
State-Space Analysis as an Aid to Testing
Michal Young

So~are Engineering Research Center

Department of Computer Sciences

Purdue University

West Lafayette,

Abstract

Non-determinism makes testing concurrent software difficult. We

consider how pre-run-time state-space analysis can be used to aid

in testing implementations of concurrent software. State-space

analysis techniques have the advantage in principle of exploring
all possible execution histories, but they do not verify all

properties of interest and in practice they may not accurately

model program execution. Combining state-space analysis with

testing can partially overcome the weaknesses of each. Using the

state-space model in a test oracle is the simpler part: techniques
based on classical automata theory are suitable for this. Covering

all important non-deterministic executions is harder. We propose a

pragmatic method for detecting unexecuted paths that are certainly
executable and possibly important.

State-space analysis
A good deal of progress has been made in recent years in

improving state-space analysis performance for typical or well-

strrtctured programs. We have applied our own Paf tool, which per-
forms hierarchical state-space analysis of Ada-like programs

[6,7,8] to some realistic problems (Sanden’s furnace design [7], the

elevator simulation described in [3]) and some real applications

including a portion of the run-time configuration of the Chiron

user interface development system. Our experience suggests that

current state-space analysis techniques scale up at least far enough
to be useful, and certainly far beyond the comprehension of

unaided designers and programmers, but what we succeed in ana-
lyzing is typically extracted and reworked from the original appli-

cation code. Testing is required to increase our confidence that the

anrdysis results reflect actual program behavior.

Inducing paths for structural coverage
Structural test coverage criteria for concurrent programs have

been proposed by Weiss and by Taylor, Levine, and Kelly [4,5].
These proposals describe criteria for thoroughly exploring non-

deterrninistic execution paths. Their weakness is that the number
of such paths grows very quickly with the complexity of synchro-
nization structure in the program to be tested, and it is very costly

to determine which of these paths is executable.

We propose a formally weak but pragmatic tactic: An observed
execution shows one possible behavior which is known to be feasi-

ble. From an observed execution we can infer prefixes of other

This research was supported in part by IBM through the lBM/Prrrdue

shared research program, with additionat support from the Naticaral Science
Foundation grant number 91 -57629-CCR. and the Advanced Research
Projects Agency under grant number MDA-972 -9 I-J- 101O. The content of

the information does not necessmily reflect the position or the policy of
IBM or of the Government, and no official endorsement should be inferred.

Permission to co y without fee all or part of this material is
Igranted provided t at the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and th~
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
andlor specific permission.
ISSTA 94- 8/94 Seattle Washington USA
@ 1994 ACM 0-89791 -683-2/94/0008..$3.50

IN 47907-1398

executions which differ only with respect to non-deterministic

choices (e.g., scheduler decisions) and are therefore also known to
be feasible. Although this approach does not provide the strong
assurances of fault coverage that protocol conformance testing

does, those assurances rest on assumptions that do not hold for

most concurrent programs [1].
If another (sequential) testing criterion is already in use, it

serves as a convenient source of executable paths and correspond-

ing test data. This other method (which could be an arbitrary com-

bination of random, specification-based, and implementation-

based testing) “generates” only paths that have already been tested,

but this is quite acceptable.We need only assume that this “base
method” would be acceptably thorough in the absence of non-

determinism. As program testing to some base criterion proceeds,

observed execution sequences are used as input to a path induction
mechanism. Using a state-space model of the program, this mecha-
nism produces prefixes of an observed path up to a non-determin-

istic program decision. Each path prefix is known to be executable,

and input data to exercise it is already available, so we can safely

add an obligation to test different suffixes.
The number of non-deterministic variations on a single execut-

able path is typically very large, and many of them are trivial vari-

ations in process interleaving. Since recognizing general races is

NP-hard [2], it is not practical to produce additional test obliga-
tions for exactly the non-deterministic decisions that can affect

program inputloutput behavior. An interesting alternative is an

opportunistic variant of one of the structural criteria from [4] or

specification-based test selection from protocol conformance test-

ing, e.g. [1]. One could check observed executions not only for

coverage of paths prescribed by one of these techniques, but also
for potential coverage (variations on an observed execution that

improve coverage for one of these other measures).

References
1. S. Fujiwara, G. Bochmann, F. Khendek, M. Amafou, and A, Ghedamsi.

Test selection based on finite state models. IEEE Trans. Software
Engineering 17(6), June 1991.

2. R.H.B. Netzer and B.P. Miller. What are race conditions? Some issues

and formatizations. ACM Letters on Programming Languages and
Sysiems 1(1), Mar. 1992.

3. D.J, Richardson, S.L, Aha, aad T,O. O’Mafley. Specification-based test
oracles for reactive systems. In Proc. 14th Ind. Conference on Software
Engineering, Melbourne, Austrafia, May 1992.

4. R. Taylor, D. hxine, and C. Kelly. Structural testing of concurrent
programs. IEEE Trans. Sofhvare .Engineermg, 18(3):206--21 5, March

1992.

5. S.N. Weiss. A format franrework for the study of concurrent program
testing. Proc. 2nd Workshop on Sof7ware Testing, Vertjication, and
Analysis, pp 106-113, Banff, Canada, JuIy 1988.

6. W.J. Yeh and M. Young. Compositional reachability analysis using of
Ada programs using process atgebra. Submitted for joumaf publication;
an earlier version appeared in Proc. 4?h ACM Symposium on Testing,
Analysis, and Ver@ation, Victoria, BC, Oct. 1991.

7. W.J. Yeh and M. Young. Redesigning tasking structures of Ada
programs for anatysis: A case study. SERC-TR-148-P, Dec 1993.
Submitted for publication.

8. W.J. Yeh and M. Young. Hierarchicrd tracing of concurrent programs.
Proc. 3rd Irvine Sofrware Symposium, pp 73-84, Costa Mesa, CA, April
1993.

203

http://crossmark.crossref.org/dialog/?doi=10.1145%2F186258.187204&domain=pdf&date_stamp=1994-08-01

