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Abstract
Rate adaptation is a fundamental primitive in wireless net-
works. Since wireless channel strength varies quickly and un-
predictably, senders have to constantly measure the channel
and correspondingly adapt the bitrate so that the transmitted
packet gets correctly decoded. Prior approaches to this prob-
lem can be divided into two classes: those that require con-
stant and expensive feedback from the receiver about channel
strength, or those that use coarse and often inaccurate infer-
ence based on packet losses to measure channel strength and
decide what bitrate to use.

In this paper we take the opposite approach. Instead of ac-
tively adapting the bitrate based on receiver or packet loss
feedback, we present a technique where the sender does no
measurement or adaptation, yet the receiver manages to re-
ceive packets at a bitrate corresponding to whatever channel
conditions exist at that point. The technique works with ex-
isting coding and modulation techniques (e.g. convolutional
codes in WiFi), and requires no changes to them. Our prelim-
inary evaluation shows that our proposed feedback-free tech-
nique achieves a performance that is nearly as good as if the
sender knew exactly what the channel strength was in advance.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Wireless com-
munication

General Terms
Performance, Reliability, Design

1. INTRODUCTION
To communicate reliably on a wireless link, a sender has to

protect his data bits against link impairments such as attenu-
ation, fading and noise. Data protection is added via a com-
bination of channel coding and modulation schemes, which
together dictate the achieved bitrate. For example, a 1Mbps
bitrate (the lowest WiFi bitrate) is due to the choice of a very
redundant channel code and a very sparse modulation scheme
(QPSK). Naturally, this bitrate is the most protected and works
well at low SNR, higher bitrates offer less protection and can-
not be decoded at low SNR. In fact, these bitrates exhibit a
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sharp all or nothing behavior, i.e. each bitrate has a SNR
threshold below which most of the data bitscannot be cor-
rectly decoded, but above that threshold very likely the entire
packet gets decoded.

The rate adaptation problem is thus to pick the bitrate that
adds the minimal protection necessary to ensure the packet
gets delivered reliably and thus maximizes throughput. How-
ever, since the wireless channel condition fluctuates constantly,
and often unpredictably, the sender has to measure the channel
SNR, and correspondingly adjust the bitrate it uses. A large
and growing body of prior work exists on this problem, and the
proposed techniques can be divided into two approaches: ones
that use direct feedback from the receiver about the channel
SNR [2, 13], or ones that infer channel strength based on past
patterns of packet delivery successes [1, 4, 9, 6]. The first ap-
proach requires expensive and constant feedback, and can still
be inaccurate because channel conditions can change since the
feedback was received. The second approach requires expen-
sive probing, and the inferred channel strength can be wildly
inaccurate since packet delivery is a very coarse measure.

In this paper, we take the opposite approach. We present a
technique,Automatic Rate Adaptation (ARA), where instead
of performing any complicated probing or obtaining channel-
state feedback from the receiver, we show that a sender can
achieve almost the optimal bitrate adaptation possible by us-
ing a single novel transmission algorithm. The sender simply
transmits packets using our fixed algorithm, and does not need
to change it in any way due to packet delivery success/failure.
The receiver recovers whatever packets it can using our pro-
posed decoding algorithm and sends a simple feedback in the
form of an ACK when it is finished decoding. We show that
this simple scheme achieves the same bitrate as the optimal
scheme, i.e. a scheme where the sender knows exactly what
the channel SNR is in advance, and picks the optimal bitrate
to transmit at that SNR.

The key technique behind ARA is the concept of amin-
imum distance transformer (MDT). The technique is based
on the observation that for any combination of channel code
and modulation scheme to work (i.e. decode reliably), the
minimum distance between nearby constellation points in the
modulation scheme must be above a threshold to tolerate dis-
tortion due to noise. The threshold is a function of channel
SNR and the redundancy in the channel code. If the mod-
ulation scheme’s minimum distance is above that threshold,
the channel code can correct any residual errors. With cur-
rent techniques, the minimum distance is fixed and dictated by
the choice of the modulation scheme and transmission power.
ARA designs and develops a novel minimum distance trans-
formation (MDT) technique that automatically adjusts the min-
imum distance, such that it is sufficient for the channel code



we picked to decode. Specifically, instead of directly trans-
mitting conventionally modulated symbols (e.g. QPSK sym-
bols), we transmit random complex linear combinations of a
batch of them. The intuition is that when we take a batch of
L conventional symbols, and transmitM linear combinations
of them, in essence we are mapping points from aL dimen-
sional space (the conventional symbols) to points in aM di-
mensional space. Depending on the relative values ofM and
L, the minimum distance in this new space can be controlled.
Thus a sender, can transmit random linear combinations until
the minimum distance in the new space goes above the thresh-
old required by the channel code to decode correctly. More-
over, the adjustment happens without any channel-state feed-
back, thus achieving the desired automatic rate adaptation.

