University of Massachusetts Amherst

From the SelectedWorks of Erik G Learned-Miller

2010

Reverse engineering for mobile systems forensics
with Ares

John Tuttle

Robert J. Walls

Erik G Learned-Miller, University of Massachusetts - Amherst
Brian Neil Levine

Available at: https://works.bepress.com/erik _learned miller/54/

B bepress®

http://www.umass.edu
https://works.bepress.com/erik_learned_miller/
https://works.bepress.com/erik_learned_miller/54/

Reverse Engineering for Mobile Systems Forensics with
Ares

John Tuttle Robert J. Walls

Erik Learned-Miller

Brian Neil Levine

Department of Computer Science
University of Massachusetts Amherst
) . Amherst, MA 01003
{jtuttle,rjwalls,elm,brian}@cs.umass.edu

ABSTRACT

We present Ares, a reverse engineering technique for assist-
ing in the analysis of data recovered for the investigation of
mobile and embedded systems. The focus of investigations
into insider activity is most often on the data stored on the
insider’s computers and digital devices — call logs, email
messaging, calendar entries, text messages, and browser his-
tory — rather than on the status of the system’s security.
Ares is novel in that it uses a data-driven approach that in-
corporates natural language processing techniques to infer the
layout of input data that has been created according to some
unknown specification. While some other reverse engineering
techniques based on instrumentation of executables offer high
accuracy, they are hard to apply to proprietary phone archi-
tectures. We evaluated the effectiveness of Ares on call logs
and contact lists from ten used Nokia cell phones. We created
a rule set by manually reverse engineering a single Nokia
phone. Without modification to that grammar, Ares parsed
most phones’ data with 90% of the accuracy of a commercial
forensics tool based on manual reverse engineering, and all
phones with at least 50% accuracy even though the endianess
for one phone changed.

Categories and Subject Descriptors

D.0 [Software]: General; E.2 [Datal: Data Storage Repre-
sentations—Primitive Data Items

General Terms

Security

Keywords

Data Recovery, Forensics, Reverse Engineering, Mobile Phones

1. INTRODUCTION

The actions of malicious insiders pose the greatest threat
when no software vulnerability is involved. For example, an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

InsiderThreats’10, October 8, 2010, Chicago, Illinois, USA.

Copyright 2010 ACM 978-1-4503-0092-6/10/10 ...$10.00.

employee does not require privilege escalation to phone a
third party and exchange inside information, and no intrusion
detection system will catch the event. Hence, the focus of
investigations into insider activity is more often on the data
stored on the insider’s computers and digital devices — call
logs, email messaging, calendar entries, text messages, and
browser history — rather than on the status of the system’s
security. Furthermore, it is critical to retrieve digital artifacts
that the user has attempted to delete in order to hide past
events.

Cell phones are particularly valuable to investigations of
policy violation (including criminal investigations) because
they are pervasive and are often carried into the event or
crime itself. Call records, saved texts, and address books, as
well as other circumstantial evidence, can identify important
social relationships for investigators. A phone may also
contain direct evidence, such as stolen intellectual property
or a record of its transfer. It is insufficient to simply browse
through a phone using its own interface to recover data, as
deleted information will certainly not be available. Instead,
the raw bytes must be analyzed via data recovery tools that
understand the proprietary format and are distinct from the
device’s API.

For many reasons it is a significant challenge to recover
meaningful structures from the raw bytes acquired from a cell
phone’s persistent storage. First, manual reverse engineering
(RE) of unknown formats is an extremely time-intensive
process; near real-time analysis is impractical for devices
that have not been examined previously. Second, unlike
desktop file systems, acquisition of the data stored on a
phone is an unstandardized process, and it is not possible to
recover deleted data by simply using the phone’s interface
(or backup software). Moreover, using the phone’s interface
risks modifying the data itself. Third, existing automated
RE techniques are not applicable to phone data as almost all
instrument the software that processes the data. To leverage
instrumentation, it is insufficient to have the hardware used
or a hardware emulator (unlikely in the case of proprietary
chipsets). Instrumentation requires the investigator program
an infrastructure that is specialized to the hardware and OS
of the device, which in the case of phones are protean, closed
source, and obfuscated. Instrumentation and taint analysis
for Intel-based Windows and Linux systems are formidable
tasks [3,18] that are not applicable to phone systems — with
over 190 new cell phones introduced to the US market in
the last year alone from about ten major manufacturers (see
www.mobiledia.com), it would be a herculean effort to adapt

such systems to all that are available used or new. (Similar
challenges are posed by proprietary medical systems [13].)

