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Abstract sharp all or nothing behavior, i.e. each bitrate has a SNR

Rate adaptation is a fundamental primitive in wireless néfréshold below which most of the data beannot be cor-
works. Since wireless channel strength varies quickly and (f €ct!y decoded, but above that threshold very likely the entire

predictably, senders have to constantly measure the chamagket gets decoded. , _ _

and correspondingly adapt the bitrate so that the transthitt | "€ rate adaptation problem is thus to pick the bitrate that
packet gets correctly decoded. Prior approaches to this prgdds the minimal protection necessary to ensure the packet
lem can be divided into two classes: those that require c&iftS delivered reliably and thus maximizes throughput. How
stant and expensive feedback from the receiver about charf¥&h Since the wireless channel condition fluctuates eotigt
strength, or those that use coarse and often inaccurate inf@d often unpredictably, the sender has to measure theehann

ence based on packet losses to measure channel strengttPalfgr @nd correspondingly adjust the bitrate it uses. A large
decide what bitrate to use. and growing body of prior work exists on this problem, and the

In this paper we take the opposite approach. Instead of Rroposed techniques can be divided into two approaches: one
tively adapting the bitrate based on receiver or packet | t use direct feedback from the receiver about the channel

feedback, we present a technique where the sender doeSN&: 2131, or ones that infer channel strength based on past
measurement or adaptation, yet the receiver manages toPRiterns of packet delivery successes [L]4] 9, 6]. The fist a
ceive packets at a bitrate corresponding to whatever chanff@ach requires expensive and constant feedback, andiltan st
conditions exist at that point. The technique works with eR€ inaccurate because channel conditions can changeisence t
isting coding and modulation techniques (e.g. convolaionf€edback was received. The second approach requires expen-
codes in WiFi), and requires no changes to them. Our prelifii*® Probing, and the inferred channel strength can be yvildl
inary evaluation shows that our proposed feedback-free tefl@ccurate since packet delivery is a very coarse measure.
nique achieves a performance that is nearly as good as if thd this paper, we take the opposite approach. We present a

sender knew exactly what the channel strength was in advariggnnique Automatic Rate Adaptation (ARA), where instead
of performing any complicated probing or obtaining channel

. . . state feedback from the receiver, we show that a sender can
Categoriesand Subject Descriptors _ achieve almost the optimal bitrate adaptation possibleshy u
C.2.1 [Computer Communication Networks]: Wireless com- ing a single novel transmission algorithm. The sender simpl

munication transmits packets using our fixed algorithm, and does nat nee
to change it in any way due to packet delivery success/gilur
General Terms The receiver recovers whatever packets it can using our pro-

posed decoding algorithm and sends a simple feedback in the
form of an ACK when it is finished decoding. We show that
this simple scheme achieves the same bitrate as the optimal
1. INTRODUCTION scheme, i.e. a scheme where the sender knows exactly what
To communicate reliably on a wireless link, a sender hasttte channel SNR is in advance, and picks the optimal bitrate
protect his data bits against link impairments such as @atteio transmit at that SNR.
ation, fading and noise. Data protection is added via a com-The key technique behind ARA is the concept ofmin-
bination of channel coding and modulation schemes, whighum distance transformer (MDT). The technique is based
together dictate the achieved bitrate. For example, a 1Mlpsthe observation that for any combination of channel code
bitrate (the lowest WiFi bitrate) is due to the choice of ayveland modulation scheme to work (i.e. decode reliably), the
redundant channel code and a very sparse modulation schemrémum distance between nearby constellation pointseén th
(QPSK). Naturally, this bitrate is the most protected anddso modulation scheme must be above a threshold to tolerate dis-
well at low SNR, higher bitrates offer less protection and-catortion due to noise. The threshold is a function of channel
not be decoded at low SNR. In fact, these bitrates exhibitSNR and the redundancy in the channel code. If the mod-
*Permission to make digital or hard copies of all or part of this wohilatlon scheme’s minimum distance IS above that thr_eshold,
for personal or classroom use is granted without fee provided tH3¢ channel code can correct any residual errors. With cur-
copies are not made or distributed for profit or commercial advantagt techniques, the minimum distance is fixed and dictaged b
and that copies bear this notice and the full citation on the first pagige choice of the modulation scheme and transmission power.
To copy otherwise, or republish, to post on servers or to redistribig A designs and develops a novel minimum distance trans-
to lists, requires prior specific permission and/or a fee. formation (MDT) technique that automatically adjusts thia-m
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we picked to decode. Specifically, instead of directly transompletely new hardware encoders and decoders, and also are
mitting conventionally modulated symbols (e.g. QPSK syneptimized to work in the low SNR regimes typical of cellular
bols), we transmit random complex linear combinations ofvéireless channels. Our technique works with existing ckénn
batch of them. The intuition is that when we take a batch obdes, and can work over both low and high SNR conditions.

L conventional symbols, and transmif linear combinations

of them, in essence we are mapping points froia dimen- 3. OVERVIEW

sional space (the conventional symbols) to points i ali- o
mensional space. Depending on the relative value¥ aind Senders have to adapt transmissions rates because of the

L, the minimum distance in this new space can be controlid@reshold behavior of conventional techniques, i.e. they d
Thus a sender, can transmit random linear combinations uffide only ator above a particular SNR threshold depending on
the minimum distance in the new space goes above the thrd8f-channel coding rate and modulation choice. Even though
old required by the channel code to decode correctly. MofkiS fairly introductory material, we first discuss the reas
over, the adjustment happens without any channel-state flor this thresholdmg behavior since it provides insigtibiour
back, thus achieving the desired automatic rate adaptation €ventual design. _ _

A key feature of ARA is that it works with existing modu- In current schemes, data bits are first channel coded to add
lation and coding schemes and requires no changes to thBFRection against noise. The level of protection is patame
Second, ARA is orthogonal to the choice of coding and mof€d by the coding rate (e.gla2 rate code implies that every
ulation schemes, i.e. it achieves close to the best perfarenadata bitis protected with one extra bit of redundancy). Code
possible with whatever coding and modulation schemes & aré then modulated, i.e. they are mapped to points in a
available. This implies that any future benefits from adeancComplex constellation and transmitted on the wireless chan
in coding and modulation techniques are immediately acc8§l- For example in BPSK, bits are mapped to two points
sible with ARA. on the real line(~/P, —v/P) (P is the transmission power)

We evaluate ARA on wireless channels with SNRs that va%md transmitted. Due to attenuation and additive noiseghe r
from 5-20dB (the range typically observed in WiFi channel§)e'ver29€t3y = s +n, wheren is Gaussian noise with vari-
and compare it to the optimal omniscient rate adaptatioersetf"C€0 - When decoding, the receiver first demodulates the
i.e. the one where the sender has instantaneous and peff&gived symbol, i.e. maps it to the nearest constellatwomi p
information of the channel SNR at any instant and picks tﬁé’ld mfgrs what c_oded bit was transmitted. Hence if thg Gaus-
corresponding best bitrate. The simulation results suggas Sian noise value is greater/less thia/ — v/P) the receiver
our technique achieves a performance that is within 10%eof liakes & bit error. However, the channel code decoder can cor-
performance of the optimal scheme. These results are prellfft @ certain number of errors (depending on the amount of

inary, and we expect that the performance will improve evégdundancy added) and decode the final data. Thus as long as
further with refinements of the decoding technique. the number of bit flips at the demodulation (BPSK) stage are
less than the correcting power of the channel code, the data

eventually gets decoded correctly.
2. RELATED WORK Assuming the channel code rate is fixed, the key to ensur-

Prior work on rate adaptation is based on estimating tifw decoding success is to make sure that the demodulation
channel strength via direct SNR feedback from the receiver,stage does not make more bit errors than the channel code can
inferring based on packet delivery success/failures [7118, handle. This error rate is dictated by tenimum distance be-
9,[6]. SNR feedback in fast changing mobile channels can f¥éen any two constellation points (e.g. for BPSK i2igP)
expensive, and worse inaccurate, since by the time the-tra@@d how it compares with the noise powef). To get good
mitter uses the feedback, the channel might have changed.pgrformance, the the minimum distance has to be sufficiently
ference based on packet de”very success can be h|gh|wna&rge so that no more than the tolerable number of bit errors
rate, since packet de"very is a very coarse measure of eharfi¢Ccur. If its too small, the channel code cannot correctsif i
strength, and can be distorted by factors such as collisimts t00 large, the extra redundancy in the channel code is wastef
just channel fluctuations. ARA avoids all these compligagio Modulation schemes have different minimum distances (e.g.
since it requires neither channel-state feedback norénfee. BPSK, QPSK, 16-QAM, 64-QAM have successively decreas-

ARA is related to prior work in rateless codes and hybriftg minimum distances), and depending on the channel SNR
ARQ. Rateless codes such as LT [8], Raptor cofles [10] Hle rate adaptation module’s job is to pick the combination
low one to automatically achieve the capacity of an erasitémodulation and channel coding that correctly decodes and
channel without knowing the packet loss probability in adb@ximizes throughput. Figufé 1 demonstrates this threshol
vance. However these techniques work with erasure chanr@gbehavior by plotting the SNR thresholds at which differe
on|y, and have poor performance for channels with ndisk [1@}mbinati0n5 of channel codes and modulation schemes begin
(such as wireless channels). Our technique works with not§ydecode.
channels. Second, hybrid ARQ schemes used in 4G wirel%s
systems based on punctured turbo code$s 7, 11] do adap ti Our Approach
minor misestimations of the SNR by transmitting punctured Our goal is to automatically obtain the maximum bitrate the
bits if the packet is not decoded in the first transmissiont. Bchannel supports, without knowing the channel SNR in ad-
they do not provide a infinite stream of bits and hence cannatnce. In our approach, the channel code and modulation are
adapt over the entire SNR range. Also, these schemes reqfiked and do not adapt to channel SNR. Through the rest of
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Figure 1. Thresholding Behaviour at different channel
codes and modulation schemes nation of them. Specifically, what we transmit on the channel

is the following
this section, we will assume that input data has already been

passed through a channel coder and modulator to produce a ——
stream of complex symbols(of unit average power) that have v =V(P/L) (Z risi) @
to be transmitted using at most power We will also assume =t
that the Gaussian noise variabledave a fixed variance of The transmitter thus sendg such linear combinations, and
o2 that is unknown to the sender. Finally, we assume that th receiver receives the following system of linear eaqureti
channel attenuation has been normalizetl &md any attenu- distorted by noise.
ation has been accounted for by adjusting the noise power. Lo T o = | =
The key idea behind our app)rloacjh is tﬁe conceptrgfra g=a+n=(P/L)RS+7 3)
imum distance transformer (MDT). Intuitively, a MDT takes wheres'is the L length vector corresponding to a batchlof
a batch of modulated symbols and maps them to a differenddulated symbolR is the M x L matrix consisting of the
space where the minimum distance between the two closestdom phase coefficients defined above, and all the other
points in the original modulation scheme (e2g/P in BPSK) definitions are the same.
can be tuned to meet the channel code’s requirements. To urifo understand how this technique achieves minimum dis-
derstand how MDT works, we begin with a simple (but sultance transformation, we can use the following visualorati
optimal) approach that demonstrates the basic idea. Assuntaitively, this operation is takind. dimensional vectorg
we have a modulated BPSK symbol A simple approach to and mapping it to random points in/d dimensional space.
amplify the minimum distance is to take the symBoland As M increases, the minimum distance between the two clos-
transmit it multiple (/) times, but multiply each transmissionest points in this new space increases. Wheg= 1 the mini-
by a complex number of unit magnitude but random phaseum distance i2+/ P/ L. For any valué\/, the minimum dis-
r; = e?% (so transmission power does not change). The tance between points in tie-dimensional space correspond-
ceiver therefore gets the following symbols after noisesgenhg to the closest constellation points for modulated syimbo
added s; (assuming BPSK) i§2R(i)\/P/L|| = 2./M P/L, where
7 — i/Ps 4+ 7 (1) R(i) is_ thei’th column of r_natrixR_. Thus the minimum qlis-
tance increases monotonically witti. Hence, by controlling
wherer is the M length vector of random complex numberghe value ofM (i.e. by controlling the number of transmis-
formed by the coefficients of each transmission, @rid the sions), we can control the minimum distance until the fixed
noise vector for thé/ transmissions. channel code’s requirements are met and it can decode. Thus,
The transmitter in essence has mapped a simple BPSK syya-can keep on transmitting linear combinations until & th
bol s to a random poinf in a M-dimensional space. To seel, modulated symbols can be decoded, achieving the auto-
why this amplifies minimum distance, lets compute the Ematic rate adaptation property. Figlide 5 shows a simplified
clidean distance in this new space between the original tewample of MDT for transmittind. = 2 BPSK symbols, and
BPSK constellation points/P, —v/P. The new distance is how the minimum distance improves with each transmission
|2V PF|| = 2v/P||7]| = 2/ M P (since all the entries afare M = 1,2,3.
unit magnitude complex numbers ), which\§\/ times the  To decode, the receiver has to estimate what are the likely
original minimum distance, providing much higher resiten modulated symbols given g, the matrixR and an estimate
to noise. At some value dif (i.e. after a certail/ number of of the noise powes2. This is a well known problem in cod-
transmissions), the channel code will meet its minimum disg theory, called lattice decoding [12] that has applimasgiin
tance threshold and be able to decode. a wide range of communication scenarios (e.g. MIMO). The
As the reader can tell, the above naive approach is quity intuition behind the decoding algorithm is the same as
inefficient. It increases the minimum distance in large @acrour visualization above, the matrit defines a random map-
ments, whereas the channel code itself might need a mydéhg of L dimensional vectors to points in& dimensional
smaller increment. Our key observation is that instead ef agpace (defined as a lattice in the coding theory literatdres.
erating over single symbols as above, we can spread the tralesoding problem finds the nearest lattice pgitjtto the re-
mission power over the symbols belonging to a batch of moekived pointy, and from there decodes the corresponding
ulated symbols, sa¥, by transmitting a random linear combi-We leverage existing fast lattice decoding algorithms tolan



