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ABSTRACT
Collecting the real human movement has drawn significant
attention from research community since a better under-
standing of human movement could provide new insights in
network protocol design and network management for wire-
less networks. However, previous projects have only col-
lected either location trace or the ad hoc contact trace. A
comprehensive trace of real human movement, in which both
the location information and ad hoc contacts are collected,
has been still missing.
This paper presents a novel framework called UIM1, which

collects both location information and ad hoc contacts of
the human movement at the University of Illinois campus
using Google Android phones. Each UIM experiment phone
encompasses a Bluetooth scanner and a wifi scanner cap-
turing both Bluetooth MAC addresses and wifi access point
MAC addresses in proximity of the phone. Then, Bluetooth
MAC addresses are used to infer contact information and
the wifi MAC addresses are used to infer physical location
of the phone. Using the contact and location information,
we investigate first the sensitivity analysis on contact dura-
tion and inter-contact duration. Then, we characterize the
regularity of people movement, visit duration of people at
locations, and the popularity of locations. We also study
the social graph formed by ad hoc traces and find that the
graph exhibits a small-world network in structure. Finally,
we present the Hybrid Epidemic data dissemination proto-
col, which uses both wifi access point and ad hoc contact to
expedite the data forwarding. We evaluate Hybrid Epidemic
protocol with our collected ad hoc and wifi traces and find
that in comparison with Epidemic data dissemination proto-
col, the Hybrid Epidemic protocol improves data forwarding
delay considerably.

1. INTRODUCTION
1UIM stands for University of Illinois Movement
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Understanding the correct movement of mobile users is
crucial to the design of efficient data dissemination proto-
cols and to the network resource planning for Infrastructure-
based wireless networks, Mobile Ad hoc Networks (MANET),
and Delay Tolerant Networks (DTN). As a result, collecting
the real movement trace of mobile users has drawn signif-
icant attention and effort from research community. How-
ever, obtaining an accurate human movement trace has re-
mained challenging due to the lack of (1) the portable device
that the experiment participants can carry for a prolonged
experiment period, (2) a light-weight, power-efficient scan-
ning protocol that can capture the movement trace and con-
serve the battery, (3) a device that can be programmed and
debugged to capture both location information and ad hoc
contacts. Nevertheless, there have been several efforts in
collecting the human movement trace.

The first type of movement traces was collected by GPS-
enabled devices carried by experiment participants [24, 16].
For this type of traces, the geographical coordinates of the
experiment devices were obtained together with the times-
tamp. However, these devices could not collect the accurate
geographical traces when the experiment devices were in-
door, which resulted in the wrong movement pattern. More
importantly, the collected geographical locations can not be
used to infer the connectivity between two geographically
closed nodes since there might be obstacles between them.
Meanwhile, connectivity is a crucial and fundamental char-
acteristic used to evaluate the performance of protocols for
wireless networks.

The second type of movement traces was collected from
WLAN environments where the association between the lap-
top/PDA and the wifi access points was captured with the
corresponding time stamps [7, 8]. The information collected
from these traces included the wifi MAC addresses of the
laptops and the MAC addresses of their associated wifi ac-
cess points. Since the laptop had a good battery capacity
and laptop users usually charged their laptops when using
the wireless network, the collected traces from WLAN pro-
vided a rich set of continuous data. Also, since the laptops
were popular in corporate environments and university cam-
puses, the trace collection experiment was easily scaled up
to the entire corporate [4] or campus [8] environments. This
offered a comprehensive set of wireless usage and detailed
associations of the laptop devices and the wifi access points
[12]. Previous work used these WLAN traces to infer the
location of the experiment devices, derived various mobility
models [8, 10], and used these derived mobility models to



validate performance of network protocols for MANETs and
DTNs. However, there was a fundamental weakness of these
trace collection methods. The reason was that the collected
trace did not always represent the real movement of people
and this might result in the wrongly derived mobility mod-
els. Obviously, the laptop user did not always turn on the
laptop and did not carry it with her all the time. Moreover,
a normal laptop user usually turned on her laptop and left it
on her office desk when she was doing other things (e.g., had
lunch with friends, had meetings with colleagues, or went to
exercise at the gym). Therefore, the location information
inferred from the WLAN trace may not be the needed fine
granularity. So, the collected associations of laptops and the
wifi access points could be used to understand the wireless
usage rather than the real movement of people.

The third type of movement traces was collected by us-
ing portable (experiment) devices such as PDA, iMote, cell
phone. These portable devices were assigned to participants
so that they would carry the devices all the time when they
were walking. The collected information included the Blue-
tooth ad hoc contacts between the experiment devices and
external Bluetooth-enabled devices, or among experiment
devices only. The collected data had the list of scanned Blue-
tooth MAC addresses with the corresponding time stamps
[22, 6, 5, 9, 13, 20, 17]. Due to the limitation of battery and
the hardware capability of the experiment devices, only the
Bluetooth ad hoc contacts were collected. Moreover, the
scale of these experiments is much smaller in the number
of participants and shorter in the experiment duration than
those of WLAN experiments. It is clear that this method
of trace collection captured more realistic movement trace
since with high probability, the experiment devices were car-
ried by the participants. However, this method of the move-
ment trace collection did not collect the location information
of the people movement, a critical factor to understand the
movement behavior of people. Except [6], all previous works
[22, 5, 9, 13, 20, 17] did not capture the location information
of the movement. For [6], the location was inferred from the
cellular ID associated with the experiment phone. However,
since the transmission range of the cellular base station was
ranging from several hundred meters (e.g., 500 m) to kilo-
meters (e.g., 30 km), the location information inferred from
the cellular ID did not provide the needed fine granularity.
From our observation, the wifi MAC address of the wifi ac-

