can be constructed from predicates and formulas 
O[Alf using classical operators, 0, and existential quantification over flexible vari-
ables. Thus, an action that is not a predicate can appear in a TLA formula F 
only as a subformula of an action A in a subformula o[Alf or Enabled A of F. 
The semantics of actions, classical operators, and 0 are defined as before. The 
approximate meaning of quantification over a flexible variable is that 3x : F is true 
for a behavior iff there is some sequence of values that can be assigned to x that 
makes F true. The precise definition appears in [Lamport 1994l and is recalled in 
the appendix. As usual, we write 3 Xl, ... ,Xn : F instead of 3 Xl : ... 3 Xn : F. 

A property is a set of behaviors that is invariant under stuttering, meaning that 
it contains a behavior a iff it contains every behavior obtained from a by adding 
and/or removing stuttering steps. The set of all behaviors satisfying a TLA formula 
is a property, which we often identify with the formula. 

For any TLA formula F, action A, and state function f: 

OF 
WFf(A) 

SF f(A) 

~ 

OO-,(Enabled (A) f) V OO(A) f 

~ OO-;(Enabled (A) f) V OO(A) f 

These are TLA formulas, since O(A) f equals -;0 [-;Alf. 

2.3 Safety and Fairness 

A finite behavior is a finite sequence of states. We say that a finite behavior satisfies 
a property F iff it can be continued to an infinite behavior in F. A property F is 
a safety property [Alpern and Schneider 1985] iff the following condition holds: F 
contains a behavior iff it is satisfied by every finite prefix of the behavior. 1 Intu-
itively, a safety property asserts that something "bad" does not happen. Predicates 
and formulas of the form O[Alf are safety properties. 

Safety properties are closed sets in a topology on the set of all behaviors [Abadi 
and Lamport 1991l. Hence, if two TLA formulas F and G are safety properties, 

10ne sometimes defines 81, ... ,8n to satisfy F iff the behavior 81, ... , 8 n , 8 n , 8 n , ... is in F. Since 
properties are invariant under stuttering, this alternative definition leads to the same definition 
of a safety property. 

ACM Transactions on Programming· Lang'uages and Systems, Vol. 10, No. G, September 199'4. 
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then F 1\ G is also a safety property. The closure C(F) of a property F is the 
smallest safety property containing F. It can be shown that C (F) is expressible in 
TLA, for any TLA formula F. 

If IT is a safety property and L an arbitrary property, then the pair (IT, L) is 
machine closed iff every finite behavior satisfying IT can be extended to an infinite 
behavior in IT 1\ L. Two equivalent definitions are that (IT, L) is machine closed iff 
(i) C (IT 1\ L) equals IT, or (ii) for any safety property \jJ, if IT 1\ L implies \jJ then IT 
implies \jJ. The lack of machine closure can be a source of incompleteness for proof 
methods. Most methods for proving safety properties use only safety properties as 
hypotheses, so they can prove IT 1\ L ::::} \jJ for safety properties IT and \jJ only by 
proving IT ::::} \jJ. If IT is not machine closed, then IT 1\ L ::::} \jJ could hold even though 
IT ::::} \jJ does not., and t.hese methods will be unable to prove that the system wit.h 
specification IT sat.isfies \jJ. 

Proposition 1 below shows that machine closure generalizes the concept of fair-
ness. The canonical form for a TLA formula is 

3 x: (Init 1\ D[Nlv 1\ L) (3) 

where Init is a predicate, N is an action, v is a state function, L is a formula, 
(Init 1\ 0 [Nlv, L) is machine closed, and x is a t.uple of variables called the internal 
variables of the formula. Usually, v will be the tuple of all variables appearing free 
in In it , N, and L (including t.he variables of x). It. follows from the definitions 
that a behavior satisfies (3) iff there is some way of choosing values for x such that 
(a) Init is true in the initial state, (b) every step is either an N step or leaves all 
the variables in v unchanged, and (c) the entire behavior satisfies L. 

An action A is said to be a subaction of a safety property IT iff, whenever an 
A step is possible, an A step that satisfies IT is possible. More precisely, A is a 
subaction of IT iff for every finite behavior S1,"" Sn satisfying IT wit.h Enabled A 
true in state Sn, there exists a state Sn+l such t.hat (sn' sn+d is an A step and 
S1, ... , Sn+1 satisfies IT. By this definition, if A implies N then A is a subaction of 
Init 1\ D[Nlv. The exact condition is that A is a subaction of Init 1\ D[Nlv iW 

Init 1\ D[Nlv => D((Enabled A) => Enabled (A 1\ [Nlv)) 

Two actions are disjoint iff their conjunction is identically false. A weaker notion is 
disjointness of two actions for a property: A and B are disjoint for IT iff no behavior 
satisfying IT contains an A 1\ B step. By this definition, A and B are disjoint for 
Init 1\ 0 [Nlv iff 

Init 1\ 0 [Nlv => D--.Enabled (A 1\ B 1\ [Nlv) 

The following result shows that the conjunction of WF and SF formulas is a 
fairness property. It is a special case of Proposition 4 of Section 4. 

PROPOSITION l. If IT is a safety property and L is the conjunction of a finite or 
countably infinite number of formulas of the form WFw(A) and/or SFw(A) such 
that each (A)w is a subaction of IT, then (IT, L) is machine closed. 

2We let =? have lower precedence than the other boolean operators. 

ACM Transactions on Programming Languages and Syst.ems, Vol. 16, No.5, September 1994. 
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In practice, each w will usually be a tuple of variables changed by the corresponding 
action A, so (A)w will equal A.3 In the informal exposition, we often omit the 
subscript and talk about A when we really mean (A)w. 

Machine closure for more general classes of properties can be proved with the 
following two propositions, which are proved in the appendix. To apply the first, 
one must prove that 3x : II is a safety property. By Proposition 2 of [Abadi and 
Lamport 1991, page 265], it suffices to prove that II has finite internal nondeter-
minism (fin), with x as its internal state component. Here, fin means roughly that 
there are only a finite number of sequences of values for x that can make a finite 
behavior satisfy II. 

PROPOSITION 2. If (II, L) is machine closed, x is a tuple of variables that do 
not occur free in L, and 3x : II is a safety property, then ((3x : II), L) is machine 
closed. 

PROPOSITION 3. If (II, LI) is machine closed and II II Ll implies L 2 , then 
(II, L 2 ) is machine closed. 

2.4 History-Determined Variables 

A history-determined variable is one whose current value can be inferred from the 
current and past values of other variables. For the precise definition, let 

Hist(h, f,g, v) ~ (h = f) II D[(h' = g) II (v' 1"= V)](h,v) (4) 

where f and v are state functions and 9 is a transition function. A variable h is a 
history-determined variable for a formula II iff II implies Hist(h, f, g, v), for some 
f, g, and v such that h occurs free in neither f nor v, and h' does not occur free in 
g. 