Packets containing

Linearly combined the following operation

DaLta Coded Data Multiply each Data symbols (x) T
ultiply N = G
Blocks symbols (s) column by LTji = TjSi (4)
R IM M wheres;” signifies the transposed vector, afjds a random
N ) complex vector of lengthl, with each of the entries having
Channel Code -

unit magnitude but random phase. This process is repeated
with the same?; for all then symbols, these linear combi-
nations are then transmitted as a packet.The subgoripte-
sponds to the fact that this linear combination belongs ¢o th

~ @ Possible points j'th transmitted packet. We can generate as many packets as
° o {in M-dimensional space) we like, with each packet being generated by a different com-
A Received point plex random vectof having unit magnitude entries. The pro-
cess stops only when the receiver has managed to decode all
L modulated packets and sends an ACK saying so, and then
the sender moves on to the next batch. The complex number
xj; Is scaled up by the AGC to whatever is the transmit power

& Modulation

Figure 3: ARA’s encoding process

" Sphere constraint. Figurgl3 depicts the MDT encoding process.
4.2 Receiver
Figure 4: Sphere Decoding The receiver gets distorted and attenuated symbols aégr th

pass through the wireless channel. It waits to receive dmoug
ment the above intuition efficiently. We describe the enegdi linear combinations until it can decode the original data- A
and decoding algorithms in more detail in Secfibn 4. Figliresgming it needs\/ linear combinations to decode, the re-
shows the high level flow of our encoding and decoding algeeived symbols can be written as
fithms. . o - i =+ it = R&; + 71 (5)

Finally, a further refinement is possible that significantly

improves the performance of our approach. Since the cofile rows of thel/ x N sized matrixR are the) random
ponents ofs’ belong to separate channel coded and modula@Mmplex vectors?, j € {1,..., M} used in producing the
blocks, we do not need to wait for all the modulated symbdigear combinations.
in §'to be decoded exactly. Instead as soon as one modulatefhe decoding proceeds at a high level in two steps
symbol (lets say;) can be decoded (i.e. the first row of sym(a) First, decode the MDT stage, i.e., find the vector of modu-
bols in Fig[3) can be decoded, the correct value,ofan be lated symbols; given that we receiveg;.
subtracted frony to get a new system of linear combination§P) Next, each of the, modulated packets are decoded using
which is easier to decode. Thus we can iteratively cancel &@nventional demodulation and channel decoding. This svork
any symbol that is decoded, and improve the decoding perfgxactly as in current hardware, hence we focus on Step 1 be-

mance for the undecoded symbols. low.
The key problem in the MDT stage is to find the vectbr
4 DESIGN AND ANALYSIS that is most likely given we receiveg. As we discussed be-