cess point could be used to represent the location [2] since a
wifi access point usually is associated with a physical build-
ing or geographical location. Hence, this motivates us in de-
signing new scanning and trace collection methods to obtain
both Bluetooth ad hoc contacts and wifi MAC addresses of
wifi access points and then use the wifi MAC address to infer
the physical location. Table 1 compares the trace collected
at the University of Illinois 2 with previous Bluetooth/Wifi
traces. As shown in Table 1, to the best of our knowledge,
we are the first to collect the ad hoc contacts and location
information in a comprehensive movement trace. Moreover,
our Bluetooth scanner can collect the ad hoc contact with
the highest frequency compared to other data sets in the
University Campus category.
In summary, this paper has the following contributions:

2We call the University of Illinois movement scanning sys-
tem UIM.

1. We present a novel methodology to collect both ad
hoc contacts and location information of the people
movement in university campus using Google Android
phones. Our system can run on the phone as a back-
ground service, thus it can be used to collect the move-
ment trace as long as we wish. This offers a new oppor-
tunity to collect the rich set of data (ad hoc contacts
and location) for a long period and overcome the bat-
tery limitation when doing the experiment with other
devices such as iMotes, PTMR [22, 5, 9, 13, 20, 17].

2. We present new insights about contact sensitivity anal-
ysis, which has not been investigated in the litera-
ture before. We find that the contact duration, inter-
contact duration distribution, number of contacts de-
pend fully on how one defines the contact from the
scanning frequency and the accepted number of miss-
ing scans.

3. We characterize the regularity of location visits, visit
duration at locations, inter-visit duration at locations,
and location popularity.

4. We characterize the social graph formed by ad hoc con-
tacts of our data set and find that the graph exhibits
the small-world network in structure.

5. We present and evaluate the performance of the Hy-
brid Epidemic Data Dissemination protocol on our col-
lected data set. We find that the Hybrid Epidemic
data dissemination protocol considerably improves the
forwarding delay compared to the Epidemic data dis-
semination protocol [23].

This paper is organized as follows. We first present a new
methodology of collecting the movement trace on the Google
Android phone in Section 2. Then, we present the analysis
of ad hoc contact distribution and location visit in Section 3
and Section 4, respectively. Section 5 presents our findings
of the social graph formed by ad hoc MACs in our data
set. In Section 6, we compare the performance of Hybrid
Epidemic Data Dissemination protocol and Epidemic Data
Dissemination protocol based on our ad hoc and wifi traces.
Finally, we conclude the paper in Section 7.

2. UIM: JOINT BLUETOOTH/WIFI SCAN-
NING FRAMEWORK

In this section, we introduce a novel user movement trace
collection system called UIM. Our aim is that UIM satisfies
the following objectives:

1. The system should ensure that user movement is scanned
accurately

2. The system should conserve battery usage to scan the
user movement for a long period

3. The system should incur no interference to the other
applications of participants when participants carry
and use the experiment devices

We find that the open nature of Android platform on
Google phones enables us to investigate UIM and its novel
methodology to efficiently collect more accurate user move-
ment. In this section, we present the design and implemen-
tation of UIM.



PMTR Intel Cam-City Infocom Cam-U Reality UIM Toronto UCSD Dartmouth
Environment Workplace Corp. City Conf. University Campus
Duration (day) 19 3 10 3 5 246 19 16 77 114
# of Devices 49 8 36 41 12 97 28 23 273 6648
δB(second) 1 120 600 120 120 300 60 120 N/A N/A
Ad hoc Trace Yes Yes Yes Yes Yes Yes Yes Yes No No
Location Trace No No No No No CellID AP No AP AP
Device Type PMTR iMote iMote iMote iMote Phone Phone PDA PDA Laptop
# of In- contact 11895 1091 8545 22459 4229 54667 30385 2802 195364 4058284
# of Ex- device N/A 92 3586 197 159 N/A 9015 N/A N/A N/A
# of Ex- contact N/A 1173 10469 5791 2507 N/A 82091 N/A N/A N/A

Table 1: Comparison among collected Bluetooth/Wifi traces
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Figure 1: UIM System Architecture