A key feature of ARA is that it works with existing modu-
lation and coding schemes and requires no changes to them.
Second, ARA is orthogonal to the choice of coding and mod-
ulation schemes, i.e. it achieves close to the best performance
possible with whatever coding and modulation schemes are
available. This implies that any future benefits from advances
in coding and modulation techniques are immediately acces-
sible with ARA.

We evaluate ARA on wireless channels with SNRs that vary
from 5-20dB (the range typically observed in WiFi channels)
and compare it to the optimal omniscient rate adaptation scheme,
i.e. the one where the sender has instantaneous and perfect
information of the channel SNR at any instant and picks the
corresponding best bitrate. The simulation results suggest that
our technique achieves a performance that is within 10% of the
performance of the optimal scheme. These results are prelim-
inary, and we expect that the performance will improve even
further with refinements of the decoding technique.

2. RELATED WORK
Prior work on rate adaptation is based on estimating the

channel strength via direct SNR feedback from the receiver,or
inferring based on packet delivery success/failures [2, 13, 1, 4,
9, 6]. SNR feedback in fast changing mobile channels can be
expensive, and worse inaccurate, since by the time the trans-
mitter uses the feedback, the channel might have changed. In-
ference based on packet delivery success can be highly inaccu-
rate, since packet delivery is a very coarse measure of channel
strength, and can be distorted by factors such as collisions, not
just channel fluctuations. ARA avoids all these complications
since it requires neither channel-state feedback nor inference.

ARA is related to prior work in rateless codes and hybrid
ARQ. Rateless codes such as LT [8], Raptor codes [10] al-
low one to automatically achieve the capacity of an erasure
channel without knowing the packet loss probability in ad-
vance. However these techniques work with erasure channels
only, and have poor performance for channels with noise [10]
(such as wireless channels). Our technique works with noisy
channels. Second, hybrid ARQ schemes used in 4G wireless
systems based on punctured turbo codes [7, 11] do adapt to
minor misestimations of the SNR by transmitting punctured
bits if the packet is not decoded in the first transmission. But
they do not provide a infinite stream of bits and hence cannot
adapt over the entire SNR range. Also, these schemes require

completely new hardware encoders and decoders, and also are
optimized to work in the low SNR regimes typical of cellular
wireless channels. Our technique works with existing channel
codes, and can work over both low and high SNR conditions.

3. OVERVIEW
Senders have to adapt transmissions rates because of the

threshold behavior of conventional techniques, i.e. they de-
code only at or above a particular SNR threshold depending on
the channel coding rate and modulation choice. Even though
it is fairly introductory material, we first discuss the reasons
for this thresholding behavior since it provides insight into our
eventual design.

In current schemes, data bits are first channel coded to add
protection against noise. The level of protection is parameter-
ized by the coding rate (e.g a1/2 rate code implies that every
data bit is protected with one extra bit of redundancy). Coded
bits are then modulated, i.e. they are mapped to points in a
complex constellation and transmitted on the wireless chan-
nel. For example in BPSK, bits are mapped to two points
on the real line(

√
P ,−

√
P ) (P is the transmission power)

and transmitted. Due to attenuation and additive noise the re-
ceiver getsy = s + n, wheren is Gaussian noise with vari-
anceσ2. When decoding, the receiver first demodulates the
received symbol, i.e. maps it to the nearest constellation point
and infers what coded bit was transmitted. Hence if the Gaus-
sian noise value is greater/less than(

√
P/−

√
P ) the receiver

makes a bit error. However, the channel code decoder can cor-
rect a certain number of errors (depending on the amount of
redundancy added) and decode the final data. Thus as long as
the number of bit flips at the demodulation (BPSK) stage are
less than the correcting power of the channel code, the data
eventually gets decoded correctly.