In this paper, we propose that reverse engineering em-
bedded systems for data recovery and investigation requires
a data-driven approach. Our work is a departure from re-
verse engineering solutions for Intel/MS desktop systems,
which tend to be heavy-weight, relying on instrumented bi-
naries [4,5,9], human-readable delimiters [10,11] or, in the
case of commercial forensics tools, manual effort. In contrast,
the phone market has varied and proprietary hardware and
software, non-delimited machine-oriented output, and an
endlessly growing set of platforms. Another advantage of our
approach is that it supports (though does not solve) near
real-time analysis, as we demonstrate in our evaluation.

In our approach, called the Adaptable Reverse Engineering
System (Ares), we examine only the raw bytes of the appli-
cation data, avoiding the steep challenge of architecting an
instrumentation system for every possible phone platform.
Ares uses a grammar to encode data formats that are ob-
served in embedded systems. The rules of this grammar are
then applied to newly observed systems. We make several ex-
tensions to a known parsing algorithm to find the mazimum
likelihood parse for a particular machine data format. We
expect the grammar to be extended in an iterative process,
much like firewall (such as snort) and software assurance
rule sets (Fortify [6]) are developed and strengthened over
time. We created grammar rules that encoded the phone
call log format of a 2001 Nokia model 3360 phone. We then
applied the rule set to ten other Nokia phones released from
2003-2005. Ares could parse some phone records with over
90% accuracy, with all results above 50% even for phones
with a changed endianess. We believe our approach provides
an initial step towards addressing the problems that are
specific to mobile systems data recovery.

2. ALGORITHM DESIGN

In this section, we present our scenario’s assumptions and
a formal definition of the problem of reverse engineering
of non-delimited data formats. We then propose Ares, a
data-driven reverse engineering tool.

Motivation. Forensic investigation of cell phones is difficult
for many reasons [2,15]. To perform a forensically sound
data recovery, investigators must first obtain stored data
from the phone. This acquisition alone is cumbersome but
can often be achieved by using special tools. It is helpful
but insufficient to only obtain data from the phone using
the phone’s interface or software. Deleted data cannot be
retrieved and information that has been deleted cannot be
recovered. Moreover, the process of viewing data can alter it
(e.g., changing last accessed times).

Once acquired, the data must be interpreted in order
to extract useful information. However, phone software
is largely proprietary and manufacturers will resist helping
investigators in order to protect trade secrets. As a result, the
data format must be reverse engineered. A few companies
sell tools that parse phone data using knowledge gained
from manual reverse engineering. However, this process is
laborious and must be repeated often as new cell phone
models are released regularly. As a consequence, these tools
can be very expensive — some cost upwards of $20,000.
Moreover, even the full set of these many forensic tools does
not cover the large set of cell phones available.

Naturally, many attempts have been made to facilitate
the reverse engineering process. We discuss some of these
attempts in Section 4. Because the process is error prone,
even with commercial tools, many refer to the process of
analyzing phone simple as data recovery rather than digital
forensics. Here, we propose only data recovery techniques
that are perhaps sufficient for the “fair probability” [1,17]
required of the probable cause standard used in obtaining
search warrants. We do not assert our techniques are foren-
sically valid or sufficient for cases requiring evidence that is
beyond a reasonable doubt. In both cases, deeper validation
for specific models would be required, which is beyond our
scope.