If f and v do not depend on h, and 9 does not depend on h', then 3h : 
Hist (h, f, g, v) is true for all behaviors. Therefore, if h does not occur free in formula 
q" then 3h : (q, II Hist(h,f,g,v)) is equivalent to q,. In other words, conjoining 
Hist(h,f,g,v) to q, does not change the behavior of its variables, so it makes h a 
"dummy variable" for q,-in fact, it is a special kind of history variable [Abadi and 
Lamport 1991, page 270]. 

As an example, we add to the lossy queue's specification q,Q a history variable 
hin that records the sequence of values transmitted on the input wire. Let 

Hin ~ II hin = (()) (5) 
II D[ II hin' = hin 0 ((ivan) 

II (ivai, ibit)' 1"= (ivai, ibit) ](hin,ival,ibit) 

Then H in equals Hist( hin, (( )), hin 0 (( ivai')), (ivai, ibit)); therefore, hin is a history-
determined variable for q,Q II H in , and 3 hin : (q,Q II H in ) equals q,Q. 

lf h is a history-determined variable for a property II, then II is fin, with h as 
its internal state component. Hence, if II is a safety property, then 3h : II is also a 
safety property. 

3More precisely, T /\ A will imply w' f w, where T is the type-correctness invariant. 

ACM Transactions on Programming Languages and Systems, Vol. 16, No.5, September 1994. 
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3. REAL-TIME CLOSED SYSTEMS 

V/e now usc TLA to specify and reason about timing properties of closed systems. 
vVe focus on worst-case upper and lower bounds on real-time delays. However, our 
approach should be applicable to other real-time properties as well. We believe 
(hat its only inherent limitation is that it cannot handle probabilistic real-time 
properties, such as average delay requirements. This limitation arises because, like 
most specification formalisms, TLA cannot express probabilistic properties. 

Sectioll 3.1 explains how time and timing properties can be represented with 
TLA formulas, and Section 3.2 describes how to reason about these formulas. The 
problem of Zeno specificatiolls is addressed in Section 3.3. Our method of specifying 
and reasoning about timing properties is illustrated in Section 3.4 with the example 
of a real-time mutual exclusion protocol. 

3.1 Time and Timers 

In real-time TLA specifications, real time is represented by the variable now. Al-
t hough it has a special interpretation, now is just an ordinary variable of the logic. 
The value of now is always a real number, and it never decreases-conditions ex-
pressed by the TLA formula 

RT ~ (now E R) 1\ D[now' E (now, oo)]now 

where R is the set of real numbers and (r, 00) is {t E R : t > T}. 
It is convenient to make time-advancing steps distinct from ordinary program 

steps. This is done by strengthening the formula RT to 

RTv ~ (now E R) 1\ D[(now' E (now,oo)) 1\ (Vi = v)]now 

This property differs from RT only in asserting that v does not change when now ad-
vances. Simple logical manipulation shows that RT v is equivalent to RT 1\ D [now' = 
now]1J, and 

Init 1\ D[Nlv 1\ RTv = Init 1\ D[N 1\ (now' = now)]v 1\ RT 

vVe express real-time constraints by placing timing bounds on actions. Such 
bounds are the bread-and-butter of many real-time formalisms, such as real-time 
process algebras [de Bakker et al. 1992]. Timing bounds on actions are imposed 
by using timers to restrict the increase of now. A timer for II is a state function t 
such that II implies D(t E RU {±oo}). Timer t is used as an upper-bound timer 
by conjoining the formula 

MaxTime(t) (now:::; t) 1\ D[now' :::; t']now 

to a specification. This formula asserts that now is never advanced past t. Timer 
t is used as a lower-bound timer for an action A by conjoining the formula 

MinTime(t,A,v) ~ D[A~(t:::;now)]v 

to a specification. This formula asserts that an (A)v step cannot occur when now 
is less than t.4 

4 Unlike the usual timers in computer systems that represent an increment of time, our timers 
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A common type of timing constraint asserts that an A step must occur within 5 
seconds of when the action A becomes enabled, for some constant 5. After an A 
step, the next A step must occur within 5 seconds of when action A is re-enabled. 
There are at least two reasonable interpretations of this requirement. 

The first interpretation is that the A step must occur if A has been continuously 
enabled for 5 seconds. This is expressed by MaxTime(t) when t is a state function 
satisfying 

VTimer(t, A, 5, v) ~ 1\ t = if Enabled (A/v then now + 5 
else 00 

1\ 0 [1\ t' = if (Enabled (A/v)' 
then if (A/v V .. Enabled (A/v 

then now + 5 
else t 

else 00 

1\ v' f v ](t,11) 

Such a t is c2Jled a volatile 5-timer. 
Another interpretation of the timing requirement is that an A step must occur 

if A has been enabled for a total of 5 seconds, though not necessarily continuously 
enabled. This is expressed by MaxTime(t) when t satisfies 

PTimer(t, A, 5, v) ~ 1\ t = now + 5 
1\ or 1\ t' = if Enabled (A)v 

then if (A)v then now + 5 
else t 

else t + (now' - now) 
1\ (v, now)' f (v, now) lu,11,now) 

Such a t is called a persistent o-timer. We can use o-timers as lower-bound timers 
as well as upper-bound timers. 

Observe that VTimer(t, A, 0, v) has the form Hist(t, j, g, v) and PTimer(t, A, 0, v) 
has the form Hist(t,j,g, (v, now)), where Hist is defined by (4). Thus, if formula 
II implies that a variable t satisfies either of these formulas, then t is a history-
determined variable for II. 

As an example of the use of timers, we make the lossy queue of Section 2.1 
non lossy by adding the following timing constraints. 

-Values must be put on a wire at most once every 5snd seconds. There are two 
conditions-one on the input wire and one on the output wire. They are expressed 
by using 5.md-timers tlnp and tDeQ, for the actions Inp and DeQ, as lower-bound 
timers. 

-A value must be added to the queue at most ll1'c11 seconds after it appears on 
the input wire. This is expressed by using a ll1'cv-timer TEnQ, for the enqueue 
action, as an upper-bound timer. 

repres'mt an absolute time. To allow the type of strict time bound that would be expressed by 
replacing :s with < in the definition of MaxTime or Min Time, we could introduce, as additional 
possible values for timers, the set of all "infinitesimally shifted" real numbers r-, where t :s r­
iff t < r, for any reals t and r. 
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-A value must be sent on the output. wire wit.hin 6 5n d seconds of when it reaches 
the head of the queue. This is expressed by using a 6,md-timer T DeQ , for the 
dequeue action, as an upper-bound timer. 

The timed queue will be non lossy if 6"c1I < 6snd. In this case, we expect the Inp, 
EnQ, and DeQ actions to remain enabled until they are "executed", so it doesn't 
matter whether we use volatile or persistent timers. vVe use volatile timers because 
they are a little easier to reason about. 

The timed version ITO of the queue's internal specification ITQ is obtained by 
conjoining the timing constraints to ITQ: 

/\ ITQ /\ RTv 

/\ VTimer(tlnp, Inp, 6snd, v) /\ MinTime(tlnp, Inp, v) 
/\ VTimer(tDeQ, DeQ, 6snd, v) /\ MinTime(tDeQ' DeQ, v) 
/\ VTimer(TEnQ , EnQ, 6"c1I' v) /\ MaxTime(TEnQ ) 

/\ VTimer(TDeQ , DeQ, 6 snd, v) /\ MaxTime(TDcQ ) 

(6) 

The external specification <l.lO of the timed queue is obtained by existentially quan-
tifying first the timers and then the variables q and last. 