fore, the MDT encoding can be visualized as mapping each
In this section we describe the design of the encoder gsgksibleL length vectors; to a unique but random discrete
decoder. We focus on the high level aspects of the desigaint z; in a M dimensional space. The collection of all the
and refer the reader to appropriate references when we regsésible discrete points in thel dimensional space is called
algorithms from existing communication theory literature g |attice [12]. After going through the wireless channel, this
point is distorted by noise and attenuation, and hence we re-
4.1 Sender ceivey; = x; + 7i . Thus, the received poinf; will likely
The sender encodes his data in three steps: still be close to the point (in a Euclidean distance senstjen
(1) Divide data into a batch of blocks, and pass each blocKattice (z;) that was transmitted, with the actual distance being
through fixed channel encoders to produceoded blocks.  determined by the noise power.
(2) Modulate the coded bits for transmission, i.e. map theBased on this intuition, this part of the decoding algorithm
coded bits to appropriate points in the constellation (e.g: has to accomplish two things. First, it has to find the discret
1,0 — —1 in BPSK) to producel packets ofn modulated pointsz; in the lattice closest to the received paifit Second,

symbols each. among all these possible choices i¢rand the corresponding
(3) Pass thel, modulated packets through the MDT compopossible modulated symbol vectatsit has to find the correct
nent. s;. This is a well known problem in communication theory,

As explained in Sectiohnl3, MDT creates random compldsown adattice decoding [12]. Sphere decoding is a standard
linear combinations of modulated symbols. Specifically, MDand well known technique to solve this problem, which we use
takes thei'th complex symbol in each of thé& modulated in MDT too. For a detailed description of this algorithm we
packets, and forms &-dimensional complex vectog;. It refer the reader ta 5], here we give an intuitive descriptid
then creates a single complex random linear combination e algorithm as applied to ARA.
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Figure 5: Minimum distance increases from 0.89 to 1.26 to 2.19 with consecutive transmissions. At each instance, the
sender transmitsarandom linear combination of 2 BPSK symbols

4.2.1 Sphere Decoding 4.2.2 lterative Decoding

The basic idea behind sphere decoding is that instead of atSphere decoding gives a rough estimate of the likely lattice
tempting to search over the entire lattice (i.e. the set bf @bints and corresponding possible values of the modulated
possible points that are exponential in number), we can sanbol vectors; that were transmitted. However to decode
strict our search to a sphere of a fixed radius around the tige actual data transmitted, we have to use the conventional
ceived pointy;, thereby reducing the search space and herdemodulator and channel decoder. Specifically, from each re
complexity. Figurd 4 demonstrates the process. Cleary, tteived vector;, we get a list of candidate modulated symbol
closest lattice point in the sphere will also be the closesitp vectorss; that could have been transmitted. Each component
for the whole lattice. Sphere decoding thus has to address fw these vectors corresponds to a different data block, that
main questions has been separately channel coded and modulated. Now the
(a) What should be the radius of the sphere within which channel code takes these likely estimates and attempts con-
we look for lattice points? If the radius is large, we may ob-ventional soft decodind [3]. It repeats the process forZall
tain too many points, if its small, we may obtain no pointdatches, and if all of them are successfully decoded, an ACK
The right answer actually depends on the noise power in fkesent. If not, we wait to receive another packet, and rétey t
channel. The radius of the sphere should at least be the stame process.
dard deviation in the Gaussian noise. To be safe, ARA picksWe can exploit the channel decoding stage to further im-
three times the standard deviation of the noise as the radiuprove the accuracy of the sphere decoding stage. The key idea
each dimension of the vector to ensure that we do not miss @nyhat after the channel code has managed to decode at least
likely candidates. one symbol ing;, we can take the correct estimate for the cor-
(b) Second, once the radius has been picked, how to tell responding modulated symbol, and subtract it frgm This
what lattice pointsactually lieinsidethissphere? If thisre- reduces the uncertainty in the estimates for the other sym-
quires testing the distance % from every lattice point, then bols, since each component &f acts as interference to the
there is no point in sphere decoding as we will need an ether components. Exactly decoding and subtracting any one
haustive search. Fortunately, there is an efficient way lieesoof them, automatically reduces the perceived interfereace
this problem. Although it is difficult in general to determain the other components, and helps kickstart their decoding.
the lattice points in &/-dimensional sphere, it is trivial to do
so on the one dimensional case wheh= 1. Thereasonis 5. EVALUATION

that searching on a single dimension refjuces toa _S|mple smpared Schemes & Metric: We compare our approach
nary search procedure, that can be easily accomplished.

thi d ¢ f thieh di ion 1o th Sinst theoptimal conventional rate adaptation scheme, i.e.,

Zan f,tsﬁd. 'S proce Ere 0 go_f romh d |rt‘nen§|or(1j Olllthe one where the sender has perfect omniscient knowledge of the