2.1 Problem Definition

The goal of reverse engineering is to interpret data that has
been constructed according to some unknown format specifi-
cation S by observing representative examples of the data.
Suppose we are given a set of records R = {r1,r2,...,mn},
each of which is an example of data laid out according to S.
Each record r; is composed of one or more non-overlapping
fields such that r; = (f1, f2,..., fm). A field represents a
meaningful set of data, such as an integer or a string. We
assume that the boundaries between fields are not known and
that there are no explicit field delimiters within the record.
In other words, without knowing the format, each record
appears to be a sequence of non-delimited binary data. For
each record r;, our goal is to provide a hypothesized interpre-
tation 7;. This interpretation includes the starting position
s, length ¢, and type t of each field in the record such that
ri=(f1,f3,-.., fr) where f] is the tuple (s;, £;, t;).

2.2 Ares Design

Ares takes as input a sequence of records created using
some unknown format and a probabilistic grammar with
which to describe these records. Its task is then to come up
with the most likely field layout for each record according to
the current grammar and then figure out which bytes in the
format maintain constant values across records. The Ares
algorithm is divided into two parts: record-level analysis and
cluster-level analysis.

Record-level Analysis. Ares uses the Cocke-Younger-
Kasami (CYK) [14] algorithm to determine the most likely
interpretation of each record according to a probabilistic
grammar. A grammar is composed of a set of symbols (ter-
minals and non-terminals) and a set of rules that describe
ways in which these symbols can be substituted for one an-
other. In addition, each rule has an associated probability.
Rules must be of the form A — BC, which means that the
symbol A can be substituted for the sequence of symbols BC'.
These rules must always have one symbol on the left-hand
side and can have one or two symbols on the right. Each rule
is given an estimated probability of occurring. The following
is an example of the rules that would be used to represent
a UnicodeString when parsing binary data. Symbols that
represent our input data are enclosed in single quotes.

e 0.8 UnicodeString — UnicodeChar UnicodeString
e 0.2 UnicodeString — UnicodeChar

e 1.0 UnicodeChar — Ascii Null

e 1.0 Null — €0x00°’

® 0.0093 Ascii — €0x20°

e 0.0093 ... [other Ascii entries]
e 0.0093 Ascii — ‘0xT7e’

CYK is a bottom-up parsing algorithm that starts with the
input data and repeatedly makes symbol substitutions until
it reaches a special root symbol that represents the entire
record. In this manner, a tree is constructed for each record
that has the root symbol as its root and the original data as
its leaves. The tree represents the most likely interpretation
of the record. The CYK algorithm uses the probabilities
associated with each rule to bias the resulting parse towards
the most likely way of interpreting the input data. The
probabilities assist CYK in determining which among several
rules that match is the most likely parse, and therefore the
precise values assigned are not critical, only their relative
values. Experience and observation can drive the values
chosen, but if a rule doesn’t match, its assigned probability
is not considered.

A fundamental limitation of using a grammar is that we
cannot encode rules that are necessary for machine formats
without a super-linear expansion of rules. For example, one
field’s value might express the length of another field. Our
first extension to the CYK algorithm allows such conditions
to be added to the production rules of a grammar to express
relationships between its symbols. For example, it is possible
to specify that a symbol must be within a certain range of
numerical values or that the value of one non-terminal must
be equal to the length of another. In this manner, Ares
can recognize relationships between fields by only allowing
conditioned substitutions to occur when their conditions are
satisfied.

Our second extension to the CYK algorithm enables Ares
to account for a change in endianness. While reading in the
input grammar, every time Ares reads in a rule of the form
A — BC, it will also add the rule A — CB to its working
set of rules with 30% lower probability. This allows Ares to
take the little endian parse into consideration when applying
the CYK algorithm.