2.1 UIM System Architecture
As shown in Figure 1, UIM has two main components: the

database server and the Google Android phone. The for-
mer hosts a relational database management system, which
accepts and stores the scanning status updates from the
experiment phones. The latter has three subcomponents:
the Bluetooth scanner, the wifi scanner, and the Status Re-
porter.
The Bluetooth scanner periodically (e.g., every 60 sec-

onds) scans the Bluetooth-enabled devices in the phone’s
proximity 3. The scanned results include the MAC ad-
dresses of the Bluetooth-enabled devices and the correspond-
ing scanning time stamps. In this paper, we use δB to
denote the scanning period of the Bluetooth scanner (e.g.,
δB = 60(s)) and “ad hoc MAC” to denote the scanned MAC
addresses of the scanned devices. Notice that the ad hoc
MAC can be an experiment phone or a scanned device,
which is not in the set of experiment phones. So, we use
“external ad hoc MAC” to denote a scanned device, which
is not in the set of experiment phones. The trace collected
by the Bluetooth scanner is called the “ad hoc trace”. We
set the Bluetooth scanning period δB = 60(s) to conserve
the phone battery. With δB = 60(s), our Bluetooth scanner
provides the highest scanning frequency compared to previ-
ous ad hoc scanners in the University Campus category (see
Table 1). Notice that UIM makes the experiment phones
discoverable in the Bluetooth channel so that an experiment
phone can scan other experiment phones in its proximity.
The wifi scanner periodically (e.g., every 30 minutes) scans

the wifi access points in the phone’s proximity. The scanned
results include the MAC addresses of the wifi access points

3In this paper we use “participant”, “phone”, “user”, and
“experiment phone” interchangeably.

and the corresponding scanning time stamps. In this paper,
we use δW to denote the scanning period of the wifi scan-
ner (e.g., δW = 30(minutes)) and “wifi MAC” to denote the
scanned MAC addresses of the wifi access points. The trace
collected by the wifi scanner is called the “wifi trace”. There
are two reasons we set the value of δW = 30(min). First,
in the campus environment, people usually do not move too
far and stay in the offices or buildings for a long time pe-
riod (e.g., a class session is usually 50 minutes). Second,
performing wifi scan on the cell phone is energy-consuming.

The collected movement trace, including ad hoc trace and
wifi trace, is stored at the local disk of the phone. The Status
Reporter updates the scanning status of the phone (e.g.,
how the scanning works, how many trace files have been
created) to the server via the HTTP connection when the
wifi connectivity is available. Due to the battery constraint,
we only enable Status Reporter at several phones. We find
that Status Reporter works smoothly if enabled.

UIM system achieves the design objectives as follows. For
the first objective, UIM provides more accurate movement
trace than previous works. Particularly, the Bluetooth scan-
ner of UIM scans every 60 (s), which is the highest scan-
ning frequency compared to previous works in the Univer-
sity Campus category as presented in Table 1. So, UIM can
scan more accurate ad hoc MACs. Moreover, since UIM has
the wifi scanner, the wifi MACs obtained by the wifi scan-
ner can be used for location specification (see Section 4) to
enrich the data set and infer missing movement informa-
tion of the participants. For the second objective, since we
tune the scanning frequency of Bluetooth and wifi scanners
carefully, the phones can be used by participants as daily
cell phones for about 2 days before running out of battery.
Moreover, since most of our participants put their cell phone
simcards into our experiment phones, participants recharge
the phones and keep the phones on. Furthermore, we con-
figure our scanners to run from 6AM to 11PM everyday,
instead of running the entire day. After 11PM, the scan-
ners pause to conserve battery and wake up at the 6AM the
following day. Using this scanning configuration, we obtain
most of the movement activity of the phone carriers and
save the battery for the phone usage. For the third objec-
tive, we implement the UIM system so that UIM runs as a
background process of the phone and is transparent to the
phone user. We carefully implement and configure UIM so
that it does not interfere with other services and applications
of the phone users. Moreover, anytime the user turns on the
phone, the scanners start and scan the devices in proximity
periodically. This ensures that UIM remains robust to the
usage of the phone and can starts running itself whenever
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(b) Scanned Device Distribution Over Time

Figure 2: Number of Unique Scanned Devices in the Collected Trace

the phone is on.

2.2 Overall Characteristics of UIM Trace
We have 28 participants who carry 28 phones for 19 con-

secutive days in March 2010. The participants include facul-
ties, staff, grads, and undergrads as shown in Table 2. The
CS faculties, staff, grads usually work inside our department
building named Siebel Center. Meanwhile, CS undergrads
may take classes in different buildings throughout the uni-
versity campus. ECE and ABE (e.g., Department of Agri-
cultural and Biological Engineering) grads stay in different
buildings from Siebel Center. In this paper, we use D to
denote the collected movement trace (including both ad hoc
and wifi traces) from 28 phones in our experiment.
Table 2 shows the overall statistics of the UIM trace. In

this table, for two phones p1 and p2, we say that p1 and
p2 have an “internal contact” if p1 sees p2 in its Bluetooth
scanned results or vice versa. For a phone p and an external
ad hoc MAC address e, we say that p and e have an“external
contact” if p sees e in its Bluetooth scanned results.

Overall Characteristics
# of Internal Devices (participants) 28
Experiment Period (days) 19
Bluetooth Scanning Period (sec, δB) 60
Wifi Scanning Period (min, δW ) 30
# of Internal Contacts 30385
# of External Scanned Devices 9015
# of External Contacts 82091
# of Scanned wifi Access Point MACs 6951

Participants
# of CS faculties 2
# of CS staff 1
# of CS grads 14
# of CS undergrads 8
# of ECE grads 2
# of ABE grad 1

Table 2: Overall Characteristics of the UIM Trace

2.2.1 Comparison of UIM and other traces
Table 1 compares the overall characteristics of UIM trace

and other previously collected Bluetooth/wifi traces. UIM
trace falls into the University Campus category trace and
has the highest scanning frequency of the Bluetooth scanner.

Thus, we obtain more detailed and accurate ad hoc contacts
(see Section 3). For all traces, only Reality [6] can offer
some level of location by inferring the cellular ID associated
with the experiment phones. However, as we discuss in the
Introduction section, the cellular base station transmission
range varies significantly and thus can not be used for the
fine granularity of the physical location. In UIM, we collect
the wifi MACs of the wifi access points in the proximity of
the phone. The wifi MACs are used to infer the physical
location of the phone. To the best of our knowledge, we
are the first to obtain the location trace and ad hoc trace
in one comprehensive movement trace. Combination of ad
hoc MACs and wifi MACs offers a rich set of movement
traces and the appearances of people at diverse locations.
These two pieces of context information will be exploited in
our future work for the design of a new content distribution
protocol.

2.2.2 Distribution of Number of Scanned Devices
Figure 2(a) shows the total number of unique scanned

devices each phone obtains for the entire experiment period.
We see that the numbers are considerably different among
phones. This is because some participants move much more
than others. Also, some locations may have more Bluetooth-
enabled devices than other locations. Figure 2(b) shows
the total number of unique scanned devices (both ad hoc
MAC and wifi MAC) over 19 days of experiment. During
our experiment, there are two weekends (03/07 and 03/14).
These two days have slightly less number of scanned devices
than other days. The first day of experiment (03/01) has
the least number of scanned devices since we assigned the
phones to participants in the late afternoon. Interestingly,
in many days during the experiment period, the number of
scanned wifi MACs is more than that of ad hoc MACs.

3. CONTACT ANALYSIS
Contact duration and inter-contact duration are two im-

portant metrics used to design data forwarding protocols for
DTNs. In this section, we analyze the contact duration and
inter-contact duration to provide more insights about these
two metrics, which have not been provided in the previous
studies [6, 5, 9, 13, 17]. Notice that the terms “contact
duration” and “inter-contact duration” are the same as the
terms “contact time” and “inter-contact time” used in pre-
vious studies. We use these two new terms in this paper
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Figure 3: Contact Sensitivity
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Figure 4: Contact Definition

since we believe the word “duration” represents properly the
meaning of time period while the word “time” does not.

3.1 Contact Definition
In our context, a phone p and an ad hoc MAC M are said

to have a contact if M exists in the Bluetooth scanned result
of p. Let TC denote the contact duration between a phone p
and an ad hoc MAC M . TC could be calculated by using the
scanning period δB . For example, let N be the number of p’s
consecutive scans where M appears in the scanned results,
TC = N × δB . However, due to the hardware limitation of
the Bluetooth driver at the phone and the unreliable wireless
communication channel, it is possible that p does not receive
M in its scanned result even when M is inside the Bluetooth
sensing range of p. Therefore, in previous works [6, 5, 9, 13,
17], people accepted the missing scans in contact definition
as follows: for p and M , although p does not see M in its
scanned result for a certain number of scans, p and M are
still considered in contact if the number of missing scans is
acceptable. Figure 4 shows an example of contact definition.
Let Si denote the scanned result of p at time ti. M1 and
M2 are two ad hoc MACs scanned by the phone p. If the
accepted number of missing scan for this figure is 1, from ti
to ti+4, p and M1 have one contact with the duration of 4δB
while p and M2 have two contacts with the durations of 2δB
and δB respectively.
The accepted number of missing scans depends on the

trace collection procedures. For example, in [5, 9, 13], the
number of missing scans is one (with δB = 120(s)); however,
in [17], this number is 60 (with δB = 1(s)). To generalize
this, we define ∆B as the accepted number of missing scans
in the definition of contact. The contact duration TC then
depends on δB and ∆B . Notice that ∆B defines the bound-
ary between the two consecutive contacts of a node pair.

3.2 Impact of δB on Contact Duration
Figure 3(a) shows the sensitivity of contact duration when

we vary value of δB . To obtain this plot, we have 6 students
carry phones for 1 week, we set δB = 15(s) for the Bluetooth

scanner. Notice that the lower bound (hardware limitation)
of Bluetooth scan frequency for Google phone is 12 (s) [1].
We have tried the Bluetooth scan every 10 (s) and most
of the time the scanned results are empty. Thus, we set
δB = 15(s). Let here D1 denote the data set obtained from
these 6 phones with δB = 15(s). Each element in D1 is the
results obtained by one scan of any phone in the set of 6
phones. Since δB = 15(s), we can derive D2 data set from
D1 using pseudo δ′B ∈ [15, 30, 45, 60] as follows: if δ′B =
30(s), D2 is the set of odd or even scans in D1. With δ′B =
45(s), we take ith scan from D1 and put into D2, and skip
the (i + 1)th and (i + 2)th scans. Figure 3(a) is obtained
from these D2 sets of corresponding pseudo δ′B and ∆B = 0.
Notice that this figure is in log-log scale. The figure shows
that with different values of δ′B , we obtain different curves.
More importantly, although the curves look similar in shape,
the difference between them is significant, ranging from 15%
to 20%. That means, the Bluetooth scanning period δB has
important impacts on calculating contact duration. This
has not been investigated in previous studies [6, 5, 9, 13].

Figure 3(a) also shows that a large amount of contacts
(from 35% to 55%) are short contacts (less than 15(s)). Pre-
vious studies [6, 5, 9, 13] have not studied the short contact
distribution due to their low scanning frequency (see Table
1). Except one study in a workplace environment [17], we
are the first to study the distribution of short contact in uni-
versity campus. As shown in [17], the short contact has an
important role in data forwarding protocol in a workplace
environment. In the future, we will investigate the impact
of the short contact on data forwarding in the university
campus environment.

3.3 Impact of ∆B

Besides δB , ∆B has an important role in defining the con-
tact duration TC . This section studies the impacts of ∆B on
inter-contact duration and total number of contacts. Notice
that the plots in this section are obtained from entire data
set D with δB = 60(s).

As defined in previous studies [5, 9, 13], inter-contact du-
ration is the time duration between the two consecutive con-
tacts of a given node pair. It is well-known from the previous
studies that the inter-contact duration follows the power law
[6, 5, 9, 13, 17, 11]. Figure 3(b) shows that overall the inter-
contact duration follows the power law and about 60%-80%
of inter-contact duration is less than 1 hour. That means, if a
pair of nodes meets at time t, this pair will meet again within
one hour after time t with high probability. This figure also
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Figure 5: Location Analysis 1

shows that when ∆B varies from 0 to 3, the inter-contact
duration varies up to 15%, although the shapes of the curves
are similar. So, the value of ∆B has a clear impact on the
inter-contact duration distribution.
Figure 3(c) shows that when ∆B varies, the number of

external contacts and internal contacts in the entire data
set changes significantly 4. For the greater value of ∆B , the
definition of contact is more “robust” to missing scans and
thus the contact lasts longer; thus, we have less number of
contacts. For example, when ∆B increases from 0 to 1, the
number of external contacts decreases more than 30% from
about 80000 to about 50000, while that of internal contacts
decreases more than 60% from about 30000 to 10000. Simi-
larly, when ∆B increases from 1 to 2, the number of external
contacts decreases 20% and that of the internal contacts de-
creases 30%.
In conclusion, the definition of contact depends on δB and

∆B . So, when using the (inter-)contact duration distribu-
tion reported in previous studies [5, 9, 13], the readers should
carefully consider the corresponding values of δB and ∆B

since they have significant impacts on (inter-)contact dura-
tion distribution.

4. LOCATION ANALYSIS

4.1 Definition of Location
As we described in Section 2, UIM collects wifi access

points MAC addresses. The collected set of wifi access
point MACs includes not only the wifi MACs associated with
buildings in the University of Illinois campus but also ones
at the residential homes/apartments where the participants
stay with the experiment phones. So, the overall scanned
wifi MACs give us the wifi access point map of the univer-
sity campus and the surrounding areas where the students
and faculties live.
Our wifi scanner obtains a list of wifi MACs in the prox-

imity of the phone every 30 minutes, we use the list of wifi
MACs to approximate the locations of the participants. The
basic motivation for this analysis is that each wifi access
point is associated with a physical building or physical loca-
tion. In reality, the wifi access point usually stays inside its
associated physical location. So, we can assume that the wifi
access point is the“landmark”of the physical location. Since

4Definitions of internal and external contact can be found
in Section 2.2.

our phone can obtain the wifi MACs, we basically obtain the
landmarks of the locations, or the locations themselves [2].

4.2 Obtaining Locations from wifi MACs
Due to the design of its hardware, anytime a Google An-

droid phone performs a wifi scan, the phone receives multiple
results, each of which consists of a list of wifi MACs. These
results may not have exactly the same set of wifi MACs, but
these results are usually highly overlapped. We, thus, aggre-
gate all returned results from one scan and get the unique
set of wifi MACs as the representative returned result of that
scan. We also merge partial lists of wifi MACs if there exist
multiple phones arriving at the same location from differ-
ent directions. For example, a location L has a set of wifi
access points. If there are two phone carriers heading to L
from two different directions and these two phones are very
closed to L, each phone may scan a partial list of the entire
set of wifi access points at L. If these two scanned results are
highly overlapped, we merge these two partial lists of wifi
MACs to obtain the unique set of wifi MACs for L. This
simple merging process works well for our data set and can
identify locations from wifi MACs. Henceforth, we use the
terms “wifi trace” and “location trace” interchangeably.

4.3 Characterizing the Location Visit

4.3.1 Location Visit Duration and Location Inter-Visit
Duration

In our context, we consider a phone p has a“location visit”
with a location L if L appears once in the location trace of
p. Notice that the definition of “visit” between a phone and
a location is similar to the definition of contact between a
phone and an ad hoc MAC. We first calculate the “loca-
tion visit duration”, which is the duration the phone stays
at a particular location. Similar to the contact definition,
the definition of location visit depends on wifi scanning fre-
quency δW and the accepted number of missing scans ∆W .
In Figure 5, we have δW = 30(min), ∆W = 0, and we use
the entire data set D. Figure 5(a) shows that about 60% of
location visits is less than 1 hour and the longest location
visit is 10 hours. Since we have δW = 30(min), the result
from this figure relies on the following assumption: for two
consecutive wifi scans, if p scans the same set of wifi MACs,
that means p stays at the same location during the last 30
(min). This might not be true if the phone carriers move to
another location and then come back to L within the last
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30 (min). However, this is the common limitation of exist-
ing trace collection methods since we only can obtain the
“discrete” rather than “continuous” scanned result.

