
Symbolic Security Analysis of Ruby-on-Rails Web Applications

Avik Chaudhuri Jeffrey S. Foster
University of Maryland, College Park
{avik,jfoster}@cs.umd.edu

Abstract
Many of today’s web applications are built on frameworks that in-
clude sophisticated defenses against malicious adversaries. How-
ever, mistakes in the way developers deploy those defenses could
leave applications open to attack. To address this issue, we intro-
duce Rubyx, a symbolic executor that we use to analyze Ruby-on-
Rails web applications for security vulnerabilities. Rubyx specifi-
cations can easily be adapted to a variety of properties, since they
are built from general assertions, assumptions, and object invari-
ants. We show how to write Rubyx specifications to detect suscep-
tibility to cross-site scripting and cross-site request forgery, insuf-
ficient authentication, leaks of secret information, insufficient ac-
cess control, as well as application-specific security properties. We
used Rubyx to check seven web applications from various sources
against our specifications. We found many vulnerabilities, and each
application was subject to at least one critical attack. Encourag-
ingly, we also found that it was relatively easy to fix most vulner-
abilities, and that Rubyx showed the absence of attacks after our
fixes. Our results suggest that Rubyx is a promising new way to an-
alyze Ruby-on-Rails web applications for security vulnerabilities.

1. Introduction
Today, online services are a crucial part of many industries such as
banking, government, healthcare, and retail. Unfortunately, the web
applications that underlie these services often face serious security
threats, and vulnerabilities in these applications can lead to loss of
revenue, damage to credibility, and legal liability.

Many web applications are built on top of frameworks whose
APIs provide extensive defense mechanisms against common at-
tacks such as cross-site scripting (XSS) and cross-site request
forgery (CSRF). However, the mere existence of these APIs is
insufficient—to be effective they must be used correctly by the
programmer, who must ensure that the logic of the web applica-
tion cooperates with the design of the APIs. Moreover, even if
security-relevant APIs are used correctly, application-specific se-
curity vulnerabilities, such as insufficient access control checks or
leaks of confidential information, could still remain.

In this paper, we propose addressing this challenge by using
symbolic execution [16, 17, 39, 40] to analyze Ruby-on-Rails (or
just “Rails”) web applications. Rails is a popular framework based
on Ruby, an object-oriented scripting language [1]. We focus on
analyzing server-side code, and we are concerned with protecting
the web application and honest users from dishonest users or other
adversarial clients.

We developed Rubyx, a symbolic executor for Rails, and use it
to detect potential vulnerabilities such as XSS, CSRF, susceptibility
to session manipulation, and allowing unauthorized access, among
others. Unlike most previous work on web-application security
[9, 14, 24, 37, 62], we do not study such threats in isolation; by
using symbolic execution, we can perform end-to-end reasoning
about all of these vulnerabilities simultaneously. And although

the low-level details of our approach are targeted toward Rails,
we believe the same ideas can be applied to many other web
application frameworks, such as Merb, CodeIgnitor, Django, and
ColdFusion on Wheels.

Briefly, symbolic execution involves running code with sym-
bolic variables, which are unknowns that range over sets of con-
crete values. At conditional branches involving symbolic variables,
the symbolic executor consults an underlying Satisfiability Modulo
Theory (SMT) solver to decide which branches could be taken. If
both are possible, the executor conceptually forks execution, trying
both paths. Thus, if run to completion, symbolic execution explores
all paths and hence can verify the absence of vulnerabilities.

Of course, verifying all paths in general would be intractable,
since programs can have an unbounded number of paths. How-
ever, we have found that web applications are typically “broad”
and “shallow”—while there are many possible requests and re-
sponses, each request-response path is usually short. Hence this
domain is ideal for symbolic execution, because the shallowness
of the paths controls the exponential blowup from branches. To
handle unbounded data structures, we rely on the small model
hypothesis—we initialize arrays with a small number of symbolic
variables, and prove the absence of vulnerabilities up to that bound.

A major advantage of our approach is that it is programmable: it
can be used to specify and check arbitrary properties of interest. In
Rubyx, the programmer calls assert e to check that the (arbitrary)
Ruby expression e always evaluates to true; assume e to tell Rubyx
to assume that e holds; and defines methods named invariant to
specify properties that must be invariant during execution.

Using this simple interface, we show how to encode a variety
of security properties at various levels of abstraction. We imple-
mented a proxy Rails API that simulates the original API, and uses
notions such as principals, secrecy, and trust to assert XSS safety,
CSRF protection, and password authentication. At a high level,
XSS safety specifies that only trusted (sanitized) strings can be part
of a response; CSRF safety specifies that the principal that sends a
request must be at least as trusted as the principal that receives the
response; and password authentication specifies that senders and
receivers of requests are at least as trusted as the logged-in user.
These specifications concisely rule out several classic attacks as
well as recent variants studied in the literature [9]. Moreover, our
specifications are generic: we can check for XSS safety, CSRF pro-
tection, and password authentication simply by symbolically exe-
cuting a target application in conjunction with our proxy API.

In addition to these generic security specifications, we can also
use Rubyx to specify and check application-specific security prop-
erties, such as access control and functional correctness. We believe
that the breadth of these properties, along with the generic proper-
ties above, demonstrates the flexibility and power of using Rubyx
to reason about security vulnerabilities.

Rubyx is implemented on top of DRails, a tool we developed
previously to “compile” Rails code by making many implicit Rails
conventions explicit, which simplifies analysis [3]. Rubyx uses

1 2010/4/18

Yices [58] as its SMT solver. To improve performance, Rubyx uses
several optimizations, including a careful encoding of the necessary
constraints in Yices as well as caching to reduce solver queries.

We applied Rubyx to analyze security of seven Rails appli-
cations obtained from various sources. Rubyx found several se-
rious vulnerabilities in these applications, including XSS, CSRF,
authentication failures, insufficient access control, and application-
specific problems. Encouragingly, we found that it was generally
easy to manually fix these vulnerabilities, and that after doing so
Rubyx could show that the attacks were eliminated for the fixed
applications. Rubyx took between half a minute to 3 minutes in its
analysis of these programs, which range from 5k–20k lines of code.
Informally, we found the effort required to apply Rubyx to be simi-
lar to what we would expect in testing, and we believe this approach
will prove viable in practice. Finally, our experiments revealed sev-
eral common misunderstandings about the defense mechanisms
provided by Rails. We have reported these observations to the Rails
security team, and are working with them on improving the design
and documentation of these mechanisms.

In summary, this paper makes the following contributions:

• We study a range of attacks and defenses in Rails, and explain
the intricacies of correctly using important Rails security APIs.
We believe this discussion is of independent interest, as our
experiments indicate that developers often do not appreciate the
subtleties of Rails’s defenses, often rendering them ineffective
(Section 2).
• We introduce Rubyx, which we believe is the first symbolic ex-

ecution engine for Ruby and for Rails. The broad and shallow
nature of Rails applications makes them a particularly attractive
target for symbolic execution. Rubyx includes several optimiza-
tions, including SMT solver query caching (Section 3).
• We show how to encode specifications for XSS, CSRF, pass-

word authentication, secrecy, and several application-specific
properties using Rubyx’s assume/assert annotation mechanism.
We believe that these concise formal specifications are not only
useful to Rubyx, but that they help clarify the relevant secu-
rity concerns, and can serve as a guideline for Rails developers
(Section 4).
• We evaluate Rubyx and our specifications on seven Rails appli-

cations. We discovered several serious attacks against these ap-
plications, and that the vulnerabilities were generally straight-
forward to fix (Section 5). We are working with the Rails secu-
rity team to ensure that such vulnerabilities can be more easily
avoided by future developers.

We believe these results suggest that symbolic execution in gen-
eral, and Rubyx in particular, is a promising approach for detecting
and preventing security vulnerabilities in web applications.

2. Attacks and Defenses in Rails
In this section we discuss several important vulnerabilities that can
arise in Rails programs. In Section 4, we will see how to detect
these vulnerabilities using Rubyx.

For illustration, we use examples from pubmgr, an application
developed by one of the authors to manage publications by mem-
bers of our research group (PLUM1). Specifically, pubmgr main-
tains a database of users, authors, and publications. An author must
be a member of PLUM or a co-author of some member of PLUM;
each author may be linked to several publications. Conversely, a
publication may be linked to several authors, some of which must
be members of PLUM. A distinguished user, admin, may identify

1 Programming Languages at University of Maryland

other users as members of PLUM. Such users can then manage
their co-authors and publications.

