skip to main content
10.1145/1864349.1864385acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

A grid-based algorithm for on-device GSM positioning

Published:26 September 2010Publication History

ABSTRACT

We propose a grid-based GSM positioning algorithm that can be deployed entirely on mobile devices. The algorithm uses Gaussian distributions to model signal intensity variations within each grid cell. Position estimates are calculated by combining a probabilistic centroid algorithm with particle filtering. In addition to presenting the positioning algorithm, we describe methods that can be used to create, update and maintain radio maps on a mobile device. We have implemented the positioning algorithm on Nokia S60 and Nokia N900 devices and we evaluate the algorithm using a combination of offline and real world tests. The results indicate that the accuracy of our method is comparable to state-of-the-art methods, while at the same time having significantly smaller storage requirements.

References

  1. }}T. F. Chan, G. H. Golub, and R. J. LeVeque. Algorithms for computing the sample variance: Analysis and recommendations. The American Statistician, 37(3):242{247, 1983.Google ScholarGoogle Scholar
  2. }}M. Y. Chen, T. Sohn, D. Chmelev, D. Hahnel, J. Hightower, J. Hughes, A. LaMarca, F. Potter, I. E. Smith, and A. Varshavsky. Practical metropolitan-scale positioning for GSM phones. In Proceedings of the 8th International Conference on Ubiquitous Computing (UbiComp), volume 4206 of Lecture Notes in Computer Science, pages 225--242. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. }}C. Drane, M. Macnaughtan, and C. Scott. Positioning GSM telephones. Communications Magazine, IEEE, 36(4):46--54, 59, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. }}B. Ferris, D. Hahnel, and D. Fox. Gaussian processes for signal strength-based location estimation. In Robotics: Science and Systems. The MIT Press, 2006.Google ScholarGoogle Scholar
  5. }}A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and L. E. Kavraki. Practical robust localization over large-scale 802.11 wireless networks. In Proceedings of the 10th annual international conference on Mobile computing and networking (MobiCom), pages 70--84. ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. }}J. Hightower and G. Borriello. Particle Filters for location estimation in ubiquitous computing: A case study. In Proceedings of the 6th International Conference on Ubiquitous Computing (Ubicomp), pages 88--106. Springer, 2006.Google ScholarGoogle Scholar
  7. }}Juniper Research. Mobile location based services: Applications, forecasts & opportunities 2009--2014. Research report, March 2010.Google ScholarGoogle Scholar
  8. }}J. Krumm and E. Horvitz. LOCADIO: Inferring motion and location from Wi-Fi signal strenghts. In Proceedings of the 1st International Conference on Mobile and Ubiquitous Systems (Mobiquitous), pages 4--14. IEEE, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  9. }}J. Krumm and J. Platt. Minimizing calibration effort for an indoor 802.11 device location measurement system. MSR-TR-2003-82, Microsoft Research, Seattle, WA, 2003.Google ScholarGoogle Scholar
  10. }}J. Kukkonen, E. Lagerspetz, P. Nurmi, and M. Andersson. BeTelGeuse: A platform for gathering and processing situational data. IEEE Pervasive Computing, 8(2):49--56, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. }}H. Laitinen, J. Lahteenmaki, and T. Nordstrom. Database correlation method for GSM location. In Proceedings of the 53rd IEEE Vehicular Technology Conference (VTC). IEEE, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  12. }}A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. E. Smith, J. Scott, T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert, P. Powledge, G. Borriello, and B. N. Schilit. Place Lab: Device positioning using radio beacons in the wild. In Proceedings of 3rd International Conference on Pervasive Computing (PERVASIVE), volume 3468, pages 116--133. Springer, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. }}L. Liao, D. Fox, and H. Kautz. Extracting places and activities from GPS traces using hierarchical conditional random fields. International Journal of Robotics Research, 26(1):119--134, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. }}V. Otsason, A. Varshavsky, A. LaMarca, and E. de Lara. Accurate GSM indoor localization. In Proceedings of the 7th International Conference on Ubiquitous Computing (UbiComp), volume 3660 of Lecture Notes in Computer Science, pages 141--158. Springer, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. }}T. Roos, P. Myllymaki, and H. Tirri. A statistical modeling approach to location estimation. IEEE Transactions on Mobile Computing, 1(1):59--69, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. }}T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen. A probabilistic approach to WLAN user location estimation. International Journal of Wireless Information Networks, 9(3):155--164, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  17. }}A. Schwaighofer, M. Grigoras, V. Tresp, and C. Hoffmann. GPPS: A Gaussian process positioning system for cellular networks. In Advances in Neural Information Processing Systems 16. MIT Press, 2003.Google ScholarGoogle Scholar
  18. }}T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen, T. Choudhury, I. Smith, S. Consolvo, J. Hightower, W. G. Griswold, and E. de Lara. Mobility detection using everyday GSM traces. In Proceedings of the 8th International Conference on Ubiquitous Computing (Ubicomp), pages 212--224, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. }}S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo localization for Mobile Robots. Artificial Intelligence, 128:99--141, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. }}A. Varshavsky, E. de Lara, J. Hightower, A. LaMarca, and V. Otsason. GSM indoor localization. Pervasive and Mobile Computing, 3:698--720, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. }}A. Varshavsky, A. LaMarca, J. Hightower, and E. de Lara. The SkyLoc floor localization system. In Proceedings of the 5th Annual IEEE International Conference on Pervasive Computing and Communications (PerCom), pages 125--134. IEEE, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. }}T. Vincenty. Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of Nested Equations. Survey Review, 23(176):88--93, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  23. }}Z. Wu, C. Li, J. K.-Y. Ng, and K. R. Leung. Location estimation via support vector regression. IEEE Transactions on Mobile Computing, 6(3):311--321, 2007.. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A grid-based algorithm for on-device GSM positioning

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          UbiComp '10: Proceedings of the 12th ACM international conference on Ubiquitous computing
          September 2010
          366 pages
          ISBN:9781605588438
          DOI:10.1145/1864349

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 September 2010

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          UbiComp '10 Paper Acceptance Rate39of202submissions,19%Overall Acceptance Rate764of2,912submissions,26%

          Upcoming Conference

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader