
 

 

 QWIC: Performance Heuristics for Large Scale Explora-
tory User Interfaces 

 

Daniel A. Smith, Joe Lambert, mc schraefel 
School of Electronics & Computer Science 

University of Southampton, UK 
{ds, jl2, mc}@ecs.soton.ac.uk 

 

David Bretherton 
Music, School of Humanities 

University of Southampton, UK 
d.bretherton@soton.ac.uk 

 

ABSTRACT 
Faceted browsers offer an effective way to explore relation-
ships and build new knowledge across data sets. So far, 
web-based faceted browsers have been hampered by lim-
ited feature performance and scale. QWIC, Quick Web 
Interface Control, describes a set of design heuristics to 
address performance speed both at the interface and the 
backend to operate on large-scale sources. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 
General terms: Design, Human Factors, Performance 
Keywords: Faceted Browsing, Scalability, performance 

INTRODUCTION 
Faceted browsers have been shown to be an effective way 
to explore information spaces by being able to organize 
searches via metadata attributes [Hearst2009, Huynh2007]. 
Mainly however, faceted data browsers have been limited 
in UI features and the size of data sets over which they can 
operate. Exhibit [Huynh2007] offers multiple facets over 
only approximately 200 records; Flamenco [Hearst2009] 
was likewise demonstrated over a small database. The chal-
lenges to improve faceted browsers’ performance have 
been at both the front- and back-end. For instance in the 
mSpace column browser [schraefel2006], one facet in-
stance selection triggers filtering on all facets forward to it, 
and highlights all related facets behind it, as well as return-
ing a list of results. In order to return these results, 3 sepa-
rate queries, 1 for each of the 3 operations must be proc-
essed live. Where there may be 30+ possible facets to filter 
over 200k records for arbitrary real-time selection, as in our 
musicSpace project, performance optimisation is critical.  
Our motivation for optimising performance, even for a re-
search prototype is based on experience in field trials: if 
response times in a search interface is perceived to be slow, 
users walk away from the tool, regardless of its possible 
benefits to them. We cannot test the effectiveness of a tool 
over time, or its impact on tasks, for example, if the user 
interface performance over that data is not efficient.  
In this poster & paper, we describe QWIC, Quick Web 
Interface Control, a set of three techniques we have devel-

oped to accelerate both front-end and back-end perform-
ance of web-based faceted browsers over large data sets. 
The three QWIC heuristics are: Real Separation of client 
and server; Viewports rather than paging; and Fully Com-
pounded Indexes of facets. 
Our approach is based on tuning the mSpace interface serv-
ice [Bretherton2009] for many datasets, but in particular in 
the musicSpace project, which comprised over 200k re-
cords from commercial and research partners: the British 
Library Music Collections & Sound Archives, Cecilia, 
COPAC, Grove Music Online and Naxos. 

REAL SEPARATION: CLIENT/SERVER ARCHITECTURE 
Our experience combining Web2.0 applications and large- 
scale datasets has taught us to make a firm separation be-
tween the server and client component of the overall sys-
tem. This sounds obvious but can be tempting to ignore in 
research prototypes, as Web2.0 applications typically keep 
the logic in the client. We have learned that each should 
have a clear role: the client managing user interaction, and 
the server doing the heavy lifting and data processing. 
The Web2.0 application works best as a “thin client” with 
no data manipulation ability and no direct querying of the 
underlying data. Forwarding all queries to the server works 
best. This is important as it ensures the client is both light-
weight and generic. The client does not need to be con-
cerned with the context of the data, it must only know how 
to render it and enable users to manipulate how it is ren-
dered and explored. 
We also found, through many variations1, that a stateless 
client offers the simplest decoupling from the server. When 
the client is not responsible for maintaining state between 
server requests there is less chance the client and server can 
become de-synchronised. Each interaction and subsequent 
server request results in an update to the client’s internal 
data structures. This enables all system logic to be handled 
exclusively by the server application and keeps the client 
simple and completely generic. We maintain state by creat-
ing a new URL for each selection and manipulation that the 
user makes. 

                                                           
1http://blog.mspace.fm/2009/09/18/agile-development-in-practice/ 

 
Copyright is held by the owner/author(s). 
UIST’10, October 3–6, 2010, New York, NY, USA. 



 

 

These principles are mirrored in the open-source mSpace 
codebase2 that we use to visualise the musicSpace data. 
Such an architecture requires careful consideration to the 
design of the communication protocol between server and 
client. To ensure that the network communication is as fast 
as possible, the structure of the response payload needs to 
be as lightweight as is manageable.  However such a light-
weight payload may require more processing on receipt by 
the client, and as such the computational overhead required 
might negate the benefits of the smaller payload. We found 
with musicSpace that the best compromise between small 
payloads and quick processing came from a reduced-size 
JSON format, designed to reduce data redundancy and 
repetition, that could be directly evaluated by the JavaS-
cript client. In summary: 
1) Separate the role of the server and client application.  
2) Ensure the client is stateless. 