Like all Rails applications, pubmgr consists of three kinds of
components: models, which are Ruby class that interface to the
database; views, which are either HTML pages with embedded
Ruby code or, equivalently, Ruby methods that generate HTML
pages; and controllers, which are methods that are invoked when
the client requests a web page. A controller receives as inputs any
GET or POST parameters submitted by the user, as well as state
information encoded in the session. As a controller runs, it may
redirect to other controllers, use models to access the database, and
return by specifying which view should be rendered in response to
the user’s request.

2.1 XSS
Several web attacks use cross-site scripting (XSS) to execute arbi-
trary (malicious) code on the browser. In XSS attacks, an adversary
embeds executable code (likely JavaScript) in text fields in the web
application’s database. When a user receives a web page containing
those compromised fields, the browser executes the code, possibly
leaking the user’s secrets or carrying out operations with the user’s
privileges on behalf of the adversary.

To illustrate potential attacks, consider the following code:

1 class AuthorsController
2 def insert author
3 @author = Author.new(params[:name], params[:webpage])
4 @author.save; render view author
5 end
6 def find author
7 @author = Author.find(params[:id]); render view author
8 end
9 end

10 module AuthorsView
11 def view author
12 show(@author.name); show(@author.webpage)
13 end
14 end

This code contains two controllers. The first, insert author, is given
a name and a web page, which are passed in via the params hash.
On line 3, the controller creates a new Author, which is a model
representing a database row. The controller then writes the new
author to the database and calls view author to display a web page
in response. That view shows the author’s name and web page
(line 12). Along the same lines, the find author controller looks up
the input author id in the database and renders the same view to
show the author’s information.

Unfortunately, while this code is straightforward, it is also vul-
nerable to XSS attacks: an attacker can use insert author to create
an author whose name or web page contains malicious code.

A typical countermeasure against XSS is to sanitize any text
that may ultimately be rendered by the browser, to ensure that such
inputs do not embed executable code. One way to do this in Rails
is to validate text before writing it to the database, as in the code:

15 class Author # model for Author
16 validates format of :name, ... # regexp
17 end

Here the programmer calls the validates format of method to tell
Rails that before the name field can be written to the database, it
must match a given regular expression (elided by . . .). In this way
we can prevent code from being included in author names.

Another countermeasure is to HTML-escape text before display.
Here is code to do just that whenever the webpage field is rendered:

2 2010/4/18

18 module AuthorsView
19 def view author() ...; show(html escape(@author.webpage)) end
20 end

We can see that both of these countermeasures prevent exe-
cutable code in displayed web pages. Critically, however, the pro-
grammer must remember to use them to enable their protection.
Moreover, notice that even for something as simple as sanitization
there are different approaches, and the point at which sanitization
is applied may vary.

2.2 CSRF
Recently, cross-site request forgery (CSRF) has emerged as a pow-
erful technique for several web attacks. CSRF has been described
by some experts as a “sleeping giant,” because its power is (as
yet) widely underestimated [33]. CSRF attacks work as follows.
Suppose that a user interacts with a web application A while also
browsing another web site B. Pages retrieved from B may cause
the user’s browser to send further requests (e.g., GET requests for
images) on behalf of the user. By compromising site B, an attacker
can control those requests; in particular, such requests can be sent to
application A, and appear to come from the user when in fact they
come from the attacker. This is especially harmful if the requests
are non-idempotent (i.e., they cause state changes).

Preventing these attacks in Rails requires employing several
related countermeasures. First, we ensure that any calls that may
change state are POST requests. In the following code, we use
Rails’s before filter method to specify that ensure post must be
called before a request is routed to the insert author controller.

21 class AuthorsController # continued
22 before filter :ensure post, :only => :insert author
23 def ensure post() redirect to :error unless request.post? end
24 end

Second, since POST requests can still be surreptitiously issued
from other web sites open in the browser [65], we require that
POST requests include a secret token, which is only available to
web pages that may legitimately send POSTs. We do this by calling
Rails’s protect from forgery method:

25 class AuthorsController # continued
26 protect from forgery :only => :insert author
27 end

This call ensures that POSTs to insert author must include a param-
eter named :authenticity token (automatically included by Rails in
forms), and this parameter must match an internal token returned
by form authenticity token(), which is part of the Rails API. Here is
a fragment of the code we use in Rubyx for this part of the API:

28 class Controller::Base
29 def form authenticity token
30 session[: csrf token] ||= fresh(:TOKEN)
31 end
32 def forgery safe?
33 !post? || (params[:authenticity token] == form authenticity token)
34 end
35 end

On line 30, form authenticity token() either return the current to-
ken (stored in session[: csrf token]) or generates a fresh one (if
session[: csrf token] is nil). The method forgery safe? then ensures
that this token matches the relevant parameter for POST requests.

Finally, we must account for “insider attacks,” i.e., attacks by
users of the application (against other users of the application). To

understand this issue, we need to look again at the implementa-
tion of token generation on line 30 above. The complication here
is that session[: csrf token] is not reset automatically by Rails be-
tween logins, hence different users that log in from the same IP ad-
dress could inadvertently be given the same CSRF token. To prop-
erly protect against CSRF, the application should always change
session[: csrf token] to nil before logging in a user, so that the to-
ken is regenerated whenever a different user logs in. Rails provides
a method, reset session, which has just this effect:

36 class Controller::Base # continued
37 def reset session() session = {} end
38 end

We should stress that this mechanism is fairly delicate; for example,
calling reset session after logging out a user may be inadequate,
since we cannot assume that a malicious user will politely log out
(and most applications will still log in a different user after).

Our experiments suggest that reset session is seldom used
correctly (if at all) to prevent CSRF attacks. One possible reason
is that the Rails documentation for reset session focuses on XSS
attacks, and developers may think it is unnecessary if they take
other measures to prevent XSS. In contrast, when we developed
a specification for CSRF protection (Section 4), we pinpointed the
significance of reset session for CSRF.

Notice that using CSRF protection is not that easy, and checking
that CSRF protection is used correctly requires delicate reasoning.
We need to track dynamic checks that ensure requests are POST;
we need to distinguish new objects based on context to differenti-
ate tokens generated for different users; and so on. Techniques de-
veloped for reasoning about trace properties of security protocols
may apply [27]—but such techniques require extensive annotations
that the usual Rails developer cannot be expected to provide. In
contrast, our symbolic execution-based analysis can readily verify
CSRF safety for such code.

2.3 Session manipulation
Next, we consider session manipulation attacks. Sessions usually
maintain crucial state. For example, after a user successfully au-
thenticates (and logs in), the identity of the user is often stored in
the session and trusted by the web application. Furthermore, as we
have seen above, CSRF tokens are stored in sessions. Thus, main-
taining the integrity of sessions is very important for security.

Rails provides two modes for storing sessions. In the database-
store mode, the session is stored in the database, keyed by an
identifier, and the identifier is stored in a cookie. This mode is
secure but involves some overhead since the database must be
accessed for every request.

In contrast, in the cookie-store mode (the default), the session is
stored in the cookie as a marshaled string. This is efficient, but re-
quires that the session be cryptographically protected for integrity;
otherwise the attacker may be able to fool the server with a mali-
ciously crafted session. Thus, in Rails, a session sent by the server
is hashed with a server-side secret, and the hash is verified for every
request. Unfortunately, this does not fully guarantee the integrity
of sessions, because it does not guard against replay attacks. For
example, consider the following code, which defines a controller
method authenticate for logging in users in pubmgr.

39 class UsersController
40 def authenticate
41 password = User.find(params[:id]).password
42 unless params[:password] == password
43 if session[:retrying] then redirect to :error
44 else session[:retrying] = true; redirect to :login end
45 end

3 2010/4/18

46 session[:user id] = params[:id]
47 end
48 end

Here the user’s password is looked up in the database (line 41) and,
if not found, the user is given at most one chance to retry (lines 42–
45). The field :retrying of the current session tracks whether the user
has already retried before. Unfortunately, this code is vulnerable to
a replay attack: if some user fails to log in, that user can replay the
session before the try to “roll back” the state of :retrying, effectively
allowing any number of tries.

The Rails documentation recommends not maintaining sensi-
tive information in the session, although it does not help in de-
ciding what information is sensitive. In our experience, whenever
developers store non-standard information in sessions (possibly to
cut down on database accesses), there is a high probability that
application-specific properties can be violated using replay attacks.
Safe use of cookie-store mode requires careful programming and
thorough reasoning about sensitive information and sessions.

Replay attacks are easy to detect with symbolic execution, by
exploring paths in which the current session may be any of a set
of past sessions. In contrast, specialized techniques that do not take
session replay into account would be unsound in Rails.

2.4 Unauthorized access
Finally, applications can implement access control to prevent unau-
thorized access to data and enforce specific secrecy and integrity
properties. The following code snippet illustrates one way we en-
force authorization in pubmgr:

49 class PublicationsController
50 before filter :internal user, :only => :show manuscript
51 before filter :user is author, :only => :edit publication
52

53 def internal user
54 redirect to :login unless User.internal?(session[:id])
55 end
56 def user is author
57 all = Publication.find(params[:id]).authors
58 redirect to :login unless all.include?(User.author(session[:id]))
59 end
60 end

This code specifies filters before the controllers show manuscript
and edit publication (not shown). The internal user method checks
whether the current user is a member of PLUM and, if not, redirects
the user to a login controller, thus ensuring that only internal users
can view unpublished manuscripts (a secrecy property). Similarly,
the user is author method ensures that the current user is an author
of the publication to be edited, so that authors can edit only their
own publications (an integrity property).

As with the previous examples, we can see that Rails provides
support for preventing unauthorized access, but it is still up to the
programmer to determine how to code their access controls us-
ing the Rails API. Moreover, reasoning about this code relies on
other security properties, such as correct password authentication
and safety against session manipulation, CSRF, XSS, and so on.
Our symbolic execution-based approach is very effective here be-
cause it can reason uniformly and simultaneously about all of these
properties.

3. Symbolic Execution with Rubyx
As we saw in the previous section, ensuring that Rails’s security de-
fenses are used correctly requires reasoning about many low-level
details of code. This is a perfect task for symbolic execution, which

61 ... # calling authorization filter before routing to controller
62 u = User.find(session[:id])
63 if (u && (u.name == params[:name])) # authorization succeeds
64 # calling controller to update user’s account
65 v = User.find by name(params[:name])
66 ... # v’s account is updated
67 assert (v.id == session[:id]) # check that the current user is v
68 end

line 62

line 63

line 65

u = user1
id = id1

name1 ≠ name2
u = user2

id ≠ id1, id = id2
name1 ≠ name2

u = nil
id ≠ id1, id ≠ id2
name1 ≠ name2

u= user1, u ≠ nil
id = id1

name = name1
name1 ≠ name2

u = user2, u ≠ nil
id ≠ id1, id = id2
name = name2

name1 ≠ name2

u = user1, u ≠ nil
v = user1
id = id1
name = name1
name1 ≠ name2

u = user2, u ≠ nil
v = user2
id ≠ id1, id = id2
name ≠ name1, name = name2
name1 ≠ name2

u = nil, u ≠ nil
…

name = name1, name = name2
name1 ≠ name2
…

name1 ≠ name2 line 61

reachable world
unreachable world

Figure 1. Partial symbolic execution tree for an example

can automatically explore many possible program executions, in-
cluding corner cases that may be hard to find otherwise. In this
section, we discuss the design of Rubyx, our symbolic execution
engine for Rails. In Section 4, we give details of how we encode
detection of security vulnerabilities using Rubyx.

At its core, Rubyx is a Ruby source code interpreter, with
one key difference: in addition to modeling concrete program val-
ues, Rubyx can interpret programs that contain symbolic variables,
which are unknowns that represent arbitrary sets of concrete val-
ues. Rubyx tracks these unknowns as they flow through the pro-
gram. Rubyx also maintains path conditions, that track constraints
on symbolic variables; initially, the path condition is simply true.

When we reach a branch with a guard p that involves symbolic
variables, we conceptually split the current world (i.e., the state of
the Ruby program) into two new worlds, one in which p is con-
joined with the path condition, and one in which ¬p is conjoined
with the path condition. We pass the new path conditions to an SMT
solver, Yices [58], to decide whether one or both conditions are ac-
tually satisfiable, i.e., whether the corresponding world is reachable
from the start of the program. We continue executing the reachable
world(s) forward, splitting the worlds in the future as necessary. In
this way, Rubyx can simulate all paths through the program that are
reachable for any concrete values that the unknown might take.

As an example, consider the code snippet at the top of Figure 1,
which is taken from pubmgr (with some method calls inlined for
brevity). This code does access control before updating a user’s
account, based on login information in the current session; it is
typical of Rails applications. Using symbolic execution, we want
to show that the assertion on line 67, which checks that the user
whose account is updated is currently logged in, always holds.

We start symbolic execution by sending a request that triggers
the relevant controller. For this particular example, assume that
when we reach line 61, session[:id] and params[:name] are sym-
bolic variables id and name, respectively. Also assume that the

4 2010/4/18

database User contains two users, user1 and user2, whose id at-
tributes are id1 and id2, and whose name attributes are symbolic
variables name1 and name2, respectively. Furthermore, suppose
that name1 6= name2. (The application pubmgr ensures that name
attributes are unique before saving users to the database.)

The bottom half of Figure 1 shows a partial graph of the worlds
starting from line 61. Reachable worlds are denoted by filled cir-
cles, and unreachable worlds are denoted by empty circles. In the
initial world, the path condition is name1 6= name2, from our as-
sumptions. On line 62, we search for the currently logged-in user
(from the given session id). There are three possibilities, shown in
the next level of path conditions: either user1 is found; user2 is
found; or no such user is found. Then on line 63, we check that
the currently logged-in user’s name matches the name of the user
whose account will be updated. Again, there are several possible
outcomes, shown next in the graph. Notice that one of the worlds
on this level has a path condition containing u = nil and u 6= nil,
which is unsatisfiable and hence this world is unreachable. This
models the case when u is nil after the assignment on line 62, and
hence the conjunction on line 63 is always false.

Next, on line 65, we find the user whose name is passed as
parameter to this controller, and store it in v. Again, there are
several possibilities, shown in the next level of nodes in the graph.
If v = useri (for i ∈ {1, 2}), then examining the path condition we
can see name = namei is the only possibility; the other worlds have
contradictions in their path conditions. But then v.id == session[:id],
again by looking at the path conditions, and hence the assertion on
line 67 is always satisfied.

3.1 Primitives for specification and verification
Rubyx includes several built-in primitives for specifying and
checking properties. The method call fresh(n) returns a fresh sym-
bolic variable named after n, which may be any Ruby symbol (i.e.,
interned Ruby string). (The name is just a convenience in under-
standing Rubyx’s output.) Such a symbolic variable can range over
any Ruby object, although its structure is constrained by subse-
quent operations on it. The method call assume(p) conjoins the
path condition with p, which may be any Ruby expression. (In con-
ditional tests in Ruby, false and nil are both treated as false, and all
other values are treated as true.) The assume primitive is used to
specify a precondition for a property we wish to verify. Dually, the
method call assert(p) checks whether the path condition implies
p; if not, Rubyx reports an error. In other words, assert specifies
postconditions for properties we wish to verify.

Lastly, Rubyx supports object invariants. A method definition
of the form def invariant() p end in any class maintains p as an
invariant for all objects of that class. More precisely, we assume p
when an object instance is created, and we assert p whenever there
is an update that changes the object’s state. Rubyx uses an efficient
algorithm that monitors parts of the state relevant to an invariant
and re-enforces the invariant only when those parts are modified.

3.2 Integration with Yices and Optimizations
As with most symbolic execution systems, Rubyx’s capabilities
and performance depend heavily on exactly how it uses Yices, its
underlying SMT solver. Next, we will discuss some of the key
challenges we encountered in working with Ruby, Rails, and Yices.

First, Ruby hashes, such as params and session, are used perva-
sively in code. To reason as generally as possible in these situations,
we model hashes with uninterpreted functions in Yices, which al-
lows us to leave the hashes as unknowns while still supporting usual
lookup, update, and equality operations [49].

Second, we found that strings appear pervasively in code (in
particular as inputs and outputs), and we often want to treat them as
arbitrary unknowns while still supporting concatenation and other

operations. In our experience, burdening Yices with constraints
generated by string operations leads to poor performance. Instead,
we evaluate and reason about string operations abstractly in Rubyx
by maintaining partial solutions for strings in the state.

Third, defining an appropriate datatype for Ruby values in Yices
is crucial for sound reasoning with (in)equalities. Unfortunately,
Yices does not allow the kind of recursive datatype definitions nec-
essary to express most Ruby values. We get around this problem by
using an uninterpreted type in the definition, and carefully design-
ing the form of constraints so that this type is always interpreted as
the original datatype when solving those constraints.

Overall, we put a lot of effort into ensuring that Yices can
determine the satisfiability of constraints generated by Rubyx. Our
encoding guarantees Yices can prove or disprove the generated
constraints, in contrast to related tools for which theorem provers
may fail and require further annotations or dynamic checks [13].

Finally, we implemented a number of optimizations in Rubyx
to dramatically improve performance. Most importantly, we found
that many of the worlds Rubyx explores share logically identical
path conditions. Thus, we maintain a cache of constraints that Yices
has already solved, and avoid resolving such constraints.

Another important factor for performance is the ordering of
clauses in the constraints passed to Yices. On several occasions
we found that changing the ordering can reduce Yices solving
time from almost an hour to less than a second. Thus, we keep
constraints in a normalized form, with clauses sorted in a fixed
order. Our ordering is designed to place simple conditions before
more complex ones, and Yices calls have never taken more than a
couple of minutes (at the extreme) with our ordering. Maintaining
clauses in a normalized order also improves cache hits.

Our last important optimization is to implement some basic op-
erations, such as lattice operations on secrecy levels (see Section 4),
in Yices rather than in Rubyx. This increases the complexity of the
constraints passed to Yices, but greatly reduces branching in the
interpreter, which saves space and time.

4. Analysis of Rails Applications with Rubyx
There are three steps to analyzing Rails applications with Rubyx.
First, we apply DRails, a tool we previously developed [3] to
make Rails code easier to analyze by making many implicit Rails
conventions explicit. For example, DRails explicitly adds database
access methods to models, inserts calls to render that are implicit
in Rails, and translates HTML with embedded Ruby code into pure
Ruby. We likely could have used Rubyx for this purpose, but as
DRails was already developed it was convenient to start with.

Second, we import proxy implementations of (a subset of) the
remaining Rails API methods, the browser, and the web server.
Overall, the imported code amounts to less than 150 lines of Ruby.
Besides providing a functional environment for the application
program to run in, the imported code specifies and verifies some
common, low-level security properties.

Finally, we execute an analysis script, provided by the devel-
oper, that includes several symbolic “tests.” Each such test popu-
lates the database with some symbolic objects, defines some invari-
ants for those objects, assumes some preconditions, sends symbolic
requests to the browser interface, receives responses, and asserts
some postconditions. The goal of the analysis script is to direct the
exploration of paths and specify and verify further, high-level prop-
erties of the application.

After running the analysis script, Rubyx reports the reachable
worlds in which the properties do not hold, i.e., potential vulnera-
bilities detected.

Secrecy lattice and principals Low-level security properties of
code ultimately rely on the preservation of secrets, such as tokens

5 2010/4/18

69 # No XSS
70 assert (output.trust?) unless (Prin.receiver == Lattice.Bot)
71 # Secrecy
72 assert (Lattice.leq (output.secrecy?, Prin.receiver))
73 # No CSRF
74 assert (Lattice.leq (Prin.receiver, Prin.sender)) if params[:post]
75 assert params[:post] if (Session.modified? || Db.modified?)
76 # Authentication
77 assert (Lattice.leq (session[Prin.Id], Prin.receiver))
78 assert (Lattice.leq (session[Prin.Id], Prin.sender)) if params[:post]

Figure 2. Specifications of common low-level security properties

and passwords. Thus, our specifications in step (b) are based on
principals, which are secrecy levels in a lattice. In practice, the
principals include various users (as identified by the web appli-
cation), the web application itself (>), and the attacker (⊥); they
are partially ordered by their knowledge of secrets, with > >
honest users > ⊥. The honest users do not know each others’ se-
crets; dishonest users leak their secrets to the attacker; and the web
application’s secrets are exclusive.

Since our specifications are implemented using assume, assert,
and so on in code, our proxy implementation includes a class
Lattice representing secrecy levels, with constants Bot and Top and
a method leq.

For any interaction (request and response) with the web appli-
cation, we consider the following roles:

• Ps, the principal that sent the request;
• Pr , the principal that received the response;
• Pi, the principal of the logged-in user

Our proxy implementation includes a class Prin to model these
roles: we have Ps = Prin.sender, Pr = Prin.receiver, and Pi =
session[Prin.Id]. While Prin.Id is constant for an application (e.g.,
for pubmgr, Prin.Id = :id), the roles Ps, Pr , and Pi may change
between interactions; all of these are set by the analysis script.

With these roles, we specify four low-level security properties—
No XSS, Secrecy, No CSRF, Authentication—in the proxy browser
interface, so that they are verified for every interaction. These
specifications rule out the kinds of vulnerabilities discussed in
Section 2. The exact specifications are shown in Figure 2; we
will discuss these in detail in subsequent subsections, but for now,
observe that the specifications are quite simple despite covering
several different properties.

Furthermore, in combination they facilitate reasoning about
end-to-end security: No XSS and Secrecy together imply the preser-
vation of the secrecy lattice, while No CSRF and Authentica-
tion rely on the secrecy lattice to ensure the soundness of access
control. Finally, other high-level properties specified in analysis
scripts, such as enforcing that operations maintain consistency of
the database, typically rely on these low-level properties for the
specifications to be correct.

Analysis scripts Analysis scripts typically proceed as follows.
First, the database is populated with objects containing unknown
fields. For example, to create a User we may have:

79 User.create(fresh(:ATTRIBUTES))

The create method, automatically added by DRails, populates the
fields of a new User object according to the argument and saves the
object in the database. In this case, we pass in a fresh unknown hash
(named after ATTRIBUTES), and so Rubyx will in turn introduce
fresh unknowns for all fields in the User object. Also, those un-

knowns will automatically be constrained by any invariants given
by the developer. For example, we may require that the hashed pwd
attribute should be the cryptographic hash of the @password field.

Having established an appropriate state, various controllers are
“tested” by sending requests with unknown parameters. For exam-
ple, we may call:

80 response = Browser.exec(UserController, :login, fresh(:PARAMS))

This asks the browser model to send a login request to UserController.
The parameters are given by a fresh unknown hash, and so param-
eters like the POST/GET type of the request and the CSRF token
carried by the request, as well as other request-specific param-
eters such as a password, will be unknowns. Any conditions on
such parameters that are established dynamically by code—such as
checking the type of the request, matching the CSRF token, check-
ing the password, and so on—cause Rubyx to explore alternative
worlds with the relevant constraints. And in each of those worlds,
Rubyx will check the low-level security properties in Figure 2.

In addition, the developer may specify and verify other proper-
ties. For example:

81 assume Browser.session[:id]
82 response = Browser.exec(UserController, :update, fresh(:PARAMS))
83 # Update by admin
84 assert(User.admin?(Prin.sender)) if Db.modified?(User)

Here the developer assumes that the session id is non-nil, indicating
a successful login. Then the developer sends a request for an update
operation, and asserts that if the User database is modified, then the
user is an administrator.

The constraint passed to Yices to check this assertion will in-
clude various facts that arise from the specifications of the low-
level properties in Figure 2. For example, the request must be
POST (by our enforcement that only POST requests may write
to the database); the sender must be Browser.session[:id] (by
CSRF protection and write authentication for POST requests); and
Browser.session[:id] must be an admin (by a specific dynamic check
in the application code, not shown).

In the following subsections, we explain our formal specifi-
cations for the common security properties in Figure 2. These
specifications apply to any Rails application that uses the Rails
API in standard, recommended ways to achieve security. Other,
application-specific properties that may arise in analysis scripts are
discussed on a case-by-case basis for our experimental benchmarks
in Section 5.

4.1 Session manipulation
Since session manipulation can be used to violate other properties,
it is important to implement sessions faithfully. Recall that in the
database mode, only the session identifier is stored in a cookie,
while the session information itself is stored in the database. In this
mode there is not much room for session manipulation, and so in
our proxy implementation, the browser is not allowed to affect the
Rails internal @session field.

On the other hand, in the cookie-store mode, the browser tracks
the current session internally, and sessions are stored cryptographi-
cally MAC-ed in the cookie. Thus, requests may change the current
session by changing the cookie in the browser. In our proxy imple-
mentation, we abstract MAC-ing of an object x by an identity op-
eration with the side effect of including x in a private list. Verifying
the MAC of x then reduces to checking whether x is in this list. This
encoding allows sessions to be replayed but not forged. Moreover,
our proxy implementation ensures that principals cannot know (and
thus, cannot replay) sessions received by other principals.

6 2010/4/18

4.2 XSS
Next we tackle XSS attacks. Recall from Section 2.1 that Rails
includes two defenses: using validates format of to prevent fields
with code from being stored in the database, or calling html escape
to sanitize strings before display.

To track sanitization, our Rails proxy implementation extends
Ruby’s String class with a trust level. For a string s, calling s.trust?
returns true if the string is trusted, and calling s.trusted marks a
string as trusted. We reduce Rails’s sanitization routines into state-
ments on trust. To encode html escape, we simply implement it as
a proxy API that returns a trusted code of the string passed to it:

85 module View::Base # continued
86 def html escape(s) s.trusted end
87 end

We translate validates format of into trust assumptions. For
example, here is a translation of the call to validates format of
from Section 2.1:

88 class Author # continued
89 def save() assume @name.trust?; Author.db << self end
90 end
91 def Author.invariant() @db.forall {|author| author.name.trust?} end

Since we will reject any unsanitized strings, we can assume in
save, which writes to the database, that name is trusted (line 89).
(Note that we do not check the regular expression that name is
tested against; Rubyx assumes it is correct.) This maintains an
automatically generated invariant of the database: the name fields
of all author objects in it are trusted (line 91). In turn, this invariant
implies that any names retrieved from the database are trusted.

Once we have established the trust of strings, we can reason
about XSS. In our proxy implementation, any strings displayed in
a response are concatenated to the @output field of the response.
In Rubyx, concatenating string x with string y sets the trust of x
to the minimum of the trusts of x and y. We also assume that any
strings passed as parameters in a request are untrusted (not shown).
Then the specification of No XSS, shown on line 70 of Figure 2, is
simply that the @output field of a response must be trusted unless
the output is received by an attacker.

This technique captures the key principle behind defenses
against XSS: that inputs must be sanitized before they flow to
outputs. By assuming that inputs may be untrusted and requiring
that outputs be trusted, we effectively force inputs that flow to out-
puts to pass through some sanitization mechanisms, which in turn
“bless” the untrusted strings as trusted.

4.3 CSRF
Next, we consider CSRF attacks. Recall that for any interaction
with the web application, we consider principals Ps (the sender)
and Pr (the receiver). CSRF is possible because the sender Ps and
the receiver Pr may be different. Thus, our specification of CSRF
safety is simply:

Definition 4.1 (CSRF safety). For any non-idempotent request,
Ps ≥ Pr .

Informally, any principal that controls behaviors of the web ap-
plication must be at least as trusted the principal that views those
behaviors. In particular, if Pr is an honest user, then Ps cannot be
the attacker, although it may be Pr itself or another honest user
> Pr (or perhaps even the web application).

We specify CSRF safety in Rubyx with two assertions. On
line 74 of Figure 2, we require that POST requests have the right
relationship between sender and receiver, and on line 75 we specify
that any requests that change the session or database must be POST.

authenticate login

logout

session[:_csrf_token] = ?
session[Prin.Id] = nil

session[:_csrf_token] = …
session[Prin.Id] = nil

session[:_csrf_token] = …
session[Prin.Id] = …

work

Figure 3. State machine for session

To reason about CSRF protection, we need to track the secrecy
levels of various strings, so that we know which principal they came
from. Hence, similarly to the trust levels in Section 4.2, we extend
class String so that each string has a secrecy attribute, which returns
a Lattice element.

Recall from Section 2.2 that defense against CSRF requires em-
ploying several different countermeasures: ensuring only POST
requests can change state; including and checking for a secret
session[: csrf token] in legitimate requests (achieved by calling
protect from forgery); and calling reset session at the right point
to create fresh tokens for new users.

To understand how these three parts enforce our definition of
CSRF safety, it is easiest to argue abstractly about an applica-
tion. Consider Figure 3, which shows a state machine that de-
scribes the life cycle of session[: csrf token] and the currently
logged-in principal when CSRF protection is used correctly. In
this state machine, the user is initially at the black state, where
session[Prin.Id] is nil and session[: csrf token] is irrelevant. We
move to the gray state when a login request is received, at which
point a fresh session[: csrf token] is generated. We then move to
the white state when password authentication succeeds, which also
sets session[Prin.Id]. We stay in that state doing work, and then
eventually move back to the black state by logging out.

Thus, Pr may change only in the black state. If an implementa-
tion matches the state machine in Figure 3, then session[: csrf token]
must change whenever Pr may have changed. More precisely,
the following assertion, which we include in forgery safe? (Sec-
tion 2.2), will hold, since form authenticity token (Section 2.2) re-
turns session[: csrf token] after generating a token if required:

92 class Controller::Base
93 def forgery safe?
94 assert (form authenticity token.secrecy == Prin.receiver)
95 ... # see line 33
96 end
97 end

Thus we can conclude session[: csrf token].secrecy = Pr .
Now, for any POST request, forgery safe? (Section 2.2) estab-

lishes session[: csrf token] = params[:authenticity token]. Putting
these two equalities together, we have params[:authenticity token].
secrecy = Pr .

Finally, we assume that any string sent with a request must have
secrecy level ≤ Ps (i.e., that senders can only send messages at
their secrecy level or below). Then we have params[:authenticity
token].secrecy ≤ Ps, and thus Pr ≤ Ps, which is CSRF safety for
POST requests.

Note that in the state machine in Figure 3, we generate a new
CSRF token for a login request. Traditionally CSRF attacks have
focused only on work transitions, hence it seems we could have
generated fresh tokens after authentication. However, recently login
CSRF attacks have been studied [9], which focus on authentication
transitions. It is easy to see that generating CSRF tokens before
authentication, as we have done, prevents login CSRF attacks also.

Furthermore, note that for authentication transitions, we may
reasonably assume that Ps 6> Pr , i.e., Ps will never aid any less

7 2010/4/18

trusted Pr in authentication. For instance, an honest user Ps will
not try to authenticate for a dishonest userPr , or for another honest
user < Ps. Thus, for authentication transitions that are CSRF safe
we actually have Ps = Pr .

Finally, note that key to our proof of CSRF safety above was
the assertion that the secrecy of the CSRF token must be equal to
the receiver. We propose this as a design principle for CSRF safety.
Indeed, it provides the main insight behind eliminating CSRF at-
tacks, embodied in this combined use of protect from forgery and
reset session—the secrecy of the CSRF token must always be re-
lated to the principal viewing the behaviors of the web application,
and since such a principal may change between logout and login,
the CSRF token must also change between logout and login. Oth-
erwise, the attacker may learn the token for an honest user, or the
token for an attacker may serve an honest user—either of which
can break CSRF safety.

4.4 Authentication and Access Control
Next, we show how Rubyx can assert the correctness of password
authentication, meaning that sends and receives after authentication
can be assumed to come from the logged-in user (or a more trusted
principal). Formally, our specification is as follows (see lines 77
and 78 in Figure 2).

Definition 4.2 (Password authentication). Suppose that Pi 6= nil
(i.e., a user is logged in).

For any POST request: Ps ≥ Pi (1)

For any POST or GET request: Pr ≥ Pi (2)

To authenticate correctly, web applications usually store and
check passwords using a combination of cryptographic hashing
and “salting” to avoid known attacks. In our proxy Rails API, we
include a basic model of string concatenation and hashing. Our
implementation ensures that for any strings x, y, and z, if x 6= y
then Crypto.hash(x) 6= Crypto.hash(y) and x + z 6= y + z. (Here
Crypto is a placeholder for the name of the relevant Ruby class.)

Given this API, Rubyx can reason about typical authentication
strategies. As a concrete example, consider the following code:

98 class UsersController
99 def authenticate # POST

100 u = User.find(params[:id])
101 if (u.hashed pwd == Crypto.hash(params[:password] + u.salt))
102 session[:id] = u.id; render :logout form
103 else redirect to :abort end
104 end
105 end
106 class User
107 def password() @password end
108 def password=(x)
109 @password = x; hashed pwd = Crypto.hash(x + salt)
110 end
111 end
112 def User.invariant
113 @db.forall {|u|
114 (u.password.secrecy == u.id) &&
115 (u.hashed pwd == Crypto.hash(u.password + u.salt)}
116 end

Notice that the programmer has supplied an invariant (lines 112–
115) that specifies that the password’s secrecy level is the id of the
user, as well exactly how the hashed password is computed. This
invariant describes the stored password information abstractly, and
lets us leave it otherwise as an unknown.

Using this invariant, Rubyx can assert that the code implements
correct password authentication as follows. Suppose that Pi 6= nil.

For some user u = User.find(params[:id]), the code above establishes
the following conditions:

u.hashed pwd = Crypto.hash(params[:password] + u.salt)

u.id = session[:id] (= Pi)

u.password.secrecy = u.id

u.hashed pwd = Crypto.hash(u.password + u.salt)

Combining these equations with those for cryptographic hashing
and string concatenation above, we have params[:password].secrecy
= Pi. Furthermore, as in Section 4.3, we assume any string sent
with a request must have secrecy level ≤ Ps. Then we have
Pi = params[:password].secrecy ≤ Ps. This establishes (1). But
since we are performing authentication, by CSRF safety we have
Pr = Ps, and hence (2) also holds.