Formula ITO of (6) is not in the canonical form for a TLA formula. A straight-
forward calculation, using the type-correctness invariant (1) and the equivalence of 
(OF) /\ (DC) and O(F /\ C), converts the expression (6) for ITO to the canonical 
form given in Figure 3. 5 Observe how each subaction A of the original formula 
has a corresponding timed version At. Action At is obtained by conjoining A with 
the appropriate relations between the old and new values of the timers. If A has 
a lower-bound timer, then At also has a conjunct asserting that it is not enabled 
when now is less than this timer. (The lower-bound timer tlnp for Inp does not 
affect the enabling of other subactions because Inp is disjoint from all other sub-
actions; a similar remark applies to the lower-bound timer tDeQ') There is also a 
new action, QTick, that advances now. 

Formula ITO is the TLA specification of a program that satisfies each maximum-
delay constraint by preventing now from advancing before the constraint has been 
satisfied. Thus, the program "implements" timing constraints by stopping time, an 
apparent absurdity. However, the absurdity results from thinking of a TLA formula, 
or the abstract program that it represents, as a prescription of how something is 
accomplished. A TLA formula is really a description of what is supposed to happen. 
Formula ITO says only that an action occurs before now reaches a certain value. It 
is just our familiarity with ordinary programs that makes us jump to the conclusion 
that now is being changed by the system. 

3.2 Reasoning About Time 

Formula ITO is a safety property; it is satisfied by a behavior in which no variables 
change values. In particular, it allows behaviors in which time stops. We can rule 

5Fllrther simplification of this formula is possible, but it requires an invariant. In particular, the 
fOllrt.h conjllllct of DeQt can be replaced by T'enQ = TEnQ' 
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Init~ "'. t\ InitQ 
t\ now E R 
t\ tlnp = now + 0snd 
t\ tDeQ = TEnQ = TDeQ = 00 

Inpt '" t\ Inp 

t\ t Inp S; now 
1\ t1np = now' + 0md 

1\ T EnQ = if last' 01 ibit' then now' + 6 1'cv else 00 
1\ (tDeQ' TDeQ)' = if q = (0) then (00, (0) else (tDeQ' TDeQ) 
t\ now' = now 

EnQt "'. t\ EnQ 

1\ T EnQ = 00 

1\ (tDeQ,TDeQ)' = ifq= (()) then (now+6snd, now + 6 snd) 
else (tDeQ, TDeQ) 

t\ (tlnp, now)' = (tlnp' now) 

DeQt "'. t\ DeQ 

QTick 

vi 

TTl Q 

1\ t DeQ S; now 
t\ (tDeQ' TDeQ)' == if q' = (0) then (00, (0) 

else (now + osnd' now + 6 snd) 
t\ T EnQ = if last' = ibit' then 00 else TEnQ 

1\ (tlnp' now)' = (tlnp' now) 

"'. 1\ now' E (now, min(TDeQ' TEnQ)] 

t\ (v, tlnp' tDeQ, TDeQ, TEnQ)' = (v, tlnp' tDeQ' TDeQ' TEnQ) 

'" (v, now, tlnp' tDeQ, TDeQ' TEnQ) 

"'. t\ Init'q 
1\ D[Inpt V EnQt V DeQt V QTickl vt 

1555 

Fig. 3. The canonical form for IT'q, where (1', s] denotes the set of reals u such that l' < u S; s. 
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out such behaviors by conjoining to I1b the liveness property 

NZ ~ VtER:O(now>t) 

which asserts that now gets arbitrarily large. However, when reasoning only about 
real-time (safety) properties, this should not be necessary. For example, suppose 
we \\'ant to show that our timed queue satisfies a real-time property expressed by 
formula Wi, which is also a safety property. If IIQ implies 'lit) then IIQ 1\ NZ implies 
Wi 1\ NZ. Conversc!y, we don't expect conjoining a live ness property to add safety 
propert ies; if IIb 1\ NZ implies 'lit, then IIq by itself should imply 'lit. Hence, there 
shonkl he no need to introduce the live ness property NZ. Section 3.3 below explains 
precisely when we can ignore property NZ. 

A safety property we might want to prove for the timed queue is that it docs not 
lose any inputs. To express this property, let hin be the history variable, determined 
by Hm of US). t hat records the sequence of input values; and let hout and H ont be 
t he analogous history variable and property for the outputs. The assertion that the 
timed queue loses no inputs is expressed by 

m~ 1\ H in 1\ H out => D (hout j hinp) 

where a j .3 iff a is an initial prefix of fl. This is a standard invariance property. 
The llwal method for proving such properties leads to the following invariant 

1\ 'Tq 1\ (tIn}!. now E R) 1\ (TEnQ' tDeQ, T DeQ E R U {oo}) 
1\ now :s; min(TFnQ' Tl)cQ) 

1\ (last = ibit) => (TEnQ = (0) 1\ (hinp = hout 0 q) 

1\ (last cF zbit) => (TEnQ < tInp) A (hinp = hout 0 q 0 ((ivai))) 

A (q=(O)) == (TDeQ=oo) 

aIld to the necessary assumption c'rcv < 5 snd. (Recall that T Q is the type-
correctness predicate (1) for II Q .) Property NZ is not needed to prove this in-
variant. 

Property NZ is needed to prove that real-time properties imply liveness proper-
ties. The dcsiredliveness property for the timed queue is that the sequence of input 
messages up to any point eventually appears as the sequence of output messages. 
It is expressed by 

IIL 1\ NZ => Va: D((hinp = a) => O(hout = a)) 

This formula is proved by first showing 

II22 1\ NZ => WFv(EnQ) A WFv(DeQ) 

and then using a standard liveness argument to prove 

Db A vVFv(EnQ) A WF ,,(DeQ) => Va: D((hinp = a) => O(hout = a)) 

(7) 

The proof that I1b A NZ implies WFv(EnQ) is by contradiction. Assume EnQ 
is forever enabled but never occurs. An invariance argument then shows that IIb 
implies that T EnQ forever equals its current value, preventing now from advanc-
ing past that value; and this contradicts NZ. The proof that IIb 1\ NZ implies 
vVF,,(DeQ) is similar. 
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3.3 The NonZeno Condition 

The timed queue specification II~ asserts that a DeQ action must occur between 
Osnd and 6:..snd seconds of when it becomes enabled. What if 6:.. snd < Osnd? If an 
input occurs, it eventually is put in the queue, enabling DeQ. At that point, the 
value of now can never become more than 6:.. snd greater than its current value, so 
the program eventually reaches a "time-blocked state". In a time-blocked state, 
only the QTick action can be enabled, and it cannot advance now past some fixed 
time. In other words, eventually a state is reached in which every variable other 
than now remains the same, and now either remains the same or keeps advancing 
closer and closer to some upper bound. 