The parse tree for a record actually has many levels of
representation for a record. At the top level, it represents the
record as a single symbol and at the bottom level it represents
the record as each individual byte. In the middle of the tree is
the representation we want: the record interpreted as a series
of fields. The record-level analysis extracts this interpretation
from the parse tree and outputs it as a sequence of tuples
with the format [(start, length), label] where start is
the byte offset of the field from the beginning of the record,
length is the number of bytes in the field, and label is the
inferred field type. Types we have defined include Unicode
strings, ASCII strings, dates and times, phone numbers, and
lengths of these fields. (Nokia has a proprietary format for
dates and phone numbers that we do not detail here). If
Ares is unable to match a sequence of bytes with a known
type, it groups those into a single field and labels that field
as Binary. Furthermore, the CYK algorithm ensures that
each byte is assigned to exactly one field and that fields do
not overlap.

Cluster-level Analysis. Ares’ cluster-level analysis pro-
vides additional information about Binary fields, for which
the boundaries and field types are unknown. In this stage of
the algorithm, Ares records the range of values that bytes
take on across multiple records. Any bytes that have a single
value for every record can be considered constants.

To perform this analysis, Ares first groups record interpre-
tations that have similar formats. Records are considered to
have similar formats if they have the same sequence of field
types. For example, if records r; and r; are both parsed as
the sequence of fields UnicodeString, Null, Binary then
Ares will place r; and r; in the same cluster. Note that the
field lengths need not be the same across both records for
them to be considered similar. In this way, the clustering is
not perturbed by variable length fields. Once records with
similar formats have been clustered, Ares compares the bi-
nary fields of records within each cluster and records the
range of values for each byte within the field.

2.3 Challenges

Reverse engineering binary data using a sample-based
approach presents a number of challenges. Several situations
complicate the process by making it difficult to determine
the boundaries in a record or the types of its fields.

Non-delimited Data. Boundaries between fields in binary
data are rarely marked by delimiters in the data itself since
any programs that are able to read the data in a meaningful
way will know how many bits to read at a time. This lack
of explicit delimiters makes it difficult to determine field
boundaries when only the data is available. In reverse engi-
neering, inferring these boundaries accurately is typically a
prerequisite to determining higher level constructs such as
relationships between fields and field semantics. In contrast,
Ares essentially looks for semantics first and uses this knowl-
edge to find field boundaries. Unfortunately, this means that
Ares is only able to find boundaries where semantics can be
ascertained.

Data Ambiguity. Ares relies on being able to find patterns
in the input data that match rules in its grammar, but many
types of fields are difficult to differentiate from one another.
For example, suppose we encounter the byte pattern “0x00
0x41” in our input. This field could be interpreted as a single
integer that stores the value 65 or it could be interpreted as
the Unicode letter “A”.

Ares resolves such ambiguous situations by calculating
which case is more probable based on the probabilities given
in its grammar. Ideally, we would obtain these probabilities
by examining huge collections of binary data for which fields
are known. Such collections do not exist to our knowledge,
so we use imperfect estimates for the probabilities in our
grammar. Our experience suggests that CYK is quite robust
to the choice of probabilities given the good performance of
Ares, presented in Section 5.

Data ambiguity can cause a number of difficulties. For
example, it can cause Ares to make incorrect judgments
about field boundaries. A single boundary error may then
propagate across multiple fields.

Permutations. It is possible for the field ordering to
change between records. Suppose we have two records
ri=(f1,-- i, [, fm)and r2 = (f1,. ., f5, firso ooy fm)-
While the CYK algorithm will parse permutations correctly,
Ares’ cluster-level analysis algorithm will have a difficult time
identifying that, for example, f; has a constant value across
records.

Limited Samples. The effectiveness of any sample-based
approach is limited by the number and quality of available
samples. Suppose there are two different possible field layouts

Phone Access | Date Issued
Nokia 3360 | TDMA | Q2 2001
Nokia 3200 | GSM Q4 2003
Nokia 6820 | GSM Q1 2004
Nokia 6230 | GSM Q2 2004
Nokia 6170 | GSM Q3 2004
Nokia 6101 | GSM Q3 2005

Figure 1: Information about the phone models used
in our experiment

for a given type of input, yet our set of samples only represents
one of these layouts. Ares has no way of knowing that the
second layout is a plausible interpretation for this type of
input.