VIEWPORT BASED UI QUERYING 
As datasets referenced in the UI grow, the number of items 
associated with a facet also increase. For musicSpace, start-
ing with the Copac dataset there were roughly 8000 items 
in the “Musical Works” facet. By also including data from 
RISM this number grew to almost 40,000. Assuming the UI 
is to render these items as a list (HTML <ul>), the naïve 
approach is to render each item as a separate list item ele-
ment (<li>). While JavaScript engines have improved dra-
matically over the last few years, using this approach will 
still very rapidly cause the client application, and often the 
host browser, to freeze or crash. This is because of the high 
number of DOM elements required, which becomes intrac-
table for even state of the art browsers to render. 
To ensure scalability we constrain the view into the facet 
via a viewport. To the user, the interface is unchanged but 
technically the implementation is much more efficient. In-
stead of rendering one list item for each item in the facet, 
only enough DOM elements are created to fill the view-
ports visible space. When the user scrolls, the Viewport 
calculates what ought to be visible if this were a regular list 
and updates the visible DOM elements. Although the same 
small number of list elements are being recycled, the illu-
sion of scrolling a large list is given to the user. 
This approach also allows for data to be loaded from the 
server as a just in time (JIT) service, as used by large-scale 
sites such as Twitter and Facebook. For example a facet 
may have 2000 items, however the Viewport would only 
load the first 300 items, dynamically loading more when 
the user scrolls near to the end of the known data. This dif-
fers from typical pagination in that the requests are made 
transparently to the user, starting before the user requires 
the data. This reduces the response size of each request and 
prevents sending items that are never displayed to the user. 
For short lists, such as 100 or less items, this approach is 
not optimal as browsers are able to handle the relatively 
                                                           
2 mSpace open-source code: http://mspace.fm/ 

low number of DOM elements required. The native scroll-
ing list is therefore preferable in these cases as the pro-
grammatic overhead of our solution may yield no benefit. 
In summary: 
1) Only transmit data which will be visible to the user.  
2) Use viewports to more efficiently render long lists. 

FULLY COMPOUNDED INDEXES 
When creating a user interface over an existing database, it 
may seem obvious to use the existing table as they are. 
However, when databases schemas are designed, data in-
tegrity is often the main requirement, and these schemas are 
not always the optimal way to structure data for exploratory 
browsing. Database performance can be improved by 
avoiding inlcuding unnecessary information in a search 
space. By partitioning fields into multiple tables, less 
memory may be required when querying with multiple fac-
ets (table joins), resulting in better query performance. 
Similarly, if all fields used in a query are included in a 
compound index, tables may not need to be loaded into 
memory at all, thus solving queries by index lookup alone. 
For example, if a user makes a selection in the facets of 
“Composer”, “Track” and requests the “Album” facet, then 
a compound index of (“Composer”, “Track”, “Album”) 
will result in optimal performance. Configuring the particu-
lar permutations for different database schemas can be te-
dious, and there are tools available to create compound 
indexes, such as the mSpace Data Picker. In summary: 
1) Create compound indexes over possible paths through 
fields that can be selected or ordered by. 
2) Create redundant, separately normalised database tables 
for the UI to use, that complement any in use. 

CONCLUSION 
Through the use of QWIC, faceted browsing over large 
scale datasets can be achieved rapidly and efficiently. By 
following the guidelines outlined here we were able to pro-
vide musicologists with previously unobtainable querying 
power and speed through the musicSpace browser, enabling 
us evaluate it over a real use, three month field trial. 

REFERENCES 
1. Hearst, M. Search User Interfaces. Cambridge Univer-

sity Press. 2007. 

2. Huynh, D.F., Karger, D.R., Miller, R.C. Exhibit: light-
weight structured data publishing. WWW, 2007. 

3. schraefel mc, Wilson, M.L., Russell, A., Smith, D.A. 
mSpace: improving information access to multimedia 
domains with multimodal exploratory search. Commu-
nications of the ACM, 2006. 

4. Smith, D., Popov, I., schraefel, mc. Data Picking Linked 
Data: Enabling Users to create Faceted Browsers. Web 
Science Conference, 2010. 

5. Bretherton, D. et al. Integrating musicology's heteroge-
neous data sources for better exploration. ISMIR. 2009. 