Assuming the channel code rate is fixed, the key to ensur-
ing decoding success is to make sure that the demodulation
stage does not make more bit errors than the channel code can
handle. This error rate is dictated by theminimum distance be-
tween any two constellation points (e.g. for BPSK it is2

√
P )

and how it compares with the noise power (σ2). To get good
performance, the the minimum distance has to be sufficiently
large so that no more than the tolerable number of bit errors
occur. If its too small, the channel code cannot correct, if its
too large, the extra redundancy in the channel code is wasteful.
Modulation schemes have different minimum distances (e.g.
BPSK, QPSK, 16-QAM, 64-QAM have successively decreas-
ing minimum distances), and depending on the channel SNR
the rate adaptation module’s job is to pick the combination
of modulation and channel coding that correctly decodes and
maximizes throughput. Figure 1 demonstrates this threshold-
ing behavior by plotting the SNR thresholds at which different
combinations of channel codes and modulation schemes begin
to decode.

3.1 Our Approach
Our goal is to automatically obtain the maximum bitrate the

channel supports, without knowing the channel SNR in ad-
vance. In our approach, the channel code and modulation are
fixed and do not adapt to channel SNR. Through the rest of
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Figure 1: Thresholding Behaviour at different channel
codes and modulation schemes

this section, we will assume that input data has already been
passed through a channel coder and modulator to produce a
stream of complex symbolss (of unit average power) that have
to be transmitted using at most powerP . We will also assume
that the Gaussian noise variablesn have a fixed variance of
σ2 that is unknown to the sender. Finally, we assume that the
channel attenuation has been normalized to1 and any attenu-
ation has been accounted for by adjusting the noise power.

The key idea behind our approach is the concept of amin-
imum distance transformer (MDT). Intuitively, a MDT takes
a batch of modulated symbols and maps them to a different
space where the minimum distance between the two closest
points in the original modulation scheme (e.g.2

√
P in BPSK)

can be tuned to meet the channel code’s requirements. To un-
derstand how MDT works, we begin with a simple (but sub-
optimal) approach that demonstrates the basic idea. Assume
we have a modulated BPSK symbols. A simple approach to
amplify the minimum distance is to take the symbols, and
transmit it multiple (M ) times, but multiply each transmission
by a complex number of unit magnitude but random phase
ri = ejθi (so transmission power does not change). The re-
ceiver therefore gets the following symbols after noise gets
added

~x = ~r
√
Ps+ ~n (1)

where~r is theM length vector of random complex numbers
formed by the coefficients of each transmission, and~n is the
noise vector for theM transmissions.

The transmitter in essence has mapped a simple BPSK sym-
bol s to a random point~x in aM -dimensional space. To see
why this amplifies minimum distance, lets compute the Eu-
clidean distance in this new space between the original two
BPSK constellation points

√
P ,−

√
P . The new distance is

||2
√
P~r|| = 2

√
P ||~r|| = 2

√
MP ( since all the entries of~r are

unit magnitude complex numbers ), which is
√
M times the

original minimum distance, providing much higher resilience
to noise. At some value ofM (i.e. after a certainM number of
transmissions), the channel code will meet its minimum dis-
tance threshold and be able to decode.

As the reader can tell, the above naive approach is quite
inefficient. It increases the minimum distance in large incre-
ments, whereas the channel code itself might need a much
smaller increment. Our key observation is that instead of op-
erating over single symbols as above, we can spread the trans-
mission power over the symbols belonging to a batch of mod-
ulated symbols, sayL, by transmitting a random linear combi-
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Figure 2: ARA’s overall architecture

nation of them. Specifically, what we transmit on the channel
is the following

x =
√

(P/L)

(

i=L
∑

i=1

risi

)

(2)

The transmitter thus sendsM such linear combinations, and
the receiver receives the following system of linear equations
distorted by noise.

~y = ~x+ ~n =
√

(P/L)R~s+ ~n (3)

where~s is theL length vector corresponding to a batch ofL
modulated symbols,R is theM × L matrix consisting of the
random phase coefficientsri defined above, and all the other
definitions are the same.

To understand how this technique achieves minimum dis-
tance transformation, we can use the following visualization.
Intuitively, this operation is takingL dimensional vectors~s
and mapping it to random points in aM dimensional space.
AsM increases, the minimum distance between the two clos-
est points in this new space increases. WhenM = 1 the mini-
mum distance is2

√

P/L. For any valueM , the minimum dis-
tance between points in theM -dimensional space correspond-
ing to the closest constellation points for modulated symbol
si (assuming BPSK) is||2R(i)

√

P/L|| = 2
√

MP/L, where
R(i) is thei’th column of matrixR. Thus the minimum dis-
tance increases monotonically withM . Hence, by controlling
the value ofM (i.e. by controlling the number of transmis-
sions), we can control the minimum distance until the fixed
channel code’s requirements are met and it can decode. Thus,
we can keep on transmitting linear combinations until all the
L modulated symbols can be decoded, achieving the auto-
matic rate adaptation property. Figure 5 shows a simplified
example of MDT for transmittingL = 2 BPSK symbols, and
how the minimum distance improves with each transmission
M = 1, 2, 3.