Another problem arises from the fact that Ares only oper-
ates on positive examples. In other words, we do not give
Ares any input that represents how a certain type of data
should not be laid out. This fact hinders the cluster-level
analysis algorithm that attempts to identify constants. We
cannot conclude that this field will be constant for records we
have not yet seen unless we have a sufficient set of negative
examples. It has been shown that it is impossible to learn a
language without both positive and negative examples [12].

3. EVALUATION

In this section, we evaluate Ares’ accuracy when applied
to cell phone call logs. We describe the construction of the
grammar used in this experiment, provide a brief overview of
our data collection process, and present quantitative results.

3.1 Methodology

To evaluate Ares, we created a grammar by manually
reverse engineering the call logs on a Nokia 3360 phone, and
we then tested the rule set on five other Nokia phone models
— 3200, 6101, 6170, 6230, and 6820 — using two of each
model. We did not modify the rules before examining the
ten test phones. Figure 1 provides some details about the
five phone models, which were released over a 5-year period.
Note that Nokia uses a proprietary OS and chip set; existing
binary instrumentation tools would be ineffective.

We selected the five test models from a large collection
of used cell phones that we have purchased from resellers.
Conveniently, many of these cell phones arrived with user
data intact, including call logs. The models used in our
experiments were selected for two reasons. First, we could
obtain a raw memory dump using the Tornado UFS, a com-
mercial phone flashing tool (used to unlock a phone from
a carrier) [16]. Second, we could also obtain results from
Pandora’s Box, a commercial phone forensics tool, which we
used as a point of comparison.

Unfortunately, for this preliminary work, we did not have
the opportunity to test our rules on phones from other man-
ufacturers. We were not able to verify that the rule set
we constructed from the Nokia 3360 is transferable to an-
other manufacturer’s data set. We intend to perform this
evaluation in future work.

For each phone model, Ares processed the extracted call
logs as a series of records, each record representing a single
entry in the call log. Fortunately, memory is acquired by
Tornado UFS such that each call entry is already a distinct
record. The first five entries of the call log from our Nokia

3360 phone appear in Figure 2. In all, Ares examined 482
call logs and 454 contact entries.

3.2 Evaluation

The grammar that we produced from manually reverse en-
gineering the Nokia 3360 call log format consisted of roughly
800 rules representing several field types. (In fact, most of
the rules are for terminals, such as one rule for each ASCII
character.) The grammar included rules for Unicode strings,
phone numbers, and dates and times. Our grammar also rep-
resents fields that denote the length of other fields. Section 2
shows several examples from the rule set.

Ares’ task in this experiment was to produce the most
likely interpretation of each call log entry for the five test
phones given our manually constructed grammar. For each
log entry, the output of Ares is a sequence of tuples that
labels a byte range as a specific field type. The results are
shown in Figure 3.

To evaluate accuracy, we compared Ares’ output for each
record with an assumed “correct” interpretation that we
constructed using Pandora’s Box. The programmers of Pan-
dora’s Box confirmed with us that they manually reverse
engineered the format of each of the tested phones. As a
result, this correct interpretation represents a lower-limit on
the performance of manual reverse engineering and allows us
to compare the accuracy of Ares to that of manual efforts.
We used two different metrics when making this comparison:
byte-based and tool-based.

Byte-based accuracy is the number of bytes in a record that
Ares labeled correctly divided by the total number of bytes in
the record. A byte is labeled correctly if Ares grouped it into
the correct field type. For example, suppose the tuple [(2,
8), UnicodeString] appears in Ares’ output for a single
record. If the correct format is [(2, 6), UnicodeString]
[(8,2) Ascii] then Ares labeled bytes 2 through 7 correctly,
but bytes 8 and 9 are labeled incorrectly. Any bytes that
Ares was unable to label are considered to be incorrectly
labeled.

For records with fixed-length fields, this is a fairly good
metric. However, the presence of variable-length fields can
skew the byte-based accuracy significantly. For example,
suppose our input records contained 4 fixed-length fields
that Ares was unable to parse and 1 variable-length field V'
that Ares was able to parse successfully. Records in which
V' is 200-bytes long are going to have a significantly higher
byte-based accuracy than those in which V is 5 bytes long.