We can attempt to correct such pathological specifications by requiring that now 
increase without bound. This is easily done by conjoining the liveness property NZ 
to the safety property II~, but that doesn't accomplish anything. Since IIQ /I. NZ 
rules out behaviors in which now is bounded, it allows only behaviors in which 
there is no input, if 6:.. snd < Osnd. Such a specification is no better than the original 
speci:fication II~. The fact that the safety property allows the possibility of reaching 
a time-blocked state indicates an error in the specification. One does not add timing 
constraints on output actions with the intention of forbidding input. 

We call a safety property Zeno if it allows the system to reach a state from which 
now must remain bounded. More precisely, a safety property II is nonZeno iff every 
finite behavior satisfying II can be completed to an infinite behavior satisfying II 
in which now increases without bound. In other words, II is nonZeno iff the pair 
(II, NZ) is machine closed.6 

Zenoness can be a source of incompleteness for proof methods. Only nonZeno 
behaviors are physically meaningful, so a real-time system with specification II 
satisfies a property \jJ if II /I. NZ implies \jJ. As observed in Section 2.3, a proof 
method may be incapable of showing that II /I. NZ implies \jJ if (II, NZ) is not 
machine closed-that is, if II is Zeno. 

The following result can be used to ensure that a real-time specification written in 
terms of volatile o-timers is nonZeno. The main hypotheses are: (1) the maximum-
delay timers are on sub actions of the untimed specification, and (3) a maximum 
delay for an action Aj is not smaller than a minimum delay for an action Ai if Ai 
and Aj can be simultaneously enabled. 

THEOREM 1. Let v be the tuple of variables free in Init or N. The property 

/I. Init /I. D[Nlv /I. RTv 

/I. \:Ii E I: VTimer(t;,Ai,o;,v) /I. Min Time (t;, Ai, v) 

/I. \:Ij E J: VTimer(Tj ,Aj ,6:.. j ,v) /I. MaxTime(Tj ) 

is nonZeno if now does not appear in v, I and J are finite sets, and for all i E: I 

and j E J: 

(1) (Aj)v is a subaction of Init /I. D[Nlv whose free variables appear in v, 

(2) 6i and 6:.. j are positive reals, 

6 An arbitrary property TI is nonZeno iff (C(TI), TIANZ) is machine closed. We restrict our attention 
to reali-time constraints for safety specifications. 
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(3) 6; :S !::!..j, or (Ai)v and (Aj)v are disjoint for Init A O[N]v and i cI j, 

(4) the ti and Tj are distinct variables different from now and from the variables 
2n v. 

\Ve can apply the theorem to prove that the specification IT~ is nonZeno if 
6snd :S !::!"snd· The hypotheses of the theorem are checked as follows. 

(1) Actions (DeQ)v and (EnQ)v imply NQ, so they are subactions of ITQ. 

(2) Trivial. 
(3) The conjunction of any two of the actions (Inp) v , (DeQ)v, and (EnQ)v equals 

false, so the actions are pairwise disjoint for ITQ .7 The only remaining cases to 
consider are those in which i = j. Only (DeQ)v has both a lower-bound and 
an upper-bound timer, and 6snd :S !::!..snd holds by hypothesis. 

(4) Trivial. 

The theorem is valid for persistent as well as volatile timers. Any combination 
of VTimer and PTimer formulas may occur, except that a single Ak cannot have 
a persistent lower-bound timer tk and a volatile upper-bound timer Tk . In fact, 
the theorem is valid for any kind of lower-bound timer tk, not just a persistent 
or volatile one, provided tk is never greater than the corresponding upper-bound 
timer T k . 

All of these results are corollaries of Theorem 2 below, which in turn is a con-
sequence of Theorem 4 of Section 4. To allow arbitrary lower-bound timers, The-
orem 2 uses different notation from Theorem 1. The IT of Theorem 2 corresponds 
to the conjunction of Init A 0 [N]v with all the VTimer formulas of Theorem 1. 

THEOREM 2. Let 

IT be a safety property of the form Init A o[N]w, 
-t; and Tj bc timcrs for IT and let Ak be an action, for all i E I, j E J, and 

k E I U J, where I and J are sets, with J finite, 

-ITt ~ IT A RT v A 
I::/i E I: MinTime(t;,A;,v) A I::/j E J: MaxTime(Tj ) 

If (1) ITt =? 0 (ti :S Tj ), or (Ai)v and (Aj)v are diSjoint for IT and i cI j, for 
all i E I and j E J, 

(2) (a) now does not occur free in v, 
(b) (now' = r) A (v' = v) is a subaction of IT, for all r E R, 

(3) for all j E J: 
(a) (AJ)v A (now' = now) is a subaction of IT, 
(b) IT =? VTimer(TJ, A j , !::!..j, v) or IT =? PTimer(Tj , Aj,!::!..j, v), for 

some!::!"j E (0,00), 
(c) ITt =? D(Enabled (A])v = 

Enabled ((Aj)v A (now' = now))) 
(d) (v' = v) =? (Enabled (Aj)v = (Enabled (Aj)v)') 

then (IT', NZ) is machine closed 

7 Actually, the type-correctness predicate TQ is needed to prove that (Inp)v 1\ (DeQ)v equals false. 
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Most nonaxiomatic approaches, including both real-time process algebras and 
more traditional programming languages with timing constraints, essentially use 
6-timers for actions. Theorem 2 implies that they automatically yield nonZeno 
speci5cations. 

Theorem 2 can be further generalized in two ways. First, J can be infinite--if 
IIt implies that only a finite number of actions Aj with j E: J are enabled before 
time r, for any r E R. For example, by letting Aj be the action that sends message 
number j, we can apply the theorem to a program that sends messages number 1 
through n at time n, for every integer n. This program is nonZeno even though 
the number of actions per second that it performs is unbounded. Second, we can 
extend the theorem to the more general class of timers obtained by letting the I'1 j 

be arbitrary real-valued state functions, rather than just constants-if all the I'1 j 

are bounded from below by a positive constant 6.. 
Theorem 2 can be proved using Propositions 1 and 3 and ordinary TLA reasoning. 

By these propositions, it suffices to display a formula L that is the conjunction of 
fairness conditions on subactions of rrt such that IIt 1\ L implies NZ. A suitable L 
is WF(now,v)(C), where C is an action that either (a) advances now by minjEJ 6. j if 
allowed by the upper-bound timers Tj , or else as far as they do allow, or (b) executes 
an (Aj)v action for which now = Tj . The proof in the appendix of Theorem 4, 
which implies Theorem 2, generalizes this approach. 

Theorem 2 does not cover all situations of interest. For example, one can require 
of our timed queue that the first value appear on the output line within c seconds 
of when it is placed on the input line. This effectively places an upper bound on 
the sum of the times needed for performing the EnQ and DeQ actions; it cannot be 
expressed with 6-timers on individual actions. For these general timing constraints, 
nonZenoness must be proved for the individual specification. The proof uses the 
method described above for proving Theorem 2: we add to the timed program IIt 
a live ness property L that is the conjunction of any fairness properties we like, 
including fairness of the action that advances now, and prove that IIt 1\ L implies 
NZ. NonZenoness then follows from Propositions 1 and 3. 

