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ABSTRACT
Collaborative filtering is a popular approach for building
recommender systems. Current collaborative filtering algo-
rithms are accurate but also computationally expensive, and
so are best in static off-line settings. It is desirable to in-
clude the new data in a collaborative filtering model in an
online manner, requiring a model that can be incrementally
updated efficiently. Incremental collaborative filtering via
co-clustering has been shown to be a very scalable approach
for this purpose. However, locally optimized co-clustering
solutions via current fast iterative algorithms give poor ac-
curacy. We propose an evolutionary co-clustering method
that improves predictive performance while maintaining the
scalability of co-clustering in the online phase.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
algorithms, theory.

Keywords
Incremental collaborative filtering, co-clustering, evolution-
ary algorithm, ensembles.

1. INTRODUCTION
Recommender systems suggest items of interest to users.

Collaborative filtering (CF) uses purchase or rating infor-
mation to recommend items based on similarity [3]. If two
users have liked (or disliked) similar items up to now, it is
likely that they will have the same behavior in the future.
Therefore, collaborative filtering systems recommend based
on the history of ratings. One of the drawbacks in current
CF approaches is that they are more appropriate for static
settings; incorporating new data to the model may be a
non-trivial task. In real world problems, there are always
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new users and items that should be incorporated into the
model recommendations in an online manner. Incremental
collaborative algorithms are intended to handle this need.

A few published approaches have addressed the incremen-
tal CF problem. Sarwar et al. [7] and Brand [2] proposed
using singular value decomposition as an online CF strategy.
Das et al. [4] proposed a scalable online CF approach using
MinHash clustering, Probabilistic Latent Semantic Indexing
(PLSI), and co-visitation counts. However in this work, only
binary ratings (such as implicit user feedback) were consid-
ered and therefore the proposed approaches are not applica-
ble to prediction problems. In K-nearest neighbors collab-
orative filtering approaches, similarity parameters such as
correlation can be updated incrementally during the online
phase [6].

George and Merugu [5] used co-clustering as a scalable in-
cremental CF approach for dynamic settings. They showed
the performance of incremental co-clustering is comparable
to incremental SVD but much more scalable. For imple-
menting co-clustering they used the approach of Bregman
co-clustering [1], a very fast iterative local search which can
result in very poor local optima.

In this paper we propose an incremental CF method that
is both scalable and accurate. We use an evolutionary co-
clustering algorithm that finds better solutions than Breg-
man co-clustering at the cost of offline training time, which
is relatively unimportant. Also, we revise the incremental
algorithm suggested in [5] and introduce an ensemble strat-
egy to give better predictions.

2. INCREMENTAL CF
In a collaborative filtering problem, there are U users and

V items. Users have provided a number of explicit ratings
for items; rui is the rating of user u for item i. There are two
phases in a CF algorithm: an offline phase in which training
based on known ratings is performed, and an online phase
in which unknown ratings are estimated using the output
of the offline phase. Most CF approaches use only the data
available offline to predict ratings. In incremental CF, the
data available during online phase is incorporated into future
predictions, potentially improving the predictive accuracy.

2.1 Baseline algorithm
The simplest way to predict a rating is the global average

of all ratings. However, some users tend to rate higher and
some items are more popular. Including user bias and item
bias in rating, we can predict user ratings by

r̂ui = (1 − Snu,ω − Sni,ω)r̄ + Snu,ω r̄u + Sni,ω r̄i (1)



where r̄ is the global average, r̄u is the average of ratings
by user u, r̄i is the average of ratings for item i, nu is the
number of ratings by user u, and ni is the number of ratings
for item i. Snu,ω and Sni,ω are the support function for user
u and item i which we define as

Sυ,ω =


υ
ω

if υ < ω,

1 otherwise.
(2)

If fewer ratings are available for a user or item, the support
will be smaller. The parameter ω determines the necessary
support. Empirically we found three to be a robust choice
for ω. When the support of a user and an item is zero, then
r̂ui = r̄; when the support is one, r̂ui = r̄u + r̄i − r̄; and
when the support of a user u is zero and an item i is one,
then r̂ui = r̄i, and vice versa for the reverse.

2.2 Incremental CF via co-clustering
Clustering refers to partitioning similar objects into groups

[1]. Co-clustering partitions two different kinds of objects si-
multaneously. If one views the clustering problem as group-
ing rows of a matrix together, then co-clustering is the si-
multaneous grouping of rows and columns.