Tool-based accuracy is the number of fields in a record
that were correctly labeled divided by the number of fields
recognized by Pandora’s Box. We considered fields correctly
labeled if they matched the Pandora’s Box output. Any
fields that Pandora’s Box was unable to parse were ignored
when calculating tool accuracy.

This metric serves as a reasonable comparison to manual
reverse engineering accuracy. However, it also has limitations.
Since the output of Pandora’s Box consists only of the fields
that its authors were able to manually reverse engineer, it
may in fact lack some valuable information.

Discussion. We performed two sets of tests. We first evalu-
ated Ares without our extension that accounts for endianess.
The results are shown in Figure 3. Ares’ byte-based accuracy
is low for all models tested. Ares is only able to parse fields
that represent name, name length, phone number, phone

0=05000C0705004F0065006400670061007200070B01000307555295400008130207D5010F0F1F11010008130307D5010E12002801
1=07000E0708004D00640061006E00690065006C00080B0100030A4A155564270008130207D501100F383001
2=0300090B01000A0B18A855545990001207020050006C00750063007200650063006900610008130307D5010FOD151A01

Figure 2: The first three entries of a Nokia 3360 call log (phone numbers have been altered to preserve

privacy of the original owner).

Calls | Contacts
Phone | Byte Tool Byte Tool

Nokia 3360 | 42% 9% 67% 99%
Nokia 3200 53% 93% 51% 98%
Nokia 6101 57% 96% 63% 9%
Nokia 6170 29% 26% 64% 52%
Nokia 6230 | 39% 56% 33% 34%
Nokia 6820 54% 95% 69% 96%

Figure 3: Ares’ accuracy using a grammar generated
from the call log of a Nokia 3360 when applied to
the call logs of five other models.

Calls | Contacts
Phone | Byte Tool Byte Tool

Nokia 3360 | 42% 9% 67% 99%
Nokia 3200 54% 93% 51% 98%
Nokia 6101 58% 96% 63% 97%
Nokia 6170 | 53% 65% 64% 52%
Nokia 6230 | 52% 81% 38% 62%
Nokia 6820 54% 95% 69% 96%

Figure 4: Ares’ accuracy using a grammar generated
from the call log of a Nokia 3360 with automatically
added rules for handling little endian. Differences
with Fig. 3 are in bold. Note that no results for big
endian phones are changed.

number length, and timestamps. Although these are im-
portant fields, a significant portion of the call log data is
devoted to flags and other small fields that Ares is unable
to parse and thus labels as Binary fields. Since we never
count Binary fields as correct towards byte-based accuracy,
our results are fairly low.

The tool-based accuracy is quite high for several of the
models, meaning Ares was able to parse the call log data
almost as effectively as Pandora’s Box. Note that two of
the models (6170 and 6230) have extremely low tool-based
accuracy. This is due to an endianness difference. The 3360
from which the grammar was created stores its data in big
endian format whereas these two models store their data
in little endian. Ares relies on patterns that are described
in its grammar and switching the endianness of the data
invalidates many of these patterns. This difference caused a
drop in overall accuracy for these two models.

In a second experiment, we evaluated the Ares’ endianness
extension for CYK. The results of this modification are shown
in Figure 4. Our modification improved accuracy for the
little-endian models (6170 and 6230) while maintaining the
accuracy of the big endian models. This result demonstrates
the extensibility of our approach. Note that the contact list
parsing for the 6170 model phones is not improved; this is
due to the stringency of our evaluation metrics. While Ares

only misses the first letter of a Unicode string in the contact
list, we consider the entire field incorrect.

Ares parses each record in 0.6 sec on average; each record is
60 bytes on average. The system’s performance is restricted
by CYK’s O(n®) runtime for input of size n, but we expect
more efficient parsing algorithms can be applied in future
work. Moreover, the system can work on records in paral-
lel. Ares is a minuscule system compared to the massive
engineering efforts required for instrumentation and taint
analysis platforms. The complete Ares system is written in
only 1,800 lines of Python.