For a pair of phone p and location L, the inter-visit dura-
tion is the time duration between the two consecutive visits
of p at L. Figure 5(b) shows the inter-visit duration distribu-
tion of our data set. This result differs from the association
time between a laptop and its wifi access point 5, which was
a heavy-tailed distribution as presented in previous study
[10]. From this figure we see that the longest inter-visit du-
ration is one week and for a pair of phone p and location L,
if p visit L at time t, it is unlikely that p will return to L
after one hour.
The next two questions are: (1) how regular is the location

visit pattern in people daily movement?, and (2) what is
the popularity of locations? To answer these questions, we
select a data set D3 from D with 17 phones for 15 days.
D3 has 170 unique locations. The reason we select D3 is
that several phones, out of 28 phones, have broken traces.
We then divide a day time into 4 time slots ([6AM:10AM),
[10AM:2PM), [2PM:6PM), [6PM:11PM]). This time division
works for our data set since in the morning people come from
home to work/class, then they may stay at work/school for
lunch. In the afternoon, faculties may change the location
to other offices for meetings or students change class rooms,
then in the late afternoon, people come back home. Notice
that we do not have a time slot from 11PM of one day to
6AM of the next day since our scanners do not work during
that period to save energy. So, for 15 days a phone has 60
time slots. In each time slot, we aggregate all locations the
phone visit and thus have a record in the format of ([time
slot];[list of visited locations]). The next step is to find the
regular location.

4.3.2 Regular Locations
In our context, for a phone p, a location L is the “regu-

lar location”of p if p visits L at the same time slot for
a certain number of days during the 15-experimental
days. This definition borrows the notion of “regular pat-
tern” in Frequent Pattern Mining [3].
For each phone p, we apply the Frequent Pattern Mining

with Vertical technique [3] to find the regular locations for
p. Basically, we count, for each time slot, the number of
appearances LC of L over the 15-day period. If LC > 6, L is

5A wifi access point was a physical location in previous
study.

a regular location. We select 6 as the threshold since from 15
days we have 2 weekends and thus we have only 11 working
days. Moreover, the movement pattern of the weekday and
weekend is different. We expect that the participant visits a
regular location for at least 6 days during the 15-day period.

Figure 6(a) shows that 16 phones out of 17 phones have
more than 1 regular location. 15 phones have from 2 to 3
regular locations while one phone has 4 regular locations.
This confirms that the daily movement pattern of people is
regular and predictable. The research on mobility models
for mobile wireless networks thus need to take this regu-
lar movement pattern into account. Next, we present the
location popularity.

4.3.3 Location Popularity
In our context, the location L1 is more popular than

the location L2 if there are more ad hoc MACs scanned
by phones at L1 than at L2.

To obtain the popularity of locations in data set D3, we
combine the ad hoc trace and wifi trace according to scan-
ning time. Notice that our wifi scanner scans the wifi MACs
(e.g., the location) every 30 minutes. If at time t the phone
p appears at the location L in the data set D3, we look into
all ad hoc MACs scanned by p in the ad hoc trace during the
period of 10 minutes (e.g., [t − 5(min),t + 5(min)]), aggre-
gate these ad hoc MACs, and assign them as scanned ad hoc
MACs at time t at location L. After repeating this for the
entire data set D3 and for all locations from 170 locations,
we then aggregate all ad hoc MACs of the same location L
into a unique set, which represents the set of ad hoc MACs
scanned at L. Figure 6(b) shows the location popularity
in terms of number of scanned ad hoc MACs at the loca-
tions (Notice that the figure is in log-log scale). This figure
shows that location popularity exhibits a heavy-tailed dis-
tribution. Particularly, when location rank is greater than
10, the location popularity follows a Zipf distribution.

5. MINING THE SOCIAL GRAPH
In this section, we investigate the social graph formed by

our ad hoc trace.

5.1 Social Graph
The social graph G =< V,E > is an undirected graph,

which is defined as follows. V is the set of nodes, including
experiment phones and external ad hoc MACs. For a pair
of nodes v1, v2 ∈ V , if v1 is a phone and v2 appears in one
scanned result of v1, then the edge (v1, v2) ∈ E. Notice
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that, if v1 is a phone and v2, v3 exist in one scanned result
of v1, then in our context, (v1, v2) ∈ E, (v1, v3) ∈ E, but
(v2, v3) /∈ E.

5.2 The Small-world Structure
Figure 7 shows that the node degree distribution of the

graph G follows a Zipf distribution with a heavy-tailed cut-
off at the node degree of equal to or greater than 35 (this
figure is in log-log scale). To further investigate the node
degree distribution of G, we plot the node rank in terms of
node degree in Figure 7(b). It shows that for the node rank
greater than 25, the node degree follows the Zipf distribu-
tion. We then focus on the first 25 nodes in Figure 7(c),
which shows that the node degree linearly decreases with
respect to the node rank (notice that in Figure 7(c), the
y-axis is in log-scale).
We also find that node degree mean of G is 3.26 and node