To decode, the receiver has to estimate what are the likely
modulated symbols~s given~y, the matrixR and an estimate
of the noise powerσ2. This is a well known problem in cod-
ing theory, called lattice decoding [12] that has applications in
a wide range of communication scenarios (e.g. MIMO). The
key intuition behind the decoding algorithm is the same as
our visualization above, the matrixR defines a random map-
ping of L dimensional vectors to points in aM dimensional
space (defined as a lattice in the coding theory literature).The
decoding problem finds the nearest lattice point(~x) to the re-
ceived point~y, and from there decodes the corresponding~s.
We leverage existing fast lattice decoding algorithms to imple-
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ment the above intuition efficiently. We describe the encoding
and decoding algorithms in more detail in Section 4. Figure 2
shows the high level flow of our encoding and decoding algo-
rithms.

Finally, a further refinement is possible that significantly
improves the performance of our approach. Since the com-
ponents of~s belong to separate channel coded and modulated
blocks, we do not need to wait for all the modulated symbols
in ~s to be decoded exactly. Instead as soon as one modulated
symbol (lets says1) can be decoded (i.e. the first row of sym-
bols in Fig. 3) can be decoded, the correct value ofs1 can be
subtracted from~y to get a new system of linear combinations
which is easier to decode. Thus we can iteratively cancel out
any symbol that is decoded, and improve the decoding perfor-
mance for the undecoded symbols.

4. DESIGN AND ANALYSIS
In this section we describe the design of the encoder and

decoder. We focus on the high level aspects of the design,
and refer the reader to appropriate references when we reuse
algorithms from existing communication theory literature.

4.1 Sender
The sender encodes his data in three steps:

(1) Divide data into a batch ofL blocks, and pass each block
through fixed channel encoders to produceL coded blocks.
(2) Modulate the coded bits for transmission, i.e. map the
coded bits to appropriate points in the constellation (e.g.1 →
1, 0 → −1 in BPSK) to produceL packets ofn modulated
symbols each.
(3) Pass theL modulated packets through the MDT compo-
nent.

As explained in Section 3, MDT creates random complex
linear combinations of modulated symbols. Specifically, MDT
takes thei’th complex symbol in each of theL modulated
packets, and forms aL-dimensional complex vector,~si. It
then creates a single complex random linear combination via

the following operation

xji = ~rj ~si
T (4)

where~si
T signifies the transposed vector, and~rj is a random

complex vector of lengthL, with each of the entries having
unit magnitude but random phase. This process is repeated
with the same~rj for all then symbols, thesen linear combi-
nations are then transmitted as a packet.The subscriptj corre-
sponds to the fact that this linear combination belongs to the
j’th transmitted packet. We can generate as many packets as
we like, with each packet being generated by a different com-
plex random vector~r having unit magnitude entries. The pro-
cess stops only when the receiver has managed to decode all
L modulated packets and sends an ACK saying so, and then
the sender moves on to the next batch. The complex number
xji is scaled up by the AGC to whatever is the transmit power
constraint. Figure 3 depicts the MDT encoding process.

4.2 Receiver
The receiver gets distorted and attenuated symbols after they

pass through the wireless channel. It waits to receive enough
linear combinations until it can decode the original data. As-
suming it needsM linear combinations to decode, the re-
ceived symbols can be written as

~yi = ~xi + ~n = R~si + ~n (5)

The rows of theM × N sized matrixR are theM random
complex vectors~rj , j ∈ {1, . . . ,M} used in producing the
linear combinations.

The decoding proceeds at a high level in two steps
(a) First, decode the MDT stage, i.e., find the vector of modu-
lated symbols~si given that we received~yi.
(b) Next, each of theL modulated packets are decoded using
conventional demodulation and channel decoding. This works
exactly as in current hardware, hence we focus on Step 1 be-
low.