After authentication has occurred, Pr and Pi remain constant.
(Recall that Pr can change only in the black state, and Pi does not
change in the white state.) Thus Pr ≥ Pi, from (2) at authentica-
tion time, continues to hold. Moreover, by CSRF safety we have
Ps ≥ Pr , and so (1) also continues hold.

Of course, authentication is useful only if we implement some
access control, for which we need to track dynamic conditions on
Pi itself, of the form Pi ≥ Pa for some access privilege Pa. By
the above theorem, these conditions will imply Ps ≥ Pa for write
access privileges, and Pr ≥ Pa for read access privileges.

4.5 Secrecy
Finally, note that the above properties rely on the preservation of
the secrecy lattice, i.e., principals do not eventually know secrets
of unrelated principals. We specify this in line 72 of Figure 2, by
requiring that any strings received in a response must have secrecy
levels ≤ Pr , so that the receiver could have already known them.

5. Experiments and Results
We used Rubyx to analyze seven Rails applications with a range
of non-trivial security and correctness requirements. Two appli-
cations were developed within our research group, but indepen-
dently of this project (so they did not take any particular advantage
of Rubyx’s strengths or weaknesses). The remaining applications
were obtained from external sources [2, 53].

5.1 Applications and Properties
We begin by describing each web application in our experiments,
along with their application-specific access control and correctness
properties. For all of the applications, we also checked for the
presence of session manipulation, XSS, CSRF, and authentication
attacks, using the specifications in Section 4.

As discussed earlier, the pubmgr application, which we used
for examples throughout the paper, was developed by one of the
authors to manage publications of our research group. In addition
to the common security properties, we also checked that users are
always properly authorized, as outlined in Section 2.4.

The coffee application was developed by another member of our
research group to track use of a shared coffee machine. The appli-
cation maintains an inventory of coffee capsules available; a count
of each user’s tokens, which are exchanged for coffee; and the con-
sumption of coffee by users. Some users have administrative privi-
leges and can refill tokens for other users and adjust the inventory of
capsules. We checked to ensure that administrative privileges can-
not be circumvented, and that counts of capsules, tokens, and user
consumption all match up correctly.

The depot application is used as the main running example in
a popular book for Rails developers [53]. Since its code is freely
available, we expect that many developers use that code as a starting
point for their own applications. The depot application maintains a

8 2010/4/18

XSS CSRF Auth. Secr. Acc. Corr.
pubmgr

√
×(1)

√ √ √
N/A

coffee ? (2) ×(1)
√ √

× (2)
√

depot ×(2) ×(10)
√ √ √

×r (7)
chuckslist

√
×(1)

√ √
× (−) N/A

boxroom
√

×(5)
√ √ √

?r (2)
mystic ×(17) ×(8)

√ √
×r(6) N/A

rtplan
√

×(1) ×(16)
√

?r (−)
√

√
= no vuln. found × = vuln. found ? = potential vuln. found

(n) = n fixes (−) = did not fix r = replay attack

Figure 4. Experimental Results and Fixes

database of products, and records orders of products by customers.
It also maintains accounts of administrators, who are able to edit
information on products, including their prices. We checked to
ensure that administrative privileges are required to edit product
information, and to introduce other administrators to the system.
We also checked to ensure customers are charged the correct price
for any product they order.

The chuckslist application is a classified ad system [2] inspired
by craigslist. The application maintains a database of ads and their
authors. It also maintains accounts for users, some of whom may
have administrative privileges. Authors manage ads, users man-
age authors, and users with administrative privileges manage other
users. The system relies on a sophisticated module to enforce ac-
cess control, which we included as part of the application. We
checked for several access control properties, such as: authors can-
not edit ads of other authors, and administrative privileges cannot
be circumvented.

The boxroom application is a secure file sharing system that
maintains access control metadata for a file system [2] . Users are
associated with groups, and permissions are associated with groups
and files. Some of the users have administrative privileges, which
are required to control these permissions. A user may access a file
only if the groups they are in have permission to access that file.
We checked that several important access control properties hold,
including: only administrators can introduce other administrators
and users into the system; non-administrators cannot modify which
groups they are in or the permissions for groups and files; and users
cannot access a file they do not have permission to access.

The mystic application is a trouble ticket system [2]. The ap-
plication maintains a database of (outstanding and resolved) tick-
ets, as well as accounts for customers, technical-staff members, and
administrators. Customers post tickets, technical-staff members ad-
dress those tickets, and administrators manage their accounts. The
developers claim a clear separation of these duties in the system,
and we check to ensure that this is indeed the case.

Finally, the rtplan application is a planning system for project
tasks [2]. The application maintains a database of projects, each of
which has several tasks. It also maintains accounts for users, who
are allocated various tasks, and records the work those users have
put into those tasks. Apart from expected access control properties,
we checked that the project and user databases have a consistent
record of the total work done.

5.2 Attacks
Figure 4 summarizes the results of our experiments. We group
our results by property, shown across the top of the figure: No
XSS, No CSRF, Authentication, Secrecy, access control, and other
application-specific correctness properties. For each property, a
check mark indicates no vulnerabilities found, a cross mark indi-
cates some exploitable security vulnerability, and a question mark
indicates that a potential security vulnerability exists, but it may
not be exploitable. We indicate that some vulnerabilities are due to

LoC Running time Yices stats
orig. (s) % inc. % time # calls

pubmgr 7, 450 32.6 37.2% 91.4% 352
coffee 7, 928 67.5 4.0% 97.8% 142
depot 5, 338 32.5 16.6% 94.8% 265

chuckslist 12, 554 175.2 10.8% 95.7% 519
boxroom 13, 727 123.1 32.0% 95.6% 347

mystic 20, 350 28.2 30.3% 71.8% 169
rtplan 9, 849 195.3 1.5% 99.1% 163

Figure 5. Performance

replay attacks with an r. For most exploitable or potential vulner-
abilities, we attempted to fix the code so that the vulnerability was
eliminated (as checked by Rubyx). The number of fixes is listed
in the figure; we show a dash where we chose not to attempt fixes
because doing so might require pervasive changes.

As we can see, Rubyx detected many vulnerabilities, and ev-
ery application had at least one. At the same time, except for three
cases we were able to fix the vulnerabilities with a small number
of changes. Since Rubyx explores all possible program paths from
a given symbolic state, once we have eliminated all detected vul-
nerabilities from that state we can guarantee the security of that
application from any instantiation of that state.

Next, we discuss the vulnerabilities we found in more detail.

XSS Rubyx found XSS attacks in three applications. In coffee,
the attributes of a capsule (including a text description) are not
sanitized, and hence can be used for XSS attacks. We categorized
this issue as a potential, rather than definite, vulnerability because
only administrators can modify attributes. However, this still re-
flects poor security practice because administrators could use XSS
attacks to steal passwords from other users.

In depot, a product’s information includes information on orders
that were placed on it, and the text of such orders is not sanitized.
Thus, any customer that places an order can mount XSS attacks on
other customers and administrators who view this data. Similarly,
in mystic, users can mount XSS attacks on other users.

CSRF Rubyx found CSRF attacks against all applications. In
pubmgr, the vulnerability exists because the controller for logging
in a new user does not use reset session—instead it simply resets
session[:user] to nil, but does not also set session[: csrf token] to
nil. In coffee, the developer does use reset session, but in the con-
troller for logging out a user instead of logging in—hence CSRF
attacks are enabled by simply not logging out. Similar problems
occur in chuckslist, rtplan, depot, boxroom, and mystic. Moreover,
the latter three also do not require that all state-changing requests
are POST, enabling yet more CSRF attacks.

Authentication Only one application, rtplan, failed to correctly
authenticate users. Strangely, here users do not require passwords
to log in, although users do have password attributes in the model.

Access control Rubyx found critical violations of access control
in several applications. In coffee, non-administrators can change
their token counts or even grant themselves administrator privi-
leges. The problem is that the code to update a user’s information
can write to all of the attributes of that user, even in cases when
only some information should being updated. The developer of cof-
fee tried to prevent the token count and administrator bit from be-
ing updated in non-administrative mode by rendering one of them
as read-only and not rendering the other in the relevant form. Un-
fortunately, this is not enough: a simple browser setting can make
read-only parameters writable, and any missing parameters can be
passed by extending the form manually. This is an interesting ex-

9 2010/4/18

ample, because it shows how even a developer who pays attention
to security can get it wrong.