degree standard deviation is 38.2. To further examine the
structure of the graph G, we calculate the local clustering
coefficient (CC) [25] for all nodes in V . As shown in Figure
8, more than 80% of nodes has CC = 0, these nodes are all
leaf nodes which have only one neighbor (i.e., the experiment
phone). Since 80% of nodes have CC = 0, the global CC of
the graph is 0.157, which is greater than the global CC of a
random graph with |V | = 9015 and mean node degree 3.26
(which is 3.26/9015 = 0.00036).
Furthermore, we create a social graph G1 =< V1, E1 > of

experiment phones and calculate the CC for G1. Here, V1

is the set of experiment phones and |V1| = 28. Also, for a
pair of nodes v1, v2 ∈ V1, if v2 appears in one scanned result
of v1, then the edge (v1, v2) ∈ E1. Figure 8 shows the local
CC of G1 in which 60% of phones have the local CC greater
than 0.8. Because of this, the global CC of G1 is 0.814,
which indicates that the graph formed by phones is highly
clustered.
From our analysis, the graph G is a connected graph with

9015 nodes and graph diameter is 4. The low mean of node
degree (e.g., 3.26) results from the ad hoc MACs, which are
the leaf nodes in the graph with only edges to the experiment
phones. From Figure 7(b) we see that the first 50 nodes have
degree greater than 25, these nodes form the hubs of G and
reduce the graph diameter. Meanwhile, we have only 28
phones, that means the external ad hoc MACs also are hubs
in G. Besides, although the global CC of the graph is 0.157,
it is considerably greater than the global CC of a random
graph with |V | = 9015 and mean node degree 3.26 (which
is 3.26/9015 = 0.00036). So, we conclude that G exhibits a
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small-world network in structure.

6. HYBRID EPIDEMIC DATA DISSEMINA-
TION

As shown in Figure 2(b), in many days during our ex-
periment period, the number of scanned wifi MACs is more
than that of ad hoc MACs. Also, our 28 phones collected
6951 wifi access points during the experiment period. So,
we believe a data dissemination protocol, which uses both
wifi access points and ad hoc contacts to forward data mes-
sages, becomes applicable in the university campus. This
motivates us to design a new data dissemination protocol
named Hybrid Epidemic Data Dissemination protocol (or
Hybrid Epidemic protocol for short), which combines both
wifi access points and ad hoc contacts in data dissemination.

6.1 Design of Hybrid Epidemic Protocol
Figure 9 shows the network model of the Hybrid Epidemic

protocol with two main components: wifi access points and
mobile nodes. We assume that the wifi access points are con-
nected via the WLAN or Internet connection (e.g., AP1 and
AP2 are connected and can exchange data via the WLAN
backbone or Internet connection). Besides, the mobile nodes
can communicate in infrastructured-based and ad hoc modes.
The ad hoc connectivity can be either Bluetooth or wifi.

Figure 9 also shows how the Hybrid Epidemic protocol
works. Particularly, when the sender P1 sends a message
m to the receiver P5, P1 uploads m to the wifi access point
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AP1
6 whenever P1 is within the transmission range of AP1.

At the same time P1 and other nodes in the network perform
the epidemic procedure to forwardm toward the destination.
For example, P1 sends the message m to P2 when two mobile
nodes are in contact. Again, P2 forwards m to P3 when P2

and P3 are in contact, and so forth. After P1 uploads m
to the wifi access point AP1, AP1 broadcasts m to other
wifi access points in the network. Upon receiving m from
AP1, AP2 advertises m to its surrounding area and thus
if P4 is in AP2’s range, P4 can download m from AP2 via
the infrastructured connectivity. After that, P4 can use ad
hoc contacts to expedite the forwarding of m toward the
receiver P5 when P4 and P5 are in contact. The receiver P5

can receive m from wifi access points or ad hoc contact.
We use the “forwarding delay” metric to evaluate Hybrid

Epidemic protocol. For a pair of sender/receiver (s/r), the
forwarding delay is the time period since s starts sending
m toward r, until r receives m. We are seeking the an-
swer for the question: how much forwarding delay improve-
ment the Hybrid Epidemic protocol can achieve. To obtain
the answer, we compare Hybrid Epidemic protocol to the
Epidemic protocol [23], which only uses ad hoc contacts to
forward data messages (no wifi access points are used in
Epidemic protocol). The Epidemic protocol has been the
fundamental data dissemination protocol in DTN research
[21, 14]. In Figure 9, if the Epidemic protocol is used to
forward data message m from P1 to P5, the forwarding path
is P1, P2, P3, P5. Notice that although Epidemic protocol in-
curs a high network overhead, it does achieve a high delivery
ratio and a nearly optimal forwarding delay [19] since Epi-
demic protocol exploits all possible ad hoc paths from the
sender to the receiver.
Since we are only interested in the forwarding delay rather

than other metrics (e.g., network overhead), we have left fol-
lowing design issues for our future work. First, we do not
limit the number of copies of m in the network (e.g., mo-
bile node P1 makes a copy of m and forwards to P2). That
means, the message m is “flooded” to the entire network by
the ad hoc contact and wifi access points7. Second, how
long the wifi access points cache the data messages is not
the focus of this paper. Figure 6(b) shows that the location
popularity follows a heavy-tailed distribution. That means,
it is possible that the wifi access points at the more pop-
ular locations can cache data message for a longer period
so that mobile nodes have a higher probability to obtain
the message. Third, figure 6(a) shows that people move-
ment is regular since they visit locations at the same time
periods. Our protocol does not exploit this movement reg-

6We assume that the wifi access point has the storage to
cache data message.
7This is the nature of epidemic data dissemination.
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ularity in data dissemination yet. The Hybrid Epidemic
protocol follows the trend of combining Infostations and ad
hoc connectivity to improve data delivery in previous works
[15, 18], which were evaluated by mean of simulation. Our
main contribution in this paper is to evaluate and compare
the performance of Hybrid Epidemic and Epidemic protocols
on the real movement trace obtained by UIM.