The key problem in the MDT stage is to find the vector~si
that is most likely given we received~yi. As we discussed be-
fore, the MDT encoding can be visualized as mapping each
possibleL length vector~si to a unique but random discrete
point ~xi in aM dimensional space. The collection of all the
possible discrete points in theM dimensional space is called
a lattice [12]. After going through the wireless channel, this
point is distorted by noise and attenuation, and hence we re-
ceive ~yi = ~xi + ~n . Thus, the received point~yi will likely
still be close to the point (in a Euclidean distance sense) inthe
lattice (~xi) that was transmitted, with the actual distance being
determined by the noise power.

Based on this intuition, this part of the decoding algorithm
has to accomplish two things. First, it has to find the discrete
points~xi in the lattice closest to the received point~yi. Second,
among all these possible choices for~xi and the corresponding
possible modulated symbol vectors~si, it has to find the correct
~si. This is a well known problem in communication theory,
known aslattice decoding [12]. Sphere decoding is a standard
and well known technique to solve this problem, which we use
in MDT too. For a detailed description of this algorithm we
refer the reader to [5], here we give an intuitive description of
the algorithm as applied to ARA.
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Figure 5: Minimum distance increases from 0.89 to 1.26 to 2.19 with consecutive transmissions. At each instance, the
sender transmits a random linear combination of 2 BPSK symbols

4.2.1 Sphere Decoding

The basic idea behind sphere decoding is that instead of at-
tempting to search over the entire lattice (i.e. the set of all
possible points that are exponential in number), we can re-
strict our search to a sphere of a fixed radius around the re-
ceived point~yi, thereby reducing the search space and hence
complexity. Figure 4 demonstrates the process. Clearly, the
closest lattice point in the sphere will also be the closest point
for the whole lattice. Sphere decoding thus has to address two
main questions
(a) What should be the radius of the sphere within which
we look for lattice points? If the radius is large, we may ob-
tain too many points, if its small, we may obtain no points.
The right answer actually depends on the noise power in the
channel. The radius of the sphere should at least be the stan-
dard deviation in the Gaussian noise. To be safe, ARA picks
three times the standard deviation of the noise as the radiusin
each dimension of the vector to ensure that we do not miss any
likely candidates.
(b) Second, once the radius has been picked, how to tell
what lattice points actually lie inside this sphere? If this re-
quires testing the distance to~yi from every lattice point, then
there is no point in sphere decoding as we will need an ex-
haustive search. Fortunately, there is an efficient way to solve
this problem. Although it is difficult in general to determine
the lattice points in aM -dimensional sphere, it is trivial to do
so on the one dimensional case whenM = 1. The reason is
that searching on a single dimension reduces to a simple bi-
nary search procedure, that can be easily accomplished. We
can use this procedure to go from thek’th dimension to the
k + 1’th dimension, because if we have determined all thek-
dimensional points that lie in the sphere, then for any such
point, the set of admissible values in thek+ 1’th dimensional
coordinate can be found using a simple binary search. The
above naturally suggests the algorithm, start with a singledi-
mension and successively add dimensions to it until we cover
all M dimensions.

The above algorithm sketch is intentionally high-level due
to space constraints. However, sphere decoding by itself is
a well understood topic, and we refer the reader to [5] for a
detailed survey. In our implementation we use the algorithm
described in Section 3 of [5].

4.2.2 Iterative Decoding

Sphere decoding gives a rough estimate of the likely lattice
points and corresponding possible values of the modulated
symbol vector~si that were transmitted. However to decode
the actual data transmitted, we have to use the conventional
demodulator and channel decoder. Specifically, from each re-
ceived vector~yi, we get a list of candidate modulated symbol
vectors~si that could have been transmitted. Each component
in these vectors corresponds to a different data block, that
has been separately channel coded and modulated. Now the
channel code takes these likely estimates and attempts con-
ventional soft decoding [3]. It repeats the process for allL
batches, and if all of them are successfully decoded, an ACK
is sent. If not, we wait to receive another packet, and retry the
same process.

We can exploit the channel decoding stage to further im-
prove the accuracy of the sphere decoding stage. The key idea
is that after the channel code has managed to decode at least
one symbol in~si, we can take the correct estimate for the cor-
responding modulated symbol, and subtract it from~yi. This
reduces the uncertainty in the estimates for the other sym-
bols, since each component of~si acts as interference to the
other components. Exactly decoding and subtracting any one
of them, automatically reduces the perceived interferenceto
the other components, and helps kickstart their decoding.