There is another possible approach to proving nonZenoness. One can make granu-
larity assumptions-lower bounds both on the amount by which now is incremented 
and on the minimum delay for each action. Under these assumptions, nonZenoness 
is equivalent to the absence of deadlock, which can be proved by existing methods. 
Granularity assumptions are probably adequate-after all, what harm can come 
from pretending that nothing happens in less than 10-100 nanoseconds? How-
ever, they can be unnatural and cumbersome. For example, distributed algorithms 
often assume that only message delays are significant, so the time required for 
local actions is ignored. The specification of such an algorithm should place no 
lower bound on the time required for a local action, but that would violate any 
granularity assumptions. We believe that any proof of deadlock freedom based on 
granularity can be translated into a proof of nonZenoness using the method outlined 
above. 

So far, we have been discussing nonZenoness of the internal specification, where 
both the timers and the system's internal variables are visible. Timers are defined 
by adding history-determined variables, so existentially quantifying over them pre-
serves nonZenoness by Proposition 2. We expect most specifications to be fin [Abadi 
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and Lamport 1991, page 263], so nonZenoness will also be preserved by existen-
tially quantifying over the system's internal variables. This is the case for the timed 
queue. 

3.4 An Example: Fischer's Protocol 

As another example of real-time closed systems, we treat a simplified version of 
a real-time mutual exclusion protocol proposed by Fischer [1985] and described 
in [Lamport 1987, page 2]. The example was suggested by Schneider et al. [1992]. 
The protocol consists of each process i executing the following code, where angle 
brackets denote instantaneous atomic actions: 

a: await (x = 0); 
b: (x:= i); 
c: await (x = i); 

es: critical section 

There is a maximum delay 6.b between the execution of the test in statement a and 
the assignment in statement b, and a minimum delay 6c between the assignment in 
statement b and the test in statement c. The problem is to prove that, with suitable 
conditions on 6.b and 6c , this protocol guarantees mutual exclusion (at most one 
process can enter its critical section). 

As written, Fischer's protocol permits only one process to enter its critical section 
one time. The protocol can be converted to an actual mutual exclusion algorithm. 
The correctness proof of the protocol is easily extended to a proof of such an 
algorithm. 

The TLA specification of the protocol is given in Figure 4. The formula IIF 
describing the untimed version is standard TLA. We assume a finite set Proc of 
processes. Variable x represents the program variable x, and variable pc represents 
the control state. The value of pc will be an array indexed by Proc, where peril 
equals one of the strings "a", "b", "c", "cs" when control in process i is at the 
corresponding statement. The initial predicate Init F asserts that peril equals "a" 
for each process i, so the processes start with control at statement a. No assumption 
011 the initial value of x is needed to prove mutual exclusion. 

Next come the definitions of the three actions corresponding to program state-
ments (1, b, and c. They are defined using the formula Go, where Go(i, u, v) asserts 
that control in process i changes from u to v, while control remains unchanged in 
the other processes. Action Ai represents the execution of statement a by process 
i; actions Hi and Ci have the analogous interpretation. In this simple protocol, a 
process stops when it gets to its critical section, so there are no other actions. The 
program's next-state action NF is the disjunction of all these actions. Formula IIF 
asserts that all processes start at statement a, and every step consists of executing 
the next statement of some process. 

Action Hi is enabled by the execution of action Ai. Therefore, the maximum 
delay of 6.b between the execution of statements a and b can be expressed by an 
upper-bound constraint on a volatile 6.b-timer for action Hi. The variable n is an 
array of such timers, where Tb[i] is the timer for action Hi. 

The constant 6c is the minimum delay between when control reaches statement 
c and when that statement is executed. Therefore, we need an array tc of lower-
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InitF ~ Vi E Proc : peril = "a" 

Co(i,u,v) ~ 1\ peril = u 
1\ pe'[i] = v 
1\ V j E Proc : (j cp i) =? (pel [j] = pe[j]) 

Ai " Co(i,"a", "b") 1\ (X=X'=O) 

Bi ~ Go(i, "b") "e") 1\ (Xl == i) 

Ci ~ Go(i) "c", "cs") J\ (x=x'=i) 

NF ~ :J i E Proc : (Ai V Bi V Cd 
I1F ~ InitF 1\ o[NF](x,pe) 

1\ I1F 1\ RT (x ,pc) 
1\ Vi E Proc: 1\ VTirr,er(n[i], Bi, .0.b, (x,pe)) 

1\ MaxTime(Tb[i]) 
1\ Vi E Proc: 1\ VTimer(tc[i], Co(i, "c", "cs"), oc, (x,pe)) 

1\ Min Time(tc[i] , Ci, (x,pe)) 

Fig. 4. The TLA specification of Fischer's real-time mutual exclusion protocol. 

1561 

bound timers for the actions Ci . The delay is measured from the time control 
reaches statement c, so we want te[i] to be a 6e-timer on an action that becomes 
enabled when process i reaches statement c and is not executed until Ci is. (Since 
we are placing only a lower-bound timer on it, the action need not be a subaction 
of I1F') A suitable choice for this action is Go(i, "e", "es"). 

Adding these timers and timing constraints to the untimed formula I1F yields 
formula I1~ of Figure 4, the specification of the real-time protocol with the timers 
visible. The final specification, <Pj", is obtained by quantifying over the timer 
variables nand te. Since (Bj)(x,pc) 1\ (now' = now) is a sub action of I1F and 
(Go(i, "e", "cs"))(x,pe) is disjoint from (Bj)(x,pc), for all i and j in Proe, Theorem 2 
implies that I1~ is nonZeno if 6.b is positive. Proposition 2 can then be applied to 
prove that <P~ is nonZeno. 

Mutual exclusion asserts that two processes cannot be in their critical sections 
at the same time. It is expressed by the predicate 

Mutex ~ Vi, j E Proe : (pe[i] = pe[j] = "es") :::::? (i = j) 

The property to be proved is 

Assump 1\ <Pj" :::::? DMutex (8) 

where Assump expresses the assumptions about the constants Proc, 6.b, and 6e 
needed for correctness. Since the timer variables do not occur in Mutex or Assump, 
(8) is equivalent to 

Assump 1\ I1j" :::::? DMutex 

The standard method for proving this kind of invariance property leads to the 
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invariant 

1\ now E R 
l\'v'iEProe: 

1\ Tb[i], tc[i] E R U {CXJ} 
1\ peril E {"a", "b" , "e", "es"} 
1\ (pe[i] = "es") =} 1\ x = i 

1\ 'v' j E Proe : pe[j] "# "b" 
1\ (pe[i] = "e") =} 1\ x"# 0 

1\ 'v' j E Proe : (pe[j] = "b") =} (tc[i] > Tb[j]) 
1\ (pe[i] = "b") =} (n[i] < now + oc) 
1\ now <:: n[i] 

and the assumption 

Assump 

4. OPEN SYSTEMS 

A closed system is solipsistic. An open system interacts with an environment, 
where system steps are distinguished from environment steps. Sections 4.1 and 4.2 
reformulate a number of concepts introduced in [Abadi and Lamport 1993] that are 
needed for treating open systems in TLA. Some new results appear in Section 4.3. 
The following two sections explain how reasoning about open systems is reduced to 
reasoning about closed systems, and how open systems are composed. 