4. RELATED WORK

Related work on reverse engineering has focused on either
protocol message formats, or memory and file record formats,
but we treat them as equivalents. These tools are typically
either sample-based or instrumentation-based — Ares is an ex-
ample of a sample-based approach. We did not compare Ares
against these works as each has a limitation or assumption
that does not apply well to the phone domain.

Sample-based Approaches. Discoverer [8], a sample-
based tool, attempts to automatically derive the format
of messages sent by an application-level network protocol.
Given a sample of application-level messages, Discoverer
splits each message into tokens, clusters each token, and
attempts to infer the token format by comparing it to other
messages in the same cluster. While Discoverer is strictly
limited to identifying fields as just one of two types — text
or binary — Ares can handle innumerable and customizable
field types using its extensible grammar.

LearnPADS [11] is a sample-based system used to automat-
ically infer the format of ad hoc data, creating a specification
of that format in the PADS data description language. Learn-
PADS begins by splitting the raw input data into a series of
chunks, typically line-by-line or file-by-file. The chunks are
then divided into tokens using a lexer. LearnPADS uses a
histogram of the token frequencies to infer the structure of
the data. Unfortunately, LearnPADS relies on explicit delim-
iters that are not commonly found in a phone’s binary data.
In contrast, Ares does not rely on delimiters for parsing.

Cozzie et al. [7] detect botnets using Bayesian unsupervised
learning to locate data structures in memory. Unlike Ares,
their approach is not designed to parse the data, and cannot
manage length fields.

Instrumentation-based Approaches. Many approaches,
including Polyglot [5], Tupni [9], and Dispatcher [4] require
instrumentation of the binary executable — a complex pro-
cess.

Polyglot [5] relies on executable analysis to reverse engineer
application-level protocol formats. Polyglot was intended
to overcome the deficiencies of sample-based approaches
by observing how a program processed received messages.
Tupni [9] uses taint analysis to reverse engineer input formats
with high accuracy. The tool attempts to derive informa-

tion such as field boundaries, record sequences, and field
constraints. Dispatcher [4] also instruments executables to
infer the format of messages sent by a program as well as
the field semantics of both sent and received messages.

On a platform as volatile as cell phones where the hard-
ware and software are constantly changing with each new
model, instrumentation is a poorly-suited approach. Instru-
mentation is a challenging and time-consuming process that
would have to be repeated for each different combination
of architecture and OS. As we stated earlier, possession of
the hardware, or an emulator of the hardware, is insufficient.
Moreover, small changes in the OS (or architecture) requires
modification of the instrumentation platform, and these sys-
tems are typically closed-source, proprietary, and obfuscated
to prevent disclosure of commercial advantages. Note that
manufacturers have a history of not cooperating, even with
law enforcement, when it comes to unlocking, acquiring data,
and parsing data from phones.

In sum, Ares’ main advantage over other approaches is its
ability to work adeptly and quickly with new and unseen
phone models. We expect that a single, well-constructed
grammar could be used across a welter of different phone
models to provide swift analysis.

5. CONCLUSION

We have argued that reverse engineering of mobile phone
data requires a data-driven approach. In contrast to recent
works on malware analysis largely based on instrumenta-
tion, Ares uses a modified CYK parsing algorithm and an
extended grammar to find field boundaries and infer simple
relationships between fields. The grammar must be manually
constructed, but can then be reused to parse novel data. The
data-driven approach used in Ares is robust to CPU and OS
changes and does not rely on delimiters. While there are
limitations to Ares’ approach, its accuracy is often on par
with manual reverse engineering efforts.