_+1n dimension, because If we have determined alitne jqiantaneous channel SNR, and picks the channel coding and
dlmensmnal points t_haf[ lie in the _sphere, ‘heP for any suffbdulation scheme that maximizes throughput. The metric
pomté_thet setof z;dnfuss%le vfalues n melL 1bt_h dlmen5|orr1]al _Ifor comparison is throughput defined as the data rate aahieve
coordinate can be found using a simpie binary search. ineoits/second/Hz (b/s/Hz). We assume AWGN channels and
abovq naturally sugggsts the alg_onthm, start V.V'th a}sujgle carry out our simulations on MATLAB. At each SNR value
mension and successively add dimensions to it until we COYRL ARA is simulated 10 times and the throughputs are aver-

all M dimensions. — .
The above algorithm sketch is intentionally high-level djagged and plotted (error bars indicate the standard demjatio
[

¢ traints. H h decoding bv it or our scheme, we use a batch sizef 8, and the channel
0 space constraints. HOWever, spnere decoding by MS€l:tya is fixed to a convolutional code of r&te3 and the mod-
a well understood topic, and we refer the readef 1o [5] for

. : . . tion scheme is fixed to QPSK, and not allowed to change
detailed survey. In our implementation we use the algorltr\mth SNR. The conventional optimal scheme has a choice of
described in Section 3 of[5].

channel coding ratels/4, 1/3, 1/2,2/3 and modulation schemes



ratio (LLR) for each symbol, and signifies the confidence the

05
4

i Opumal Rate Adaptation Scheme)  « MDT component has in its decoding decision for each sym-
EE * bol. Typically for any channel code, there is a threshold LLR
‘é% T B 1 (depending on the channel coding rate) above which the chan-
25 . { T e nel decoder can decode the final data bits.

58, } { FigurelT plots the evolution of this soft information witheth

23’ ﬁ : i 1 number of received transmissions per batch of symbols (the

s, t % batchsize is 8) at four different channel SNRs until a packet

<7 4}( { gets decoded. The threshold for the channel code to decode
h is an LLR of 8 (LLR follows a logarithmic scale and varies

éONR(lizn dé3 v between -100 to 100, with 100 representing perfect decod-
Figure 6: Comparison of throughputs. ARA achievesal- ing). As we can see, with increasing number of receptions,
most the same performance as the optimal conventional the LLR of the symbols decoded by MDT improves, and after
rate adaptation scheme without requiring any channel- it crosses the threshold required, the fixed channel codeimm

state feedback. diately decodes. The number of receptions required depends
» on the instantaneous channel SNR, with lower SNRs requiring
peiat . more receptions.
10{ * SNR=9dB N /,’
o SNR= 10dB PR "
o i S 6. CONCLUSION
é‘, ) Joox In this paper, we have described a novel technique ARA
g oo that can automatically achieve the best bitrate at any adann
34 I SNR, without requiring any channel-state feedback or adap-
) ;A tation. The design of ARA is modular, i.e. it can work with
g any existing channel coding and modulation schemes without
L ,i P — requiring any changes to them. We believe that ARA has the
Transmissions (until start of decoding) potential to greatly simplify the design of the wireless RHY
Figure 7. Evolution of average L LRs with the number of = yeqycing the overhead of co-ordination needed for rate-adap
transmissions at different SNRs tation and eliminating expensive retransmissions needed d

. to incorrect bitrate choices.
(QPSK, 8-PSK, 16-QAM and 64-QAM) that are used in cuf- ,p , naturally lends itself to a number of future research

gal\r:tRW|F| systems, and picks the best combination for A enues. First, we are currently working on a linear time de-
' coding algorithm. Second, we plan to explore how ARA can

(a) Benchmark Results: First, we study how our approachb : L e . .
) . . b e applied to scenarios in opportunistic routing, relayan
for automatic rate adaptation compares with the optimat co PP P 9 9

ventional rate adaptation scheme. The experiment is r ngﬂaceful video delivery (since all of them aim to exploit par
fe” 0 'a ate adaptatio ;scf € SER be te pe 5 30 d; .u.t%ﬁy correct packets to improve performance). Finalle w
OIOWS. WE run expenments tor s between o- N Man to implement ARA on a USRP2 platform, and test it in

crements of 1dB, and_for each SNR, the optimal scheme b %plex time-varying channels such as outdoor mobile wire-
the best channel coding and modulation scheme, while A GS scenarios

is unaware of the SNR and uses the fixed channel code an
modulation scheme decided above. Each experiment is - REFERENCES
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