4.1 Receptiveness and Realizability 

To describe an open system in TLA, one defines an action f.L such that f.L steps 
are attributed to the system and 'f.L steps are attributed to the environment. A 
specification should constrain only system steps, not environment steps. 

For safety properties, the concept of constraining is formalized as follows: if f.L is 
an action and II a safety property, then II constrains at most f.L iff, for any finite 
behavior S1, ... , Sn and state Sn+1, if S1, ... , Sn satisfies II and (sn' sn+d is a 'f.L 
step, then Sl,' .. ,Sn+1 satisfies II. The generalization to arbitrary properties of 
constraining at most f.L is f.L-reeeptiveness. Intuitively, II is f.L-receptive iff every 
behavior in II can be achieved by an implementation that performs only f.L steps-
the environment being able to perform any 'f.L step. The concept of receptiveness 
is due to Dill [1988]. The generalization to f.L-receptiveness is developed in [Abadi 
and Lamport 1993].8 A safety property is f.L-receptive iff it constrains at most f.L. 

The generalization of machine closure to open systems is machine realizability. 
Intuitively, (II, L) is f.L-machine realizable iff an implementation that performs only 

8To translate from the semantic model of [Abadi and Lamport 1993] into that of TLA, we let 
agents be pairs of states and identify an action f.l with the set of all agents that are f.l steps. A 
TLA behavior 81,82, ... corresponds to the sequence 81 ~ 82 ~ 83 -"4 ... , where Qi equals 
(8,-1,5i). With this translation, the definitions in [Abadi and Lamport 1993] differ from the ones 
given here and in the appendix mainly by attributing the choice of initial state to the environment 
rather than to the system, requiring initial conditions to be assumptions about the environment 
rather than guarantees by the system. 
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fL steps can ensure that any finite behavior satisfying IT is completed to an infinite 
behavior satisfying IT/\ L. Formally, (IT, L) is defined to be fL-machine realizable 
iff (IT, L) is machine closed and IT/\ L is fL-receptive. For fL equal to true, machine 
realizability reduces to machine closure. 

4.2 The -f> Operator 

A common way of specifying an open system is in terms of assumptions and guaran-
tees [Jones 1983], requiring the system to guarantee a property M if its environment 
satisfies an assumption E. An obvious formalization of such a specification is the 
property E ::::;. M. However, this property contains behaviors in which the sys-
tem violates M and then the environment later violates E. Because the system 
cannot predict what the environment will do, such behaviors cannot occur in any 
actual implementation. A behavior cr generated by any implementation satisfies 
the additional property that if any finite prefix of (J' satisfies E, then it satisfies M. 
We can therefore formalize the assumption/guarantee specification by the property 
E -t> M, defined by: (J' E E -f> M iff cr E (E ::::;. M) and, for every finite prefix 
p of cr, if p satisfies E then p satisfies M. If E and M are safety properties, then 
E -f> M is as well. 

For safety properties, the operator -f> is the implication operator of an intuition-
istic logic [Abadi and Plotkin 1992j. Most valid propositional formulas without 
negation remain valid when::::;. is replaced by -f>, if all the formulas that appear on 
the left of a -f> are safety properties. For example, the following formulas are valid 
if cP and IT are safety properties. 

cP -f> (IT -f> \]i) =: (<I> /\ IT) -f> W (9) 
(cP -f> w) /\ (IT -f> \]i) =: (cP V IT) -f> W 

For any TLA formulas cP and IT, the property <I> -f> IT is expressible as a TLA 
formula. 

4.3 Proving Machine Realizability 

Propositions 1-3, which concern machine closure, have generalizations for machine 
realizability. Proposition 1 is the special case of Proposition 4 in which <I> and f-L are 
identically true. Proposition 3 is similarly a special case of Proposition 5 if (true, L 2 ) 

is machine closed-that is, if L2 is a liveness property. This is sufficient for our 
purposes, since NZ is a liveness property. The generalization of Proposition 2 is 
omitted; it would be analogous to Proposition 10 of [Abadi and Lamport 1993j. 

Proposition 4 is stated in terms of f-L-invariance, which generalizes the ordinary 
concept of invariance. A predicate P is a f-L-invariant of a formula IT iff, in any 
behavior satisfying IT, no fL-step makes P false. This condition is expressed by the 
TLA formula IT ::::;. D[(f-L /\ P) ::::;. PI]P. 

PROPOSITION 4. If IT and <I> are safety properties, IT constrains at most fL, and 
L is the conjunction of a finite or countably infinite number of formulas of the form 
WFw(A) and/or SFw(A), where, for each such formula, 

(1) (A)w is a subaction of IT/\ cP, 
(2) IT/\ <I> ::::;. D[(A;w ::::;. f-Ljw, 
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(3) if A appears in a formula SFw(A), then Enabled (A)w is a ~p,-invariant of 
IT A 1>, 

then (1) -£> IT, 1> :::? L) is IL-machine realizable. 

PROPOSITION .5. If 1> and IT are safety properties, (1) -£> IT, L 1 ) and (true, L 2 ) 

are p,-machine realizable, and 1> A ITA L1 implies L2 , then (1) -£> IT, L2 ) is p,-machine 
realizable. 

4.4 Reduction to Closed Systems 

Consider a specification E -£> lvI, where E and M are safety properties. We expect 
the system's requirement to restrict only system steps, meaning that M constrains 
at most p,. This implies that E -£> I\;1 also constrains at most p,. \Ve also expect 
the environment assumption E not to constrain system steps; formally, E does not 
constrain p, iff it constrains at most 'IL and it is satisfied by every (finite behavior 
consisting only of an) initial state 9 

Suppose E and M have the following form: 

E ~ D[p, V Nd" 
M ~ Init A D[~p, V N"'I]v 

Then E does not constrain p, and M constrains at most p,. If the system's next-
state action NM implies 1-", and the environment's next-state action NE implies ~I-", 
then a simple calculation shows that 

(10) 

Conjunction represents parallel composition, so E A M is the formula describing the 
closed system consisting of the open system together with its environment. Observe 
that E A M has precisely the form we expect for a closed system comprising two 
components with next-state actions NE and NM . 

\Ve can make the inverse transformation from a closed system specification IT to 
the corresponding assumption/guarantee specification E -£> M such that IT equals 
E AM, where E does not constrain p, and .M constrains at most p,. This is possible 
because any safety property IT can be written as such a conjunction. 

Implementation mean§...implication. A system with guarantee M implements a 
system ~ith guarantee M, under environment assumption E, iff E -£> M implies 
E -£> M. It follows from the definition of -£> that, when E and M are safety 
properties, E -£> M implies E -£> M iff E A M implies E A M. Thus, proving that 
one open system implements another is equivalent to proving the implementation 
relation for the corresponding closed systems. Implementation for open systems 
therefore reduces to implementation for closed systems. 