In collaborative filtering via co-clustering as suggested in
[5], each user u is assigned to a user cluster (represented by
ρ(u)) and each item i is assigned to an item cluster (repre-
sented by γ(i)) and the prediction is as follows:

r̂ui = r̄kl + (r̄u − r̄k) + (r̄i − r̄l), (3)

where k = ρ(u) is the user cluster assigned to user u, l = γ(i)
is the item cluster assigned to item i, r̄kl is the average of
ratings belonging to users in user cluster k and items in item
cluster l, r̄k is the average of ratings belonging to users in
user cluster k, and r̄l is the average of ratings belonging to
items in item cluster l. The term (r̄u−r̄k) tries to remove the
bias of user u (some users tend to rate higher) and (r̄i − r̄l)
is the same for item i (some items are more likable).

George and Merugu [5] used a fast iterative heuristic pro-
posed by Banerjee et al. [1]. This algorithm has two phases:
updating user clusters and updating item clusters. When
updating user clusters, we assume all co-cluster means are
constant and all items are assigned to item clusters, then we
assign each user so that the sum of squared errors is min-
imized. Item cluster updating follows the same approach.
Details can be found in [1, 5].

In the online phase, the prediction is as follows:

r̂ui =

8
>><
>>:

r̄kl + (r̄u − r̄k) + (r̄i − r̄l) if (oldUser-oldItem)
r̄i if (newUser-oldItem)
r̄u if ( oldUser-newItem)
r̄ if (newUser-newItem)

(4)
In [5], incremental training is achieved by using new rat-

ings to update the average parameters (r̄kl, r̄u, r̄k, r̄i, r̄l) in
equation (3). However, new users or items are not assigned
to clusters during the online phase.

3. INCREMENTAL EVOLUTIONARY CO-
CLUSTERING

As our experimental results will show, incremental collab-
orative filtering via co-clustering [5] discussed in Section 2.2
may be even worse than the baseline. Therefore, we propose
a number of revisions to improve this method.

First, if the support (number of available ratings) for a
user or item is low, the co-clustering approach will not pro-
vide good predictions for them, and the training phase will
be affected by these noisy inputs. As a strategy, users and
items with low support are eliminated from the training
phase so that training is both more effective and efficient.

The prediction equation (3) is not appropriate for the in-
cremental scenario, because it incorporates three average
parameters (r̄kl, r̄k, r̄l) from a co-clustering solution that
is not necessarily reliable. This is due to the fact that r̄k

and r̄l tend to be very close to the global average empir-
ically. Therefore, this model can be equivalent to r̂ui =
r̄kl + r̄u + r̄i − 2r̄ during the online phase. On the other
hand, using only the block average r̄kl for prediction ignores
user and item bias which results in poor accuracy as well. To
overcome this problem, we begin by co-clustering residuals,
rather than ratings. We model a rating prediction as

r̂ui = r̄u + r̄i − r̄ + εui. (5)

Note that r̄u + r̄i − r̄ is the same as the prediction equation
(1) when the support function is 1. As a result, εui is the
correction parameter for (1). For a known rating, (5) can
be rewritten as

εui = rui − (r̄u + r̄i − r̄) (6)

where εui can be interpreted as the residual of the prediction
via (1). For implementing co-clustering, it is enough to work
with the following objective function:

min
ρ,γ

X

u

X

i

wui(εui − ε̄ρ(u)γ(i))
2 (7)

where wui is one if rating rui exists in training dataset and
otherwise is zero. ε̄ρ(u)γ(i) is the block average of residuals
for user cluster ρ(u) and item cluster γ(i).

Now we can define the prediction strategy based on (1)
and (5). For old user - old item,

r̂ui = r̄u + r̄i − r̄ + ε̄ρ(u)γ(i) (8)

and otherwise

r̂ui = (1 − Snu,ω − Sni,ω)r̄ + Snu,ω r̄u + Sni,ω r̄i. (9)

As mentioned, one advantage of co-clustering is scalability.
Therefore creating an ensemble of different co-clusterings is
desirable. Ensembles are used to improve the accuracy of
a method using a group of predictors, while increasing the
running time linearly with the number of ensemble elements.
Let p denote a co-clustering solution and P be the number
of co-clusterings we use in the model. We can predict with

r̂ui = r̄u + r̄i − r̄ +

P
p
exp(−zulp − zikp)ε̄klpP
p
exp(−zulp − zikp)

(10)

where zulp is the average error of prediction for user u and
item cluster l in co-clustering solution p and similarly zikp is
the average error of prediction for item i and user cluster k

in co-clustering solution p. Intuitively if previous predictions
of a co-clustering solution are better, its weight is higher.