In chuckslist, administrative privileges are not protected—
anybody can sign up as an administrator, and any existing user
can obtain administrative privileges. Additionally, any author can
trivially become a user and manage other authors in the system.
For example, an author and all its ads may be removed without an
existing user logging in. Finally, any author can edit any ad in the
system. In fact, chucklist does not actually maintain any relation-
ship between users and authors, which is surprising, because at the
database level they have very similar attributes.

In mystic, the claimed separation of duties is violated. Anybody
can sign up as an administrator and can modify others’ accounts.
Furthermore, privileges granted to a logged-in user are stored in the
session, and so session replay can be used to defeat revocation. For
example, even if a technical-staff member’s privileges are revoked
by an administrator, it may replay a stale session to keep viewing
information on outstanding tickets.

In rtplan, any user can promote itself or anyone else to an
administrator. Furthermore, the isadmin attribute of a user is stored
in the session, so a user whose administrative privileges have been
revoked can keep acting as an administrator by replaying a stale
session. Strangely, however, administrator privileges do not seem
to have any function in this application, so we must consider these
attacks benign.

Application-specific security properties Finally, Rubyx found vi-
olations of application-specific correctness properties in two cases.
In depot, Rubyx found attacks in which the price in an order does
not match the price of the ordered products. The problem is that the
shopping cart of a customer—which is used to place the order—is
stored in the session, which can be replayed. Thus, a customer may
add his favorite products to the cart, save the session, and empty
the cart. Later, the administrator may increase the prices of those
products. But then the customer can replay his session and check
out, paying the lower prices. Indeed, the database is not consulted
before placing an order—there is complete trust in the session.

In boxroom, Rubyx found a potential vulnerability that is cur-
rently not exploitable (but may be in the future). The problem is that
a clipboard, containing metadata of files, is stored in the session—
and, as above, that metadata may not be in sync with the database
if the session is replayed. Thus, a user may be able to “save” files in
the clipboard and (much later) “copy” them back into the file sys-
tem, thereby restoring any access control metadata associated with
those files—even if such metadata was modified by an administra-
tor in the interim. However, while there is a controller for copying
files from the clipboard to the file system, it is currently a stub that
does nothing. Thus, this attack is latent until that controller is im-
plemented.

5.3 Performance
Finally, we briefly discuss Rubyx’s performance, summarized in
Figure 5. The applications we analyzed ranged from 5k to 20k lines
of code. The running times for these applications (with fixes, where
relevant) were between half a minute to 3 minutes. On average,
around 90% of the time was spent on calls to Yices; indeed, one
such call took 75 seconds out of 195 seconds of total running time.
Caching such calls not only improved performance (we observed a
high cache hit rate), but also allowed us to analyze the applications
“incrementally.” Indeed, during our experiments we often ran par-
tial analysis scripts on an unfamiliar application to get intermediate
results, and then incrementally added assumptions and assertions
to get the final results; caching prevented the cumulative analysis
times from blowing up quadratically across runs. The resulting ex-
perience was much like testing. To measure this effect, note that
re-running the analyses took only between 2–40% of the original

running times, and these time fractions went down as the time frac-
tions spent on calls to Yices went up.

6. Related Work
Some necessary background on important threats and defenses
for web-application security can be found in [51, 64], while an
excellent resource for Rails security in particular is [65].

Much research on web-application security has focused on set-
tings where applications are untrusted, and users must be protected
from applications. Thus, client-side defenses have been studied
[36, 41, 55], and there has been important progress on browser se-
curity [4, 10, 29, 52, 69], and on JavaScript security in particular
[4, 30, 44, 45, 55, 69]. In contrast, applications are not considered
inherently malicious in our setting—we assume that some users
may be malicious, and we care about verifying that applications
and other users are protected from such malicious users.

The need for end-to-end web application security has been
previously argued [26]. Existing techniques for achieving end-to-
end security for web applications include type systems [11, 19],
logics [12], and secure compilation [7, 20, 21, 61]. Most of these
techniques rely on lattice-based security with labels [23, 25, 46], as
we also do. An important difference between such techniques and
ours is that we require far less annotations.

Many specialized techniques have been developed to analyze
particular security properties of web applications. Some of these
focus on statically typed languages such as Java [31, 43, 48, 60].
Static security analysis techniques have also been proposed for
scripting languages such as PHP [38, 63, 66]. However, such tech-
niques are often too imprecise in such a setting. Thus, most other
techniques focus on dynamic security analysis, including testing
and monitoring [22, 24, 28, 31, 34, 55, 57, 68]. Finally, several tech-
niques combine static and dynamic analysis for security [8, 32, 35,
42, 62]. Our symbolic execution-based technique is similar in the
spirit, since it exploits the precision of dynamic analysis for guar-
antees similar to static analysis. Some recent tools use symbolic
execution for security analysis of JavaScript programs [5, 54].

Very few tools are designed for programmability, which al-
lows analysis of a wide variety of common properties as well
as application-specific properties, such as ours. Research on “ex-
tended security checking” explores this approach [18, 48, 56, 67].

Finally, most of the existing work on understanding and ana-
lyzing web application security focuses on injection attacks [59].
In comparison, the other kinds of attacks we consider in this paper
have received far less attention; notable exceptions include [24, 50]
on access control and authentication, [37] on session integrity, and
[9, 47] on CSRF. Some recent work studies new kinds of attacks
that we do not consider in this paper; they include clickjacking [6]
and XCS (cross-channel scripting) [15] in particular.

7. Conclusion
We described a new approach that uses symbolic execution to rea-
son about the security of Ruby-on-Rails web applications. Our
symbolic executor, Rubyx, uses a simple assume/assert language
that can describe a wide range of properties. We discussed XSS,
CSRF, session manipulation, and unauthorized access in Ruby. We
showed how to specify protection against these attacks in Rubyx,
using basic notions such as principals, secrecy, and trust levels.
We used Rubyx to check seven applications against our specifica-
tions, and found a wide variety of vulnerabilities. In particular, we
observed that developers often do not appreciate defenses against
session replay and CSRF attacks. Overall, our results suggest that
symbolic execution is a promising approach for analyzing web ap-
plications for security vulnerabilities.

10 2010/4/18

References
[1] Ruby. http://www.ruby-lang.org/en/.

[2] Rubyforge. http://rubyforge.org/.

[3] Jong-hoon An, Avik Chaudhuri, and Jeffrey S. Foster. Static typing
for Ruby on Rails. In ASE ’09: Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, pages
590–594, Washington, DC, USA, 2009. IEEE Computer Society.

[4] V. Anupam and A. Mayer. Security of web browser scripting lan-
guages: Vulnerabilities, attacks, and remedies. In Proceedings of the
7th USENIX Security Symposium, pages 187–200, 1998.

[5] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.D.
Ernst. Finding bugs in web applications using dynamic test generation
and explicit state model checking. IEEE Transactions on Software
Engineering, 2010.

[6] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C. Kruegel. A
Solution for the Automated Detection of Clickjacking Attacks. In
ASIACCS, 2010.

[7] I.G. Baltopoulos and A.D. Gordon. Secure compilation of a multi-
tier web language. In Proceedings of the 4th international workshop
on Types in language design and implementation, pages 27–38. ACM
New York, NY, USA, 2009.

[8] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing static and dynamic anal-
ysis to validate sanitization in web applications. In IEEE Symposium
on Security and Privacy, volume 66. Citeseer, 2008.

[9] A. Barth, C. Jackson, and J.C. Mitchell. Robust defenses for cross-
site request forgery. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 75–88. ACM, 2008.

[10] A. Barth, C. Jackson, and C. Reis. The Google Chrome Team. The
Security Architecture of the Chromium Browser. WWW2009, April,
2009.

[11] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D.
Gordon, and Sergio Maffeis. Refinement types for secure implemen-
tations. In CSF ’08: Proceedings of the 2008 21st IEEE Computer Se-
curity Foundations Symposium, pages 17–32, Washington, DC, USA,
2008. IEEE Computer Society.

[12] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Ver-
ifying policy-based security for web services. In CCS ’04: Proceed-
ings of the 11th ACM conference on Computer and communications
security, pages 268–277, New York, NY, USA, 2004. ACM.

[13] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and
David Langworthy. Semantic subtyping with an SMT solver.
Preliminary report available at http://research.microsoft.com/en-
us/um/people/adg/Publications/dminor.pdf.

[14] Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. Candid:
Dynamic candidate evaluations for automatic prevention of SQL in-
jection attacks. ACM Trans. Inf. Syst. Secur., 13(2):1–39, 2010.

[15] H. Bojinov, E. Bursztein, and D. Boneh. XCS: cross channel scripting
and its impact on web applications. In Proceedings of the 16th ACM
conference on Computer and communications security, pages 420–
431. ACM, 2009.

[16] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2008.