6.2 Evaluation Setting
As presented in a survey of 300 computer science faculty

members and students [17], the forwarding delay that peo-
ple can tolerate is from one to several hours, depending on
the delay-tolerant networking applications and services [17].
Therefore, we evaluate the performance of Hybrid Epidemic
protocol for a day-long period. Particularly, we compare
the performance of Epidemic protocol and Hybrid Epidemic
protocol using the ad hoc trace and wifi trace collected by 8
phones carried by grad students in the same research group
for two different days. Let D4 and D5 denote the collected
traces for these two days.

Since the participants come from the same research group,
D4, D5 provide richer sets of contacts among 8 phones as well
as a richer overlapping set of external ad hoc MACs. This
is important for the Epidemic protocol in order to improve
the forwarding delay of the message since the performance
of this protocol depends fully on ad hoc contact. If D4 and
D5 are traces collected by a random set of participants, the
data set may not have a good overlapping set of ad hoc
MACs, which makes the data forwarding unreachable or in-
curs an unacceptable long forwarding delay. Our formation
of D4 and D5 also represents the realistic scenario since 8
participants from the same research group are from the same
“community”, thus they may share mutual content interest
and share mutual contacts. Notice that D4 has 186 unique
Bluetooth MACs while D5 has 209 unique Bluetooth MACs.

Using the data sets D4 and D5, the Hybrid Epidemic pro-
tocol works as follows: at time t1 the phone P1 starts sending
message m to a receiver P2. At time t2 ≥ t1, P1 uploads m
to the wifi access points if P1 sees a wifi access point in the
trace at time t2. After the time t2, another phone P3 can
download m from P3’s wifi access points. Notice that P1

and P3 also use their ad hoc contacts in the ad hoc trace to
forward m. In many cases P3 may receive m from its ad hoc
contacts before P3 encounters a wifi access point since in our
wifi trace a phone scans wifi trace every 30 minutes. This is
the limitation of our wifi scanner since we do not capture the
“continuous” wifi trace. However, it is also the limitation of



any wifi scanners due to the battery consumption constraint.
More importantly, if we have a more frequently scanned wifi
trace (e.g., δW < 30(minutes)), the performance of Hybrid
Epidemic protocol may improve since P3 can download m
from its wifi access point at a earlier time after P1 uploads
m to the wifi access points. Here, P2 can receive m from
wifi access point or ad hoc contact.

6.3 Performance Evaluation
We select 50 random pairs of (sender, receiver) from D4,

and 50 random pairs of (sender, receiver) from D5 and ap-
ply Epidemic protocol and Hybrid Epidemic protocol on the
two data sets to forward the message from the sender to the
receiver. Figure 10 shows that Hybrid Epidemic protocol
achieves much shorter average forwarding delay than Epi-
demic protocol (e.g., 3500 (s) and 5500 (s) for day 1 and
day 2, respectively). This is because Hybrid Epidemic pro-
tocol combines both ad hoc contact and wifi access points
to improve the forwarding of the data messages. In our ex-
periment, when Hybrid Epidemic protocol scheme is used
to forward messages, the messages always reach the desti-
nation. However, for Epidemic protocol, 10% and 17% of
messages can not reach the destination, for day 1 and day
2 respectively. Notice that in Figure 10, the forwarding de-
lay for a pair (sender,receiver) is only taken for the average
delay calculation if the message is received at the receiver.

7. CONCLUSION
We present a novel framework in collecting the human

movement trace. Our system provides a comprehensive data
set of both ad hoc and wifi traces obtained by our Bluetooth
and wifi scanners. Given the wifi trace, we infer the location
trace of the experiment phones.
The combination of ad hoc and location traces provides a

new opportunity in analyzing the human movement in uni-
versity campus. Particularly, our analysis shows that the
scanning period and the accepted number of missing scans
have crucial impacts on (inter)-contact duration distribu-
tion. We also find that people have regular movement pat-
terns in daily movement and the location popularity follows
a heavy-tailed distribution. Next, we study the social graph
formed by ad hoc trace and find that the graph exhibits a
small-world network in structure. Finally, we present the
Hybrid Epidemic data dissemination protocol, which uses
both wifi access points and ad hoc contact to expedite the
data forwarding. We evaluate Hybrid Epidemic protocol
with our collected ad hoc and wifi traces and find that in
comparison with Epidemic data dissemination protocol, the
Hybrid Epidemic protocol improves data forwarding delay
considerably. Since the wifi access points are universally
available in densely populated areas such as cities, campuses,
etc., we believe that the Hybrid Epidemic Data Dissemina-
tion protocol is widely applicable.
In the future, we will use the UIM trace currently being

collected by 120 participants in University of Illinois campus
to model the movement behavior and then exploit the model
for more efficient data dissemination schemes.
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