We believe Ares can be based on a library of grammar sets
that are focused on specific types of input data. For example,
we imagine a set that works best on Nokia models and one
for Samsung. Another grammar can be targeted for parsing
data sent through network protocols. Moreover, we suspect
that Ares’ full potential is to be realized by programming it
to adjust its output based on feedback from the user. For
example, a user might recognize that the boundary between
two fields in Ares’ output is off by a few bytes. The user
would provide Ares with feedback by telling it to fix the
boundary in the correct position. Ares would then rerun
the CYK algorithm with this fixed boundary and produce
a better interpretation of the input data. By repeating this
cycle, Ares could work in tandem with the user to produce a
detailed answer with greater speed and accuracy than either
party could produce on their own.

We view our efforts as an important first step in a promis-
ing approach. In future work, we intend to explore Ares’
effectiveness at parsing more complex data types and re-
lationships. We also plan to evaluate Ares using phones
from other manufacturers besides Nokia. In preliminary
tests, Ares was able to parse data on Motorola phones with
minimal modification to the Nokia-based grammar.

6. ACKNOWLEDGEMENTS

This work was supported in part by National Science

Foundation awards CNS-0905349 and DUE-0830876. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

7. REFERENCES

[1] Olinois v. Gates, 462 U.S. 213, 238 (1983).

[2] R. Ayers, W. Jansen, A. Delaitre, and L. Moenner. Cell
Phone Forensics Tools: An Overview and Analysis
Update. Interagency report 7387, NIST, Feb 2007.

[3] S. Bhansali et al. Framework for instruction-level
tracing and analysis of program executions. In Proc.
ACM Virtual Ezecution Environments Conf., pages
154-163, 2006.

[4] J. Caballero, P. Poosankam, C. Kreibich, and D. Song.
Dispatcher: Enabling Active Botnet Infiltration using
Automatic Protocol Reverse-Engineering. In Proc.
ACM CCS, Nov 2009.

[5] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:
automatic extraction of protocol message format using
dynamic binary analysis. In Proc. ACM CCS, pages
317-329, 2007.

[6] B. Chess. Improving Computer Security Using
Extended Static Checking. In Proc. IEEE Security &
Privacy, pages 160-176, See http://fortify.com,
2002.

[7] A. Cozzie, F. Stratton, H. Xue, and S. T. King.
Digging for data structures. In Proc. ACM OSDI, 2008.

[8] W. Cui, J. Kannan, and H. J. Wang. Discoverer:
automatic protocol reverse engineering from network
traces. In USENIX Security Symp, pages 1-14, 2007.

[9] W. Cui, M. Peinado, K. Chen, H. J. Wang, and
L. Irun-Briz. Tupni: automatic reverse engineering of
input formats. In Proc. ACM CCS, 2008.

[10] K. Fisher, D. Walker, and K. Q. Zhu. LearnPADS:
automatic tool generation from ad hoc data. In Proc.
ACM SIGMOD, pages 12991302, 2008.

[11] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From
dirt to shovels: fully automatic tool generation from ad
hoc data. In Proc. ACM POPL, 2008.

[12] E. M. Gold. Language identification in the limit.
Information and Control, 10(5):447-474, 1967.

[13] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark,
B. Defend, W. Morgan, K. Fu, T. Kohno, and
W. Maisel. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power
defenses. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on, pages 129 —142, 18-22 2008.

[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman.
Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2000.

[15] W. Jansen and R. Ayers. Guidelines on Cell Phone
Forensics. Technical Report NIST Special Publication
800-101, National Institute of Standards and
Technology, Gaithersburg, MD, May 2007.

[16] K. Jonkers. The forensic use of mobile phone flasher
boxes. Digital Investigation, 6(3-4):168 — 178, 2010.
Embedded Systems Forensics: Smart Phones, GPS
Devices, and Gaming Consoles.

[17] N. Judish et al. Searching and Seizing Computers and
Obtaining Electronic Evidence in Criminal
Investigations. US Dept. of Justice, 2009.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In Proc. ACM PLDI, pages
190-200, 2005.

	University of Massachusetts Amherst
	From the SelectedWorks of Erik G Learned-Miller
	2010

	Reverse engineering for mobile systems forensics with Ares
	tuttleInsider