In the algorithm proposed in [5], new users and items are
not included in the co-clustering during the online phase. As
a result, the model is unable to provide legitimate predic-
tions for them. However, in the revised version, it is trivial
to find an appropriate cluster for a user or item. Let u be a



Input: new rating, co-clustering (ρ,γ)
Update user average r̄u

Update item average r̄i

IF {old user - old item}
Update co-cluster mean ε̄ and weights z

ELSEIF {old user - new item} AND {numberIn(item)>τ}
Assign the item to an item cluster
Update co-cluster mean ε̄ and weights z

ELSEIF {new user - old item} AND {numberIn(user)>τ}
Assign the user to a user cluster
Update co-cluster mean ε̄ and weights z

ENDIF

Figure 1: Incremental training in evolutionary co-
clustering

new user who has provided some ratings. If a sufficient num-
ber of rated items exist in the current co-clustering solution,
then the new user’s cluster can be found using [1]:

ρ(u) = argmin
g

X

h

nuh(ε̄uh − ε̄gh)2 (11)

where nuh is the number of times user u has rated the items
belonging to item cluster h during the online phase, and ε̄uh

is the average of residuals for those ratings. A similar pro-
cedure finds the cluster of a new item. Figure 1 shows the
incremental training algorithm. The function numberIn() is
the number of ratings a user (item) has in the co-clustering
solution which is defined by

P
h

nuh (
P

g
nig) for user u

(item i). If this value is bigger than a threshold τ , then
we can trust the information to incorporate the new user or
item. Otherwise, the risk of misclustering will be high. Sub-
sequently, new users and items will not receive prediction
from co-clustering at the very beginning. These ratings will
be estimated using (1), which is more accurate experimen-
tally. As a rule of thumb, τ can be set to 3 since we wish to
incorporate new users or items as soon as possible but not
at the cost of bad predictions.

We now turn to the construction of co-clusterings via evo-
lutionary algorithms, a population-based search approach
that explores a solution space by evolving a group of in-
dividuals to find good solutions. In our context, let P co-
clustering solutions exist. The goal is to find better solutions
by combining the current solutions. Every evolutionary al-
gorithm has three main steps: selection, in which two or
more individuals are chosen to create offspring; crossover, in
which the selected items are combined to create new solu-
tions; and replacement, in which the new solutions replace
existing solutions if they satisfy some criteria.

Our evolutionary co-clustering algorithm is shown in Fig-
ure 2. A group of co-clustering solutions is randomly gener-
ated and locally optimized via iterative Bregman co-clustering.
The numbers of user and item clusters are randomly se-
lected from a specific range. In the evolutionary iteration
phase, two co-clustering solutions are randomly selected for
crossover. In the context of optimization, better individu-
als are chosen with higher probability. However, in machine
learning, generalization is more important than optimiza-
tion and biased selection may result in premature conver-
gence. Our initial studies indicated that randomly selecting
co-clusterings improved generalization. After selecting two
co-clusterings, a new solution is generated via the crossover
function presented in Figure 3.

The crossover operation is between two clusters φ1 and φ2.
If the required number of clusters is K, the K − 1 largest

Input: Population size P, Rating matrix

Initialization:
FOR p = 1 to P

Kp ← RandomInteger(1, β1)
Lp ← RandomInteger(1, β2)
∀u : ρ0(u) ← RandomInteger(1, Kp)
∀i : γ0(i) ← RandomInteger(1, Lp)
(ρp, γp) ← LocallyOptimizationCooclustering(ρ0, γ0)

ENDFOR
Evolutionary iteration:
Repeat

Select 2 co-clusterings (ρq, γq) and (ρr, γr) randomly

Ko ←
Kq+Kr

2 + RandomInteger(−β3, β3)

Lo ←
Lq+Lr

2 + RandomInteger(−β4, β4)
ρo ← crossover(ρq, ρr)
γo ← crossover(γq, γr)
(ρo, γo) ← LocallyOptimizationCooclustering(ρo, γo)

DiscardWorst {(ρp, γp)P
p=1, (ρo, γo)}

Until{convergence OR iter>maxIter}

Figure 2: Evolutionary algorithm

Input: clusters φ1 and φ2,required cluster size K
Output: offspring cluster φo

∀x, q, r : ζqr ← x|φ1(x) = q & φ2(x) = r
FOR k = 1 to K − 1

∀x ∈ ζ(k) : φo(x) ← k
ENDFOR

∀x /∈ ∪K−1
k=1 ζ(k) : φo(x) ← K

Figure 3: Crossover algorithm. ζqr is the intersec-
tion between cluster q in clustering φ1 and cluster r

in clustering φ2. ζ(k) is the kth largest intersection.

intersections between φ1 and φ2 are assigned to the first
K − 1 clusters and the remainder will be assigned to the
last cluster. Formally, let X be a N ×K assignment matrix
in which an element (u, k) is one if object u is assigned to
cluster k and zero otherwise. Then the intersection matrix
can be defined as X ′X.