4.5 Composition 

The distinguishing feature of open systems is that they can be composed. The 
proof that the composition of two specifications implements a third specification is 

9The asymmetry between constrains at most and does not constmin arises because we assign the 
system responsibility for the iIlitial state. 
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based on the following result, which is a reformulation of Theorem 2 of [Abadi and 
Lamport 1993] for safety properties. 

THEOREM 3. If E, E1, E2 " M 1, and M2 are safety properties and /11 and ,112 
are actions such that 

(1) E1 does not constrain /11 and E2 does not constrain /12, 

(2) 1\[1 constrains at most /11 and M2 constrains at most /12, 

then the following proof rule is valid: 

E 1\ M1 1\ M2 :=} E1 1\ E2 
(E1 -t> Md 1\ (E2 -t> M2 ) :=} (E -t> M1 1\ M2) 

This theorem is essentially the same as Theorem 1 of [Abadi and Plotkin 1992]; the 
proof is omitted. 

5. REAL-TIME OPEN SYSTEMS 

In Section 3, we saw how we can represent time by the variable now and introduce 
timing constraints with timers. To extend the method to open systems, we need 
only decide how to separate timing properties into environment assumptions and 
system guarantees. An examination of a paradoxical example in Section 5.1 leads 
to the general form described in Section 5.2, where the concept of nonZenoness is 
generalized. 

5.1 A Paradox 

Consider the two components II 1 and II 2 of Figure 5. Let the specification of 
II 1 be Py -t> Px , which asserts that it writes a "good" sequence of outputs on 
x if its environment writes a good sequence of inputs on y. Let Px -t> Py be the 
specification of II 2, so II 2 writes a good sequence of outputs on y if its environment 
writes a good sequence of inputs on x. If Px and Py are safety properties, then it 
appears that we should be able to apply Theorem 3, our composition principle, to 
deduce that the composite system II 12 satisfies Px 1\ Py , producing good sequences 
of values on x and y. (We can define /11 and /12 so that writing on x is a /11 action 
and writing on y is a /12 action.) 

Now, suppose Px and Py both assert that the value 0 is written by noon. These 
can be regarded as safety properties, since they assert that an undesirable event 
never occurs-namely, noon passing without a 0 having been written. Hence, the 
composition principle apparently asserts that II 12 sends O's along both x and y by 
noon. However, the specifications of III and II 2 are satisfied by systems that wait 
for a 0 to be input, whereupon they immediately output a O. The composition of 
those two systems does nothing. 

This paradox depends on the ability of a system to respond instantaneously to 
an input. It is tempting to rule out such systems-perhaps even to outlaw specifI-
cations like these. We show that this Draconian measure is unnecessary. Indeed, if 
the specification of II 2 is strengthened to assert that a 0 must unconditionally be 
written on y by noon, then there is no paradox, and the composition does guarantee 
that a 0 is written on both x and y by noon. All paradoxes disappear when one 
carefully examines how the specifications must be written. 
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x x x 
----+ 

y y y --
Fig. 5. The composition of two systems. 

To resolve the paradox, we examine more closely the specifications SI and S2 
of II) and II 2. For simplicity, let the only possible output actions be the setting 
of x and y to O. The untimed version of S) then asserts that, if the environment 
does nothing but set y to 0, then the system does nothing but set x to O. This is 
expressed in TLA by letting 

Mx ~ (x' = 0) 1\ (y' = y) 
/v1. y ~ (y' = 0) 1\ (x' = x) 

1/1 ~ x' =I x 

and defining the untimed version of specification S) to be 

(11) 

To add timing constraints, we must first decide whether the system or the envi-
ronment should change now. Since the advancing of now is a mythical action that 
does not have to be performed by any device, either decision is possible. Somewhat 
surprisingly, it turns out to be more convenient to let the system advance time. 
Wit h the convention that initial conditions appear in the system guarantee, we 
define: 

fiT ~ Mx 1\ (now' = now) MTx ~ MaxTime(Tx) 

N;/ ~ My 1\ (now' = now) MTy ~ MaxTime(Ty) 

Tx ~ if x =I 0 then 12 else 00 
1'>. 

1/1 V (now' =I now) PI -

Ty ~ if y =I 0 then 12 else 00 

E) ~ D[p) V Ny](x.y,now) 

AI) ~ (now = 0) 1\ O[~I~1 V Nxl(x,y,now) !\ RT(x.y) !\ MT x 

Adding timing constraints to (11) the same way we did for closed systems then 
leads to the following timed version of specification S 1. 

( 12) 

However, this does not have the right form for an open system specification because 
MT y constrains the advance of now, so the environment assumption constrains Pl. 
The conjunct MT y must be moved from the environment assumption to the system 
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guarantee. Using (9), we rewrite (12) as: 

51 ~ E1 -t> (MTy -t> Md 

This has the expected form for an open system specification, with an environment 
assumption E1 that does not constrain ILl and a system guarantee MT y -t> IV!l 

that constrains at most ILl. 
The specification 52 of the second component in Figure 5 is similar, where Jl2, 

E 2 , 1\12, and 52 are obtained from ILl, E 1 , M 1 , and 51 by substituting 2 for 1, x 
for y, and y for x. 

Both components III and IT2 change now. This is not a problem because the 
components do not really control time. We have merely written the specifications 
51 and 52 as if now were an output variable of both IT1 and II2. Formulas 51 
and 52 express real-time constraints by making assertions about how now changes. 
There is no problem because these constraints do not conflict. 

vVe now compose specifications 51 and 52. The definitions of M1 and M2 and 
the observation that P -t> Q implies P =? Q yield 

(MTx V MTy) /\ (MT y -t> Md /\ (MTx -t> M2 ) =? M1/\ M2 (13) 

The definitions of M1 and M2 and simple temporal reasoning yield 

where 

E ~ D[IL1 V IL2b,y,now) 

Combining (13) and (14) proves 

E /\ (MTx V MTy) /\ (MTy -t> Md /\ (MTx -t> M 2 ) =? E1/\ E2 

(14) 

We can therefore apply Theorem 3, substituting E /\ (MT x V MT y) for E, MT y .-{> 

J\11 for M 1, and MT x -t> M2 for M2, to deduce 

5 1 /\52 =? (E /\ (MTx V MTy) -t> (MTy -t> Md /\ (MTx -t> M2)) 

Using the implication-like properties of -t>, this simplifies to 

51 /\ 52 =? (E -t> (MTy -t> Md /\ (MTx -t> M2)) (15) 

All one can conclude about the composition from (15) is: either x and y are both 
o when now reaches 12, or neither of them is 0 when now reaches 12. There is no 
paradox. 