5. EVALUATION
Compared Schemes & Metric: We compare our approach
against theoptimal conventional rate adaptation scheme, i.e.,
one where the sender has perfect omniscient knowledge of the
instantaneous channel SNR, and picks the channel coding and
modulation scheme that maximizes throughput. The metric
for comparison is throughput defined as the data rate achieved
in bits/second/Hz (b/s/Hz). We assume AWGN channels and
carry out our simulations on MATLAB. At each SNR value,
the ARA is simulated 10 times and the throughputs are aver-
aged and plotted (error bars indicate the standard deviation).
For our scheme, we use a batch sizeL of 8, and the channel
code is fixed to a convolutional code of rate2/3 and the mod-
ulation scheme is fixed to QPSK, and not allowed to change
with SNR. The conventional optimal scheme has a choice of
channel coding rates1/4, 1/3, 1/2, 2/3 and modulation schemes
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Figure 6: Comparison of throughputs. ARA achieves al-
most the same performance as the optimal conventional
rate adaptation scheme without requiring any channel-
state feedback.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

Transmissions (until start of decoding)

A
ve

ra
ge

 L
LR

 

 

SNR= 5dB

SNR= 7dB

SNR= 9dB

SNR= 10dB
95% Decoding
proababilty

Figure 7: Evolution of average LLRs with the number of
transmissions at different SNRs

(QPSK, 8-PSK, 16-QAM and 64-QAM) that are used in cur-
rent WiFi systems, and picks the best combination for any
SNR.
(a) Benchmark Results: First, we study how our approach
for automatic rate adaptation compares with the optimal con-
ventional rate adaptation scheme. The experiment is run as
follows: we run experiments for SNRs between 5-20 dB in in-
crements of 1dB, and for each SNR, the optimal scheme picks
the best channel coding and modulation scheme, while ARA
is unaware of the SNR and uses the fixed channel code and
modulation scheme decided above. Each experiment is re-
peated10 times and the results are averaged. Figure 6 plots
the average bits/second/Hz achieved by the two schemes.

The figure shows that ARA achieves a performance that is
almost as good as the optimal scheme. For most of the SNR
range between 5-16 dB, the achieved throughput is almost the
same as the optimal scheme. For higher SNRs above 16dB,
the performance is worse by10%. The dropoff is thus small,
but we believe even this dropoff can be eliminated. Specifi-
cally, at such high SNR, the packets are getting decoded with
very few linear combinations, typically3 − 4. At such low
numbers, the random design of the matrixR in the MDT com-
ponent can be slightly sub-optimal (in terms of how the mini-
mum distances scale). A more careful choice we believe will
eliminate even the small10% inefficiency, allowing ARA to
trace the optimal scheme in the entire SNR range.
(b) Soft Information Evolution: To understand how ARA
achieves automatic rate adaptation, we plot the evolution of
the soft information for each modulated symbol in the batch
of L streams. Soft information is defined as the log likelihood

ratio (LLR) for each symbol, and signifies the confidence the
MDT component has in its decoding decision for each sym-
bol. Typically for any channel code, there is a threshold LLR
(depending on the channel coding rate) above which the chan-
nel decoder can decode the final data bits.

Figure 7 plots the evolution of this soft information with the
number of received transmissions per batch of symbols (the
batchsize is 8) at four different channel SNRs until a packet
gets decoded. The threshold for the channel code to decode
is an LLR of 8 (LLR follows a logarithmic scale and varies
between -100 to 100, with 100 representing perfect decod-
ing). As we can see, with increasing number of receptions,
the LLR of the symbols decoded by MDT improves, and after
it crosses the threshold required, the fixed channel code imme-
diately decodes. The number of receptions required depends
on the instantaneous channel SNR, with lower SNRs requiring
more receptions.

6. CONCLUSION
In this paper, we have described a novel technique ARA

that can automatically achieve the best bitrate at any channel
SNR, without requiring any channel-state feedback or adap-
tation. The design of ARA is modular, i.e. it can work with
any existing channel coding and modulation schemes without
requiring any changes to them. We believe that ARA has the
potential to greatly simplify the design of the wireless PHY, by
reducing the overhead of co-ordination needed for rate adap-
tation and eliminating expensive retransmissions needed due
to incorrect bitrate choices.

ARA naturally lends itself to a number of future research
avenues. First, we are currently working on a linear time de-
coding algorithm. Second, we plan to explore how ARA can
be applied to scenarios in opportunistic routing, relayingand
graceful video delivery (since all of them aim to exploit par-
tially correct packets to improve performance). Finally, we
plan to implement ARA on a USRP2 platform, and test it in
complex time-varying channels such as outdoor mobile wire-
less scenarios.
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