In the next step, the offspring from crossover will be lo-
cally optimized via the fast iterative Bregman co-clustering
algorithm from [1]. This is an important step due to the
fact that most objects will be assigned to the last cluster.
However, since the iterative co-clustering first estimates av-
erages and then assigns users and items, we hope that most
of the blocks will have good quality averages via fewer but
selected users or items.

Finally, we should either discard a current solution or the
offspring to preserve the total number of solutions. The
following function can be used to discard the worst solution:

ep = arg max
p

X

u

X

i

wui(εui −

P
p′ 6=p

ε̄ρp′ (u)γp′ (i)

P
).

where ep represents the worst solution in the population. If
the worst solution is the offspring we just discard it, other-
wise the worst solution will be replaced with the offspring.

4. EXPERIMENTAL RESULTS
In this section, we present the results of experiments per-

formed to evaluate the effectiveness of our method. We used
the Movielens dataset1 consisting of 100,000 ratings (1-5)
by 943 users on 1682 movies. We used mean absolute error

1http://www.grouplens.org/data/



20%-80% 50%- 50% 80%-20%
ECOCLE .7563 .7284 .7155
ECOCL .7626 .7433 .7336
Baseline .7645 .7586 .7555
COCL .7781 .7560 .7513
IKNN .7646 .7489 .7436
SVD > .79 > .75 > .73

Table 1: Average MAE of different methods

(MAE) to evaluate and compare different methods. Four
methods were used for comparison:

1. Baseline: based on the model proposed in Section 3.1.

2. COCL: The method presented in [5].

3. ECOCL: Evolutionary co-clustering without ensembles.

4. ECOCLE: Evolutionary co-clustering with ensembles.

5. IKNN: Incremental KNN method [6].

6. SVD: We compared our results with those from [7] for
SVD on the same dataset and similar settings.

In our experiments, we used 5-fold cross-validation. First
a part of data was held for offline training. Then the rest of
data was included in an online phase which is a combination
of incremental training and prediction. In the online phase,
first a predicted rating was used for computing prediction er-
ror, and then the new case was incorporated into the model.
The sequence of data was randomized. We performed incre-
mental training based on three different strategies: “20%-
80%”, in which 20% of data was used for training and 80%
for incremental training; “50%-50%,” and “80%-20%.”

All of the support parameters such as ω in (1) were set to
3. For the COCL method, we implemented the algorithm
for different user and item cluster numbers and the best
result (10 user clusters and 2 item clusters) is reported. The
number of ensembles for ECOCLE was set to 25 and the
iteration limit was 250.

The results for all methods are summarized in Table 1.
First, the baseline is reasonably good compared to other
methods when less data is available during the training phase.
As more data is provided for the offline phase, other meth-
ods are more accurate than the baseline. Also, evolutionary
co-clustering algorithm (ECOCLE) is more successful when
more data is available. Using ECOCLE in all phases gives
the best results. Evolutionary co-clustering without ensem-
bles (ECOCL) still outperforms other methods while its per-
formance is slightly better than baseline for the 20%-80%
case. We did not perform SVD and only report the result of
Sarwar et al. [7]. For 20%-80%, SVD has the poorest per-
formance. However, as more data is available for training, it
gets more competent. Note that the experimental protocol
of [7] was different than ours in that new users and items
were incrementally added to the model in one step, based on
a training/test split. However, it is non-trivial to update an
SVD model based on new data. Therefore, the performance
of incremental SVD in our protocol might be similar.

The time of both offline and online training is reported in
the Table 2. The offline phase of ECOCLE needs more time
due to the evolutionary algorithm. However, since this phase
only needs to be done once, greater offline training time can

offline online
ECOCLE 3.350 1.872
ECOCL 1.783 .008
Baseline .000 .006
COCL .008 .009
IKNN .053 1.532

Table 2: Average time (milliseconds) of different
methods per rating. The online time is the sum
of online prediction and incremental training

be ignored. Online time is the sum of both incremental
online training and online prediction. ECOCLE and IKNN
have similar online speeds, while the accuracy for ECOCLE
is much higher. The time problem could be mitigated by
parallelizing the co-clustering operations, since updating is
independent for the different solutions in the ensemble.

5. CONCLUSION AND DISCUSSION
Online collaborative filtering methods that can incorpo-

rate new data in real time are advantageous in many prac-
tical situations. However, this problem has not been ade-
quately addressed. In this paper we extended the idea of
CF via co-clustering to fulfill this need. As our empirical
results showed, our method achieved very good accuracy
compared to other incremental methods. Training was com-
paratively slow, but still manageable, and could be improved
by a straightforward parallelization. Further, most of the al-
gorithmic parameters of our method were chosen randomly
from a wide range of values and no fine-tuning was done to
find a better range. Our method provides a recommender
system that gives accurate results and updates incrementally
without spending time on tuning.
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