As another example, we replace 52 by the specification E2 -t> M 2 . This specifi-
cation, which we call 53, asserts that the system sets y to 0 by noon, regardless of 
whether the environment sets x to O. The definitions imply 

MTy/\E/\(MTy-t>Md/\M2 =? E1/\E2 

and Theorem 3 yields 

51 /\ 53 =? (E -t> (MTx -t> Md /\ M2) 

Since M2 implies MTx, this simplifies to 

51 /\ 53 =? (E -t> M1 /\ M2) 

The composition of 51 and 53 does guarantee that both x and y equal 0 by noon. 
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5.2 Timing Constraints in General 

Our no-longer-paradoxical example suggests that the form of a real-time open sys-
tem specification should be 

E --i> (P --i> M) (16) 

,vhere AI describes the system's timing constraints and the advancing of now, 
and P describes the upper-bound timing constraints for the environment. Since 
the environment's lower-bound timing constraints do not constrain the advance of 
now, they can remain in E. As we observed in Section 4.4, proving that one open 
specification implements another reduces to the proof for the corresponding closed 
systems. Since E --i> (P --i> M) is equivalent to (E 1\ P) --i> Ai, the closed system 
corresponding to (16) is the expected one, E 1\ P 1\ M. 

For the specification (16) to be reasonable, its closed system version, E 1\ P 1\ M, 
should be nonZeno. However, this is not sufficient. Consider a specification guaran-
teeing that the system produces a sequence of outputs until the environment sends 
a stop message, where the nth output must occur by time (n - l)/n. There is no 
timing assumption on the environment; it need never send a stop message. This 
is an unreasonable specification because now cannot reach 1 until the environment 
sends its stop message, so the advance of time is contingent on an optional ac-
tion of the environment. However, the corresponding closed system specification is 
nonZeno, since time can always be made to advance without bound by having the 
environment send a stop message. 

If advancing now is a 11 action, then a system that controls 11 actions can guar-
antee time to be unbounded while satisfying a safety specification S iff the pair 
(S, NZ) is l1-machine realizable. We therefore take this condition to be the defini-
tion of nonZenoness for an open system specification S. 

For specifications in terms of 5-timers, nonZenoness can be proved with gener-
alizations to open systems of the theorems in Section 3.3. The following is the 
generalization of the strongest of them, Theorem 2. It is applied to a specification 
of the form (16) by substituting E 1\ P for E. 

THEOREfI! 4. With the notation and hypotheses of Theorem 2, if E and 1'vl are 
safety properties such that II = E 1\ M, and 

4· M constrains at most 11, 

5. (a) (A k / v =? IL, for all k E I U J, 
(b) (now' =f. now) =? 11 

then (E --i> Mt 1 NZ) is l1-machine realizable, where 

Mt ~ M 1\ RT v 1\ 

Vi E I: MinTime(t;,A;lv) 1\ Vj E J: MaxTime(Tj ) 

Hypothesis 4 says that 11 steps are attributed to the system represented by M. 
Part (a) of Hypothesis 5 says that the other hypotheses restrict the timing con-
straints on system actions (Ak/v only; environment actions may have any timing 
constraints. Part (b) says that advancing now is a system action. 

The proof of Theorem 4, which appears in the appendix, is similar to the proof of 
Theorem 2 sketched in Section 3.3. It uses Propositions 4 and 5 instead of Propo-
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sitions 1 and 3. Since machine realizability implies machine closure, Theorem 2 
follows from Theorem 4 by letting E and f.1 equal true and M equal II. 

Theorem 4 applies to the internal specifications, where all variables are visible. 
For closed systems, existential quantification is handled with Proposition 2. For 
open systems, the generalization of this proposition-the analog of Proposition 10 
of [Abadi and Lamport 1993]-is needed. 

6. CONCLUSION 

6.1 What We Did 

We started with a simple idea-specifying and reasoning about real-time systems 
by representing time as an ordinary variable. This idea led to an exposition that 
most readers probably found quite difficult. What happened to the simplicity? 

About half of the exposition is a review of concepts unrelated to real time. All 
the fundamental concepts described in Sections 2 and 4, including machine clo-
sure, machine realizability, and the --t> operator, have appeared before [Abadi and 
Lamport 1993; Abadi and Lamport 1991]. These concepts are subtle, but they are 
important for understanding any concurrent system; they were not invented for 
real-time systems. 

We chose to formulate these concepts in TLA. Like any language, TLA seems 
complicated on first encounter. We believe that a true measure of simplicity of a 
formal language is the simplicity of its formal description. The complete syntax 
and formal semantics of TLA are given in about one page in [Lamport 1994]. 

We never claimed that specifying and reasoning about concurrent systems is easy. 
Verifying concurrent systems is difficult and error prone. Our assertions that one 
formula follows from another, made so casually in the exposition, must be backed 
up by detailed calculations. We have omitted the proofs for our examples, which, 
done with the same detail as the proofs in the appendix, occupy some twenty pages. 

We did claim that existing methods for specifying and reasoning about concurrent 
systems could be applied to real-time systems. Now, we can examine how hard they 
were to apply. 

We found few obstacles in the realm of closed systems. The second author has 
more than fifteen years of experience in the formal verification of concurrent al-
gorithms, and we knew that old-fashioned methods could be applied to real-time 
systems. However, TLA is relatively new, and we were pleased by how well it 
worked. The formal specification of Fischer's protocol in Figure 4, obtained by 
conjoining timing constraints to the untimed protocol, is as simple and direct as 
we could have hoped for. Moreover, the formal correctness proofs of this protocol 
and of the queue example, using the method of reasoning described in [Lamport 
1994], were straightforward. Perhaps the most profound discovery was the relation 
between nonZenoness and machine closure. 

Open systems made up for any lack of difficulty with closed systems. State-based 
approaches to open systems were a fairly recent development, and we had little 
experience with them. Studying real-time systems taught us a great deal, and led to 
a number of changes from the approach in [Abadi and Lamport 1993]. For example, 
we now write specifications with --t> instead of =}, and we put initial conditions in 
the system guarantee rather than in the environment assumption. Many alternative 
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ways of writing real-time specifications seemed plausible; choosing one that works 
was surprisingly hard. Even the simple idea of putting the environment's timing 
assumptions to the left of a --c> in the system's guarantee came only after numerous 
failed efforts. Although the basic ideas we need to handle real-time open systems 
seem to be in place, we still have much to learn before reasoning about open systems 
becomes routine. 

6.2 Beyond Real Time 

Real-time systems introduce a fundamentally new problem: adding physical con-
tinuity to discrete systems. Our solution is based on the observation that, when 
reasoning about a discrete system, we can represent continuous processes by dis-
crete actions. If we can pretend that the system progresses by discrete atomic 
actions, we can pretend that those actions occur at a single instant of time, and 
that the continuous change to time also occurs in discrete steps. If there is no 
system action between noon and v'2 seconds past noon, we can pretend that time 
advances by those v'2 seconds in a single action. 

Physical continuity arises not just in real-time systems, but in "real-pressure" 
and "real-temperature" process-control systems. Such systems can be described in 
the same way as real-time systems: pressure and temperature as well as time are 
represented by ordinary variables. The continuous changes to pressure and tem-
perature that occur between system actions are represented by discrete changes to 
the variables. The fundamental assumption is that the real, physical system is ac-
curately represented by a model in which the system makes discrete, instantaneous 
changes to the physical parameters it affects. 

The observation that continuous parameters other than time can be modeled by 
program variables has probably been known for years. However, the first published 
work we know of that uses this idea, by Marzullo et al. [1991]' appeared only 
recently. 
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