[17] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: A
system for automatically generating inputs of death using symbolic
execution. In Proceedings of the 13th ACM Conference on Computer
and Communications Security (CCS). Citeseer, 2006.

[18] Brian V. Chess. Improving Computer Security using Extended Static
Checking. In IEEE Symposium on Security and Privacy, pages 160–
176, 2002.

[19] Adam Chlipala. Ur: Statically-typed metaprogramming with type-
level record computation. In Proceedings of the ACM SIGPLAN 2010
Conference on Programming Language Design and Implementation
(PLDI’10), 2010.

[20] S. Chong, J. Liu, A.C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng. Building secure web applications with automatic partition-
ing. Communications of the ACM, 52(2):79–87, 2009.

[21] S. Chong, K. Vikram, A.C. Myers, et al. SIF: Enforcing confidentiality
and integrity in web applications. In Proc. 16th USENIX Security,
2007.

[22] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic
dynamic taint analysis framework. In ISSTA ’07: Proceedings of the
2007 international symposium on Software testing and analysis, pages
196–206, New York, NY, USA, 2007. ACM.

[23] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. Cross-tier,
label-based security enforcement for web applications. In SIGMOD
’09: Proceedings of the 35th SIGMOD international conference on
Management of data, pages 269–282, New York, NY, USA, 2009.
ACM.

[24] M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: Preventing Au-
thentication & Access Control Vulnerabilities in Web Applications. In
Proceedings of the 18th Annual USENIX Security Symposium, 2009.

[25] Dorothy E. Denning. A Lattice Model of Secure Information Flow.
Communications of the ACM, 19(5):236–243, May 1976.

[26] U. Erlingsson, B. Livshits, and Y. Xie. End-to-end web application
security. In Proceedings of the Workshop on Hot Topics in Operating
Systems, 2007.

[27] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type
discipline for authorization in distributed systems. Proc. of CSF’07,
2007.

[28] A. Futoransky, E. Gutesman, and A. Waissbein. A dynamic technique
for enhancing the security and privacy of web applications. Proc.
Black Hat USA, 2007.

[29] T. Groß, B. Pfitzmann, and A.R. Sadeghi. Browser model for security
analysis of browser-based protocols. Computer Security–ESORICS
2005, pages 489–508, 2005.

[30] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static
analysis for Ajax intrusion detection. In WWW, 2009.

[31] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation for
Java. In Proceedings of the 21st Annual Computer Security Applica-
tions Conference, pages 303–311. Citeseer, 2005.

[32] William G. J. Halfond and Alessandro Orso. Amnesia: analysis and
monitoring for neutralizing SQL-injection attacks. In ASE ’05: Pro-
ceedings of the 20th IEEE/ACM international Conference on Auto-
mated software engineering, pages 174–183, New York, NY, USA,
2005. ACM.

[33] Kelly Jackson Higgins. CSRF vulnerability: A ‘sleeping giant’.
United Business Media via http://www.darkreading.com/security/app-
security/showArticle.jhtml?articleID=208804131.

[34] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung
Tsai. Web application security assessment by fault injection and be-
havior monitoring. In WWW ’03: Proceedings of the 12th interna-
tional conference on World Wide Web, pages 148–159, New York, NY,
USA, 2003. ACM.

[35] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-
Tsai Lee, and Sy-Yen Kuo. Securing web application code by static
analysis and runtime protection. In WWW, pages 40–52, 2004.

[36] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In Proceedings of the 16th
international conference on World Wide Web, page 610. ACM, 2007.

[37] M. Johns. SessionSafe: Implementing XSS immune session handling.
Computer Security–ESORICS 2006, pages 444–460, 2006.

[38] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities. In 2006 IEEE Symposium on
Security and Privacy, page 6, 2006.

[39] Y.P. Khoo, B.Y.E. Chang, and J.S. Foster. Mixing Type Checking and
Symbolic Execution. In PLDI, 2010.

[40] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, 1976.

11 2010/4/18

[41] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jo-
vanovic. Noxes: a client-side solution for mitigating cross-site script-
ing attacks. In SAC ’06: Proceedings of the 2006 ACM symposium
on Applied computing, pages 330–337, New York, NY, USA, 2006.
ACM.

[42] Monica S. Lam, Michael Martin, Benjamin Livshits, and John Whaley.
Securing web applications with static and dynamic information flow
tracking. In PEPM, pages 3–12, 2008.

[43] V.B. Livshits and M.S. Lam. Finding security vulnerabilities in Java
applications with static analysis. In USENIX Security, 2005.

[44] S. Maffeis, J.C. Mitchell, and A. Taly. Object capabilities and iso-
lation of untrusted web applications. In Proc of IEEE Security and
Privacy’10. IEEE, 2010.

[45] S. Maffeis and A. Taly. Language-based isolation of untrusted
Javascript. In CSF, 2009.

[46] J. Magazinius, A. Askarov, and A. Sabelfeld. A Lattice-based Ap-
proach to Mashup Security. In ASIACCS, 2010.

[47] Z. Mao, N. Li, and I. Molloy. Defeating Cross-Site Request Forgery
Attacks with Browser-Enforced Authenticity Protection. Financial
Cryptography and Data Security, pages 238–255, 2009.

[48] M. Martin, B. Livshits, and M.S. Lam. Finding application errors and
security flaws using PQL: a program query language. ACM SIGPLAN
Notices, 40(10):383, 2005.

[49] J. McCarthy. Towards a mathematical science of computation. Infor-
mation Processing, 62:21–28, 1962.

[50] G. Naumovich and P. Centonze. Static analysis of role-based access
control in J2EE applications. ACM SIGSOFT Software Engineering
Notes, 29(5):1–10, 2004.

[51] OWASP. The ten most critical web application risks, 2010.
http://www.owasp.org/images/0/0f/OWASP T10 - 2010 rc1.pdf.

[52] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J.C. Mitchell. Stronger
password authentication using browser extensions. In USENIX Secu-
rity, 2005.

[53] Sam Ruby, Dave Thomas, and David Heinemeier Hansson. Agile Web
Development with Rails. The Pragmatic Bookshelf, 2009.

[54] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A Symbolic Execution Framework for JavaScript, 2010.

[55] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX: systematic
discovery of client-side validation vulnerabilities in rich web applica-
tions. In Proceedings of the Network and Distributed System Security
Symposium, 2010.

[56] David Scott and Richard Sharp. Abstracting application-level web
security. In WWW ’02: Proceedings of the 11th international confer-
ence on World Wide Web, pages 396–407, New York, NY, USA, 2002.
ACM.

[57] R. Sekar. An efficient black-box technique for defeating web applica-
tion attacks. In Network and Distributed Systems Symposium (NDSS
2009), 2009.

[58] SRI. Yices: An SMT solver. http://yices.csl.sri.com/.
[59] Zhendong Su and Gary Wassermann. The essence of command injec-

tion attacks in web applications. In POPL ’06: Conference record of
the 33rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 372–382, New York, NY, USA, 2006.
ACM.

[60] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and
Omri Weisman. TAJ: Effective taint analysis for Java. In PLDI, 2009.

[61] K. Vikram, A. Prateek, and B. Livshits. Ripley: automatically securing
web 2.0 applications through replicated execution. In Proceedings of
the 16th ACM conference on Computer and communications security,
pages 173–186. ACM, 2009.

[62] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Cross-site scripting prevention with dynamic data tainting and
static analysis. In Proceeding of the Network and Distributed System
Security Symposium (NDSS07). Citeseer, 2007.

[63] Gary Wassermann and Zhendong Su. Sound and precise analysis of
web applications for injection vulnerabilities. In PLDI ’07: Proceed-

ings of the 2007 ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 32–41, New York, NY, USA,
2007. ACM.

[64] Web Application Security Consortium. Web application secu-
rity statistics, 2008. http://projects.webappsec.org/Web-Application-
Security-Statistics.

[65] Heiko Webers. Ruby on rails security, v2. OWASP report available at
http://www.owasp.org/images/2/26/Owasp-rails-security.pdf.

[66] Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. In USENIX Security, pages 179–192, 2006.

[67] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.
Improving application security with data flow assertions. In SOSP
’09: Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 291–304, New York, NY, USA, 2009. ACM.

[68] S. Yoshihama, T. Yoshizawa, Y. Watanabe, M. Kudoh, and K. Oy-
anagi. Dynamic information flow control architecture for web appli-
cations. Computer Security–ESORICS 2007, pages 267–282, 2007.

[69] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov.
Javascript instrumentation for browser security. In POPL ’07: Pro-
ceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 237–249, New York, NY,
USA, 2007. ACM.

12 2010/4/18

